Science.gov

Sample records for 15n isotope effect

  1. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density.

    PubMed

    Buckley, Daniel H; Huangyutitham, Varisa; Hsu, Shi-Fang; Nelson, Tyrrell A

    2007-05-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool that can identify the functional capabilities of noncultivated microorganisms as they occur in microbial communities. While it has been suggested previously that nucleic acid SIP can be performed with 15N, nearly all applications of this technique to date have used 13C. Successful application of SIP using 15N-DNA (15N-DNA-SIP) has been limited, because the maximum shift in buoyant density that can be achieved in CsCl gradients is approximately 0.016 g ml-1 for 15N-labeled DNA, relative to 0.036 g ml-1 for 13C-labeled DNA. In contrast, variation in genome G+C content between microorganisms can result in DNA samples that vary in buoyant density by as much as 0.05 g ml-1. Thus, natural variation in genome G+C content in complex communities prevents the effective separation of 15N-labeled DNA from unlabeled DNA. We describe a method which disentangles the effects of isotope incorporation and genome G+C content on DNA buoyant density and makes it possible to isolate 15N-labeled DNA from heterogeneous mixtures of DNA. This method relies on recovery of "heavy" DNA from primary CsCl density gradients followed by purification of 15N-labeled DNA from unlabeled high-G+C-content DNA in secondary CsCl density gradients containing bis-benzimide. This technique, by providing a means to enhance separation of isotopically labeled DNA from unlabeled DNA, makes it possible to use 15N-labeled compounds effectively in DNA-SIP experiments and also will be effective for removing unlabeled DNA from isotopically labeled DNA in 13C-DNA-SIP applications.

  2. Stable Isotope Probing with 15N Achieved by Disentangling the Effects of Genome G+C Content and Isotope Enrichment on DNA Density▿ †

    PubMed Central

    Buckley, Daniel H.; Huangyutitham, Varisa; Hsu, Shi-Fang; Nelson, Tyrrell A.

    2007-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool that can identify the functional capabilities of noncultivated microorganisms as they occur in microbial communities. While it has been suggested previously that nucleic acid SIP can be performed with 15N, nearly all applications of this technique to date have used 13C. Successful application of SIP using 15N-DNA (15N-DNA-SIP) has been limited, because the maximum shift in buoyant density that can be achieved in CsCl gradients is approximately 0.016 g ml−1 for 15N-labeled DNA, relative to 0.036 g ml−1 for 13C-labeled DNA. In contrast, variation in genome G+C content between microorganisms can result in DNA samples that vary in buoyant density by as much as 0.05 g ml−1. Thus, natural variation in genome G+C content in complex communities prevents the effective separation of 15N-labeled DNA from unlabeled DNA. We describe a method which disentangles the effects of isotope incorporation and genome G+C content on DNA buoyant density and makes it possible to isolate 15N-labeled DNA from heterogeneous mixtures of DNA. This method relies on recovery of “heavy” DNA from primary CsCl density gradients followed by purification of 15N-labeled DNA from unlabeled high-G+C-content DNA in secondary CsCl density gradients containing bis-benzimide. This technique, by providing a means to enhance separation of isotopically labeled DNA from unlabeled DNA, makes it possible to use 15N-labeled compounds effectively in DNA-SIP experiments and also will be effective for removing unlabeled DNA from isotopically labeled DNA in 13C-DNA-SIP applications. PMID:17369331

  3. Use of a {sup 15}N isotope dilution method to assess contaminant effects on soil nitrification

    SciTech Connect

    Nason, G.E.; Dinwoodie, G.D.

    1995-12-31

    Ecologically relevant bioassays are needed to assess effects of contaminants on soil processes such as decomposition and nutrient cycling. This study was conducted to assess the potential of a soil-based nitrification bioassay. Soil samples adjusted to 0.03 MPa moisture content were amended with 0.1, 1.0, 10 and 100 mg kg{sup {minus}1} PCP or PCB, and 0.05, 0.5, 5 and 50 mg kg{sup {minus}1} Hg and preincubated for 7 days. A 2-d incubation was then started by addition of 10 mg kg{sup {minus}1} {sup 15}NO{sub 3}-N. Diethyl ether used as a carrier for PCP addition had little effect on inorganic nitrogen concentrations during the incubation. Net nitrogen mineralization and nitrification were unaffected by PCB. Higher amendment levels of both PCP and Hg resulted in increases in ammonium concentrations and decreases in net nitrification. {sup 15}N-nitrate pool dilution was sensitive to contamination and showed some gross nitrification was occurring even when net nitrification had ceased. Recoveries of Hg and PCB at the end of the study were greater than 90%. Recovery of PCP was 5%. Incubations carried out under sterile and non-sterile conditions indicated that both sorption and biological degradation were factors in the low PCP recovery.

  4. Investigation of the mechanism of nicotine demethylation in Nicotiana through 2H and 15N heavy isotope effects: implication of cytochrome P450 oxidase and hydroxyl ion transfer.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Paneth, Piotr; Hatton, Wilfried; Lebreton, Jacques; Robins, Richard J

    2007-02-15

    Heavy-atom isotope effects for the N-demethylation of nicotine have been determined in vivo in static-phase biosynthetically incompetent plant cell cultures of Nicotiana species. A (2)H kinetic isotope effect of 0.587 and a (15)N kinetic isotope effect of 1.0028 were obtained. An identical (15)N kinetic isotope effect of 1.0032 was obtained for the nicotine analogue, N-methyl-2-phenylpyrrolidine. The magnitude of the (15)N heavy-atom isotope effect indicates that the fission of the CN bond is not rate limiting for demethylation. The theoretical calculation of heavy-atom isotope effects for a model of the reaction pathway based on cytochrome P450 best fits the measured kinetic isotope effect to the addition of hydroxyl ion to iminium to form N-hydroxymethyl, for which the computed (2)H- and (15)N kinetic isotope effects are 0.689 and 1.0081, respectively. This large inverse (2)H kinetic isotope effect is not compatible with the initial abstraction of the H from the methyl group playing a significant kinetic role in the overall kinetic limitation of the reaction pathway, since computed values for this step (4.54 and 0.9995, respectively) are inconsistent with the experimental data.

  5. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.

  6. Effects of four different restoration treatments on the natural abundance of (15)n stable isotopes in plants.

    PubMed

    Temperton, Vicky M; Märtin, Lea L A; Röder, Daniela; Lücke, Andreas; Kiehl, Kathrin

    2012-01-01

    δ(15)N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil-plant N dynamics in relation to the restoration treatments. In particular, δ(15)N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ(15)N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ(15)N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ(15)N of the non-legume species, with very depleted δ(15)N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ(15)N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ(15)N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ(15)N signals. We discuss our results in the light of what the δ(15)N signals may be telling us about plant-soil N dynamics and their potential value as an indicator for N dynamics in restoration.

  7. Effects of Four Different Restoration Treatments on the Natural Abundance of 15N Stable Isotopes in Plants

    PubMed Central

    Temperton, Vicky M.; Märtin, Lea L. A.; Röder, Daniela; Lücke, Andreas; Kiehl, Kathrin

    2012-01-01

    δ15N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil–plant N dynamics in relation to the restoration treatments. In particular, δ15N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ15N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ15N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ15N of the non-legume species, with very depleted δ15N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ15N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ15N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ15N signals. We discuss our results in the light of what the δ15N signals may be telling us about plant–soil N dynamics and their potential value as an indicator for N dynamics in restoration. PMID:22645597

  8. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  9. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  10. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  11. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ13C and δ15N)

    PubMed Central

    Nelson, James A.; Rozar, Katherine L.; Adams, Charles S.; Wall, Kara R.; Switzer, Theodore S.; Winner, Brent L.; Hollander, David J.

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding

  12. Effect of age and ration on diet-tissue isotopic (Δ13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets. PMID:24506487

  13. Effect of age and ration on diet-tissue isotopic (Δ13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets.

  14. An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris.

    PubMed

    Rodriguez, E; Krishna, N R

    2001-07-01

    We report a new and cost-effective approach to prepare (15)N/(13)C labeled proteins for NMR using the Pichia pastoris expression system. Four protocols (P1 to P4) were defined and compared using recombinant Ovine interferon-tau (rOvIFN-tau). Our results demonstrate that in order to get full incorporation of (15)N and (13)C, the isotopes are not totally required during the initial growth phase of P. pastoris culture. The addition of small amounts of (15)N and (13)C compounds 6 h prior to the methanol induction phase is sufficient to obtain 99% incorporation of heavy isotopes into the protein. Our optimized protocol P4 is two-thirds less costly than the classical method using (15)N and (13)C isotopes during the entire growth phase.

  15. Use of primary deuterium and /sup 15/N isotope effects to deduce the relative rates of steps in the mechanisms of alanine and glutamate dehydrogenases

    SciTech Connect

    Weiss, P.M.; Chen, C.Y.; Cleland, W.W.; Cook, P.F.

    1988-06-28

    The authors have used deuterium and /sup 15/N isotope effects to study the relative rates of the steps in the mechanisms of alanine and glutamate dehydrogenases. The proposed chemical mechanisms for these enzymes involve carbinolamine formation, imine formation, and reduction of the imine to the amino acid. These steps are almost equally rate limiting for V/K/sub ammonia/ with alanine dehydrogenase, while with glutamate dehydrogenase carbinolamine formation, imine formation, and release of glutamate after hydride transfer provide most of the rate limitation of V/K/sub ammonia/. Release of oxidized nucleotide is largely rate limiting for V/sub max/ for both enzymes. When ..beta..-hydroxypyruvate replaces pyruvate, or 3-acetylpyridine NADH (Acpyr-NADH) or thio-NADH replaces NADH with alanine dehydrogenase, nucleotide release no longer limits V/sub max/, and hydride transfer becomes more rate limiting. With glutamate dehydrogenase, replacement of ..cap alpha..-ketoglutarate by ..cap alpha..-ketovalerate makes hydride transfer more rate limiting. Use of Acpyr-NADPH has a minimal effect with ..cap alpha..-ketoglutarate but causes an 8-fold decrease in V/sub max/ with ..cap alpha..-ketovalerate, with hydride transfer the major rate-limiting step. In contrast, thio-NADPH with either ..cap alpha..-keto acid causes carbinolamide formation to become almost completely rate limiting. These studies show the power of multiple isotope effects in deducing details of the chemistry and changes in rate-limiting step(s) in complicated reaction mechanisms such as those of alanine and glutamate dehydrogenases.

  16. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles. PMID:25621737

  17. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.

  18. Endogenous N-losses in broilers estimated by a [15N]-isotope dilution technique: effect of dietary fat type and xylanase addition.

    PubMed

    Dänicke, S; Jeroch, H; Simon, O

    2000-01-01

    Male broilers were given a low protein diet (15.5% CP) spiked with [15N]H4HCO3 from day 12 to day 18 of age to label the endogenous N-constituents. Experimental diets were subsequently fed from day 19 to day 24 of age and consisted of a rye based diet (56% dietary inclusion) which contained either 10% soya oil (S) or 10% beef tallow (T), each of which was either unsupplemented (-) or supplemented (+) with a xylanase containing enzyme preparation (2700 IU/kg at pH 5.3). [15N]-atom percent excess (APE) of excreta, faeces and urine were monitored on a daily basis during both experimental periods. Furthermore, APE was measured in various tissues at the end of the experiment. The APE of urine on the last day of the experiment was between the APE of the pancreas and that of the jejunal tissue, an observation which supported the usefulness of using urinary APE as an indicator for the endogenous N-pool. Endogenous N-proportions were estimated by an isotope dilution technique at the end of the experiment by examination of the ratio of APE in faeces and urine. The endogenous N-proportion in the faeces was greatest in birds receiving the T(-) diet. The proportions were 0.321, 0.319, 0.451 and 0.289 in S(-), S(+), T(-) and T(+) fed groups, respectively. Xylanase addition reduced endogenous N-proportion, a factor which was used to correct apparent crude protein digestibility (85.6, 86.2, 84.3 and 88.5% in S(-), S(+), T(-) and T(+) fed birds, respectively) for endogenous losses resulting in almost equal true digestibilities of crude protein for all treatments (90.3, 90.6, 90.4 and 91.5%). The amounts of endogenous N in faces were estimated to be 87, 69, 244 and 81 mg per day per kg0.67 body weight in S(-), S(+), T(-) and T(+) fed birds, respectively. It was concluded that xylanase supplementation of a rye based broiler diet does not change endogenous N-secretions when the supplemental fat is soya oil. However, addition of tallow rather than soya oil increased these N

  19. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton

    PubMed Central

    Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis

    2005-01-01

    The evolutionary success of reef-building corals in nutrient-poor tropical waters is attributed to endosymbiotic dinoflagellates. The algae release photosynthetic products to the coral animal cells, augment nutrient flux, and enhance the rate of coral calcification. Natural abundance of stable isotopes (δ13C and δ18O) provides answers to modern and paleobiological questions about the effect of photosymbiosis on sources of carbon and oxygen in coral skeletal calcium carbonate. Here we compare 17 species of symbiotic and nonsymbiotic corals to determine whether evidence for photosymbiosis appears in stable isotopes (δ13C and δ15N) of an organic skeletal compartment, the coral skeletal organic matrix (OM). Mean OM δ13C in symbiotic and nonsymbiotic corals was similar (-26.08‰ vs. -24.31‰), but mean OM δ15N was significantly depleted in 15N in the former (4.09‰) relative to the latter (12.28‰), indicating an effect of the algae on OM synthesis and revealing OM δ15N as a proxy for photosymbiosis. To answer an important paleobiological question about the origin of photosymbiosis in reef-building corals, we applied this proxy test to a fossil coral (Pachythecalis major) from the Triassic (240 million years ago) in which OM is preserved. Mean OM δ15N was 4.66‰, suggesting that P. major was photosymbiotic. The results show that symbiotic algae augment coral calcification by contributing to the synthesis of skeletal OM and that they may have done so as early as the Triassic. PMID:15671164

  20. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  1. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    NASA Astrophysics Data System (ADS)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  2. The effects of wildfire on mercury and stable isotopes (δ(15)N, δ(13)C) in water and biota of small boreal, acidic lakes in southern Norway.

    PubMed

    Moreno, Clara E; Fjeld, Eirik; Lydersen, Espen

    2016-03-01

    Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17-2.63 ng L(-1) and 0.053-0.188 ng L(-1), respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ(15)N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes.

  3. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling δ(15)N from biochemical and structural leaf properties.

    PubMed

    Hellmann, Christine; Große-Stoltenberg, André; Lauströ, Verena; Oldeland, Jens; Werner, Christiane

    2015-01-01

    Linking remote sensing methodology to stable isotope ecology provides a promising approach to study ecological processes from small to large spatial scales. Here, we show that δ(15)N can be detected in fresh leaf reflectance spectra of field samples along a spatial gradient of increasing nitrogen input from an N2-fixing invasive species. However, in field data it is unclear whether δ(15)N directly influences leaf reflectance spectra or if the relationship is based on covariation between δ(15)N and foliar nitrogen content or other leaf properties. Using a (15)N-labeling approach, we experimentally varied δ(15)N independently of any other leaf properties in three plant species across different leaf developmental and physiological states. δ(15)N could successfully be modeled by means of partial least squares (PLSs) regressions, using leaf reflectance spectra as predictor variables. PLS models explained 53-73% of the variation in δ(15)N within species. Several wavelength regions important for predicting δ(15)N were consistent across species and could furthermore be related to known absorption features of N-containing molecular bonds. By eliminating covariation with other leaf properties as an explanation for the relationship between reflectance and δ(15)N, our results demonstrate that (15)N itself has an inherent effect on leaf reflectance spectra. Thus, our study substantiates the use of spectroscopic measurements to retrieve isotopic signatures for ecological studies and encourages future development. Furthermore, our results highlight the great potential of optical measurements for up-scaling isotope ecology to larger spatial scales.

  4. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling δ15N from biochemical and structural leaf properties

    PubMed Central

    Hellmann, Christine; Große-Stoltenberg, André; Lauströ, Verena; Oldeland, Jens; Werner, Christiane

    2015-01-01

    Linking remote sensing methodology to stable isotope ecology provides a promising approach to study ecological processes from small to large spatial scales. Here, we show that δ15N can be detected in fresh leaf reflectance spectra of field samples along a spatial gradient of increasing nitrogen input from an N2-fixing invasive species. However, in field data it is unclear whether δ15N directly influences leaf reflectance spectra or if the relationship is based on covariation between δ15N and foliar nitrogen content or other leaf properties. Using a 15N-labeling approach, we experimentally varied δ15N independently of any other leaf properties in three plant species across different leaf developmental and physiological states. δ15N could successfully be modeled by means of partial least squares (PLSs) regressions, using leaf reflectance spectra as predictor variables. PLS models explained 53–73% of the variation in δ15N within species. Several wavelength regions important for predicting δ15N were consistent across species and could furthermore be related to known absorption features of N-containing molecular bonds. By eliminating covariation with other leaf properties as an explanation for the relationship between reflectance and δ15N, our results demonstrate that 15N itself has an inherent effect on leaf reflectance spectra. Thus, our study substantiates the use of spectroscopic measurements to retrieve isotopic signatures for ecological studies and encourages future development. Furthermore, our results highlight the great potential of optical measurements for up-scaling isotope ecology to larger spatial scales. PMID:25983740

  5. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  6. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  7. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  8. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  9. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.

  10. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  11. Isotopic analysis of bulk, LMW, and HMW DON d15N indicates recycled nitrogen release from marine DON

    NASA Astrophysics Data System (ADS)

    Knapp, A. N.; Sigman, D. M.; Lipschultz, F.; Kustka, A.; Capone, D. G.

    2010-12-01

    Nitrogen (N) concentration and stable isotope ratio (d15N) measurements were made on bulk and size fractionated surface ocean dissolved organic nitrogen (DON) samples collected in the oligotrophic North Atlantic and Pacific Oceans. The bulk DON concentration in the upper 100 m is similar between the North Atlantic and North Pacific, between 4.5 and 5.0 uM, but the average d15N of bulk DON is significantly different, 3.9 per mil vs. air in the North Atlantic and 4.7 per mil in the North Pacific. The d15N of both bulk and HMW DON from the western tropical North Atlantic are similar to previous measurements, ~4.0 to 4.5 per mil. We report the first measurements of LMW DON d15N, which is consistently lower than HMW DON d15N. Neither the concentration nor d15N of bulk or size-fractionated DON varied with in situ N2 fixation rate, although significant variation in bulk and LMW DON d15N was observed between January and July of the same year in the western tropical North Atlantic. We propose a conceptual model to explain 1) the elevated d15N of bulk DON relative to other surface ocean N pools and fluxes, 2) the elevation of HMW DON d15N relative to LMW DON d15N, and 3) the inter-basin difference in the d15N of bulk DON. In this model, DON is produced from suspended particulate organic nitrogen (PON) without isotope fractionation because the conversion from PON to DON largely does not involve N-bearing bonds. In contrast, deamination and amide hydrolysis, with N isotope effects of 3 to 10 per mil, are major mechanisms by which DON is converted to ammonia and/or to other simple N compounds (e.g., amino acids). Thus these N-specific DON loss reactions result in an elevated d15N of residual DON relative to the parent DON and therefore also to the PON source. Moreover, the ammonium and simple organic N compounds released by microbial DON degradation are efficiently reassimilated back into the PON pool, as an integral part of the regenerated N cycle that further lowers the d15N

  12. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  13. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    PubMed

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  14. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    PubMed

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  15. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  16. In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics.

    PubMed

    Ippel, Johannes H; Pouvreau, Laurice; Kroef, Toos; Gruppen, Harry; Versteeg, Geurt; van den Putten, Peter; Struik, Paul C; van Mierlo, Carlo P M

    2004-01-01

    Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.

  17. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean cultivars under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change resulting from global warming is expected to affect crop production and seed quality. The objective of this research was to evaluate the response of soybean cultivars to the effect of drought and elevated temperature on seed composition and mineral nutrition. In a repeated growth cham...

  18. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  19. Precursor discrimination of designer drug benzylpiperazine using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Grice, Darren I; Carter, James F; Cresswell, Sarah L

    2015-01-01

    Advances in analytical technology and emerging techniques have resulted in the increased exploitation of chemical and isotopic profiling for source linkage/discrimination of illicit drugs for forensic purposes. Although not routinely used for illicit drug investigations, such information has been obtained and its application demonstrated through the use of isotope ratio mass spectrometry (IRMS). There is a solid platform of research available relating to the isotopic analysis of methylenedioxymethamphetamine (MDMA) and methamphetamine (MA), however with the recently flourishing designer drug market it was of interest to examine the isotopic profiles of the popular 'party drug' benzylpiperazine hydrochloride (BZP·HCl). A preliminary analysis of δ13C and δ15N isotopic ratios in BZP·HCl products and corresponding synthetic intermediates (piperazine·HCl) synthesized in-house from three different precursor suppliers was conducted using IRMS. Analysis of the δ13C and δ15N isotopic data indicated that discrimination and correct grouping of all the intermediates and some of the product samples examined in this study were achievable.

  20. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  1. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  2. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    PubMed

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  3. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    PubMed

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs. PMID:21700869

  4. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  5. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Jacobsen Meyers, M.

    2008-02-01

    Extremes in (δ15N values in mangrove tissues and lichens (range = +4 to -22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, atmospheric ammonia, mangrove leaves, roots, stems, and wood, and lichens, were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Porewater ammonium concentrations had little to no relationship to N isotopic fractionation in mangrove tissues. The δ15N of fine and coarse roots was 9‰ more positive than leaf tissue from the same tree. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year to a &delta:15N closer to the &delta:15N of porewater ammonium (δ15N=+4‰). Isotopically negative ammonia in the atmosphere (δ15N=-18‰) and in rainwater (δ15N=-9‰) were found on Twin Cays and may be sources of available N for isotopically depleted mangrove trees and lichens. In highly stressed, severely P limited trees, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  6. Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes.

    PubMed

    Beckett, Nicola M; Cresswell, Sarah L; Grice, Darren I; Carter, James F

    2015-01-01

    This paper demonstrates the use of isotopic analysis of 23 benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) containing tablets seized on two independent occasions by the Northern Territory (NT) Police, Australia. Isolation (High Performance Liquid Chromatography (HPLC)) of BZP and TFMPP followed by Isotope Ratio Mass Spectrometry (IRMS) (carbon and nitrogen stable isotopes) analysis was performed. Results are presented for δ13C and δ15N values of the respective piperazine analogues. The isotopic data and statistical analysis suggest a common source of manufacture for the BZP samples but suggest different sources for the TFMPP isolated from the corresponding BZP containing tablets investigated. The use of IRMS in this case study demonstrated the ability to obtain information regarding the BZP/TFMPP sources unattainable via conventional chemical analysis.

  7. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Meyers, M. J.

    2008-12-01

    Extremes in δ15N values in mangrove tissues and lichens (range =+4 to -22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6-9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from -12‰ to -2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=-19‰) and in rainwater (δ15N=-10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  8. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  9. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  10. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  11. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  12. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  13. Explosive H-Burning and Neutron Capture Isotopic Signatures in 13C- and 15N-Rich Presolar SiC Grains

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Liu, N.; Alexander, C. M. O'D.; Wang, J.

    2016-08-01

    15N-rich SiC AB grains have correlated 26Al/27Al and N-isotopic ratios and evidence for neutron capture (50Ti and 32S excesses), indicating combined effects of explosive H burning and neutron capture. The origin(s) of these grains remains elusive.

  14. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  15. COMPARISON OF STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS SCALES AND MUSCLE TISSUE

    EPA Science Inventory

    Stable-nitrogen (15N/14N) isotope ratios of fish tissue are currently used to determine trophic structure, contaminant bioaccumulation, and the level of anthropogenic nitrogen enrichment in aquatic systems. The most common tissue used for these measurements is fileted dorsal musc...

  16. 15N isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent.

    PubMed

    Han, Shiqun; Yan, Shaohua; Chen, Kaining; Zhang, Zhenhua; Zed, Rengel; Zhang, Jianqiu; Song, Wei; Liu, Haiqin

    2010-01-01

    15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Kütz. demonstrated the greatest 15N accumulation capacity, with the natural variation in isotopic ratio (delta 15N) and the isotope fractionation factor (epsilon, % per hundred) being the highest among the species investigated. The transformation and utilization of 15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.

  17. STATISTICAL ESTIMATES OF VARIANCE FOR 15N ISOTOPE DILUTION MEASUREMENTS OF GROSS RATES OF NITROGEN CYCLE PROCESSES

    EPA Science Inventory

    It has been fifty years since Kirkham and Bartholmew (1954) presented the conceptual framework and derived the mathematical equations that formed the basis of the now commonly employed method of 15N isotope dilution. Although many advances in methodology and analysis have been ma...

  18. Tracking spatial distribution of human-derived wastewater from Davis Station, East Antarctica, using δ15N and δ13C stable isotopes.

    PubMed

    Corbett, Patricia A; King, Catherine K; Mondon, Julie A

    2015-01-15

    Stable isotope ratios, δ15N and δ13C were effectively used to determine the geographical dispersion of human derived sewage from Davis Station, East Antarctica, using Antarctic rock cod (Trematomus bernacchii). Fish within 0-4 km downstream of the outfall exhibited higher δ15N and δ13C values relative to reference sites. Nitrogen in particular showed a stepped decrease in δ15N with increasing distance from the discharge point by 1-2‰. Stable isotopes were better able to detect the extent of wastewater contamination than other techniques including faecal coliform and sterol measures. Uptake and assimilation of δ15N and δ13C up to 4 km from the outfall adds to growing evidence indicating the current level of wastewater treatment at Davis Station is not sufficient to avoid impact to the surrounding environment. Isotopic assimilation in T. bernacchii is a viable biomarker for investigation of initial sewage exposure and longer term monitoring in the future.

  19. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  20. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  1. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  2. Stable nitrogen and carbon isotope15N and δ 13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, Branwen; Grottoli, Andréa G.

    2010-09-01

    records to soft corals. After correcting for both the depth and order effects, variability in δ 15N values among corals within each genera was low (standard deviation (SD) of the mean <±0.5‰), with the exception of Acanthorgorgia. The calculated SD of <±0.5‰ provides a first order guideline for the amount of variability that could be expected in a δ 15N record, and suggests that these corals may be useful for δ 15N-based paleoceanographic reconstructions. Variability in δ 13C values among corals within genera was also low (standard deviation of the mean <±0.5‰) with the exception of Rhipidipathes and Villogorgia. Similar to δ 15N, records from the genera studied here with the exception of Rhipidipathes and Villogorgia may be useful for δ 13C-based paleoceanographic reconstructions. Overall, using the recommendations developed here, stable isotope records from multiple sites, depths and taxa of these corals can be more rigorously compared.

  3. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  4. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  5. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals.

    PubMed

    Bol, Roland; Pflieger, Christian

    2002-01-01

    Relationships between dietary status and recent migration were examined by delta(13)C, delta(15)N and delta(34)S analysis of hair samples from 43 modern humans living in a rural community in SW England. The isotopic content of 38 'local' hair samples was compared with that of five recently arrived individuals (from Canada, Chile, Germany and the USA). Hair samples from domestic animals (i.e. mainly cats, dogs, cows and horses) were analysed to examine the difference in delta(13)C, delta(15)N and delta(34)S values between herbivores and carnivores. Generally, modern human hair data from the triple stable isotope (delta(13)C, delta(15)N and delta(34)S) provided enough information to confirm the dietary status and origin of the individual subjects. The dietary intake was generally reflected in the animal hair delta(15)N and delta(13)C values, i.e. highest in the carnivores (cats). However, a non-local origin of food sources given to domesticated omnivores (i.e. dogs) was suggested by their hair delta(34)S values.

  6. Soil and foliar nutrient and nitrogen isotope composition (δ(15)N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard.

    PubMed

    Bai, Shahla Hosseini; Xu, Cheng-Yuan; Xu, Zhihong; Blumfield, Timothy J; Zhao, Haitao; Wallace, Helen; Reverchon, Frédérique; Van Zwieten, Lukas

    2015-03-01

    This study aimed to evaluate the improvement in soil fertility and plant nutrient use in a macadamia orchard following biochar application. The main objectives of this study were to assess the effects of poultry litter and green waste biochar applications on nitrogen (N) cycling using N isotope composition (δ(15)N) and nutrient availability in a soil-plant system at a macadamia orchard, 5 years following application. Biochar was applied at 10 t ha(-1) dry weight but concentrated within a 3-m diameter zone when trees were planted in 2007. Soil and leaf samples were collected in 2012, and both soil and foliar N isotope composition (δ(15)N) and nutrient concentrations were assessed. Both soil and foliar δ(15)N increased significantly in the poultry litter biochar plots compared to the green waste biochar and control plots. A significant relationship was observed between soil and plant δ(15)N. There was no influence of either biochars on foliar total N concentrations or soil NH4 (+)-N and NO3 (-)-N, which suggested that biochar application did not pose any restriction for plant N uptake. Plant bioavailable phosphorus (P) was significantly higher in the poultry litter biochar treatment compared to the green waste biochar treatment and control. We hypothesised that the bioavailability of N and P content of poultry litter biochar may play an important role in increasing soil and plant δ(15)N and P concentrations. Biochar application affected soil-plant N cycling and there is potential to use soil and plant δ(15)N to investigate N cycling in a soil-biochar-tree crop system. The poultry litter biochar significantly increased soil fertility compared to the green waste biochar at 5 years following biochar application which makes the poultry litter a better feedstock to produce biochar compared to green waste for the tree crops.

  7. Nitrogen Transformations in Wetland Soil Cores Measured by (sup15)N Isotope Pairing and Dilution at Four Infiltration Rates

    PubMed Central

    Stepanauskas, R.; Davidsson, E. T.; Leonardson, L.

    1996-01-01

    The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil. PMID:16535352

  8. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems.

  9. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry. PMID:18066442

  10. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  11. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  12. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  13. Mechanistic Determination of Nitrogen Removal By Advanced Soil-Based Wastewater Treatment Systems Using 15n Isotopes

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2014-12-01

    Current levels of nitrogen removal by onsite wastewater treatment systems (OWTS) are inadequate, with release of N from OWTS contributing to environmental N pollution, especially in coastal zones where aquatic ecosystems are sensitive to eutrophication. Current mechanistic understand of N removal are limited and mainly attributed to denitrification in the drainfield. Loss of N from N2O production during nitrification, a sparsely researched topic, may be a significant mechanism in advanced OWTS systems that enhance O2 diffusion by sand filter pre-treatment, shallow placement of infiltrative areas and timed dosing controls to prevent drainfield saturation. Replicate (n=3) intact soil mesocosms were used with 15N isotope to evaluate the effectiveness and mechanisms of N removal in drainfields with a conventional wastewater delivery (pipe-and-stone, P&S) compared to two advanced types of drainfields, pressurized shallow narrow drainfield (SND) and Geomat (GEO), a variation of a SND drainfield. Over the 11 day experiment, dissolved O2 was 1.6 mg/L for P&S and 3.0 mg/L for SND and GEO. Removal of total N was 13.5% for P&S, 4.8% for SND and 5.4% for GEO. 15NH4 labeled nitrogen inputs to drainfields were transformed primarily to 15NO3 in all outputs. Consistent low 15N2O levels were present in P&S, with increasing levels of N2 peaking 48h after 15NH4 injection, suggesting denitrification dominated N removal. By contrast, SND and GEO 15N2O levels rose quickly, peaking 8h after 15NH4 injection, suggesting N loss by nitrification. When the whole system is considered, including sand filter removal, 26 - 27% of total N was removed by the SND and GEO systems, whereas 14% of total N was removed in the P&S system. Our results suggest the SND and GEO systems as a whole are capable of removing a greater mass of N than the P&S system.

  14. Similarities and differences in 13C and 15N stable isotope ratios in two non-lethal tissue types from shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820)

    USGS Publications Warehouse

    DeVries, R. J.; Schramm, Harold L.

    2015-01-01

    We tested the hypothesis that δ13C and δ15N signatures of pectoral spines would provide measures of δ13C and δ15N similar to those obtained from fin clips for adult shovelnose sturgeon Scaphirhynchus platorynchus. Thirty-two shovelnose sturgeon (fork length [FL] = 500–724 mm) were sampled from the lower Mississippi River, USA on 23 February 2013. Isotopic relationships between the two tissue types were analyzed using mixed model analysis of covariance. Tissue types differed significantly for both δ13C (P < 0.01; spine: mean = −23.83, SD = 0.62; fin clip: mean = −25.74, SD = 0.97) and δ15N (P = 0.01; spine: mean = 17.01, SD = 0.51; fin clip: mean = 17.19, SD = 0.62). Neither FL nor the FL × tissue type interaction had significant (P > 0.05) effects on δ13C. Fin clip δ13C values were highly variable and weakly correlated (r = 0.16, P = 0.40) with those from pectoral spines. We found a significant FL-tissue type interaction for δ15N, reflecting increasing δ15N with FL for spines and decreasing δ15N with FL for fin clips. These results indicate that spines are not a substitute for fin clip tissue for measuring δ13C and δ15N for shovelnose sturgeon in the lower Mississippi River, but the two tissues have different turnover rates they may provide complementary information for assessing trophic position at different time scales.

  15. A holistic approach to understanding the N isotopic composition (d15N) of deep-sea sediments: diatom-bound, foraminifera-bound, whole sediment and modern nitrate d15N from the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Rafter, P. A.; Charles, C. D.; Sigman, D. M.; Haug, G. H.

    2010-12-01

    The nitrogen (N) isotopic composition (d15N) of sediment is well established as a proxy of nitrate consumption and the d15N of nitrate in the surface ocean, but it is commonly assumed that post-depositional fractionation during organic matter degradation provides an additional unconstrained variable in sediments from the deep-sea. This mistrust of deep-sea sediments essentially renders most of the global ocean off-limits to the application of this powerful proxy of nutrient dynamics. Here we address this issue with new measurements of diatom-bound, foraminifera-bound, and whole sediment d15N from deep-sea sediments of the equatorial Pacific—a region where we have also investigated the processes influencing modern nitrate characteristics. With the results of these new records and previously published measurements relevant to the composition of sedimentary nitrogen, we are confident that whole sediment d15N from the deep-sea is not altered after deposition on the sea floor and that it accurately records surface ocean conditions. With these new constraints on whole sediment d15N, we discuss the exciting implications for alternative sediment d15N measurements (such as diatom- and foraminifera-bound d15N) and present evidence for a long-term increase in equatorial Pacific d15N of nitrate.

  16. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  17. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  18. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  19. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  20. Impact of seaweed beachings on dynamics of δ(15)N isotopic signatures in marine macroalgae.

    PubMed

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-08-15

    A fine-scale survey of δ(15)N, δ(13)C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM(∗), COU(∗)). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ(15)N signatures and N contents at GM(∗) and COU(∗). Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ(15)N at GM(∗) were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae.

  1. 13N,15N isotope and kinetic evidence against hyponitrite as an intermediate in dentrification.

    PubMed

    Hollocher, T C; Garber, E; Cooper, A J; Reiman, R E

    1980-06-10

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N,15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mM. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during dentrifucation, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in dentrification. In addition, the assimilation of inorganic nitrogen was studied in P. denitrificans using 13N as tracer. At low concentrations (less than 10(-8) M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mM [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction. PMID:7372623

  2. Isotope ratio mass spectrometry: delta13C and delta15 N analysis for tracing the origin of illicit drugs.

    PubMed

    Galimov, E M; Sevastyanov, V S; Kulbachevskaya, E V; Golyavin, A A

    2005-01-01

    Gas chromatography/combustion/mass spectrometry (GC-C-MS) and elemental analysis/mass spectrometry (EA-MS) techniques are proposed to estimate delta(13)C and delta(15)N values in heroin, morphine, cocaine and hemp leaves, for the purposes of tracing the geographical origins of seized drugs. The values of isotope ratios for pure drugs and drugs with impurities were compared. It was demonstrated that large samples (up to 3 x 10(-6) g C) were combusted completely, so that the results obtained were valid. The data are considered to be an essential supplement to a wide-scale database designed specifically for the delta(13)C and delta(15)N values of drugs. The potential forensic and academic significance of the results is discussed.

  3. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  4. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  5. High Resolution 13C MRI With Hyperpolarized Urea: In Vivo T2 Mapping and 15N Labeling Effects

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L.; Van Criekinge, Mark; Smith, Kenneth J.; Shang, Hong; Larson, Peder E. Z.; Kurhanewicz, John; Vigneron, Daniel B.

    2014-01-01

    13C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [13C] urea and [13C, 15N2] urea injected intravenously in rats. 15N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [13C, 15N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [13C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [13C, 15N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [13C, 15N2] urea giving a greater than four-fold increase in signal-to-noise ratio [13C] over urea. PMID:24235273

  6. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  7. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  8. Mangrove isotopic15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  9. Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Muhling, B. A.; Holl, C. M.; Beckley, L. E.; Montoya, J. P.; Strzelecki, J.; Thompson, P. A.; Pesant, S.

    2007-04-01

    We measured the natural inventories of nitrogen and carbon stable isotopes within various ecosystem fractions of two counter-rotating eddies associated with the poleward Leeuwin Current (LC), off Western Australia. Isotopic signatures ( δ15N and δ13C) were used as proxies for trophic transformation of inorganic and organic matter and are the basis for our discussion on food web functions in the two eddies. We present the first measurements of dissolved inorganic nitrogen (DIN) isotopic composition for the eastern Indian Ocean. We show that the large autotrophs (sampled within the >5-μm and >20-μm fractions of particulate organic matter (POM)), including a distinctive diatom population in the warm-core (WC) eddy, are likely to have taken up sources of DIN which were primarily nitrate, while the picoplankton are likely to have assimilated a large fraction of recycled ammonium. We show that phytoplankton in the cold-core (CC) eddy had distinctly more enriched δ15N signatures than in the WC eddy, probably due to the higher vertical fluxes of nitrate into the CC eddy. A clear negative correlation between mixed-layer depth and δ15N in POM across both eddies also supports the role of vertical nitrate fluxes in determining the primary δ15N signature of the autotrophs. Within the WC eddy, there was a significant δ13C-enrichment in comparison to the CC eddy across all size fractions of the mesozooplankton community, which, in combination with a low C:N molar ratio the >200- and >500-μm mesozooplankton size fractions, suggests a healthier mesozooplankton community, with greater lipid storage, in the WC eddy. This is consistent with the greater productivity and biomass of large diatoms in the WC eddy. Larval fish from the WC eddy also had an enriched δ13C signature compared to those from the CC eddy. The WC eddy had higher production rates than the CC eddy, and harboured a physiologically healthier population of zooplankton. Paradoxically, this seemed to occur

  10. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    PubMed

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species.

  11. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  12. The effect of manuring on cereal and pulse amino acid δ(15)N values.

    PubMed

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-06-01

    Amino acid δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown in manured and unmanured soil at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. Manuring was found to result in a consistent (15)N-enrichment of cereal grain amino acid δ(15)N values, indicating that manuring did not affect the metabolic routing of nitrogen (N) into cereal grain amino acids. The increase in cereal grain δ(15)N values with manuring is therefore due to a (15)N-enrichment in the δ(15)N value of assimilated inorganic-N. Greater variation was observed in the (15)N-enrichment of rachis amino acids with manuring, possibly due to enhanced sensitivity to changes in growing conditions and higher turnover of N in rachis cells compared to cereal grains. Total amino acid δ(15)N values of manured and unmanured broad beans and peas were very similar, indicating that the legumes assimilated N2 from the atmosphere rather than N from the soil, since there was no evidence for routing of (15)N-enriched manure N into any of the pulse amino acids. Crop amino acid δ(15)N values thus provide insights into the sources of N assimilated by non N2-fixing and N2-fixing crops grown on manured and unmanured soils, and reveal an effect of manure on N metabolism in different crop species and plant parts.

  13. Determination of Multimodal Isotopic Distributions: The Case of a (15)N Labeled Protein Produced into Hairy Roots.

    PubMed

    Trouillard, Romain; Hubert-Roux, Marie; Tognetti, Vincent; Guilhaudis, Laure; Plasson, Carole; Menu-Bouaouiche, Laurence; Coquet, Laurent; Guerineau, François; Hardouin, Julie; Ele Ekouna, Jean-Pierre; Cosette, Pascal; Lerouge, Patrice; Boitel-Conti, Michèle; Afonso, Carlos; Ségalas-Milazzo, Isabelle

    2015-06-16

    Isotopic labeling is widely used in various fields like proteomics, metabolomics, fluxomics, as well as in NMR structural studies, but it requires an efficient determination of the isotopic enrichment. Mass spectrometry is the method of choice for such analysis. However, when complex expression systems like hairy roots are used for production, multiple populations of labeled proteins may be obtained. If the isotopic incorporation determination is actually well-known for unimodal distributions, the multimodal distributions have scarcely been investigated. Actually, only a few approaches allow the determination of the different labeled population proportions from multimodal distributions. Furthermore, they cannot be used when the number of the populations and their respective isotope ratios are unknown. The present study implements a new strategy to measure the (15)N labeled populations inside a multimodal distribution knowing only the peptide sequence and peak intensities from mass spectrometry analyses. Noteworthy, it could be applied to other elements, like carbon and hydrogen, and extended to a larger range of biomolecules.

  14. Quantifying RDX biodegradation in groundwater using delta15N isotope analysis.

    PubMed

    Bernstein, Anat; Adar, Eilon; Ronen, Zeev; Lowag, Harald; Stichler, Willibald; Meckenstock, Rainer U

    2010-01-15

    Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15-1.35km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8years for RDX biodegradation in the upper 15m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5years, assuming purely aerobic biodegradation, and between 207.5 and 394.3years, assuming purely anaerobic biodegradation. The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.

  15. Establishing spatial trends in water chemistry and stable isotopes15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  16. A facile method for expression and purification of (15)N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis.

    PubMed

    Sharma, Sudhir C; Armand, Tara; Ball, K Aurelia; Chen, Anna; Pelton, Jeffrey G; Wemmer, David E; Head-Gordon, Teresa

    2015-12-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality (15)N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with (15)N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the (15)N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure (15)N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼ 6 mg/L culture for (15)N isotope-labeled Aβ42 peptide. Mass spectrometry and (1)H-(15)N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with (15)N and (13)C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants.

  17. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    NASA Astrophysics Data System (ADS)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  18. Quantification of (15)N-nitrate in urine with gas chromatography combustion isotope ratio mass spectrometry to estimate endogenous NO production.

    PubMed

    Houben, Els; Hamer, Henrike M; Luypaerts, Anja; De Preter, Vicky; Evenepoel, Pieter; Rutgeerts, Paul; Verbeke, Kristin

    2010-01-15

    The use of stable isotope labeled substrates and subsequent analysis of urinary nitrate, forms a noninvasive test for evaluation of the in vivo NO metabolism. The present paper describes a new method for simultaneous quantification of (15)N-nitrate and total nitrate with gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). Nitrate, isolated from urine with a nitrate selective resin, was reduced to nitrite using copperized cadmium. Subsequently, Sudan I was formed by diazotation. Sudan II was added as internal standard, and both molecules were analyzed with GC-C-IRMS as tert-butyldimethylsilyl derivatives. The accuracy was determined during a recovery study of two different known nitrate concentrations and two (15)N-enrichments. A recovery of 101.6% and 103.9% for total nitrate and 107.6% and 91.2% for (15)N-nitrate was obtained, respectively. The validated method was applied on complete 72 h urine collections after intravenous administration of (15)N-nitrate and (15)N-arginine in humans. On average, 51.8% (47.0-71.0%) of administered (15)N-nitrate was excreted, while 0.68% (0.44-1.17%) of (15)N-arginine was metabolized to nitrate. In conclusion, this method can be used for accurate simultaneous determination of (15)N-nitrate and total nitrate concentrations in urine and can be applied in clinical studies for noninvasive evaluation of NO metabolism in vivo.

  19. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  20. Dynamics of δ(15)N isotopic signatures of different intertidal macroalgal species: Assessment of bioindicators of N sources in coastal areas.

    PubMed

    Lemesle, Stéphanie; Erraud, Alexandre; Mussio, Isabelle; Rusig, Anne-Marie; Claquin, Pascal

    2016-09-15

    δ(15)N of annual (Ulva sp., Porphyra sp.) and perennial intertidal seaweed species (Chondrus crispus, Fucus sp.) collected on 17 sampling points along the French coast of the English Channel in 2012 and 2013 were assessed on their suitability as bioindicators of N pollution in coastal areas. A sine function applied for δ(15)N time series data showed for all the species the same seasonal trend with lowest δ(15)N values in April and highest in summer but with no significant interspecific differences of amplitude (α) and phase angle (ϕ). This model provides a useful tool for monitoring the inter-annual changes of N pollution. An interspecific variability of δ(15)N values was observed, probably due to their tolerance to emersion. An in vitro study for comparing the kinetic acquisition of the isotopic signal and N uptake mechanisms of each species underlined the influence of algal physiology on the δ(15)N interspecific variability. PMID:27349382

  1. Dynamics of δ(15)N isotopic signatures of different intertidal macroalgal species: Assessment of bioindicators of N sources in coastal areas.

    PubMed

    Lemesle, Stéphanie; Erraud, Alexandre; Mussio, Isabelle; Rusig, Anne-Marie; Claquin, Pascal

    2016-09-15

    δ(15)N of annual (Ulva sp., Porphyra sp.) and perennial intertidal seaweed species (Chondrus crispus, Fucus sp.) collected on 17 sampling points along the French coast of the English Channel in 2012 and 2013 were assessed on their suitability as bioindicators of N pollution in coastal areas. A sine function applied for δ(15)N time series data showed for all the species the same seasonal trend with lowest δ(15)N values in April and highest in summer but with no significant interspecific differences of amplitude (α) and phase angle (ϕ). This model provides a useful tool for monitoring the inter-annual changes of N pollution. An interspecific variability of δ(15)N values was observed, probably due to their tolerance to emersion. An in vitro study for comparing the kinetic acquisition of the isotopic signal and N uptake mechanisms of each species underlined the influence of algal physiology on the δ(15)N interspecific variability.

  2. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  3. Assessment of dissolved nutrients dispersal derived from offshore fish-farm using nitrogen stable isotope ratios (δ 15N) in macroalgal bioassays

    NASA Astrophysics Data System (ADS)

    García-Sanz, T.; Ruiz, J. M.; Pérez, M.; Ruiz, M.

    2011-02-01

    In this study, the dispersal of wastes from offshore fish farms was evaluated by analyzing nitrogen stable isotope ratios (δ 15N) in macroalgae incubated in the water column at sites located at an increasing distance from the fish cages. Bioassays were performed at three fish farms situated in separate localities with different nutritional conditions (Canary Islands, Murcia and Catalonia) and varying in size, species of fish reared and annual production. Macroalgal bioassays were carried out in two different directions (DI and DII) and they were replicated at each distance in order to evaluate the effect of small-scale variability on the spatial extent of fish farm wastes. The results obtained with δ 15N contribute to a better understanding of the application of nitrogen stable isotopes ratios in macroalgae as an effective bioindicator for tracing the dispersion of offshore fish farm wastes, and demonstrate that fish farm wastes can be traced even over distances of some km from the pollution source. In the Canary Islands, the maximum distance obtained for detection of fish farm wastes was between 450 and 700 m. Of the three installations studied, Murcia presented the greatest distance for detection of fish farm waste influence, ranging from between 1550 and 2450 m, whilst in Catalonia this distance was less than 120 m. In Catalonia, the results were masked by the influence of other sources of nitrogen, and thus fish farm wastes were detected at more reduced distances than expected. These results confirm that fish farm wastes can be traced using the nitrogen stable isotope ratios of macroalgae and that this method can also be useful for identifying areas of potential risk to some sensitive ecosystems, and as an early signal that changes in the community structure might occur.

  4. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    NASA Astrophysics Data System (ADS)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  5. Food partitioning of leaf-eating mangrove crabs ( Sesarminae): Experimental and stable isotope ( 13C and 15N) evidence

    NASA Astrophysics Data System (ADS)

    Kristensen, Ditte K.; Kristensen, Erik; Mangion, Perrine

    2010-05-01

    The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature ( δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ˜60% leaves in terms of biomass, leaving ˜40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ˜15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.

  6. A stable isotope (δ13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    PubMed

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  7. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.

    PubMed

    Li, Cai; Jiang, Yongbin; Guo, Xinyue; Cao, Yang; Ji, Hongbing

    2014-11-01

    Dual isotopes of nitrate ((15)N and (18)O) and carbon isotopes of dissolved inorganic carbon ((13)C) together with water chemistry were used to identify the sources and fate of nitrate in the upper stream of Chaobai River, north China. The results show that NO3(-) concentrations ranges from 0.03 mmol L(-1) to 0.80 mmol L(-1). Sampling sites from watershed with dominant forest land had higher NO3(-) concentrations and lower δ(15)N-NO3(-) (<10‰) in the wet season than in the dry season, while those from watershed with more anthropogenic activities had lower NO3(-) concentrations and higher δ(15)N-NO3(-) (>10‰) in the wet season. Compositions of isotopes and chemistry indicated that NO3(-) originated mainly from soil N, sewage and livestock wastes and atmospheric nitrogen. Furthermore, the mixing model suggested that soil N was the major NO3(-) source in the wet season, while the sewage and livestock wastes contributed the most in the dry season. Compared to rivers, the Miyun Reservoir had a higher contribution of atmospheric N and the N input from the upper rivers exerted significant influence over the reservoir. Mineralization and nitrification played an important role in N biogeochemistry based on the isotopes ((15)N and (18)O and (13)C) and chemical data. There appeared to be no significant denitrification in the watershed according to the three isotopes and chemical ions. The combined use of (15)N, (18)O and (13)C proved to be useful for further identification of the sources and fate of nitrate in watersheds with dominant forest land in the wet season. PMID:25283837

  8. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling.

    PubMed

    Tops, Bastiaan B J; Gauci, Sharon; Heck, Albert J R; Krijgsveld, Jeroen

    2010-01-01

    Hermaphrodites of the nematode Caenorhabditis elegans produce both sperm and oocytes in the same germline. To investigate the process underlying spermatogenesis and oogenesis separately, we used a quantitative proteomics approach applied to two mutant worm lines (fem-3(q20) and fem-1(hc17)) developing only male and female germlines, respectively. We used stable isotopic labeling of whole animals by feeding them either (14)N or (15)N labeled Escherichia coli. This way, we could confidently identify and quantify 1040 proteins in two independent experiments. Of these, approximately 400 proteins showed significant differential expression between female-like and male-like animals. As expected, proteins linked to oogenesis were found to be highly upregulated in the feminized worms, whereas proteins involved in spermatogenesis were found to be highly upregulated in the masculinized worms. This was complemented by many proteins strongly enriched in either mutant. Although the function of the majority of these proteins is unknown, their expression profile indicates that they have an as yet unrecognized role in the development and/or function of the female- and male germline in C. elegans. We show that members of several protein complexes as well as functionally similar proteins show comparable abundance ratios, indicating coregulation of protein expression. Additional analysis comparing our protein data to a previously published microarray data set shows that mRNA and protein expression are poorly correlating. We provide one of the first examples of a large-scale quantitative proteomics experiment in C. elegans and show the potential and feasibility of an approach enabling system-wide accurate quantitative proteomics experiments in this model organism. PMID:19916504

  9. Landscape hydrology and scaling of nitrate 15N and 18O isotope composition in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Martin, R. A.; Keller, C. K.; Orr, C. H.; Huggins, D. R.; Evans, R. D.

    2014-12-01

    Understanding how pore- to hillslope-scale processes combine to control nutrient export at larger scales is a fundamental challenge in today's agroecosystems as the carbon and contamination footprints of production agriculture come under increasing scrutiny. At the Cook Agronomy Farm (CAF) Long-Term Agricultural Research (LTAR) station near Pullman, WA we are using in-field observations to track how local-scale hydrological routing and biogeochemical processing interact to control landscape-scale water and nutrient exports. Previous research at the CAF has shown that conservative tracers and reactive nutrient quantities (NO3-,and DOC concentrations, DOM quality) in landscape-scale drainage can be explained by straightforward mixing of waters from variably contributing areas. Nitrate stable isotope composition in subsurface drain effluent indicate that most leached nitrate originates from reduced nitrogen fertilizer applied to the CAF in the autumn, which undergoes nitrification and subsequent leaching. This occurs over a timespan of weeks to months. However, water samples from contributing areas exhibit nitrate d15N and d18O significantly greater than subsurface drain effluent at all locations, and time-series consistent with the occurrence of denitrification at some locations. Possible explanations include pore-scale processing of nitrogen that does not affect the other tracers (like EC, DOM quality, and DOC concentration), and landscape-scale transport pathways that bypass our field instruments. Through this work we are contributing to a broader understand of how global change and local factors and management practices interact to affect the fate of fertilizer N, which is a cross-cutting research theme of the national LTAR network.

  10. Effects of trichloroacetic acid on the nitrogen metabolism of Pinus sylvestris--a 13C/15N tracer study.

    PubMed

    Hafner, Christoph; Jung, Klaus; Schüürmann, Gerrit

    2002-01-01

    Trichloroacetic acid (TCA) can be found in various environmental compartments like air, rain and plants all over the world. It is assumed that TCA is an atmospheric degradation product of volatile chloroorganic hydrocarbons. The herbicide effect of TCA in higher concentrations is well known, but not much is known about the phytotoxic effects in environmentally relevant concentrations. It can be shown in this study by using the 13C/15N stable isotope tracer technique that [13C]TCA is taken up by roots of two-year-old seedlings of Pinus sylvestris L. and transported into the needles. At the same time the effect of the substance on nitrogen metabolism can be analyzed by measuring the incorporation of 15NO3- into different nitrogen fractions of the plant. The more [13C]TCA incorporation, the higher the synthesis of 15N labelled amino acids and proteins is. These effects on the nitrogen metabolism are probably based on the activation of stress- and detoxification metabolism. It has to be assumed that there is an influence on N metabolism of Pinus sylvestris caused by the deposition of environmentally relevant TCA concentrations.

  11. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (δ 13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope (δ 13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  12. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated?

    NASA Astrophysics Data System (ADS)

    Churchill, Diana A.; Heithaus, Michael R.; Dean Grubbs, R.

    2015-05-01

    Stable isotope analysis is broadly employed to investigate diverse ecological questions. In order to make appropriate comparisons among multiple taxa, however, it is necessary to standardize values to account for interspecific differences in factors that affect isotopic ratios. For example, varying concentrations of soluble nitrogen compounds, such as urea or trimethylamine oxide, can affect the analysis and interpretation of δ15N values of sharks or hagfish. The goal of this study was to assess the effects of a standard chloroform/methanol extraction on the stable isotope values of muscle tissue obtained from 10 species of sharks and three species of hagfish collected from poorly-known deep-water (>200 m) communities. We detected significant differences in δ15N, %N, and C:N values as a result of extractions in 8 of 10 shark and all three hagfish species. We observed increased δ15N values, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. However, they were not successful for two shark species. Therefore, performing extractions of all samples is recommended.

  13. The response of the foliar antioxidant system and stable isotopes (δ(13)C and δ(15)N) of white willow to low-level air pollution.

    PubMed

    Wuytack, Tatiana; AbdElgawad, Hamada; Staelens, Jeroen; Asard, Han; Boeckx, Pascal; Verheyen, Kris; Samson, Roeland

    2013-06-01

    In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione.

  14. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and new 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-04-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes obfuscate the absolute rate estimation of gaseous nitrogen production from individual pathway. Recently, the classical isotope pairing technique (IPT), the most common 15N-nitrate enrichment method to quantify denitrification, has been modified by different researchers to (1) discriminate relative contribution of N2 production by denitrification from anammox or to (2) provide more accurate denitrification rate by considering both N2O and N2 productions. Both modified methods, however, have deficiencies such as overlooking N2O production in case 1 and neglecting anammox in case 2. In this paper, a new method was developed to refine previous methods. We installed cryogenic traps to pre-concentrate N2 and N2O separately, thus, allowing simultaneous measurement for two gases generated by one sample. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, we further revised IPT formulae to truthfully resolve the production rates of N2 and N2O contributed from 3 specific nitrogen removal processes, i.e. N2 and N2O from denitrification, N2 from anammox and N2O from nitrification. To validate the applicability of our new method, incubation experiments were conducted using sediment cores taken from the Danshuei estuary in Taiwan. We successfully determined the rates of aforementioned nitrogen removal processes. Moreover, N2O yield was as high as 66%, which no doubt would significantly bias previous IPT approaches when N2O was not considered. Our new method not only complements the previous IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics through the water-sediment interface.

  15. Application of (15)N- (18)O double stable isotope tracer technique in an agricultural nonpoint polluted river of the Yangtze Delta Region.

    PubMed

    Liang, X Q; Nie, Z Y; He, M M; Guo, R; Zhu, C Y; Chen, Y X; Stephan, Küppers

    2013-10-01

    One strategy to combat nitrate (NO3-N) contamination in rivers is to understand its sources. NO3-N sources in the East Tiaoxi River of the Yangtze Delta Region were investigated by applying a (15)N-(18)O dual isotope approach. Water samples were collected from the main channel and from the tributaries. Results show that high total N and NO3-N are present in both the main channel and the major tributaries, and NO3-N was one of the most important N forms in water. Analysis of isotopic compositions (δ (18)O, δD) of water suggests that the river water mainly originated from three tributaries during the sampling period. There was a wide range of δ (15)N-NO3 (-1.4 to 12.4 ‰) and a narrow range of δ (18)O-NO3 (3.7 to 9.0 ‰) in the main channel waters. The δ (15)N and δ (18)O-NO3 values in the upper, middle, and lower channels along the river were shifted as 8.2, 3.5, and 9.5 ‰, and 9.0, 4.2, and 6.0 ‰, respectively. In the tributary South Tiao, the δ (15)N and δ (18)O-NO3 values were as high as 9.5 and 7.0 ‰, while in the tributaries Mid Tiao and North Tiao, NO3-N in most of the samples had relatively low δ (15)N and δ (18)O-NO3 values from 2.3 to 7.5 ‰ and 4.7 to 7.0 ‰, separately. Our results also suggest that the dual isotope approach can help us develop the best management practice for relieving NO3-N pollution in the rivers at the tributary scale.

  16. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  17. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  18. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  19. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils by Using [15N]DNA-Based Stable Isotope Probing and Pyrosequencing ▿ †

    PubMed Central

    Bell, Terrence H.; Yergeau, Etienne; Martineau, Christine; Juck, David; Whyte, Lyle G.; Greer, Charles W.

    2011-01-01

    Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [15N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using lage-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in 15N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments. PMID:21498745

  20. Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Martineau, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2011-06-01

    Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [(15)N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using large-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in (15)N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments.

  1. Application of Nitrogen and Carbon Stable Isotopes15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  2. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  3. Utilizing the charge field effect on amide (15)N chemical shifts for protein structure validation.

    PubMed

    Bader, Reto

    2009-01-01

    Of all the nuclei in proteins, the nuclear magnetic resonance (NMR) chemical shifts of nitrogen are the theoretically least well understood. In this study, quantum chemical methods are used in combination with polarizable-continuum models in order to show that consideration of the effective electric field, including charge screening due to solvation, improves considerably the consistencies of statistical relationships between experimental and computed amide (15)N shifts between various sets of charged and uncharged oligopeptides and small organic molecules. A single conversion scheme between shielding parameters from first principles using density functional theory (DFT) and experimental shifts is derived that holds for all classes of compounds examined here. This relationship is then used to test the accuracy of such (15)N chemical shift predictions in the cyclic decapeptide antibiotic gramicidin S (GS). GS has previously been studied in great detail, both by NMR and X-ray crystallography. It adopts a well-defined backbone conformation, and hence, only a few discrete side chain conformational states need to be considered. Moreover, a charge-relay effect of the two cationic ornithine side chains to the protein backbone has been described earlier by NMR spectroscopy. Here, DFT-derived backbone amide nitrogen chemical shifts were calculated for multiple conformations of GS. Overall, the structural dynamics of GS is revisited in view of chemical shift behavior along with energetic considerations. Together, the study demonstrates proof of concept that (15)N chemical shift information is particularly useful in the analysis and validation of protein conformational states in a charged environment.

  4. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  5. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  6. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  7. What can Δ 15N and Δ 18O isotopes tell us about sources, transport, and fate of nitrate in the Mississippi River Basin?

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.

    2003-12-01

    Water and nutrients, primarily nitrate (NO3) in Mississippi River discharge, affect the size and severity of the Gulf of Mexico hypoxic (depleted dissolved oxygen) zone. Approximately 120 water samples were collected from 16 sites on small streams and 6 sites on large rivers within the Mississippi River Basin in 1997-98 to see if NO3 sources and transformations can be identified using the stable isotopic ratios Δ 15N and Δ 18O. Results from Lagrangian sampling at the large river sites indicate that nitrate mass decreases slightly, while Δ 15N and Δ 18O isotope ratios are unchanged in the 1500 river kilometers between the Upper Mississippi-Ohio River confluence and the Gulf of Mexico. Results also show that Δ 15N and Δ 18O values from small streams draining lands dominated by row crops or livestock tended to be distinct from those dominated by urban or undeveloped land. Mean Δ 15N values at the 16 sites on small streams were most strongly correlated (Pearson's r) with manure production rate (0.64), percent residential land use (-0.45), and urea use rate (0.43). The best multiple linear regression (MLR) model for mean Δ 15N values (r2=0.69) used manure production rate and ammonium nitrate use rate as explanatory variables. Mean Δ 18O values were most strongly correlated with percent wetlands (0.72), mean NO3 concentration (-0.71), and percent residential land use (0.58). The best MLR model for mean Δ 18O values (r2=0.85) used percent residential land use, percent wetlands, and ammonium nitrate use rate as explanatory variables. Mean NO3 concentrations were most strongly correlated with percent row-crops land use (0.84), nitrogen-fertilizer use rate (0.74), and hog-manure production rate (0.66). The best MLR model for mean NO3 concentration (r2=0.85) used percent row-crops land use and percent grain-crops land use as explanatory variables. MLR equations developed from the 16 smaller streams were used to predict mean Δ 15N and Δ 18O values and NO3

  8. Nitrogen isotope exchange between NO and NO2 and its implications for δ15N variations in tropospheric NOx and atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Simonini, Damian S.; Michalski, Greg

    2016-01-01

    The nitrogen (N) isotope exchange between nitric oxide (NO) and nitrogen dioxide (NO2) has been previously suggested to influence N stable isotope compositions (δ15N) of these molecules. However, there is disagreement in the magnitude of the N isotopic fractionation (αNO2>/NO) resulting from this exchange process between previous experimental and theoretical studies. To this end, we measured αNO2>/NO associated with this exchange reaction at various temperatures. Our results indicate αNO2>/NO to be 1.0403 ± 0.0015, 1.0356 ± 0.0015, and 1.0336 ± 0.0014 at 278 K, 297 K, and 310 K, respectively. These measured values are within experimental error of the values we calculated using a modified version of the Bigeleisen-Mayer equation corrected for accurate zero-point energies, indicating an agreement between experiment and theory. Modeling of this exchange reaction demonstrates that δ15N-NO2 may exhibit a diurnal and seasonal profile if N isotopic equilibrium is achieved.

  9. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    PubMed Central

    von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106

  10. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope (δ 13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes (δ 13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  11. [Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest].

    PubMed

    Semeniuk, I I; Tiunov, A V

    2011-01-01

    The species composition, abundance, and isotopic signature of millipedes (Myriapoda, Diplopoda) were investigated in seven biotopes of Kaluzhskie Zaseki State Nature Reserve. Nine Diplopoda species were found in total, and the local species diversity (within a sampling plot) reached seven species. The Diplopoda tissues were similar to the plant litter in the isotopic composition of nitrogen (delta15N was by 0.4% per hundred higher, on average), but were more strongly enriched in heavy carbon (delta13C was by 4% per hundred higher, on average). Removal of mineral carbon from the cuticle reduced delta13C of Diplopoda by about 1.4% per hundred on average. Differences in the delta15N and delta13C values between the species did not exceed 2.5 per hundred. Differences in the isotopic compositions of the considered species are insignificant, and thus, it is impossible to distinguish particular trophic guilds in the Diplopoda community. Analysis of the published data confirmed that isotopic differentiation of millipedes was much less pronounced than in other investigated groups of soil animals. Hence, millipedes of the deciduous forest form a uniform trophic group.

  12. Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, (15)N-[TNT].

    PubMed

    Smith, Richard W; Vlahos, Penny; Böhlke, J K; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2015-10-20

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  13. Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, (15)N-[TNT].

    PubMed

    Smith, Richard W; Vlahos, Penny; Böhlke, J K; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2015-10-20

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments. PMID:26375037

  14. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  15. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  16. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  17. Isotopic fractionation of nitrogen and carbon in Paleoarchean cherts from Pilbara craton, Western Australia: Origin of 15N-depleted nitrogen

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Sugihara, Akiyo; Massault, Marc; Philippot, Pascal

    2009-07-01

    Nitrogen and carbon isotopic compositions, together with mineralogy and trace element geochemistry, were studied in a few kerogen-rich Paleoarchean cherts, a barite and a dolomitic stromatolite belonging to the eastern (Dixon Island Formation) and western (Dresser and Strelley Pool Chert Formations; North Pole Dome and Marble Bar) terranes of Pilbara Craton, Western Australia. The aim of the study was to search for 15N-depleted isotopic signatures, often found in kerogens of this period, and explain the origin of these anomalies. Trace elements suggest silica precipitation by hydrothermal fluids as the main process of chert formation with a contamination from volcanoclastic detritus. This is supported by the occurrence of hydrothermal-derived minerals in the studied samples indicating precipitation temperatures up to 350 °C. Only a dolomitic stromatolite from Strelley Pool shows a superchondritic Y/Ho ratio of 72 and a positive Eu/Eu * anomaly of 1.8, characteristic of chemical precipitates from the Archean seawater. The bulk δ 13C vs. δ 15N values measured in the cherts show a roughly positive co-variation, except for one sample from the North Pole (PI-85-00). The progressive enrichment in 15N and 13C from a pristine source having δ 13C ⩽ -36‰ and δ 15N ⩽ -4‰ is correlated with a progressive depletion in N content and to variations in Ba/La and Co/As ratios. These trends have been interpreted as a progressive hydrothermal alteration of the cherts by metamorphic fluids. Isotopic exchange at 350 °C between NH 4+(rock) and N 2(fluid) may explain the isotopic and elemental composition of N in the studied cherts. However, we need to assume isotopic exchange at 350 °C between carbonate C and graphite to explain the large 13C enrichment recorded. Only sample PI-85-00 shows a large N loss (90%) with a positive δ 15N value (+11‰), while C (up to 120 ppm and δ 13C -38‰) seems to be unaffected. This pattern has been interpreted as the result of

  18. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing.

    PubMed

    Roh, Hyungkeun; Yu, Chang-Ping; Fuller, Mark E; Chu, Kung-Hui

    2009-04-01

    This study reported the application of 15N-stable isotope probing (SIP) to identify active hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-utilizing microorganisms in groundwater microcosms. Fifteen 16S rRNA gene sequences were derived from the 15N-DNA fraction (contributed from active microorganisms capable of using RDX as a nitrogen source) of microcosms receiving cheese whey. The 16S rRNA gene sequences belonged to Actinobacteria (two clones), alpha-Proteobacteria (seven clones), and gamma-Proteobacteria (six clones). Except for five sequences with high similarity to two known RDX degraders (Enterobacter cloacae and Pseudomonas fluorescens I-C), our results suggested that phylogenetically diverse microorganisms were capable of using RDX as a nitrogen source. Six sequences of the xplA gene (a known RDX-degrading catabolic gene) were detected from the 15N-DNA fraction. The xplA gene sequences were 96-99% similar to the xplA gene of Rhodococcus sp. DN22(a known RDX utilizer), suggesting that other RDX utilizers might contain xplA-like genes. Twenty-five 16S rRNA gene sequences recovered from the unenriched, RDX-contaminated groundwater clustered differently from those obtained from the 15N-DNA fraction of the cheese-whey-amended microcosm. Our results suggested that active RDX utilizers can be stimulated by nutrient source additions even if they are present at low densities, and that use of 15N-SIP can identifythese functional members of the microbial community.

  19. Feeding and migration habits of white shark Carcharodon carcharias (Lamniformes: Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes delta15N and delta13C.

    PubMed

    Jaime-Rivera, Mario; Caraveo-Patiño, Javier; Hoyos-Padilla, Mauricio; Galván-Magaña, Felipe

    2014-06-01

    Stable isotope composition of marine top predator's tissues provides insight information of its trophic ecology and migratory behavior. Previous reports have shown that dermal tissues could record longer patterns of hunting and movement. Based on this, the aim of this study was to describe the feeding and migratory habits of the white shark from Isla Guadalupe, using stable isotopic analysis of dermis. We considered a small subset of many possible prey taxa that the sharks could have eaten throughout their migration: pinnipeds, squid and tuna. We grouped the data in five focal areas: Gulf of California, Coast of California, Isla Guadalupe, SOFA and Hawaii. We performed a Bayesian mixing model to study the trophic ecology of this top predator. Average isotopic values for dermis tissue of white shark were delta13C (-14.5 per thousand) and delta15N (19.1 per thousand). Corrected white shark dermal mean values to resemble muscle were delta13C (-16.6 per thousand) and delta15N (21.2 per thousand). Mixing model data from dermis showed predation in offshore areas such the SOFA and a main importance of pinnipeds as prey of the white shark in Isla Guadalupe. PMID:25102646

  20. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China

    PubMed Central

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha–1) on the fate of urea-15N in the wheat–soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0–39.0%) than for band treatment (31.2–38.2%). Most of the soil residual N was retained in the 0–20 cm soil layer. At the N rates of 60 and 240 kg ha–1, the residual 15N was higher for band (34.4 and 108.7 kg ha–1, respectively) than for broadcast application (29.6 and 88.4 kg ha–1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat–soil system. Band application one time is an alternative N management practice for winter wheat in this region. PMID:27082246

  1. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China.

    PubMed

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha-1) on the fate of urea-15N in the wheat-soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0-39.0%) than for band treatment (31.2-38.2%). Most of the soil residual N was retained in the 0-20 cm soil layer. At the N rates of 60 and 240 kg ha-1, the residual 15N was higher for band (34.4 and 108.7 kg ha-1, respectively) than for broadcast application (29.6 and 88.4 kg ha-1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat-soil system. Band application one time is an alternative N management practice for winter wheat in this region. PMID:27082246

  2. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China.

    PubMed

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha-1) on the fate of urea-15N in the wheat-soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0-39.0%) than for band treatment (31.2-38.2%). Most of the soil residual N was retained in the 0-20 cm soil layer. At the N rates of 60 and 240 kg ha-1, the residual 15N was higher for band (34.4 and 108.7 kg ha-1, respectively) than for broadcast application (29.6 and 88.4 kg ha-1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat-soil system. Band application one time is an alternative N management practice for winter wheat in this region.

  3. Metabolic labeling with stable isotope nitrogen (15N) to follow amino acid and protein turnover of three plastid proteins in Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Background The length of time that a protein remains available to perform its function is significantly influenced by its turnover rate. Knowing the turnover rate of proteins involved in different processes is important to determining how long a function might progress even when the stimulus has been removed and no further synthesis of the particular proteins occurs. In this article, we describe the use of 15N-metabolic labeling coupled to GC-MS to follow the turnover of free amino acids and LC-MS/MS to identify and LC-MS to follow the turnover of specific proteins in Chlamydomonas reinhardtii. Results To achieve the metabolic labeling, the growth medium was formulated with standard Tris acetate phosphate medium (TAP) in which14NH4Cl was replaced with 15NH415NO3 and (14NH4)6Mo7O24.4H2O was replaced with Na2MoO4.2H2O. This medium designated 15N-TAP allowed CC-125 algal cells to grow normally. Mass isotopic distribution revealed successful 15N incorporation into 13 amino acids with approximately 98% labeling efficiency. Tryptic digestion of the 55 kDa SDS-PAGE bands from 14N- and 15N-labeled crude algal protein extracts followed by LC-MS/MS resulted in the identification of 27 proteins. Of these, five displayed peptide sequence confidence levels greater than 95% and protein sequence coverage greater than 25%. These proteins were the RuBisCo large subunit, ATP synthase CF1 alpha and beta subunits, the mitochondrial protein (F1F0 ATP synthase) and the cytosolic protein (S-adenosyl homocysteine hydroxylase). These proteins were present in both labeled and unlabeled samples. Once the newly synthesized 15N-labeled free amino acids and proteins obtained maximum incorporation of the 15N-label, turnover rates were determined after transfer of cells into 14N-TAP medium. The t½ values were determined for the three plastid proteins (RuBisCo, ATP synthase CF1 alpha and beta) by following the reduction of the 15N-fractional abundance over time. Conclusion We describe a more

  4. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  5. A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Ahuja, Puneet; Gerard, Melanie; Wieruszeski, Jean-Michel; Lippens, Guy

    2013-11-01

    We describe a new efficient strategy for the sequential assignment of amide resonances of a conventional 15N-1H HSQC spectrum of intrinsically unfolded proteins, based on composite NOESY-TOCSY and TOCSY-NOESY mixing times. These composite mixing times lead to a Hα-proton mediated unidirectional transfer of amide to amide proton. We have implemented the composite mixing times in an HSQC-NOESY-HSQC manner to obtain directional connectivity between amides of neighbouring residues. We experimentally determine the optimal mixing times for both transfer schemes, and demonstrate its use in the assignment for both a fragment of the neuronal tau protein and for α-synuclein.

  6. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  7. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  8. Effect of 15 N Labeled Riparian Fertilization And Salmon Carcass Analog Addition On Food Web Dynamics And Productivity In Four Idaho Streams

    NASA Astrophysics Data System (ADS)

    Rugenski, A. T.; Kohler, A.; Minshall, G. W.; Danehy, R. J.; Taki, D.

    2005-05-01

    Nutrient budgets of stream/riparian ecosystems in the Intermountain West have been depleted through declining salmon populations and certain anthropogenic disturbances (e.g. forestry practices). We measured stream food web responses to a riparian fertilization and an in-stream carcass analog addition in 4 Idaho streams with a 15 N tracer. Aerial application of fertilizer pellets to light (224 kg/ha) and heavy (448 kg/ha) treatment sections of 2 streams and carcass analog additions to 2 others were completed in autumn. Periphyton response was measured through chlorophyll a, nutrient diffusing substrata, and stable isotope analyses. Macroinvertebrates were analyzed for abundance, biomass, community structure, and stable isotope composition. Also, willow (Salix) breakdown rates were determined. Pre-treatment chlorophyll a values showed no significant difference between treatment and reference reaches. Post-treatment results showed significantly higher chlorophyll a and δ 15 N values in treatment reaches compared to reference reaches. Macroinvertebrate abundance, richness, biomass, and δ 15 N values also increased in treated reaches. No significant differences were detected in leaf breakdown rates between reaches. Riparian fertilization effects were longer lasting than the in-stream treatment. These results suggest that nutrient addition to streams and riparian areas can be used as a management tool to increase stream productivity where nutrients are limiting.

  9. Plan of study to determine if the isotopic ratios [delta]15 N and [delta]18 O can reveal the sources of nitrate discharged by the Mississippi River into the Gulf of Mexico

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Goolsby, Donald A.; Boyer, Laurie L.

    1997-01-01

    Nitrate and other nutrients discharged from the Mississippi River basin are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse effect on aquatic life and commercial fisheries. Commercial fertilizers are the dominant source of nitrogen input to the Mississippi basin. Other nitrogen sources include animal waste, fixation of atmospheric nitrogen by legumes, precipitation, domestic and industrial effluent, and the soil. The inputs of nitrogen from most of these sources to the Mississippi basin can be estimated and the outputs in surface water can be measured. However, nitrogen from each source is affected differently by physical, chemical, and biological processes that control nitrogen cycling in terrestrial and aquatic systems. Hence, the relative contributions from the various sources of nitrogen to nitrate load in the Mississippi River are unknown because the different sources may not contribute proportionally to their inputs in the basin. It may be possible to determine the relative contributions of the major sources of nitrate in river water using the stable isotopic ratios d15N and d18O of the nitrate ion. A few researchers have used the d15N and/or d18O isotope ratios to determine sources of nitrate in ground water, headwater catchments, and small rivers, but little is known about the isotopic composition of nitrate in larger rivers. The objective of this study is to measure the isotopic composition of nitrate and suspended organic matter in the Mississippi River and its major tributaries, in discharge to the Gulf of Mexico, and in streamflow from smaller watersheds that have distinct sources of nitrogen (row crops, animal wastes, and urban effluents) or are minimally impacted by man (undeveloped). Samples from seven sites on the Mississippi River and its tributaries and from 17 sites in smaller watersheds within the Mississippi River basin will be analyzed for d15N and

  10. Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C 4 plants

    NASA Astrophysics Data System (ADS)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen δ15N and δ13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen δ15N and local amount of precipitation. Results presented here similarly show an increase in δ15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between δ13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have δ15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their δ15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in δ15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  11. Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique

    PubMed Central

    Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul

    2012-01-01

    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306

  12. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  13. Stable Isotope (δ13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope (δ13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  14. Importance of bacterivory and preferential selection toward diatoms in larvae of Crepidula fornicata (L.) assessed by a dual stable isotope (13C, 15N) labeling approach

    NASA Astrophysics Data System (ADS)

    Leroy, Fanny; Riera, Pascal; Jeanthon, Christian; Edmond, Frédérique; Leroux, Cédric; Comtet, Thierry

    2012-05-01

    In Europe, the gastropod Crepidula fornicata is an invasive species characterized by a long reproductive period (from February to November). Thus, its larvae are exposed to variations in available food sources (in terms of quantity and quality). We aimed to investigate if bacteria could contribute to larval food both in presence or absence of phytoplankton, and to compare these results to seasonal variations of bacteria and phytoplankton abundances at a coastal site in the English Channel. First, ingestion of fluorescent beads of 0.5 to 2 μm diameter, showed that larvae were able to ingest particles of typical bacterial size. Then we used a dual stable isotope labeling approach which consisted in labeling a bacterial pelagic community with 15N and a diatom (Chaetoceros gracilis) culture with 13C, and supplying larvae with 15N-labeled bacteria, 13C-labeled diatoms, and both labeled sources. This technique has, to our knowledge, never been applied to invertebrate larvae. After 24 h of experiment, larvae were significantly enriched in all treatments: + 21.5‰ (∆δ13C) when supplied with diatoms, + 1364‰ (∆δ15N) when supplied with bacteria, and + 24‰ (∆δ13C) and + 135‰ (∆δ15N) when supplied with the two mixed sources. These results indicated that bacteria can contribute to the larval nutrition in C. fornicata, even in the presence of phytoplankton. Our results however suggested that larvae of C. fornicata preferentially used diatoms and showed that the supply of free bacteria did not alter the uptake of diatoms. Considering the seasonal variations of bacteria and phytoplankton abundances at the study site, these results suggested that bacteria may constitute a complementary resource for the larvae of C. fornicata when phytoplankton is abundant and may become a substitute resource when phytoplankton is less available. This approach offers promising perspectives to trace food sources and assess nitrogen and carbon fluxes between planktotrophic larvae

  15. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  16. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  17. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  18. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  19. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters. PMID:25941866

  20. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  1. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state.

  2. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

    PubMed

    Brereton, Nicholas J B; Pitre, Frederic E; Shield, Ian; Hanley, Steven J; Ray, Michael J; Murphy, Richard J; Karp, Angela

    2014-11-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and (15)N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production.

  3. Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association.

    PubMed

    Molero, Gemma; Aranjuelo, Iker; Teixidor, Pilar; Araus, José Luis; Nogués, Salvador

    2011-03-15

    We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.

  4. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  5. Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the Western Central Valley, Costa Rica.

    PubMed

    Reynolds-Vargas, Jenny; Fraile-Merino, Julio; Hirata, Ricardo

    2006-08-01

    A study was conducted to evaluate long-term trends in nitrate concentrations and to try to identify the origin of nitrate using stable isotopes (15N(NO3-) and 18O(NO3-)) in the aquifers of the western Central Valley, Costa Rica, where more than 1 million people depend on groundwater to satisfy their daily needs. Data from 20 sites periodically sampled for 4 to 17 years indicate an increasing trend in nitrate concentrations at five sites, which in a period ranging from 10 to 40 years, will exceed recommended maximum concentrations. Results of isotopic analysis indicate a correspondence between land use patterns and the isotopic signature of nitrate in groundwater and suggest that urbanization processes without adequate waste disposal systems, followed by coffee fertilization practices, are threatening water quality in the region. We conclude that groundwater management in this area is not sustainable, and that land use substitution processes from agricultural activity to residential occupation that do not have proper sewage disposal systems may cause a significant increment in the nitrate contaminant load. PMID:16989507

  6. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  7. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  8. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.

  9. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples. PMID:25858662

  10. Quantification of soy protein using the isotope method (δ(13)C and δ(15)N) for commercial brands of beef hamburger.

    PubMed

    Ducatti, Rhani; de Almeida Nogueira Pinto, José Paes; Sartori, Maria Márcia Pereira; Ducatti, Carlos

    2016-12-01

    Hamburgers (beef patties) may be adulterated through the overuse of protein extenders. Among vegetables, soy protein is the best substitute for animal protein. These ingredients help to reduce the cost of producing a final product, and they maximize profits for fraudulent industries. Moreover, the ingestion of soy or other non-meat proteins by allergic individuals may present a health risk. In addition, monitoring by supervisory bodies is hampered by a lack of appropriate analytical methodologies. Within this context, the aim of this study was to determine and quantify the levels of added soy protein by determination of (15)N and (13)C stable isotopes. A total of 100 beef hamburger samples from 10 commercial brands were analyzed. Only three samples of the G brand were within the standards set the Brazilian legislation. The remaining 97 samples from 10 commercial brands contained >4% soy protein; therefore, they are adulterated and not in compliance with the current legislation. PMID:27501234

  11. Potential probe for examining opiate-receptor interactions: model compound study of dynamic effects on /sup 15/N INEPT enhancements

    SciTech Connect

    Schilling, K.H.; Mikita, M.A.

    1987-10-01

    Model systems were chosen in an attempt to mimic the proton exchange environment of an agonist nitrogen in an opiate-receptor interaction. The two model systems studied were an ammonium: 18-crown-6 ether complex and a quinuclidine-trifluoroacetic acid ion pair. Each system was examined for their effects on /sup 15/N NMR INEPT enhancements. Both models were found to retard proton exchange dynamics, as observed by increased enhancements relative to free ions in neutral aqueous solutions. These results suggest that the confinement of a protonated nitrogen, such as that expected in receptor binding, may alter exchange dynamics to favor INEPT enhancements, while unbound agonists would remain unenhanced. As a result, /sup 15/N NMR INEPT enhancements from a solution of receptor subtypes with an appropriate /sup 15/N-labeled agonist may present a means of exploring the dynamics of direct opiate-receptor interactions.

  12. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  13. Spatial variation in the strength of mutualism between a jumping spider and a terrestrial bromeliad: Evidence from the stable isotope 15N

    NASA Astrophysics Data System (ADS)

    Romero, Gustavo Q.; Vasconcellos-Neto, João; Trivelin, Paulo C. O.

    2008-05-01

    Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider-plant mutualism. We found a positive significant relationship between spider density and δ15N values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher δ15N values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider-plant system.

  14. Precise Measurement of Phenylalanine δ15N Values via Elemental Analysis-Isotope Ratio Mass Spectrometry Following Purification with High-Pressure Liquid Chromatography: A New Tool for Fine-Scale Paleo-Nitrogen Cycle Reconstructions

    NASA Astrophysics Data System (ADS)

    Broek, T.; Walker, B. D.; Batista, F. C.; Andreasen, D.; Hill, T. M.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Compound specific isotope analysis of individual amino acids (CSI-AA) in organic paleoarchives is emerging as a powerful tool for reconstructing the paleo-nitrogen (N) cycle. Because the δ15N of phenylalanine (Phe) remains almost unchanged with diagenesis or trophic transfer it has been demonstrated to be the most promising AA proxy for the δ15N of primary production. However, the precise measurement of AA δ15N values is currently limited by the standard gas chromatography-isotope ratio mass spectrometer (GC-IRMS) approach. The key problem with this approach is that GC-IRMS δ15N precision (±1‰) is almost an order of magnitude lower than typical bulk δ15N measurements (±0.1‰), posing a significant problem for assessing fine scale changes within paleo-climate records. Additionally, required instrumentation is both expensive, and not widely available. Here we present an offline approach in which Phe is purified via high-pressure liquid chromatography (HPLC), using an analytical scale, mixed-phase column and automated fraction collection. δ13C and δ15N values of the fractions are then determined via standard elemental analysis-isotope ratio mass spectrometry (EA-IRMS). We evaluate the precision of this HPLC-EA-IRMS method vs. traditional GC-IRMS for Phe δ15N values of isotopic AA standards and various proteinaceous marine samples (marine coral, sediment, and cyanobacteria). Typical HPLC-EA-IRMS δ15N precision is ±0.1‰ for isotopic AA standards and ±0.5‰ for marine coral, sediment, and cyanobacteria samples compared to ±0.5‰ and ±1.0‰ for AA standards and samples analyzed by GC-IRMS. In order to demonstrate the viability of our approach, we present a comparison of a Phe δ15N record produced from a deep-sea bamboo coral specimen from Monterey Bay, CA, using our offline HPLC-EA-IRMS method vs. standard GC-IRMS. Each method produced equivalent Phe δ15N values within error, however, the HPLC-EA-IRMS method produced Phe δ15N values with over

  15. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  16. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments

    NASA Astrophysics Data System (ADS)

    Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji

    2012-03-01

    Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes (δ13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE

  17. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N).

    PubMed

    Briand, Marine J; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  18. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N)

    PubMed Central

    Briand, Marine J.; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted. PMID

  19. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  20. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas--characterization by multivariate analysis.

    PubMed

    Foan, L; Leblond, S; Thöni, L; Raynaud, C; Santamaría, J M; Sebilo, M; Simon, V

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g(-1), as well as δ(13)C values of -32 to -29‰ and δ(15)N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ(13)C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.

  1. EVALUATION OF A NON-LETHAL SAMPLING TECHNIQUE FOR THE MEASUREMENT OF MERCURY (HG) CONCENTRATIONS AND STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS (MICROPTERUS SALMOIDES)

    EPA Science Inventory

    Contaminant bioaccumulation studies often rely on fish muscle filets as the tissue of choice for the measurement of nitrogen stable isotope ratios ( 15N) and mercury (Hg). Lethal sampling techniques may not be suitable for studies on limited populations from smaller sized aquati...

  2. THE DEVELOPMENT OF A PREDICTIVE TOLL USING LARGEMOUTH BASS (MICROPTERUS SALMOIDES) SCALES TO ESTIMATE MERCURY (HG) CONCENTRATIONS AND STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN FISH MUSCLE TISSUE

    EPA Science Inventory

    Knowledge of the trophic structure of biota in aquatic sites offers potential for the construction of models to allow the prediction of contaminant bioaccumulation. Measurements of trophic position have been conducted using stable-nitrogen isotope ratios ( 15N) measured in fish m...

  3. Kinetic isotope effects for fast deuterium and proton exchange rates

    PubMed Central

    Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-01-01

    By monitoring the effect of deuterium decoupling on the decay of transverse 15N magnetization in D–15N spin pairs during multiple-refocusing echo sequences, we have determined fast D–D exchange rates k D and compared them with fast H–H exchange rates k H in tryptophan to determine the kinetic isotope effect as a function of pH and temperature. PMID:27009684

  4. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  5. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen.

  6. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen. PMID:26519590

  7. Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm.

    PubMed

    Reich, Kimberly J; Bjorndal, Karen A; Martínez Del Rio, Carlos

    2008-04-01

    The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal's diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Delta 13C = delta 13Ctissues - delta 13Cdiet and Delta 15N = delta 15Ntissues - delta 15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from -0.64 to 1.77 per thousand in the turtles' tissues. These values are lower than the commonly assumed average 3.4 per thousand discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.

  8. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    Tropical rain forest soils are the largest natural source of N2O to the atmosphere. Uncertainty in the signature of this source limits the utility of isotopes in constraining the global N2O budget. Differentiating the relative contribution of nitrification and denitrification to the emitted N2O using stable isotopes has been difficult due to the lack of enrichment factors values for each process measured in situ. We have devised a method for measuring enrichment factors using soil incubation experiments. We selected three Amazon rain forest soils: (1) Clay and (2) Sandy from Santarem, Pará State, and (3) Sandy from Nova Vida Farm, Rondonia State, Brazil. The enrichment factor values for nitrification and denitrification are: -97.8±4.2 and -9.9±3.8 per mil for clay Santarem soil, -86.8±4.3 and -45.2±4.5 per mil for sandy Santarem soil and-112.6±3.8 and -10.4±3.5 per mil for Nova Vida Farm soils, respectively. Our results show that enrichment factors for both processes differ with soil texture and location. The enrichment factors for nitrification are significantly smaller than the range reported in the literature (-66 to -42 per mil). Also, the enrichment factors for the Santarem soils (clay and sandy) differ significantly implying that soil texture (which will affect the soil air filled pore space at a given water content) is influencing the bacteria isotopic discrimination. However, the enrichment factors for the Santarem clay sand Nova Vida sandy soils do not differ by much. This suggests that the enrichment factors not only can be affected by texture but also by the microbial fauna present in these soils. We also determined the measurement of the N2O positional dependence. N2O is a linear molecule with two nitrogen atoms. The 15N isotope can be located in either the central nitrogen (alpha position) or in the terminal nitrogen (beta position). The isotopomer site preference (15N alpha - 15N beta) can be used to differentiate processes of production and

  9. The signatures of stable isotopes δ 15N and δ 13C in anadromous and non-anadromous Coilia nasus living in the Yangtze River, and the adjacent sea waters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Tang, Wenqiao; Dong, Wenxia

    2015-12-01

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes ( δ 13C and δ 15N) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. δ 13C signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) ( P < 0.05). By contrast, δ 15N signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group ( P < 0.05). Basing on δ 13C and δ 15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in δ 15N but depleted in δ 13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply δ 15N and δ 13C to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes ( δ 15N and δ 13C) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.

  10. Spatio-temporal isotopic signatures (δ13 C and δ15 N) reveal that two sympatric West African mullet species do not feed on the same basal production sources.

    PubMed

    Le Loc'h, F; Durand, J-D; Diop, K; Panfili, J

    2015-04-01

    Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ(13) C and δ(15) N composition of muscle tissues. Between species, δ(15) N compositions were similar, suggesting a similar trophic level, while the difference in δ(13) C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno-benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family.

  11. Revisiting the use of δ15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures - The case of an open ecosystem: The Bay of Biscay (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Chouvelon, T.; Spitz, J.; Caurant, F.; Mèndez-Fernandez, P.; Chappuis, A.; Laugier, F.; Le Goff, E.; Bustamante, P.

    2012-08-01

    Most of the recent framework directives and environmental policies argue for the development and the use of indicators - notably trophodynamic indicators - that should be able to follow ecosystems' evolution in space and time, particularly under anthropogenic perturbations. In the last decades, the use of stable carbon and nitrogen isotopes ratios has increased exponentially, particularly in studies of marine ecosystems' trophic structure and functioning. This method is principally based on the assumption that the isotopic composition of a consumer directly reflects that of its food. Nevertheless, few studies have attempted to define the limits of this tool, before using it and drawing ecological conclusions from isotopic analysis. This study aimed to assess the importance of considering spatio-temporal variations in isotopic signatures of consumers when using δ13C and especially δ15N values in open ecosystems with complex food webs, using the Bay of Biscay (North-East Atlantic) as a case study. To this end, more than 140 species from this marine ecosystem were analysed for the isotopic signatures in their muscle tissue. They were sampled from coastal to oceanic and deep-sea areas and at different latitudes, to evaluate spatial variations of isotopic signatures. Selected species were also sampled over several years and in two seasons to account for inter-annual and seasonal variations. In the Bay of Biscay temperate ecosystem, which is subject to both coastal and oceanic influences - two main river inputs and upwelling areas - , δ13C and δ15N values significantly decreased from inshore to offshore species, and to a lesser extent from benthic to pelagic organisms. River discharges appeared to be the first factor influencing δ13C and δ15N values in consumers. From the important spatial variations detected in δ15N values in particular, we suggest that in such contrasted ecosystem, nitrogen isotopic ratios may also be revisited as an indicator of the feeding

  12. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican.

    PubMed

    Reudink, Matthew W; Kyle, Christopher J; McKellar, Ann E; Somers, Christopher M; Reudink, Robyn L F; Kyser, T Kurt; Franks, Samantha E; Nocera, Joseph J

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.

  13. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican

    PubMed Central

    Reudink, Matthew W.; Kyle, Christopher J.; McKellar, Ann E.; Somers, Christopher M.; Reudink, Robyn L. F.; Kyser, T. Kurt; Franks, Samantha E.; Nocera, Joseph J.

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia. PMID:26974163

  14. Electrochemical isotope effect and lithium isotope separation.

    PubMed

    Black, Jay R; Umeda, Grant; Dunn, Bruce; McDonough, William F; Kavner, Abby

    2009-07-29

    A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.

  15. Quantification of the contribution of biological nitrogen fixation to tropical green manure crops and the residual benefit to a subsequent maize crop using 15N-isotope techniques.

    PubMed

    Ramos, M G; Villatoro, M A; Urquiaga, S; Alves, B J; Boddey, R M

    2001-10-01

    In this study the contribution of biological N2 fixation (BNF) to leguminous green manures was quantified in the field at different sites with different 15N methodologies. In the first experiment, conducted on a Terra Roxa soil in Cuba, the BNF contribution to three legumes (Crotalaria juncea, Mucuna aterrima and Canavalia ensiformis) was quantified by applying 15N-labelled ammonium sulphate to the soil. The second experiment was planted in a very low fertility sandy soil near Rio de Janeiro, and the 15N natural abundance technique was applied to quantify BNF in C. juncea, M. niveum and soybean. In both studies the advantages of using several non-N2-fixing reference plants was apparent and despite the much greater accumulation of the C. juncea in the experiment performed on the fertile soil of Cuba, the above ground contributions of BNF at both sites were similar (40-80 kg N x ha(-1)) and greater than for the other legumes. In a further experiment the possible contribution of root-derived N to the soil/plant system of two of the legumes was quantified using a 15N-leaf-labelling technique performed in pots. The results of this study suggested that total below-ground N could constitute as much as 39 to 49% of the total N accumulated by the legume crops. PMID:11566383

  16. Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  17. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-01-01

    Nitrate (NO-3 concentrations and dual isotopic composition (??15N and ??18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO-3 within this California estuary. We found the isotopic composition of NO-3 was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO-3 sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO-3 concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO-3 uptake and nitrification result in NO-3 with low ?? 15N and high ??18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO -3 isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO -3 sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition. Copyright 2009 by the American Geophysical Union.

  18. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-03-01

    Nitrate (NO3-) concentrations and dual isotopic composition (δ15N and δ18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO3- within this California estuary. We found the isotopic composition of NO3- was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO3- sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO3- concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO3- uptake and nitrification result in NO3- with low δ15N and high δ18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO3- isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO3- sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition.

  19. Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (δ15N) as Natural Tracers

    PubMed Central

    Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392

  20. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity. PMID:27593462

  1. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.

  2. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  3. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27479606

  4. On the measurement of 15N-{ 1H} nuclear Overhauser effects. 2. Effects of the saturation scheme and water signal suppression

    NASA Astrophysics Data System (ADS)

    Ferrage, Fabien; Reichel, Amy; Battacharya, Shibani; Cowburn, David; Ghose, Ranajeet

    2010-12-01

    Measurement of steady-state 15N-{ 1H} nuclear Overhauser effects forms a cornerstone of most methods to determine protein backbone dynamics from spin-relaxation data, since it is the most reliable probe of very fast motions on the ps-ns timescale. We have, in two previous publications (J. Magn. Reson. 192 (2008) 302-313; J. Am. Chem. Soc. 131 (2009) 6048-6049) reevaluated spin-dynamics during steady-state (or "saturated") and reference experiments, both of which are required to determine the NOE ratio. Here we assess the performance of several windowed and windowless sequences to achieve effective saturation of protons in steady-state experiments. We also evaluate the influence of the residual water signal due to radiation damping on the NOE ratio. We suggest a recipe that allows one to determine steady-state 15N-{ 1H} NOE's without artifacts and with the highest possible accuracy.

  5. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer. PMID:17386516

  6. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to testmore » the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.« less

  7. Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: The importance of the isotopic baseline

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice; Mazzola, Antonio; Maci, Stefano; Basset, Alberto

    2013-12-01

    FishBase, a relational database freely available on the Internet, is to date widely used as a source of quantitative information on the trophic position of marine fish species. Here, we compared FishBase estimates for an assemblage of 30 fish species sampled in a Mediterranean lagoon (Acquatina lagoon, SE Italy) with their trophic positions calculated using nitrogen stable isotopes.

  8. Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.

    2014-12-01

    Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in

  9. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  10. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: Counterion effects on the sup 15 N shift anisotropy

    SciTech Connect

    de Groot, H.J.M.; Harbison, G.S.; Herzfeld, J.; Griffin, R.G. )

    1989-04-18

    High-resolution, solid-state {sup 15}N NMR has been used to study the chemical shift anisotropies of the Schiff bases in bacteriorhodopsin (bR) and in an extensive series of model compounds. Using slow-spinning techniques, the authors are able to obtain sufficient rotational sideband intensity to determine the full {sup 15}N chemical shift anisotropy for the Schiff base nitrogen in bR{sub 548} and bR{sub 568}. Comparisons are made between all-trans-bR{sub 568} and N-all-trans-retinylidene butylimine salts with halide, phenolate, and carboxylate counterions. It is argues that for the model compounds the variation in {sup 15}N chemical shift reflects the variation in (hydrogen) bond strength with the various counterions. The results suggest that carboxylates and tyrosinates may form hydrogen bonds of comparable strength in a hydrophobic environment. Thus, the hydrogen bonding strength of a counterion depends on factors that are not completely reflected in the solution pK{sub a} of its conujugate acid. For the model compounds, the two most downfield principal values of the {sup 15}N chemical shift tensor, {sigma}{sub 22} and {sigma}{sub 33}, vary dramatically with different counterions, whereas {sigma}{sub 11} remains essentially unaffected. In addition, there exists a linear correlation between {sigma}{sub 22} and {sigma}{sub 33}, which suggests that a single mechanism is responsible for the variation in chemical shifts present in all three classes of model compounds. The data for bR{sub 568} follow this trend, but the isotropic shift is 11 ppm further upfield than any of the model compounds. This extreme value suggests an unusually weak hydrogen bond in the protein.

  11. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  12. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event. PMID:23588853

  13. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  14. Use of /sup 15/N to measure nitrogen uptake in eutrophic oceans; experimental considerations

    SciTech Connect

    Not Available

    1986-07-01

    The use of /sup 15/N to measure the flux of nitrogen compounds has become increasingly popular as the techniques and instrumentation for stable isotope analysis have become more widely available. Questions concerning equations for calculating uptake, effect of isotope dilution (in the case of ammonium), duration of incubation, and relationship between disappearance of a nitrogen compound and the /sup 15/N uptake measurement have arisen, especially for the research conducted in oligotrophic regions. Fewer problems seem to have occurred ineutrophic areas. However, sufficient literature now exists to allow some generally accepted experimental procedures for /sup 15/N studies in eutrophic regions to be laid down. Incubation periods of 2-6 h appear to avoid problems related to isotope dilution and to overcome the bias introduced in some cases by initial high rate or surge uptake. During such incubation periods, assimilation is measured rather than uptake or transport into the cell. Incorporation of /sup 15/N into the particulate fraction is usually linear with time over the periods currently used. The /sup 15/N method provides a better estimate of incorporation into phytoplankton than /sup 14/N disappearance, but a small fraction appears to be lost. Although most workers suggest the loss to be a result of dissolved organic nitrogen production, direct evidence is lacking. If the considerations discussed here are applied with the /sup 15/N techniques currently available, reliable estimates of phytoplankton nitrogen flux in eutrophic areas can be obtained.

  15. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  16. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    SciTech Connect

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  17. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  18. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination.

  19. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination. PMID:26527336

  20. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  1. Using d15 N in Fish Larvae as an Indicator of Watershed Sources of Anthropogenic Nitrogen: Response at Multiple Spatial Scales

    EPA Science Inventory

    The nitrogen stable isotope, 15N, is an effective tool to track anthropogenic N sources to aquatic ecosystems. It may be difficult to identify potential N sources, however, where 15N responds similarly to multiple, concurrent activities in the watershed that cause higher nutrient...

  2. Isotope effects in ESR spectroscopy.

    PubMed

    Stößer, Reinhard; Herrmann, Werner

    2013-06-07

    In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  3. δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon Coast Range

    USGS Publications Warehouse

    Scott, E.E.; Perakis, S.S.; Hibbs, D.E.

    2008-01-01

    We used naturally occurring stable isotopes of N to compare N dynamics in near-stream and upslope environments along riparian catenas in N-fixing red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) forests in the Coast Range of western Oregon. Based on the existing literature, we expected soil δ15N to be enriched closer to streams owing to inputs of isotopically heavy, marine-derived N by spawning salmon, higher rates of denitrification near the stream, or both. However, it has been unclear what effect red alder might have on soil δ15N patterns near streams. We found a consistent −1‰ δ15N signature in red alder foliage, and δ15N of total N in soils under red alder averaged 2.2‰ along sampling transects extending 20 m upslope from the stream. Surprisingly, δ15N of total N in soil under Douglas-fir was progressively depleted nearer to streams, opposite from the pattern expected from N losses by denitrification or N inputs from anadromous salmon. Instead, δ15N of total N in soil under Douglas-fir converged toward soil δ15N values typical of red alder sites. We consider that the historic presence of red alder may have contributed a legacy of lower soil δ15N nearer to streams on sites that are currently dominated by young Douglas-fir forest.

  4. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment.

  5. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Junium, Christopher K.; Canfield, Donald E.; House, Christopher H.

    2008-09-01

    In this study we examine the effects of varying Fe, Mo, and P concentrations on δ15N fractionation during N2 fixation in the cyanobacterium Anabaena variabilis. We show that when grown in Fe-enriched media ([Fe] ≥ 50 nM), this organism produces biomass up to 3‰ lower in δ15N than when grown in Fe-limited media ([Fe] < 50 nM). A compilation of our data with previous measurements of δ15N in N2-fixing cyanobacteria reveals a general trend toward the production of more 15N-depleted biomass at higher Fe concentrations. We discuss our results in the context of negative δ15N values preserved in Archean and some Phanerozoic sediments, generally attributed to the production of marine organic matter with low δ15N by N2 fixation (and potentially NH4+ regeneration) during periods of fluctuating nutrient dynamics. We suggest that enhanced Fe availability during periods of widespread ocean anoxia can further stimulate the production of 15N-depleted biomass by N2-fixing organisms, contributing to the isotopic record.

  6. Tissue S/N ratios and stable isotopes (delta(34)S and delta(15)N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China.

    PubMed

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Wang, Yan-Li; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-05-01

    In urban cities in Southern China, the tissue S/N ratios of epilithic mosses (Haplocladium microphyllum), varied widely from 0.11 to 0.19, are strongly related to some atmospheric chemical parameters (e.g. rainwater SO(4)(2-)/NH(4)(+) ratios, each people SO(2) emission). If tissue S/N ratios in the healthy moss species tend to maintain a constant ratio of 0.15 in unpolluted area, our study cities can be divided into two classes: class I (S/N > 0.15, S excess) and class II (S/N < 0.15, N excess), possibly indicative of stronger industrial activity and higher density of population, respectively. Mosses in all these cities obtained S and N from rainwater at a similar ratio. Sulphur and N isotope ratios in mosses are found significantly linearly correlated with local coal delta(34)S and NH(4)(+)-N wet deposition, respectively, indicating that local coal and animal NH(3) are the major atmospheric S and N sources.

  7. An isotope (18O, 15N, and 2H) technique to investigate the metal ion interactions between the phosphoryl group and amino acid side chains by electrospray ionization mass spectrometry.

    PubMed

    Gao, Xiang; Hu, Xiaomei; Zhu, Jun; Zeng, Zhiping; Han, Daxiong; Tang, Guo; Huang, Xiantong; Xu, Pengxiang; Zhao, Yufen

    2011-04-01

    Cationic metal ion-coordinated N-diisopropyloxyphosphoryl dipeptides (DIPP-dipeptides) were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). Two novel rearrangement reactions with hydroxyl oxygen or carbonyl oxygen migrations were observed in ESI-MS/MS of the metallic adducts of DIPP-dipeptides, but not for the corresponding protonated DIPP-dipeptides. The possible oxygen migration mechanisms were elucidated through a combination of MS/MS experiments, isotope ((18)O, (15)N, and (2)H) labeling, accurate mass measurements, and density functional theory (DFT) calculations at the B3LYP/6-31 G(d) level. It was found that lithium and sodium cations catalyze the carbonyl oxygen migration more efficiently than does potassium and participation through a cyclic phosphoryl intermediate. In addition, dipeptides having a C-terminal hydroxyl or aromatic amino acid residue show a more favorable rearrangement through carbonyl oxygen migration, which may be due to metal cation stabilization by the donation of lone pair of the hydroxyl oxygen or aromatic π-electrons of the C-terminal amino acid residue, respectively. It was further shown that the metal ions, namely lithium, sodium, and potassium cations, could play a novel directing role for the migration of hydroxyl or carbonyl oxygen in the gas phase. This discovery suggests that interactions between phosphorylated biomolecules and proteins might involve the assistance of metal ions to coordinate the phosphoryl oxygen and protein side chains to achieve molecular recognition.

  8. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  9. Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N

    NASA Astrophysics Data System (ADS)

    Neelam, Shubhchintak, Chatterjee, R.

    2015-10-01

    Background: The 15N(n ,γ )16N reaction plays an important role in red giant stars and also in inhomogeneous big bang nucleosynthesis. However, there are controversies regarding spectroscopic factors of the four low-lying states of 16N, which have direct bearing on the total direct capture cross section and also on the reaction rate. Direct measurements of the capture cross section at low energies are scarce and available only at three energies below 500 keV. Purpose: The aim of this paper is to calculate the 15N(n ,γ )16N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of 16N to the cross section. Method: A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of 16N on Pb at 100 MeV/u . This is then related to the photodisintegration cross section of 16N(γ ,n )15N and subsequently invoking the principle of detailed balance, the 15N(n ,γ )16N capture cross section is calculated. Results: The nonresonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seem to favor a more single particle nature for the low-lying states of 16N. The total neutron capture rate is also calculated by summing up nonresonant and resonant (significant only at temperatures greater than 1 GK) contributions and comparison is made with other charged particle capture rates. In the typical temperature range of 0.1 -1.2 GK, almost all the contributions to the reaction rate come from capture cross sections below 0.25 MeV. Conclusion: We have attempted to resolve the discrepancy in the spectroscopic factors of low-lying 16N levels and conclude that it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture

  10. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    PubMed Central

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  11. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities.

    PubMed

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W - B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS - B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg · ha(-1) and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W - B, WS + B, and WS - B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS - B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ (15)N and δ (13)C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use (15)N/(14)N and (13)C/(12)C ratios and stachyose to select for drought tolerance soybean.

  12. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities.

    PubMed

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W - B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS - B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg · ha(-1) and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W - B, WS + B, and WS - B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS - B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ (15)N and δ (13)C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use (15)N/(14)N and (13)C/(12)C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  13. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  14. Application of Screening Experimental Designs to Assess Chromatographic Isotope Effect upon Isotope-Coded Derivatization for Quantitative Liquid Chromatography–Mass Spectrometry

    PubMed Central

    2015-01-01

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography–mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, 13C6-, 15N2-, or 15N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett–Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of 15N or 13C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus 15N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with 15N- or 13C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  15. Application of screening experimental designs to assess chromatographic isotope effect upon isotope-coded derivatization for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Szarka, Szabolcs; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2014-07-15

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography-mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, (13)C6-, (15)N2-, or (15)N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett-Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of (15)N or (13)C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus (15)N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with (15)N- or (13)C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  16. Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates.

    PubMed

    Mnich, Meagan E; Houlton, Benjamin Z

    2016-06-01

    Nitrogen (N) losses constrain rates of plant carbon dioxide (CO2) uptake and storage in many ecosystems globally. N isotope models have been used to infer that ~30 % of terrestrial N losses occur via microbial denitrification; however, this approach assumes a small isotope effect associated with N leaching losses. Past work across tropical/sub-tropical forest sites has confirmed this expectation; however, the stable N isotope ratio (δ(15)N) of ecosystem leaching has yet to be systematically evaluated in seasonally dry climates or across major ecosystem disturbances. We here present new measurements of the δ(15)N of total dissolved N (TDN) in small streams, bulk deposition, and soil pools across eight watershed sites in California, including grassland, chaparral, and coastal redwood forest ecosystems, with and without fire, grazing, and forest harvesting. Regardless of the dominant vegetation type or disturbance regime, average δ(15)N of TDN in stream water differed only slightly (<~1 ‰) from that of bulk soil δ(15)N, revealing a uniformly small isotope effect associated with N leaching losses even under non-steady state conditions. Rather, lower input δ(15)N compared to TDN δ(15)N in streams pointed to fractionations via gaseous loss pathways as the dominant mechanism behind soil δ(15)N enrichment. We conclude that N leaching does not impart a major isotope effect across a broad range of ecosystems and conditions examined, thereby advancing the N gas-loss hypothesis as the principal explanation for variation in bulk soil δ(15)N. PMID:26343040

  17. Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates.

    PubMed

    Mnich, Meagan E; Houlton, Benjamin Z

    2016-06-01

    Nitrogen (N) losses constrain rates of plant carbon dioxide (CO2) uptake and storage in many ecosystems globally. N isotope models have been used to infer that ~30 % of terrestrial N losses occur via microbial denitrification; however, this approach assumes a small isotope effect associated with N leaching losses. Past work across tropical/sub-tropical forest sites has confirmed this expectation; however, the stable N isotope ratio (δ(15)N) of ecosystem leaching has yet to be systematically evaluated in seasonally dry climates or across major ecosystem disturbances. We here present new measurements of the δ(15)N of total dissolved N (TDN) in small streams, bulk deposition, and soil pools across eight watershed sites in California, including grassland, chaparral, and coastal redwood forest ecosystems, with and without fire, grazing, and forest harvesting. Regardless of the dominant vegetation type or disturbance regime, average δ(15)N of TDN in stream water differed only slightly (<~1 ‰) from that of bulk soil δ(15)N, revealing a uniformly small isotope effect associated with N leaching losses even under non-steady state conditions. Rather, lower input δ(15)N compared to TDN δ(15)N in streams pointed to fractionations via gaseous loss pathways as the dominant mechanism behind soil δ(15)N enrichment. We conclude that N leaching does not impart a major isotope effect across a broad range of ecosystems and conditions examined, thereby advancing the N gas-loss hypothesis as the principal explanation for variation in bulk soil δ(15)N.

  18. Disentangling effects of growth and nutritional status on seabird stable isotope ratios.

    PubMed

    Sears, Justine; Hatch, Scott A; O'Brien, Diane M

    2009-02-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather delta(15)N and delta(13)C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing delta(15)N and delta(13)C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in delta(15)N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC delta(15)N, with chicks exhibiting lower delta(15)N when they were growing the fastest. As growth slowed, delta(15)N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted delta(15)N in chick RBCs by 0.92 per thousand. We propose that increased nitrogen-use efficiency is responsible for (15)N depletion in both growing and food-restricted chicks. delta(15)N values in RBCs of free-ranging auklets fell within a range of only 1.03 per thousand, while feather delta(15)N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in

  19. Disentangling effects of growth and nutritional status on seabird stable isotope ratios

    USGS Publications Warehouse

    Sears, J.; Hatch, Shyla A.; O'Brien, D. M.

    2009-01-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather ??15N and ??13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing ??15N and ??13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in ??15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC ??15N, with chicks exhibiting lower ??15N when they were growing the fastest. As growth slowed, ??15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted ??15N in chick RBCs by 0.92???. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. ??15N values in RBCs of free-ranging auklets fell within a range of only 1.03???, while feather ??15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue. ?? 2008 Springer-Verlag.

  20. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  1. Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Griffith, D. W.; Dijkstra, F. A.; Lugg, G.; Lawrie, R.; Macdonald, B.

    2012-12-01

    Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m-2 s-1. Emissions of all N2O isotopologues were evident immediately following 15N addition. Emissions of 14N15NO, 15N14NO and 15N15NO isotopologues subsided within 10 d, but 14N14NO fluxes were evident over the entire experiment. The figure provides an overview of the emissions. Cumulative 15N-N2O fluxes (sum of the three 15N isotopologues) per chamber for the 14 days following 15N addition ranged from 1.5 to 10.3 mg 15N-N2O m-2. The chambers were destructively sampled after 2 weeks and 15N analyzed in soil and plant material using isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of

  2. Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and {sup 15}N isotopes

    SciTech Connect

    Qi, Meng; Li, Guowang; Protasenko, Vladimir; Zhao, Pei; Verma, Jai; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Hu, Zongyang; Yan, Xiaodong; Xing, Huili Grace; Jena, Debdeep; Mintairov, Alexander

    2015-01-26

    This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters and for power electronics.

  3. Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects

    SciTech Connect

    Schell, D.M.

    1995-12-31

    Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratin of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.

  4. delta15N and delta13C diet-tissue discrimination factors for large sharks under semi-controlled conditions.

    PubMed

    Hussey, Nigel E; Brush, Jaclyn; McCarthy, Ian D; Fisk, Aaron T

    2010-04-01

    Stable isotopes (delta(15)N and delta(13)C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors ((13)C and (15)N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated (15)N and (13)C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean+/-SD for (15)N and (13)C in lipid extracted muscle using lipid extracted prey data were 2.29 per thousand+/-0.22 and 0.90 per thousand+/-0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar (15)N and (13)C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of (15)N and (13)C in lipid extracted liver and prey were 1.50 per thousand+/-0.54 and 0.22 per thousand+/-1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage (15)N and (13)C values were 1.45 per thousand+/-0.61 and 3.75 per thousand+/-0.44, respectively. Organ (15)N and (13)C values were more variable among individual sharks but heart tissue was consistently enriched by approximately 1-2.5 per thousand. Minimal variability in muscle and liver delta(15)N and delta(13)C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our

  5. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  6. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  7. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    PubMed

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer

  8. Importance of Nitrate Attenuation In A Small Wetland Following Forest Harvest: 18O/16O, 15N/14N in nitrate and 15N/14N) in vegetation

    NASA Astrophysics Data System (ADS)

    Spoelstra, J.; Schiff, S. L.; Semkin, R. G.; Jeffries, D. S.; Elgood, R. J.

    2004-05-01

    Forest harvest can result in elevated nitrate concentrations in streams and groundwater affecting forest regeneration and downstream aquatic ecosystems. Turkey Lakes Watershed, located near Sault Ste Marie, Ontario (TLW), exhibits relatively high nitrate export due to naturally high rates of nitrification. During a forest harvest experiment at the TLW, stable isotope techniques were used to investigate nitrate attenuation in an intermediate position natural wetland receiving high concentrations of nitrate following forest clear-cutting. Isotopic analysis of nitrate (18O/16O, 15N/14N) and vegetation (15N/14N) demonstrated that denitrification and plant uptake of nitrate resulted in significantly lower nitrate concentrations in wetland outflow compared to incoming stream water and groundwater. The 0.2-hectare forested swamp, too small to show up on standard topographic maps, retained 65 to 100 percent of upgradient nitrate inputs, elevated due to increased nitrification in soils. The 15N/14N enrichment factor associated with nitrate attenuation in wetland surface water was lower than observed during denitrification in groundwaters, suggesting that denitrification proceeded to completion in some areas of the wetland. Even small, shallow, carbon rich pockets of organic matter in topographic depressions can significantly affect biogeochemical fluxes of C, N, S and Ca. Future forest management practices designed to recognize and preserve small wetlands could significantly reduce the potentially detrimental effects of forest harvest on aquatic systems.

  9. Investigations into the effect of diet on modern human hair isotopic values.

    PubMed

    O'Connell, T C; Hedges, R E

    1999-04-01

    Carbon and nitrogen isotopic analysis of body tissues is one of the few techniques that can furnish quantitative information about the diet of archaeological humans. The study of the effects of various diets on modern human isotopic values can help to refine palaeodietary theories, and such work also enables the testing of palaeodietary theories independent of archaeological remains and interpretations. This report discusses the use of modern human hair as a sample material for isotopic analysis. The biogenic carbon and nitrogen isotopic signal is well preserved in hair, and the isotopic values of the keratin can be related to diet. We show that atmospheric and cosmetic contamination of hair keratin does not appear to affect the measured isotopic values. In a small study of Oxford residents, we demonstrate that the magnitude of the nitrogen isotopic values of hair keratin reflects the proportion of animal protein consumed in the diet: omnivores and ovo-lacto-vegetarians have higher delta15N than vegans. There was an observed relationship between the reported amount of animal protein eaten (either meat or secondary animal products) and the nitrogen isotopic values within the two groups of omnivores and ovo-lacto-vegetarians, indicating that an increasing amount of animal protein in the diet results in an increase in the delta15N of hair keratin. This provides the first independent support for a long-held theory that, for individuals within a single population, a diet high in meat equates to elevated nitrogen isotopic values in the body relative to others eating less animal protein. The implications of such results for the magnitude of the trophic level effect are discussed. Results presented here also permit a consideration of the effects of a change of diet in the short and long term on hair keratin isotopic values. PMID:10229386

  10. Investigations into the effect of diet on modern human hair isotopic values.

    PubMed

    O'Connell, T C; Hedges, R E

    1999-04-01

    Carbon and nitrogen isotopic analysis of body tissues is one of the few techniques that can furnish quantitative information about the diet of archaeological humans. The study of the effects of various diets on modern human isotopic values can help to refine palaeodietary theories, and such work also enables the testing of palaeodietary theories independent of archaeological remains and interpretations. This report discusses the use of modern human hair as a sample material for isotopic analysis. The biogenic carbon and nitrogen isotopic signal is well preserved in hair, and the isotopic values of the keratin can be related to diet. We show that atmospheric and cosmetic contamination of hair keratin does not appear to affect the measured isotopic values. In a small study of Oxford residents, we demonstrate that the magnitude of the nitrogen isotopic values of hair keratin reflects the proportion of animal protein consumed in the diet: omnivores and ovo-lacto-vegetarians have higher delta15N than vegans. There was an observed relationship between the reported amount of animal protein eaten (either meat or secondary animal products) and the nitrogen isotopic values within the two groups of omnivores and ovo-lacto-vegetarians, indicating that an increasing amount of animal protein in the diet results in an increase in the delta15N of hair keratin. This provides the first independent support for a long-held theory that, for individuals within a single population, a diet high in meat equates to elevated nitrogen isotopic values in the body relative to others eating less animal protein. The implications of such results for the magnitude of the trophic level effect are discussed. Results presented here also permit a consideration of the effects of a change of diet in the short and long term on hair keratin isotopic values.

  11. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    PubMed

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  12. Leaf δ15N as a temporal integrator of nitrogen-cycling processes at the Mojave Desert FACE experiment

    NASA Astrophysics Data System (ADS)

    Sonderegger, D.; Koyama, A.; Jin, V.; Billings, S. A.; Ogle, K.; Evans, R. D.

    2011-12-01

    Ecosystem response to elevated carbon dioxide (CO2) in arid environments is regulated primarily by water, which may interact with nitrogen availability. Leaf nitrogen isotope composition (δ15N) can serve as an important indicator of changes in nitrogen dynamics by integrating changes in plant physiology and ecosystem biogeochemical processes. Because of this temporal integration, careful modeling of the antecedent conditions is necessary for understanding the processes driving variation in leaf δ15N. We measured leaf δ15N of Larrea tridentata (creosotebush) over the 10-year lifetime of the Nevada Desert Free-Air CO2 Enrichment (FACE) experiment. Leaf δ15N exhibited two patterns. First, elevated atmospheric CO2 significantly increased Larrea leaf δ15N by approximately 2 to 3 % compared to plants exposed to ambient CO2 concentrations Second, plants in both CO2 treatments exhibited significant seasonal cycles in leaf δ15N, with higher values during the fall and winter seasons. We modeled leaf δ15N using a hierarchical Bayesian framework that incorporated soil moisture, temperature, and the Palmer Drought Severity Index (PDSI) covariates in addition to a CO2 treatment effect and plot random effects. Antecedent moisture effects were modeled by using a combination of the previous season's aggregated conditions and a smoothly varying weighted average of the months or weeks directly preceding the observation. The time lag between the driving antecedent condition and the observed change in leaf δ15N indicates a significant and unobserved process mechanism. Preliminary results suggest a CO2 treatment interaction with the lag effect, indicating a treatment effect on the latent process.

  13. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    BACKGROUND Monitoring of nitrous oxide concentration only started during the last 30 years in North America, but anthropogenic atmospheric nitrogen has been significantly emitted over the last 150 years. Can geochemical characteristics of tree rings be used to infer past changes in the nitrogen cycle of temperate regions? To address this question we use nitrogen stable isotopes in 125 years-long ring series from beech specimens (Fagus grandifolia) of the Georgian Bay Islands National Park (eastern Ontario), and pine (Pinus strobus) and beech trees of the Arboretum Morgan near Montreal (western Quebec). To evaluate the reliability of the N stable isotopes in wood treated for removal of soluble materials, we tested both tree species from the Montreal area. The reproducibility from tree to tree was excellent for both pine and beech trees, the isotopic trends were strongly concordant, and they were not influenced by the heartwood-sapwood transition zone. The coherence of changes of the isotopic series observed for the two species suggests that their tree-ring N isotopic values can serve as environmental indicator. RESULTS AND INTERPRETATION In Montreal and Georgian Bay, the N isotopes show strong and similar parallel agreement (Gleichlaufigkeit test) with the climatic parameters. So in fact, the short-term isotopic fluctuations correlate directly with summer precipitation and inversely with summer and spring temperature. A long-term decreasing isotope trend in Montreal indicates progressive changes in soil chemistry after 1951. A pedochemical change is also inferred for the Georgian Bay site on the basis of a positive N isotopic trend initiated after 1971. At both sites, the long-term ^15N series correlate with a proxy for NOx emissions (Pearson correlation), and carbon-isotope ring series suggest that the same trees have been impacted by phytotoxic pollutants (Savard et al., 2009a). We propose that the contrasted long-term nitrogen-isotope changes of Montreal and

  14. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests

    PubMed Central

    Houlton, Benjamin Z.; Sigman, Daniel M.; Hedin, Lars O.

    2006-01-01

    The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have measured the 15N/14N of inputs and hydrologic losses. We report that the two most widely purported mechanisms, an isotopic shift in N inputs or isotopic discrimination by leaching, fail to explain this climate-dependent trend in 15N/14N. Rather, isotopic discrimination by microbial denitrification appears to be the major determinant of N isotopic variations across differences in rainfall. In the driest climates, the 15N/14N of total dissolved outputs is higher than that of inputs, which can only be explained by a 14N-rich gas loss. In contrast, in the wettest climates, denitrification completely consumes nitrate in local soil environments, thus preventing the expression of its isotope effect at the ecosystem scale. Under these conditions, the 15N/14N of bulk soils and stream outputs decrease to converge on the low 15N/14N of N inputs. N isotope budgets that account for such local isotopic underexpression suggest that denitrification is responsible for a large fraction (24–53%) of total ecosystem N loss across the sampled range in rainfall. PMID:16728510

  15. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis.

    PubMed

    Hertz, Eric; Trudel, Marc; Cox, Marlin K; Mazumder, Asit

    2015-11-01

    Many organisms experience fasting in their life time, and this physiological process has the potential to alter stable isotope values of organisms, and confound interpretation of food web studies. However, previous studies on the effects of fasting and starvation on stable isotopes show disparate results, and have never been quantitatively synthesized. We performed a laboratory experiment and meta-analysis to determine how stable isotopes of δ (15)N and δ (13)C change with fasting, and we tested whether moderators such as taxa and tissue explain residual variation. We collected literature data from a wide variety of taxa and tissues. We surveyed over 2000 papers, and of these, 26 met our selection criteria, resulting in 51 data points for δ (15)N, and 43 data points for δ (13)C. We determine that fasting causes an average increase in the isotopic value of organisms of 0.5‰ for δ (15)N and that the only significant moderator is tissue type. We find that the overall effect size for δ (13)C is not significant, but when the significant moderator of tissue is considered, significant increases in blood and whole organisms are seen with fasting. Our results show that across tissues and taxa, the nutritional status of an organism must be considered when interpreting stable isotope data, as fasting can cause large differences in stable isotope values that would be otherwise attributed to other factors.

  16. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis.

    PubMed

    Hertz, Eric; Trudel, Marc; Cox, Marlin K; Mazumder, Asit

    2015-11-01

    Many organisms experience fasting in their life time, and this physiological process has the potential to alter stable isotope values of organisms, and confound interpretation of food web studies. However, previous studies on the effects of fasting and starvation on stable isotopes show disparate results, and have never been quantitatively synthesized. We performed a laboratory experiment and meta-analysis to determine how stable isotopes of δ (15)N and δ (13)C change with fasting, and we tested whether moderators such as taxa and tissue explain residual variation. We collected literature data from a wide variety of taxa and tissues. We surveyed over 2000 papers, and of these, 26 met our selection criteria, resulting in 51 data points for δ (15)N, and 43 data points for δ (13)C. We determine that fasting causes an average increase in the isotopic value of organisms of 0.5‰ for δ (15)N and that the only significant moderator is tissue type. We find that the overall effect size for δ (13)C is not significant, but when the significant moderator of tissue is considered, significant increases in blood and whole organisms are seen with fasting. Our results show that across tissues and taxa, the nutritional status of an organism must be considered when interpreting stable isotope data, as fasting can cause large differences in stable isotope values that would be otherwise attributed to other factors. PMID:26640663

  17. The isotope effect of denitrification in permeable sediments

    NASA Astrophysics Data System (ADS)

    Kessler, Adam J.; Bristow, Laura A.; Cardenas, M. Bayani; Glud, Ronnie N.; Thamdrup, Bo; Cook, Perran L. M.

    2014-05-01

    Natural ratios of 15N/14N are commonly used to help constrain marine nitrogen budgets. This requires an understanding of the isotope effect (ɛ) associated with nitrogen fixation and denitrification. Permeable sediments cover 70% of the continental shelf and are suggested to represent an important sink for fixed nitrogen, yet there are no ɛ values published for denitrification in this sediment type. We undertook controlled column experiments to quantify the cellular (ɛcell) fractionation factors for N and O isotopes of nitrate in permeable sediments collected from the Danish Kattegat. Values of ɛcell were 18.1 ± 1‰ for N and 14.2 ± 0.8‰ for O during dissimilatory nitrate reduction, which is consistent with ɛcell values determined in cohesive sediments and recently published ɛcell values for pure cultures at environmentally relevant nitrate concentrations. A diagenetic model was formulated to estimate the net transmission of this isotope effect to the overlying water under realistic advective flow (ɛapp). Model simulations of benthic denitrification in a typical rippled sediment at different realistic environmental conditions showed an average net ɛapp of 2.7 ± 1.3‰ and 2.9 ± 1.0‰ depending on the inclusion or exclusion of nitrification. These results are similar to ranges of ɛapp reported in cohesive sediments, and support recent models which balance the global nitrogen budget.

  18. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data.

    PubMed

    Chakraborty, Subrata; Muskatel, B H; Jackson, Teresa L; Ahmed, Musahid; Levine, R D; Thiemens, Mark H

    2014-10-14

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from -400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ(15)N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ(15)N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula.

  19. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.

    PubMed

    Rode, K D; Stricker, C A; Erlenbach, J; Robbins, C T; Cherry, S G; Newsome, S D; Cutting, A; Jensen, S; Stenhouse, G; Brooks, M; Hash, A; Nicassio, N

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ(13)C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content. PMID:27153128

  20. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.

    PubMed

    Rode, K D; Stricker, C A; Erlenbach, J; Robbins, C T; Cherry, S G; Newsome, S D; Cutting, A; Jensen, S; Stenhouse, G; Brooks, M; Hash, A; Nicassio, N

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ(13)C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content.

  1. The use of delta(15)N in assessing sewage stress on coral reefs.

    PubMed

    Risk, Michael J; Lapointe, Brian E; Sherwood, Owen A; Bedford, Bradley J

    2009-06-01

    While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, delta(15)N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, delta(15)N in gorgonians can provide information on status and trends. In coral tissue, delta(15)N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, delta(15)N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application.

  2. Mother–egg stable isotope conversions and effects of lipid extraction and ethanol preservation on loggerhead eggs

    PubMed Central

    Kaufman, Temma J.; Pajuelo, Mariela; Bjorndal, Karen A.; Bolten, Alan B.; Pfaller, Joseph B.; Williams, Kristina L.; Vander Zanden, Hannah B.

    2014-01-01

    Carbon and nitrogen stable isotope (δ13C and δ15N) analysis has been used to elucidate foraging and migration behaviours of endangered sea turtle populations. Isotopic analysis of tissue samples from nesting females can provide information about their foraging locations before reproduction. To determine whether loggerhead (Caretta caretta) eggs provide a good proxy for maternal isotope values, we addressed the following three objectives: (i) we evaluated isotopic effects of ethanol preservation and lipid extraction on yolk; (ii) we examined the isotopic offset between maternal epidermis and corresponding egg yolk and albumen tissue δ13C and δ15N values; and (iii) we assessed the accuracy of foraging ground assignment using egg yolk and albumen stable isotope values as a proxy for maternal epidermis. Epidermis (n = 61), albumen (n = 61) and yolk samples (n = 24) were collected in 2011 from nesting females at Wassaw Island, GA, USA. Subsamples from frozen and ethanol-preserved yolk samples were lipid extracted. Both lipid extraction and ethanol preservation significantly affected yolk δ13C, while δ15N values were not altered at a biologically relevant level. The mathematical corrections provided here allow for normalization of yolk δ13C values with these treatments. Significant tissue conversion equations were found between δ13C and δ15N values of maternal epidermis and corresponding yolk and albumen. Finally, the consistency in assignment to a foraging area was high (up to 84%), indicating that these conversion equations can be used in future studies where stable isotopes are measured to determine female foraging behaviour and trophic relationships by assessing egg components. Loggerhead eggs can thus provide reliable isotopic information when samples from nesting females cannot be obtained. PMID:27293670

  3. Interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation

    SciTech Connect

    Feix, J.B.; Yin, J.J.; Hyde, J.S.

    1987-06-30

    Electron-electron double resonance (ELDOR) and saturation recovery electron paramagnetic resonance (EPR) spectroscopy have been employed to examine the interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs in fluid-phase model membrane bilayers composed of a variety of phospholipids. The (/sup 14/N)-16-doxylstearate:(/sup 15/N)-16-doxylstearate (16:16) pair was utilized to measure lateral diffusion of the spin-labels, while the (/sup 14/N)-16-doxylstearate:(/sup 15/N)-5-doxylstearate (16:5) pair provided information on vertical fluctuations of the 16-doxylstearate nitroxide moiety toward the membrane surface. Three saturated host lipids of varying alkyl chain length (dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC)), an ..cap alpha..-saturated, ..beta..-unsaturated lipid (1-palmitoyl-2-oleoylphosphatidylcholine (POPC)), and phosphatidylcholine from a natural source (egg yolk phosphatidylcholine (egg PC)) were utilized as host lipids. Lateral diffusion of the stearic acid spin-labels was only slightly affected by alkyl chain length at a given reduced temperature (T/sub r/) in the saturated host lipids but was significantly decreased in POPC at the same T/sub r/. Lateral diffusion in DMPC, POPC, and egg PC was quite similar at 37/sup 0/C. A strong correlation was noted between lateral diffusion constants and rotational mobility of (/sup 14/N)-16-doxylstearate. Vertical fluctuations were likewise only slightly influenced by alklyl chain length but were strongly diminished in POPC and egg PC relative to the saturated systems. This diminution of the 16:5 interaction was observed even under conditions where no differences were discernible by conventional EPR.

  4. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  5. Using delta15N values to characterise the nitrogen nutrient pathways from intensive animal units.

    PubMed

    Skinner, R A; Ineson, P; Jones, H; Sleep, D; Rank, R

    2006-01-01

    Previous studies on foliar delta15N values, in certain bryophytes, have indicated signature similarities to source pollutants. The object of this study was to investigate the effect further, by examining the mechanisms whereby isotopic fractionation occurs in systems such as atmospheric ammonia (NH3), throughfall, vegetation and soil. Measurements taken in and around point emission sources will then be used to characterise the various fractionation effects associated with these N transformations, as well as to demonstrate some of the issues associated with using delta15N values as pollution indicators. The atmospheric dispersion model UK-ADMS has also been used to model atmospheric delta15NH3 emissions, with signatures exhibiting marked negative shifts immediately downwind of an agricultural NH3 source. Similar dispersion patterns were mapped for NH3 concentration data illustrating the link between these two forms of measurement.

  6. Natural (15)N Abundance in Key Amino Acids from Lamb Muscle: Exploring a New Horizon in Diet Authentication and Assessment of Feed Efficiency in Ruminants.

    PubMed

    Cantalapiedra-Hijar, Gonzalo; Ortigues-Marty, Isabelle; Schiphorst, Anne-Marie; Robins, Richard J; Tea, Illa; Prache, Sophie

    2016-05-25

    Natural (15)N abundance (δ(15)N) varies between individual amino acids (AAs). We hypothesized that δ(15)N of nontransaminating and essential AAs ("source" AAs, such as phenylalanine) present in animal tissues could be used as a marker of dietary origin, whereas δ(15)N of transaminating AAs ("trophic" AAs, such as glutamic acid) could give more detailed insights into animal feed efficiency. Two diets based on dehydrated Lucerne pellets were tested in growing lambs, which promoted different feed efficiencies. No dietary effects were noted on δ(15)N of any AAs analyzed in lamb muscle. In addition, δ(15)N of phenylalanine was unexpectedly similar to that of glutamic acid, suggesting that δ(15)N of AAs is significantly derived from the metabolism of the rumen microbiota and, thus, are not suited for diet authentication in ruminants. In contrast, the δ(15)N of transaminating AAs facilitates an improved prediction of animal feed efficiency compared to the classical isotopic bulk N analysis. PMID:27148901

  7. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  8. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment. PMID:19507080

  9. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  10. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  11. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    NASA Astrophysics Data System (ADS)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  12. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    SciTech Connect

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  13. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-02-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  14. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  15. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  16. Fire effects on stable isotopes in a Sierran forested watershed.

    PubMed

    Saito, Laurel; Miller, Wally W; Johnson, Dale W; Qualls, Robert G; Provencher, Louis; Carroll, Erin; Szameitat, Peter

    2007-01-01

    This study tested the hypothesis that stable C and N isotope values in surface soil and litter would be increased by fire due to volatilization of lighter isotopes. The hypothesis was tested by: (1) performing experimental laboratory burns of organic and mineral soil materials from a watershed at combinations of temperature ranging 100 to 600 degrees C and duration ranging from 1 to 60 min; (2) testing field samples of upland soils before, shortly after, and 1 yr following a wildfire in the same watershed; and (3) testing field soil samples from a down-gradient ash/sediment depositional area in a riparian zone following a runoff event after the wildfire. Muffle furnace results indicated the most effective temperature range for using stable isotopes for tracing fire impacts is 200 to 400 degrees C because lower burn temperatures may not produce strong isotopic shifts, and at temperatures>or=600 degrees C, N and C content of residual material is too low. Analyses of field soil samples were inconclusive: there was a slightly significant effect of the wildfire on delta15N values in upland watershed analyses 1 yr postburn, while riparian zone analyses results indicated that delta13C values significantly decreased approximately 0.71 per thousand over a 9 mo post-fire period (p=0.015), and ash/sediment layer delta13C values were approximately 0.65 per thousand higher than those in the A horizon. The lack of field confirmation may have been due to overall wildfire burn temperatures being <200 degrees C and/or microbial recovery and vegetative growth in the field. Thus, the muffle furnace experiment supported the hypothesis, but it is as yet unconfirmed by actual wildfire field data. PMID:17215216

  17. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  18. Isotope effects of hydrogen and atom tunnelling

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Pliss, E. M.

    2016-06-01

    The abnormally high mass-dependent isotope effects in liquid-phase hydrogen (deuterium) atom transfer reactions, which are customarily regarded as quantum effects, are actually the products of two classical effects, namely, kinetic and thermodynamic ones. The former is determined by the rate constants for atom transfer and the latter is caused by nonbonded (or noncovalent) isotope effects in the solvation of protiated and deuterated reacting molecules. This product can mimic the large isotope effects that are usually attributed to tunnelling. In enzymatic reactions, tunnelling is of particular interest; its existence characterizes an enzyme as a rigid molecular machine in which the residence time of reactants on the reaction coordinate exceeds the waiting time for the tunnelling event. The magnitude of isotope effect becomes a characteristic parameter of the internal dynamics of the enzyme catalytic site. The bibliography includes 61 references.

  19. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  20. The influence of fish cage culture on δ13C and δ15N of filter-feeding Bivalvia (Mollusca).

    PubMed

    Benedito, E; Figueroa, L; Takeda, A M; Manetta, G I

    2013-11-01

    The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.

  1. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    PubMed

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  2. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  3. Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.

    PubMed

    Nonaka, Daisuke; Wariishi, Hiroyuki; Welinder, Karen G; Fujii, Hiroshi

    2010-01-12

    Paramagnetic (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopy of heme-bound cyanide ((13)C(15)N) was applied to 11 cytochrome c peroxidase (CcP) and Coprinus cinereus peroxidase (CIP) mutants to investigate contributions to the push and pull effects of conserved amino acids around heme. The (13)C and (15)N NMR data for the distal His and Arg mutants indicated that distal His is the key amino acid residue creating the strong pull effect and that distal Arg assists. The mutation of distal Trp of CcP to Phe, the amino acid at this position in CIP, changed the push and pull effects so they resembled those of CIP, whereas the mutation of distal Phe of CIP to Trp changed this mutant to become CcP-like. The (13)C NMR shifts for the proximal Asp mutants clearly showed that the proximal Asp-His hydrogen bonding strengthens the push effect. However, even in the absence of a hydrogen bond, the push effect of proximal His in peroxidase is significantly stronger than in globins. Comparison of these NMR data with the compound I formation rate constants and crystal structures of these mutants showed that (1) the base catalysis of the distal His is more critical for rapid compound I formation than its acid catalysis, (2) the primary function of the distal Arg is to maintain the distal heme pocket in favor of rapid compound I formation via hydrogen bonding, and (3) the push effect is the major contributor to the differential rates of compound I formation in wild-type peroxidases.

  4. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit. PMID:25796244

  5. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit.

  6. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments.

    PubMed

    Gardner, Jennifer B; Drinkwater, Laurie E

    2009-12-01

    Intensively managed grain farms are saturated with large inputs of nitrogen (N) fertilizer, leading to N losses and environmental degradation. Despite decades of research directed toward reducing N losses from agroecosystems, progress has been minimal, and the currently promoted best management practices are not necessarily the most effective. We investigated the fate of N additions to temperate grain agroecosystems using a meta-analysis of 217 field-scale studies that followed the stable isotope 15N in crops and soil. We compared management practices that alter inorganic fertilizer additions, such as application timing or reduced N fertilizer rates, to practices that re-couple the biogeochemical cycles of carbon (C) and N, such as organic N sources and diversified crop rotations, and analyzed the following response variables: 15N recovery in crops, total recovery of 15N in crops and soil, and crop yield. More of the literature (94%) emphasized crop recovery of 15N than total 15N recovery in crops and soil (58%), though total recovery is a more ecologically appropriate indicator for assessing N losses. Findings show wide differences in the ability of management practices to improve N use efficiency. Practices that aimed to increase crop uptake of commercial fertilizer had a lower impact on total 15N recovery (3-21% increase) than practices that re-coupled C and N cycling (30-42% increase). A majority of studies (66%) were only one growing season long, which poses a particular problem when organic N sources are used because crops recover N from these sources over several years. These short-term studies neglect significant ecological processes that occur over longer time scales. Field-scale mass balance calculations using the 15N data set show that, on average, 43 kg N x ha(-1) x yr(-1) was unaccounted for at the end of one growing season out of 114 kg N x ha(-1) x yr(-1), representing approximately 38% of the total 15N applied. This comprehensive assessment of

  7. Hydrogen isotope effect on the Dimits shift

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.; Itoh, K.

    2016-10-01

    The hydrogen isotope effect on the Dimits shift in drift wave turbulence (Dimits et al 2000 Phys. Plasmas 7 969) is discussed using the theory of zonal flows, in which the nonlinear damping rate of zonal flows is taken into account. The up-shift of the critical linear growth rate of the drift waves, above which drift wave fluctuations develop, is investigated. The dependence on the mass number of the hydrogen isotope is discussed.

  8. 15N-15N Proton Assisted Recoupling in Magic Angle Spinning NMR

    PubMed Central

    Lewandowski, Józef R.; De Paëpe, Gaël; Eddy, Matthew T.; Griffin, Robert G.

    2009-01-01

    We describe a new magic angle spinning (MAS) NMR experiment for obtaining 15N-15N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, including identification of α-helical stretches and inter-strand connectivity in antiparallel β-sheets, which are of major interest for structural studies of membrane proteins and amyloid fibrils. The method, 15N-15N proton assisted recoupling (PAR), relies on a second order mechanism, third spin assisted recoupling (TSAR), used previously in the context of 15N-13C and 13C-13C polarization transfer schemes. In comparison to 15N-15N proton driven spin diffusion experiments, the PAR technique accelerates polarization transfer between 15N’s by a factor of ~102−103, and is furthermore applicable over the entire range of currently available MAS frequencies (10–70 kHz). PMID:19334788

  9. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  10. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  11. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their

  12. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase†

    PubMed Central

    Luk, Louis Y. P.; Ruiz‐Pernía, J. Javier; Adesina, Aduragbemi S.; Loveridge, E. Joel

    2015-01-01

    Abstract Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N‐terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C‐terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N‐terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C‐terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C‐terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. PMID:26079622

  13. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  14. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  15. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  16. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  17. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  18. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  19. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  20. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  1. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  2. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    SciTech Connect

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  3. Isotope effect in ion-atom collisions

    SciTech Connect

    Barragan, P.; Errea, L. F.; Mendez, L.; Rabadan, I.

    2010-09-15

    We explain the origin of the unusual large isotopic dependence found in charge-transfer cross sections for H(D,T){sup +}+Be collisions. We show that this large effect appears in a semiclassical treatment as a consequence of the mass dependence of the charge-transfer transition probabilities, which is due to the variation of the radial velocity in the region where the nonadiabatic transitions take place. The possibility of finding such a large isotope effect in other collision systems is discussed.

  4. Preparation and characterization of 15N-enriched, size-defined heparan sulfate precursor oligosaccharides

    PubMed Central

    Sigulinsky, Crystal; Babu, Ponnusamy; Victor, Xylophone V.; Kuberan, Balagurunathan

    2009-01-01

    We report the preparation of size-defined [15N]N-acetylheparosan oligosaccharides from Escherichia coli-derived 15N-enriched N-acetylheparosan. Optimized growth conditions of E. coli in minimal media containing 15NH4Cl yielded [15N]N-acetylheparosan on a preparative scale. Depolymerization of [15N]N-acetylheparosan by heparitinase I yielded resolvable, even-numbered oligosaccharides ranging from disaccharide to icosaccharide. Anion-exchange chromatography-assisted fractionation afforded size-defined [15N]N-acetylheparosan oligosaccharides identifiable by ESI-TOFMS. These isotopically labeled oligosaccharides will prove to be valuable research tools for the chemoenzymatic synthesis of heparin and heparan sulfate oligosaccharides and for the study of their structural biology. PMID:19945695

  5. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  6. Elevated atmospheric carbon dioxide and temperature effects on seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...

  7. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  8. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments

    USGS Publications Warehouse

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mark A.; Pearson, Ann

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass – and by extension, surface waters – the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3−, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7–8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed

  9. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    PubMed

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.

  10. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    NASA Astrophysics Data System (ADS)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  11. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions.

    PubMed

    Zhu, Renbin; Liu, Yashu; Li, Xianglan; Sun, Jianjun; Xu, Hua; Sun, Liguang

    2008-11-01

    Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the

  12. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  13. Effective isotope labeling of proteins in a mammalian expression system.

    PubMed

    Sastry, Mallika; Bewley, Carole A; Kwong, Peter D

    2015-01-01

    Isotope labeling of biologically interesting proteins is a prerequisite for structural and dynamics studies by NMR spectroscopy. Many of these proteins require mammalian cofactors, chaperons, or posttranslational modifications such as myristoylation, glypiation, disulfide bond formation, or N- or O-linked glycosylation; and mammalian cells have the necessary machinery to produce them in their functional forms. Here, we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically labeled proteins. This system enables expression of mammalian proteins and their complexes, including proteins that require posttranslational modifications. We describe a roadmap to produce isotopically labeled (15)N and (13)C posttranslationally modified proteins, such as the outer domain of HIV-1 gp120, which has four disulfide bonds and 15 potential sites of N-linked glycosylation. These methods should allow NMR spectroscopic analysis of the structure and function of posttranslationally modified and secreted, cytoplasmic, or membrane-bound proteins.

  14. Reconstruction of the oceanic nitrate inventory in the Pliocene Caribbean Sea: Foraminifera-bound δ15N - A new approach

    NASA Astrophysics Data System (ADS)

    Straub, M.; Haug, G. H.; Sigman, D. M.; Ren, H.

    2010-12-01

    The nitrate budget in the low-latitude surface ocean is mainly controlled by the opposing effects of denitrification and nitrate fixation. The state of the global ocean nitrate inventory highly affects primary production, which allows sequestering CO2 into the deep ocean. This may influence climate variability and control warm and cold periods in Earth history. Studies have shown that nitrogen isotopes reflect the nutrient status of the upper water column and therefore can be used as proxy for the state of the ocean’s ‘biological pump’. The nitrate inventory has mostly been reconstructed based on bulk sedimentary N-isotope measurements, which can be affected by syn- and post-sedimentary processes. Promising approaches to circumvent these potential biases are based on measurements of foraminifera-bound δ15N isotopes. In the subtropical and tropical ocean, planktonic foraminifera are a main component of the sinking particle flux. The organic compounds encapsulated within the foraminiferal tests are protected from sedimentary diagenetic processes and record a pristine signal of the nitrate composition of the upper water column. The novel method used in this study employs denitrifying bacteria (Pseudomonas chlororaphis and Pseudomonas aureofaciens) to produce nitrous oxide (N2O), recovered from the nitrate extracted from the organic matter sheltered within the foraminifera shell. The extracted N2O is analyzed for δ15N with a Gas bench II - IRMS and yields results with reproducible isotopic measurements of samples with nitrate concentrations down to 1 μM. Previous data from the investigated site (ODP Leg 165, Site 999A, Caribbean Sea), spanning the last 30’000 yrs using the same method, indicate a systematic difference between glacial and interglacial values. The glacial state is characterized by high δ15N values around ~ 5 ‰ (suggesting less N-fixation) and the interglacial by low δ15N values around ~ 3 ‰ (N-fixation increase). Pliocene data from

  15. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  16. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  17. Differential growth of the fungus Absidia cylindrospora on 13C/15N-labelled media.

    PubMed

    Crotty, F V; Blackshaw, R P; Murray, P J

    2011-06-15

    Many studies utilise enrichment of stable isotopes as tracers to follow the interactions occurring within soil food webs and methods have been developed to enrich bacteria, soil fauna and plant litter, Here for the first time we attempt to enrich a soil fungus to 99 atom% with (13)C and (15)N stable isotopes. In this study our objectives were to (a) assess whether the saprotrophic zygomycete fungus Absidia cylindrospora could grow on a medium enriched to 99 atom% with (13)C-glucose and (15)N-ammonium chloride, (b) to determine the level of enrichment obtained, and (c) to examine the change in growth rate of this fungus while it was growing on the dually enriched medium. To achieve this, the fungus was grown on agar enriched with (13)C and (15)N to 99 atom% and its growth rate monitored. The results showed that A. cylindrospora would grow on the highly labelled growth medium, but that its rate of growth was affected compared with the rate on either natural abundance media or media highly enriched with a single isotope ((13)C or (15)N). The implications of these results is that although the fungus is able to utilise these heavier isotopes, the biochemical processes involved in growth are affected, and consideration should be given to these differences when using stable isotope tracers in, for example, soil food web studies.

  18. Microturbulence study of the isotope effect

    SciTech Connect

    Bustos, A.; Bañón Navarro, A.; Görler, T.; Jenko, F.

    2015-01-15

    The influence of the ion mass on the dynamics of magnetized plasmas is an important challenge in fusion research. The discrepancies between the improvement of the magnetic confinement with the ion mass in tokamak experiments and diffusive turbulent transport predictions have remained unexplained for several decades. We refer to this phenomenon as the isotope effect. In this paper, we study this effect with gyrokinetic theory using the GENE code. We find several sets of plasma parameters that correspond to low wavenumber turbulence for which the isotope effect is present, although the intensity is smaller than the experimental observations. We also relate these results to the zonal flow intensity of the system, which is characterized by the average shear flow rate.

  19. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    SciTech Connect

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël; Meusinger, Carl; Johnson, Matthew S.; Jost, Rémy; Bhattacharya, S. K.

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  20. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    NASA Astrophysics Data System (ADS)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  1. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine.

    PubMed

    Pati, Sarah G; Shin, Kwanghee; Skarpeli-Liati, Marita; Bolotin, Jakov; Eustis, Soren N; Spain, Jim C; Hofstetter, Thomas B

    2012-11-01

    Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.

  2. A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that

  3. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).

    PubMed

    Nair, Richard; Weatherall, Andrew; Perks, Mike; Mencuccini, Maurizio

    2014-10-01

    Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.

  4. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data

    PubMed Central

    Chakraborty, Subrata; Muskatel, B. H.; Jackson, Teresa L.; Ahmed, Musahid; Levine, R. D.; Thiemens, Mark H.

    2014-01-01

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from −400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ15N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ15N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643

  5. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data.

    PubMed

    Chakraborty, Subrata; Muskatel, B H; Jackson, Teresa L; Ahmed, Musahid; Levine, R D; Thiemens, Mark H

    2014-10-14

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from -400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ(15)N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ(15)N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643

  6. (15)N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review.

    PubMed

    Chalk, Phillip M; Lam, Shu K; Chen, Deli

    2016-11-15

    Methodologies based on (15)N enrichment (E) and (15)N natural abundance (NA) have been used to obtain quantitative estimates of the response of biological N2 fixation (BNF) of legumes (woody, grain and forage) and actinorhizal plants grown in artificial media or in soil exposed to elevated atmospheric concentrations of carbon dioxide e[CO2] for extended periods of time, in growth rooms, greenhouses, open top chambers or free-air CO2 enrichment (FACE) facilities. (15)N2 has also been used to quantify the response of endophytic and free-living diazotrophs to e[CO2]. The primary criterion of response was the proportional dependence of the N2-fixing system on the atmosphere as a source of N. i.e. the symbiotic dependence (Patm). The unique feature of (15)N-based methods is their ability to provide time-integrated and yield-independent estimates of Patm. In studies conducted in artificial media or in soil using the E methodology there was either no response or a positive response of Patm to e[CO2]. The interpretation of results obtained in artificial media or with (15)N2 is straight forward, not being subject to the assumptions on which the E and NA soil-cultured methods are based. A variety of methods have been used to estimate isotopic fractionation attendant on the NA technique, the so-called 'B value', which attaches a degree of uncertainty to the results obtained. Using the NA technique, a suite of responses of Patm to e[CO2] has been published, from positive to neutral to sometimes negative effects. Several factors which interact with the response of N2-fixing species to e[CO2] were identified.

  7. (15)N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review.

    PubMed

    Chalk, Phillip M; Lam, Shu K; Chen, Deli

    2016-11-15

    Methodologies based on (15)N enrichment (E) and (15)N natural abundance (NA) have been used to obtain quantitative estimates of the response of biological N2 fixation (BNF) of legumes (woody, grain and forage) and actinorhizal plants grown in artificial media or in soil exposed to elevated atmospheric concentrations of carbon dioxide e[CO2] for extended periods of time, in growth rooms, greenhouses, open top chambers or free-air CO2 enrichment (FACE) facilities. (15)N2 has also been used to quantify the response of endophytic and free-living diazotrophs to e[CO2]. The primary criterion of response was the proportional dependence of the N2-fixing system on the atmosphere as a source of N. i.e. the symbiotic dependence (Patm). The unique feature of (15)N-based methods is their ability to provide time-integrated and yield-independent estimates of Patm. In studies conducted in artificial media or in soil using the E methodology there was either no response or a positive response of Patm to e[CO2]. The interpretation of results obtained in artificial media or with (15)N2 is straight forward, not being subject to the assumptions on which the E and NA soil-cultured methods are based. A variety of methods have been used to estimate isotopic fractionation attendant on the NA technique, the so-called 'B value', which attaches a degree of uncertainty to the results obtained. Using the NA technique, a suite of responses of Patm to e[CO2] has been published, from positive to neutral to sometimes negative effects. Several factors which interact with the response of N2-fixing species to e[CO2] were identified. PMID:27424117

  8. Isotopic effects on the phonon modes in boron carbide.

    PubMed

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  9. Increase of Natural 15N Enrichment of Soybean Nodules with Mean Nodule Mass 1

    PubMed Central

    Shearer, Georgia; Bryan, Barbara A.; Kohl, Daniel H.

    1984-01-01

    The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule. PMID:16663917

  10. Effects of demineralization on the stable isotope analysis of bone samples

    PubMed Central

    Tomaszewicz, Calandra Turner; Seminoff, Jeffrey A.; Ramirez, Matthew D.; Kurle, Carolyn M.

    2015-01-01

    Rationale The sampling of sequential, annually formed bone growth layers for stable carbon (δ13C values) and nitrogen (δ15N values) isotope analysis (SIA) can provide a time series of foraging ecology data. To date, no standard protocol exists for the pre-SIA treatment of cortical samples taken from fresh, modern, bones. Methods Based on the SIA of historical bone, it is assumed that fresh bone samples must be pre-treated with acid prior to SIA. Using an elemental analyzer coupled to an isotope ratio mass spectrometer to measure stable carbon and nitrogen ratios, we tested the need to acidify cortical bone powder with 0.25M HCl prior to SIA to isolate bone collagen for the determination of δ13C and δ15N values. We also examined the need for lipid extraction to remove potential biases related to δ13C analysis, based on a C:N ratio threshold of 3.5. Results It was found that acidification of micromilled cortical bone samples from marine turtles does not affect their δ15N values, and the small effect acidification has on δ13C values can be mathematically corrected for, thus eliminating the need for pre-SIA acidification of cortical bone. The lipid content of the cortical bone samples was low, as measured by their C:N ratios, indicating that lipid extracting cortical bone samples from modern marine turtles is unnecessary. Conclusions We present a standard protocol for testing fresh, modern cortical bone samples prior to SIA, facilitating direct comparison of future studies. Based on the results obtained from marine turtle bones, pre-acidification and lipid removal of cortical bone are not recommended. This is especially useful as there is frequently not enough bone material removed via micromilling of sequential growth layers to accommodate both acid treatment and SIA. PMID:26411509

  11. Metal-catalyzed phosphodiester cleavage: secondary 18O isotope effects as an indicator of mechanism.

    PubMed

    Rawlings, Jill; Cleland, W Wallace; Hengge, Alvan C

    2006-12-27

    Information about the transition states of metal-catalyzed hydrolysis reactions of model phosphate compounds has been obtained through determination of isotope effects (IEs) on the hydrolysis reactions. Metal complexation has been found to significantly alter the transition state of the reaction from the alkaline hydrolysis reaction, and the transition state is quite dependent on the particular metal ion used. For the diester, ethyl p-nitrophenyl phosphate, the nonbridge 18O effect for the hydrolysis reactions catalyzed by Co(III) 1,5,9-triazacyclononane and Eu(III) were 1.0006 and 1.0016, respectively, indicative of a slightly associative transition state and little net change in bonding to the nonbridge oxygen. The reaction catalyzed by Zn(II) 1,4,7,10-tetraazacyclododecane had an 18O nonbridge IE of 1.0108, showing the reaction differs significantly from the reaction of the noncomplexed diester and resembles the reactions of triesters. Reaction with Co(III) 1,4,7,10-tetraazacyclododecane showed an inverse effect of 0.9948 reflecting the effects of bonding of the diester to the Co(III). Lanthanide-catalyzed hydrolysis has been observed to have unusually large 15N effects. To further investigate this effect, the 15N effect on the reaction catalyzed by Ce(IV) bis-Tris propane solutions at pH 8 was determined to be 1.0012. The 15N effects were also measured for the reaction of the monoester p-nitrophenyl phosphate by Ce(IV) bis-Tris propane (1.0014) and Eu(III) bis-Tris propane (1.0012). These smaller effects at pH 8 indicate that a smaller negative charge develops on the nitrogen during the hydrolysis reaction.

  12. The magnitude of spatial and temporal variation in δ15N and δ13C differs between taxonomic groups: Implications for food web studies

    NASA Astrophysics Data System (ADS)

    Hyndes, Glenn A.; Hanson, Christine E.; Vanderklift, Mathew A.

    2013-03-01

    Understanding variability in stable isotope abundance is essential for effective hypothesis testing and evaluating food sources, trophic levels and food web structure. The magnitude and sources of variability are likely to differ among taxonomic and functional groups. We aimed to quantify variability of δ13C and δ15N for 16 species representing seven distinct taxonomic groups of benthic invertebrates and autotrophs in a marine ecosystem. We quantified the magnitude of variability among individuals or shoots separated by metres, among eight sites separated by kilometres, and between two survey occasions separated by months. δ13C varied by as much as 7‰ for primary producers, 4‰ for consumers, while δ15N varied by as much as 9‰ and 2‰ respectively. Variation in δ15N of seagrass was largely accounted for by differences among sites, while variation in δ13C was mainly attributable to shoots collected a few metres apart. Compared to seagrasses, variation in macroalgae was mainly explained by differences between the two survey occasions for δ15N and among individuals collected a few metres apart for δ13C. Variation was generally lower for consumers and typically explained by differences among individuals for δ15N but displayed inconsistent patterns for δ13C. Dual isotope Bayesian mixing models showed that the potential contributions of food sources for herbivorous consumers varied among sites and between survey occasions, and also that there was high variability or uncertainty in the contributions of sources within sites. The relative consistency in the main sources of variation among broad taxonomic groups in autotrophs suggests that aspects of physiology that are phylogenetically conserved might be important influences on variation in natural abundances of stable isotopes. In comparison, the sources of variability were less consistent within and among broad consumer groups, suggesting complex interactions between consumers and their food sources.

  13. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  14. Attenuation of Nitrate-15N by Vegetated Buffers in an Irrigated Pasture System

    NASA Astrophysics Data System (ADS)

    Haughn, A. B.; Tate, K.; Kessel, C. V.

    2003-12-01

    Irrigated pastures are found within watersheds providing much of Western North America's surface drinking water supply. Vegetative buffers are often proposed to attenuate nutrient pollutants in runoff, but there is limited information on the mechanistic functioning of buffers adjacent to irrigated pastures. This study is intended to fill this gap in knowledge by examining specific vegetation, soil, and landscape characteristics controlling buffer efficiency and capacity. At the University of California Sierra Foothill Research and Extension Center, established flood-irrigated plots with three different buffer treatments are being used to characterize the attenuation of N, P, and sediment by buffers. Stable 15N isotope tracer was applied to quantify the fate of nitrate moving through the pasture and buffers. In the first 10 days following application of the 15N tracer, 2% of the tracer was lost as runoff, with more than half of the total loss occurring from plots with no buffers. Of the remaining tracer, 47% was taken up by grass in the zone of application, 3% was taken up by vegetation within the buffers (primarily in the first 4m of buffer), 20% was stored in the A horizon of the soil, and 28% was lost via leaching and/or gaseous losses. Results presented will include the effect of buffer length on nutrient attenuation and the relative importance of different N pools for nitrate retention. This research will allow land managers to maximize efficiency of riparian buffers adjacent to irrigated pasture, potentially increasing the adoption of vegetated buffers as a management tool.

  15. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  16. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  17. Large deuterium isotope effects and their use: a historical review.

    PubMed

    Krumbiegel, Peter

    2011-03-01

    Isotope effects are differences in the properties of the isotopes of an element resulting in different reaction rates of a corresponding compound, in equilibrium constants and in the spectra. Shortly after the discovery of stable isotopes of hydrogen, oxygen, and carbon, Jacob Bigeleisen formulated a theory of isotope effects and calculated possible maximum values. Large isotope effects of (2)H (deuterium) against (1)H (protium) were seen to possibly influence interpretations of reaction mechanisms if corresponding labelling is used. Much work was invested to ensure the safety of deuterium use in men in spite of the large isotope effect. On the other hand, large deuterium isotope effects gave rise to several practical applications. Examples are the enhancement of the stability of some technical products against oxidative and against hydrolytic degradation (oils, pharmaceuticals) as well as alterations of the detoxification metabolism of pharmaceuticals in vivo. PMID:21390986

  18. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    PubMed

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs.

  19. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes

    SciTech Connect

    Bunn, S.E.; Kempster, M.A.; Loneragan, N.R.

    1995-05-01

    We investigated the effects of acid washing on the carbon and nitrogen composition and stable isotope ratios of C and N in shrimp (Metapenaeus spp.) and seagrass (Enhalus acoroides). Acid washing did not affect the mean {delta}{sup 13}C ratios for juvenile Metapenaeus moyebi and resulted in only an ecologically insignificant change (0.3%) in mean {delta}{sup 13}C ratios for larger metapenaeus bennettae. In contrast, acid washing increased the mean {delta}{sup 15}N signatures of shrimp tissue ({approximately}3%) and decreased that of seagrass ({approximately}1.8%) to a degree that may confound the interpretation of food webs. The increase in %C and %N in both shrimp and seagrass after acid washing suggests that the changes in isotope ratios are due to loss of molecules comparatively low in C and N. Treating samples by acid washing also resulted in an increase in the variation among individuals for both {delta}{sup 15}N and {delta}{sup 13}C, which would lead to a loss of statistical power for testing differences between species, sites, or seasons. 13 refs., 2 figs., 1 tab.

  20. Effects of preservation methods on stable isotope signatures in bird tissues.

    PubMed

    Bugoni, Leandro; McGill, Rona A R; Furness, Robert W

    2008-08-01

    Increasing use is being made of stable isotopes as indicators of habitat use and trophic ecology of animals. Preservation of tissues can alter stable isotope signatures. We investigated the effects of addition of ethanol and NaCl solution (hereafter 'salt'), and of freezing and drying, on carbon and nitrogen isotopic values in blood of the spectacled petrel Procellaria conspicillata, and compared these with those from simultaneously growing feathers. The mean delta(13)C values of blood preserved in ethanol was significantly higher, and of blood preserved in salt was significantly lower than that of dried or frozen samples. delta(13)C values in ethanol showed high variation according to brand and batch and could account for the differences found in delta(13)C ratios in ethanol-preserved blood samples. Mean delta(13)C and delta(15)N values in growing feathers were higher than in blood, suggesting tissue-specific fractionation. We conclude that different methods of preserving tissues such as blood may bias stable isotope values, and urge researchers to consider this issue. Air drying is proposed as a practical and unbiased method for blood preservation in field situations where freezing is not a practical option, and a mathematical approach is suggested to permit comparison between studies using different preservation methods or tissues. PMID:18642324

  1. Hydrogen doppler spectroscopy using 15N ions

    NASA Astrophysics Data System (ADS)

    Borucki, L.; Becker, H. W.; Gorris, F.; Kubsky, S.; Schulte, W. H.; Rolfs, C.

    The energy spread of atomic and molecular ion beams from the 4 MV Dynamitron tandem accelerator at the Ruhr-Universität Bochum has been studied and in part minimized. Using the ER= 6.40 MeV narrow resonance in 1H(15N,αγ)12C with an 15N energy spread of 4.55 keV, the Doppler broadening for several hydrogen-bearing gases was found to be in good agreement with expectation: e.g. for NH3 gas a rotational-vibrational Doppler width of 10.41 +/- 0.25 keV was observed (theory = 10.4 keV). Studies of the vibrational Doppler widths of H-bonds on a Si <100> surface were performed using a 4πγ-ray detection system together with UHV-chambers for sample preparation, transport, and analysis. The results showed that further improvements in the experimental set-ups are needed for such investigations.

  2. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    NASA Astrophysics Data System (ADS)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  3. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  4. Global nitrogen cycle: pre-Anthropocene mass and isotope fluxes and effects of human perturbations

    NASA Astrophysics Data System (ADS)

    Joo, Y.; Li, D. D.; Lerman, A.; Mackenzie, F. T.

    2012-12-01

    The size of the largest nitrogen reservoir -- the Earth atmosphere -- and its long residence time of approximately 17 million years suggest that the global N cycle was likely to be balanced at geological time scales. After the industrial revolution, human activities, such as mining, fossil fuel burning, land use change, and artificial fertilization, have resulted in perturbations and numerous flux changes of the N cycle. The effects of human activities on the mass and isotopic composition of the N reservoirs can be predicted using a detailed N cycle model with estimated additions. For the pre-Anthropocene period, a balanced steady-state N cycle model was constructed based on the Redfield ratios and an extensive literature review. The model includes 14 N reservoirs in the domains of the atmosphere, land, and ocean. The biotic reservoirs on land and in the ocean (land plants and marine biota) interact with atmospheric N2 and dissolved inorganic N (DIN) in ocean and soil waters. DIN further interacts with dissolved organic N (DON), particulate organic matter (POM), and ocean sediments. Atmosphere supplies N to land and ocean domains mainly by N fixation, deposition, and dissolution, and these fluxes are balanced by denitrification and volatilization back to atmosphere. Riverine transport of dissolved and particulate N connects land and ocean domains. Once the cycle is mass-balanced, the isotopic composition of reservoir and the size of fractionation accompanying microbial transformations and transfers of N species between the reservoirs were estimated by numerical iteration of the flux equations based on the reported δ15N values and fractionation factors. The calculated fractionation factors tend to be smaller in magnitude than the experimentally measured ones in natural systems, which can be interpreted as an indication of N-limited conditions prevailing in pre-Anthropocene world: a smaller isotope fractionation can be interpreted as an indication of nitrogen

  5. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  6. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  7. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  8. Effects of preservatives on stable isotope analyses of four marine species

    NASA Astrophysics Data System (ADS)

    Carabel, Sirka; Verísimo, Patricia; Freire, Juan

    2009-04-01

    The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.

  9. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  10. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  11. Plant community change mediates the response of foliar delta15N to CO2 enrichment in mesic grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf delta15N by increasing plant community productivity,...

  12. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  13. Can a secondary isotope effect be larger than a primary?

    PubMed

    Perrin, Charles L; Burke, Kathryn D

    2015-05-21

    Primary and secondary (18)O equilibrium isotope effects on the acidities of a variety of Brønsted and Lewis acids centered on carbon, boron, nitrogen, and phosphorus were computed by density-functional theory. For many of these acids, the secondary isotope effect was found to be larger than the primary isotope effect. This is a counterintuitive result, because the H atom that is lost is closer to the (18)O atom that is responsible for the primary isotope effect. The relative magnitudes of the isotope effects can be associated with the vibrational frequency and zero-point energy of the X═O vibrations, which are greater than those of the X-O vibrations. However, the difference between these contributions is small, and the major responsibility for the larger secondary isotope effect comes from the moment-of-inertia factor, which depends on the position of the (18)O atom relative to the principal axes of rotation.

  14. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  15. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  16. Seasonal trends of Δ17O, δ18O, and δ15N in atmospheric NO3- of the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Mase, D. F.; Riha, K. M.; Waldschmidt, H.; Michalski, G. M.

    2011-12-01

    Archived National Atmospheric Deposition Program samples collected from eight sites between 2001 and 2003 in the Midwestern United States were analyzed for nitrate isotopes (Δ17O, δ18O and δ15N). Variations in all three isotope abundances show significant seasonal trends. Both nitrate Δ17O and δ18O values were elevated in the winter (Δ17O: ~ +28-33%; δ18O: ~ +85-95%) relative to summer (Δ17: ~ +21-25%; δ18O: ~ +55-70%). This is likely related to changes in atmospheric chemistry with changing seasons. Using photochemical models to investigate how formation pathways of NO3- in the atmosphere change with season can provide a link between the chemistry of the atmosphere and the observed isotope variations. The partitioning between different formation pathways of atmospheric NO3- is highly dependent on temperature and sunlight. Colder temperatures and less sunlight favor the N2O5 heterogeneous hydrolysis pathway, while warm temperatures and abundant light favor the NO2+OH pathway. Each pathway has a different degree of ozone oxidation and results in different oxygen isotope values in the production of atmospheric NO3-. δ15N exhibits the same seasonal trend (~ +10 to -5% in the winter and summer, respectively), however whether these trends are due to changing chemistry or source apportionment is unclear. Changing chemistry, particularly in polluted areas, could account for the δ15N trends we observe as per Freyer et al. (1991), however changing emission source could also have an effect. Atmospheric chemistry models can help to de-convolute the interpretations of these trends by taking a closer look at the specific chemistry responsible for the formation of atmospheric NO3-. Interpretations of these results will be aided by models such as the Community Multiscale Air Quality model amended to account for isotope effects during photochemical processing in the atmosphere.

  17. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  18. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  19. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    NASA Astrophysics Data System (ADS)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  20. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  1. Supercarrier effective mass isotope effect by interband scattering

    SciTech Connect

    Kristoffel, N.; Oerd, T.

    1999-11-01

    Supercarrier effective mass isotope effect (exponent {beta}) is investigated using a two-band model with interband pair scattering. The corresponding repulsive interaction incorporates besides the dominating electronic (Coulomb) part an electron-phonon contribution inversely proportional to the ionic mass factor. Calculations illustrating the behavior of {Tc}, its isotope exponent {alpha}, and {beta} with doping in La{sub 2{minus}x}Sr{sub x}CuO{sub 4} type underdoped system reflect the observed tendencies. Both {alpha} and {beta} diminish with doping, the sign of {beta} is opposite to {alpha}. A typical estimation gives {vert{underscore}bar}{beta}{vert{underscore}bar} {approximately} 0.2{alpha}.

  2. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  3. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate.

    PubMed

    Nissim, I; Yudkoff, M; Brosnan, J T

    1996-12-01

    We have utilized both [5-15N]glutamine and [3-13C] pyruvate as metabolic tracers in order to: (i) examine the effect of pH, glucagon (GLU), or insulin on the precursor-product relationship between 15NH3, [15N]citrulline, and, thereby, [15N]urea synthesis and (ii) elucidate the mechanism(s) by which pyruvate stimulates [15N] urea synthesis. Hepatocytes isolated from rat were incubated at pH 6.8, 7.4, or 7.6 with 1 mM [5-15N]glutamine and 0.1 mM 14NH4Cl in the presence or the absence of [3-13C] pyruvate (2 mM). A separate series of experiments was performed at pH 7.4 in the presence of insulin or GLU. 15NH3 enrichment exceeded or was equal to that of [15N]citrulline under all conditions except for pH 7.6, when the 15N enrichment in citrulline exceeded that in ammonia. The formation of [15N]citrulline (atom % excess) was increased with higher pH. Flux through phosphate-dependent glutaminase (PDG) and [15N]urea synthesis were stimulated (p < 0.05) at pH 7.6 or with GLU and decreased (p < 0.05) at pH 6.8. Insulin had no significant effect on flux through PDG or on [15N]urea synthesis. Decreased [15N]urea production at pH 6.8 was associated with depleted aspartate and glutamate levels. Pyruvate attenuated this decrease in the aspartate and glutamate pools and stimulated [15N]urea synthesis. Production of Asp from pyruvate was increased with increasing medium pH. Approximately 80% of Asp was derived from [3-13C]pyruvate regardless of incubation pH or addition of hormone. Furthermore, approximately 20, 40, and 50% of the mitochondrial N-acetylglutamate (NAG) pool was derived from [3-13C]pyruvate at pH 6.8, 7.4, and 7.6, respectively. Both the concentration and formation of [13C]NAG from [3-13C]pyruvate were increased (p < 0.05) with glucagon and decreased (p < 0.05) with insulin or at pH 6.8. The data suggest a correlation between changes in [15N]urea synthesis and alterations in the level and synthesis of [13C]NAG from pyruvate. The current observations suggest that the

  4. Bomb-pulse 14C analysis combined with 13C and 15N measurements in blood serum from residents of Malmö, Sweden.

    PubMed

    Georgiadou, Elisavet; Stenström, Kristina Eriksson; Uvo, Cintia Bertacchi; Nilsson, Peter; Skog, Göran; Mattsson, Sören

    2013-05-01

    The (14)C content of 60 human blood serum samples from residents of Malmö (Sweden) in 1978, obtained from a biobank, has been measured to estimate the accuracy of (14)C bomb-pulse dating. The difference between the date estimated using the Calibomb software and sampling date varied between -3 ± 0.4 and +0.2 ± 0.5 years. The average age deviation of all samples was -1.5 ± 0.7 years, with the delay between production and consumption of foodstuffs being probably the dominating cause. The potential influence of food habits on the (14)C date has been evaluated using stable isotope δ(13)C and δ(15)N analysis and information about the dietary habits of the investigated individuals. Although the group consisting of lacto-ovo vegetarians and vegans (pooled group) was not completely separated from the omnivores in a stable isotopic trophic level diagram, this analysis proved to add valuable information on probable dietary habits. The age deviation of the sampling date from the respective Calibomb date was found strongly correlated with the δ(13)C values, probably due to influence from marine diet components. For the omnivore individuals, there were indications of seasonal effects on δ(13)C and the age deviation. No significant correlation was found between the age deviation and the δ(15)N values of any dietary group. No influence of sex or year of birth was found on neither the (14)C nor the δ(13)C and δ(15)N values of the serum samples. The data were also divided into two groups (omnivores and pooled group), based on the level of δ(15)N in the samples. The consumption of high δ(15)N-valued fish and birds can be responsible for this clustering.

  5. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean δ(13)C and δ(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (δ(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, δ(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world. PMID:22215573

  6. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean δ(13)C and δ(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (δ(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, δ(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world.

  7. Human dietary δ(15)N intake: representative data for principle food items.

    PubMed

    Huelsemann, F; Koehler, K; Braun, H; Schaenzer, W; Flenker, U

    2013-09-01

    Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available.

  8. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  9. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  10. Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability.

    PubMed

    Viana, Inés G; Bode, Antonio

    2013-01-15

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ(15)N). In this study δ(15)N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ(15)N was not related to either inorganic nitrogen concentrations or δ(15)N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ(15)N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ(15)N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15×10(3) inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ(15)N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. PMID:23247291

  11. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice.

    PubMed

    Kanstrup, Marie; Thomsen, Ingrid K; Andersen, Astrid J; Bogaard, Amy; Christensen, Bent T

    2011-10-15

    The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.

  12. Possible isotopic fractionation effects in sputtered minerals

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Watson, C. C.; Tombrello, T. A.

    1980-01-01

    A model which makes definite predictions for the fractionation of isotopes in sputtered material is discussed. The fractionation patterns are nonlinear, and the pattern for a particular set of isotopes depends on the chemical matrix within which those isotopes are contained. Calculations are presented for all nonmonoisotopic elements contained in the minerals perovskite, anorthite, ackermanite, enstatite, and troilite. All isotopes are fractionated at the level of approximately 4-6 deg/o per atomic mass unit. Oxygen is always positively fractionated (heavier isotopes sputtered preferentially), and heavier elements are generally negatively fractioned (light isotopes sputtered preferentially). The value of Delta (O-18:O-16) is always less by about 1.8 deg/o than a linear extrapolation based upon the calculated delta (O-17:O-16) value would suggest. The phenomenon of both negative and positive fractionation patterns from a single target mineral are used to make an experimental test of the proposed model.

  13. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods. PMID:15880664

  14. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods.

  15. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    PubMed Central

    Oduro, Harry; Harms, Brian; Sintim, Herman O.; Kaufman, Alan J.; Cody, George; Farquhar, James

    2011-01-01

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for 33S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed 36S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant 36S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples. PMID:21997216

  16. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    particles typically also contain numerous {sup 15}N-rich N-hotspots, occasional C isotopic anomalies, and abundant presolar silicate grains. In contrast, the other ''isotopically normal'' IDPs have normal bulk N isotopic compositions and, although some contain {sup 15}N-rich hotspots, none exhibit C isotopic anomalies and none contain presolar silicate or oxide grains. Thus, isotopically interesting IDPs can be identified and selected on the basis of their N isotopic compositions for further study. However, this distinction does not extend to H isotopic compositions. Although both H and N anomalies are frequently attributed to the survival of molecular cloud material in IDPs and, thus, should be more common in IDPs with anomalous bulk N compositions, D anomalies are as common in normal IDPs as they are in those characterized as isotopically primitive, based on their N isotopes. This may be due to different effects of secondary processing on the isotopic systems involved.

  17. Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests.

    PubMed

    Chen, Rui Rui; Dittert, Klaus

    2008-06-01

    Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.

  18. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    USGS Publications Warehouse

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  19. Isotopic and Physiological Effects of Disease in a Sea Fan from Bermuda

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.

    2009-05-01

    Aspergillosis, a disease caused by the fungus, Aspergillus sydowii, has impacted gorgonian populations throughout much of the Caribbean, including Bermuda. Stable carbon (δ13C) and nitrogen (δ15N) isotopes have been shown to be a useful tool for tracking physiological changes in coral species. To assess the relationship between δ13C, δ15N, and physiological effects of disease in corals, healthy and diseased colonies of the purple sea fan (Gorgonia ventalina) were analyzed. Visibly healthy and diseased samples were collected from a near-shore reef location in July 2007. Healthy samples were also collected from an off-shore reef location, where there was no visible incidence of disease on the reef. The proportion of purpled sclerites was measured for each sample and verified the severity of disease for each colony. Diseased sections of G. ventalina had lower lipid concentrations than healthy sections of the same colony, suggesting that lipid stores are selectively utilized within each colony. Interestingly, healthy sections from near-shore colonies where disease was present had more lipid stores than healthy sections from off-shore colonies where disease was absent. Total biomass was greatest in healthy off-shore colonies. Both δ13C and δ15N did not differ between healthy and diseased colonies, but were more enriched in near-shore compared to off-shore locations. These preliminary results suggest that consumption of lipid stores may be a species-wide physiological strategy amongst corals for coping with stressful events and that soft corals may track levels of local land-based pollution.

  20. The Effects of Stratospheric Chemistry and Transport on the Isotopic Compositions of Long-Lived Gases Measured at Earth's Surface

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Boering, K. A.

    2014-12-01

    The isotopic compositions of a number of long-lived gases in Earth's atmosphere, including those for carbon dioxide (δ18O, Δ17O, and Δ14C), nitrous oxide (δ15N, δ15Nα, and δ18O), methane (δ13C and δD), and molecular hydrogen (δD) undergo large changes in the stratosphere. These changes arise from the often unique photochemical isotope fractionation occurring there as well as the long residence times and mean ages of stratospheric air with respect to exchange with the troposphere of up to 5 years. Stratospheric air then returns to the troposphere and, in each case, can affect the isotopic composition of these gases measured at Earth's surface. In this work, we estimate the effect of stratospheric isotope fractionation on free tropospheric isotope compositions of CO2, N2O, CH4, and H2 on an annual and global mean basis. To do so, we calculate net isotope fluxes between the stratosphere and troposphere empirically from the correlation of the measured isotope compositions of these species with measured N2O mixing ratios on whole air samples collected in the stratosphere from stratospheric aircraft and balloons coupled with independent information on the global, annually-averaged loss rate of N2O. In each case, the effect is large enough to include in global models. In addition, we present arguments and evidence that deconvolving the stratospheric influence on surface measurements from source (or other) signals on higher spatial and temporal scales than 'global' and 'annually-averaged' is also necessary when using surface measurements of isotopic compositions to constrain the magnitudes and geographic distributions of the sources of these gases to the atmosphere.

  1. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  2. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  3. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  4. Isotopic phonon effects in β-rhombohedral boron—non-statistical isotope distribution

    NASA Astrophysics Data System (ADS)

    Werheit, H.; Filipov, V.; Kuhlmann, U.; Schwarz, U.; Armbrüster, M.; Antadze, M.

    2012-05-01

    On the basis of the spectra of IR- and Raman-active phonons, the isotopic phonon effects in β-rhombohedral boron are analysed for polycrystalline 10B- and 11B-enriched samples of different origin and high-purity natB single crystals. Intra- and inter-icosahedral B-B vibrations are harmonic, hence meeting the virtual crystal approximation (VCA) requirements. Deviations from the phonon shift expected according to the VCA are attributed to the anharmonic share of the lattice vibrations. In the case of icosahedral vibrations, the agreement with calculations on α-rhombohedral boron by Shirai and Katayama-Yoshida is quite satisfactory. Phonon shifts due to isotopic disorder in natB are separated and determined. Some phonon frequencies are sensitive to impurities. The isotopic phonon effects yield valuable specific information on the nature of the different phonon modes. The occupation of regular boron sites by isotopes deviates significantly from the random distribution.

  5. Soil N and 15N variation with time in a California annual grassland ecosystem

    USGS Publications Warehouse

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  6. Bromine and carbon isotope effects during photolysis of brominated phenols.

    PubMed

    Zakon, Yevgeni; Halicz, Ludwik; Gelman, Faina

    2013-12-17

    In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (εreactive position up to +5.1‰) along with normal carbon isotope effect (εreactive position of -12.6‰ to -23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C-Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C-Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation.

  7. Experimental evidence for diel δ15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.).

    PubMed

    Peuke, A D; Gessler, A; Tcherkez, G

    2013-12-01

    Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ(15)N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ(15)N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ(15)N was correlated fairly well between phloem and xylem saps. These variations in δ(15)N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to (15)N-enriched glutamine acting as transport form of N. δ(15)N of the water soluble fraction of roots and leaves partially affected δ(15)N of phloem and xylems saps. δ(15)N patterns are likely the result of a complex set of interactions and N-fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course - a fact that needs to be taken into account when sampling for isotopic studies.

  8. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  9. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  10. Intestinal renal metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-[2,15N]glutamine or L-[2,15N]glutamine in mice.

    PubMed

    Boelens, Petra G; van Leeuwen, Paul A M; Dejong, Cornelis H C; Deutz, Nicolaas E P

    2005-10-01

    Previously, we observed increased plasma arginine (ARG) concentrations after glutamine (GLN)-enriched diets, in combination with clinical benefits. GLN delivers nitrogen for ARG synthesis, and the present study was designed to quantify the interorgan relationship of exogenous L-GLN or GLN dipeptide, by enteral or parenteral route, contributing to intestinal citrulline (CIT) and renal de novo ARG synthesis in mice. To study this, we used a multicatheterized mouse model with Swiss mice (n = 43) in the postabsorptive state. Stable isotopes were infused into the jugular vein or into the duodenum {per group either free L-[2,(15)N]GLN or dipeptide L-ALA-L-[2,(15)N]GLN, all with L-[ureido-(13)C-(2)H(2)]CIT and L-[guanidino-(15)N(2)-(2)H(2)]ARG} to establish renal and intestinal ARG and CIT metabolism. Blood flow was measured using (14)C-para-aminohippuric acid. Net intestinal CIT release, renal uptake of CIT, and net renal ARG efflux was found, as assessed by arteriovenous flux measurements. Quantitatively, more de novo L-[2,(15)N]CIT was produced when free L-[2,(15)N]GLN was given than when L-ALA-L-[2,(15)N]GLN was given, whereas renal de novo L-[2,(15)N]ARG was similar in all groups. In conclusion, the intestinal-renal axis is hereby proven in mice in that L-[2,(15)N]GLN or dipeptide were both converted into de novo renal L-[2,(15)N]ARG; however, not all was derived from intestinal L-[2,(15)N]CIT production. In this model, the feeding route and form of GLN did not influence de novo renal ARG production derived from GLN.

  11. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  12. Evaluating δ(15)N-body size relationships across taxonomic levels using hierarchical models.

    PubMed

    Reum, Jonathan C P; Marshall, Kristin N

    2013-12-01

    Ecologists routinely set out to estimate the trophic position of individuals, populations, and species composing food webs, and nitrogen stable isotopes (δ(15)N) are a widely used proxy for trophic position. Although δ(15)N values are often sampled at the level of individuals, estimates and confidence intervals are frequently sought for aggregations of individuals. If individual δ(15)N values are correlated as an artifact of sampling design (e.g., clustering of samples in space or time) or due to intrinsic groupings (e.g., life history stages, social groups, taxonomy), such estimates may be biased and exhibit overly optimistic confidence intervals. However, these issues can be accommodated using hierarchical modeling methods. Here, we demonstrate how hierarchical models offer an additional quantitative tool for investigating δ(15)N variability and we explicitly evaluate how δ(15)N varies with body size at successively higher levels of taxonomic aggregation in a diverse fish assemblage. The models take advantage of all available data, better account for uncertainty in parameters estimates, may improve inferences on coefficients corresponding to groups with small to moderate sample sizes, and partition variation across model levels, which provides convenient summaries of the 'importance' of each level in terms of unexplained heterogeneity in the data. These methods can easily be applied to diet-based studies of trophic position. Although hierarchical models are well-understood and established tools, their benefits have yet to be fully reaped by stable isotope and food web ecologists. We suggest that hierarchical models can provide a robust framework for conceptualizing and statistically modeling trophic position at multiple levels of aggregation. PMID:23812110

  13. Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1).

    PubMed

    Jewitt, D C; Matthews, H E; Owen, T; Meier, R

    1997-10-01

    The 12C/13C, 14N/15N, and 32S/34S isotope ratios in comet Hale-Bopp (C/1995 O1) were determined through observations taken with the James Clerk Maxwell Telescope. Measurements of rare isotopes in HCN and CS revealed isotope ratios of H12CN/H13CN = 111 +/- 12, HC14N/HC15N = 323 +/- 46, and C32S/C34S = 27 +/- 3. Within the measurement uncertainties, the isotopic ratios are consistent with solar system values. The cometary volatiles thus have an origin in the solar system and show no evidence for an interstellar component.

  14. Understanding the dynamics of δ 13C and δ 15N in soft tissues of the bivalve Crassostrea gigas facing environmental fluctuations in the context of Dynamic Energy Budgets (DEB)

    NASA Astrophysics Data System (ADS)

    Emmery, A.; Lefebvre, S.; Alunno-Bruscia, M.; Kooijman, S. A. L. M.

    2011-11-01

    We studied the dynamics of stable isotopes δ 13C and δ 15N of an opportunistic suspension feeder the Pacific oyster ( Crassostrea gigas) to better understand the factors that influence the trophic enrichment (trophic-shift, Δ) between primary producers and consumers. Most of the previous studies on this topic do not quantify mass fluxes or isotopic discrimination phenomena in the organism, which are two pillars in isotope ecology. We used a Dynamic Energy Budget (DEB) approach ( Kooijman, 2010) to quantify i) the fluxes of elements and isotopes in C. gigas soft tissues and ii) the impact of the scaled feeding level, the organism mass and the isotopic ratio of food on the "trophic-shift" Δ, and isotope turnover in tissues. Calibration and parametrization modeling were based on data from the literature. We showed that a five-fold increase in scaled feeding level leads to a decrease of the trophic-shift value of 35% for carbon and 43% for nitrogen. This can be explained by the molecule selection for the anabolic and/or catabolic way. When f increases due to the reserve dynamic formulation in the standard DEB model, the half-life of the isotopic ratio tδ1/2 in tissues also decreases from 13.1 to 7.9 d for δ 13C and from 22.1 to 10.3 d for δ 15N. Organism mass also affects the trophic-shift value: an increase of the individual initial mass from 0.025 g to 0.6 g leads to an enrichment of 22% for δ 13C and 21% for δ 15N. For a large individual, these patterns show that a high structural volume has to be maintained. Another consequence of the mass effect is an increase of the half-life for δ 13C from 6.6 to 12.0 d, and an increase of the half life for δ 15N from 8.3 to 19.4 d. In a dynamic environment, the difference in the isotopic ratios between the individual tissues and the food (δ 13C W-δ 13C X) exhibits a range of variation of 2.02‰ for carbon and 3.03‰ for nitrogen. These results highlight the potential errors in estimating the contributions of the

  15. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  16. Tracing sewage water by 15N in a mangrove ecosystem to test its bioremediation ability.

    PubMed

    Lambs, Luc; Léopold, Audrey; Zeller, Bernd; Herteman, Mélanie; Fromard, Francois

    2011-10-15

    Mangrove forests could be a simple and effective alternative to conventional sewage treatment, particularly for island communities given its low cost and low maintenance. Due to their high adaptation capacity, these plants are able to tolerate and bioremediate the high levels of nutrients and pollutants found in sewage water. This solution could be applied to small tropical islands with high population density such as Mayotte in the Indian Ocean. This paper reports on a trial by stable isotopic (15)N tracing of such a bioremediation process on pre-treated wastewater near the village of Malamani, in the middle of the large coastal mangrove in the bay near Chirongui. The first results show a boost in the mangrove growth, but a longer period of observation is needed to confirm the beneficial effects, and also to clarify the role of the local crab population, whose engineering activities play an important part in the ecosystem. The exact denitrification process is not yet understood, and the mass balance equation also reveals loss of nitrogen-containing compounds, which needs to be analyzed more closely. PMID:21913255

  17. Preservation effects on the isotopic and elemental composition of skeletal structures in the deep-sea bamboo coral Lepidisis spp. (Isididae)

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Thresher, R. E.; Revill, A. T.; Smith, C. I.; Komugabe, A. F.; Fallon, S. F.

    2014-01-01

    Trace elements and stable isotopes (δ13C and δ15N) in deep-sea coral have been used as proxies to reconstruct past climate, and to investigate food web structure. However, there is a paucity of information regarding the effect of preservation on the chemical integrity of archived coral. In this study a live-caught colony of Bamboo coral (southern Australia), genus (Lepidisis), was sectioned into three pieces and stored for approximately one year to investigate the influence of preservation in ethanol and preservation in seawater, that mimics the early stages of fossilization, against a dry preserved control. Storage and preservation have no significant effect on the isotopic signature of Δ14C, bulk δ15N, δ15N and δ13C of individual amino acids, or C:N in the fibrillar protein matrix, with the only offset (~0.2‰) being observed in part of the δ13C record. In the high-magnesium calcite lattice Ba/Ca appears to be significantly different after storage in ethanol, whereas Δ14C, B/Ca, Mg/Ca, Sr/Ca, and U/Ca remain largely unaltered. Possible mechanisms responsible for these observed differences center around the decomposition, or contamination, by organics and we recommend further investigation, and caution when comparing samples with differing preservation histories.

  18. Unified picture of the oxygen isotope effect in cuprate superconductors

    PubMed Central

    Chen, Xiao-Jia; Struzhkin, Viktor V.; Wu, Zhigang; Lin, Hai-Qing; Hemley, Russell J.; Mao, Ho-kwang

    2007-01-01

    High-temperature superconductivity in cuprates was discovered almost exactly 20 years ago, but a satisfactory theoretical explanation for this phenomenon is still lacking. The isotope effect has played an important role in establishing electron–phonon interaction as the dominant interaction in conventional superconductors. Here we present a unified picture of the oxygen isotope effect in cuprate superconductors based on a phonon-mediated d-wave pairing model within the Bardeen–Cooper–Schrieffer theory. We show that this model accounts for the magnitude of the isotope exponent as functions of the doping level as well as the variation between different cuprate superconductors. The isotope effect on the superconducting transition is also found to resemble the effect of pressure on the transition. These results indicate that the role of phonons should not be overlooked for explaining the superconductivity in cuprates. PMID:17360421

  19. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    NASA Astrophysics Data System (ADS)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  20. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  1. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    PubMed

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p < 0.0001), consistent with fractionation from denitrification. However, δ(15)N of extracted NO3 (-) was often lower than bulk soil δ(15)N (by up to 24 ‰), indicative of fractionation during nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification.

  2. Unusual origins of isotope effects in enzyme-catalysed reactions

    PubMed Central

    Northrop, Dexter B

    2006-01-01

    High hydrostatic pressure is a neglected tool for probing the origins of isotope effects. In chemical reactions, normal primary deuterium isotope effects (DIEs) arising solely from differences in zero point energies are unaffected by pressure; but some anomalous isotope effects in which hydrogen tunnelling is suspected are partially suppressed. In some enzymatic reactions, high pressure completely suppresses the DIE. We have now measured the effects of high pressure on the parallel 13C heavy atom isotope effect of yeast alcohol dehydrogenase and found that it is also suppressed by high pressure and, similarly, suppressed in its entirety. Moreover, the volume changes associated with the suppression of both deuterium and heavy atom isotope effects are virtually identical. The equivalent decrease in activation volumes for hydride transfer, when one mass unit is added to the carbon end of a scissile C–H bond as when one mass unit is added to the hydrogen end, suggests a common origin. Given that carbon is highly unlikely to undergo tunnelling, it follows that hydrogen is not doing so either. The origin of these isotope effects must lie elsewhere. We offer protein domain motions as a possibility. PMID:16873122

  3. Unusual origins of isotope effects in enzyme-catalysed reactions.

    PubMed

    Northrop, Dexter B

    2006-08-29

    High hydrostatic pressure is a neglected tool for probing the origins of isotope effects. In chemical reactions, normal primary deuterium isotope effects (DIEs) arising solely from differences in zero point energies are unaffected by pressure; but some anomalous isotope effects in which hydrogen tunnelling is suspected are partially suppressed. In some enzymatic reactions, high pressure completely suppresses the DIE. We have now measured the effects of high pressure on the parallel 13C heavy atom isotope effect of yeast alcohol dehydrogenase and found that it is also suppressed by high pressure and, similarly, suppressed in its entirety. Moreover, the volume changes associated with the suppression of both deuterium and heavy atom isotope effects are virtually identical. The equivalent decrease in activation volumes for hydride transfer, when one mass unit is added to the carbon end of a scissile C-H bond as when one mass unit is added to the hydrogen end, suggests a common origin. Given that carbon is highly unlikely to undergo tunnelling, it follows that hydrogen is not doing so either. The origin of these isotope effects must lie elsewhere. We offer protein domain motions as a possibility.

  4. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia.

    PubMed

    Zhang, Xinning; Sigman, Daniel M; Morel, François M M; Kraepiel, Anne M L

    2014-04-01

    Biological nitrogen fixation constitutes the main input of fixed nitrogen to Earth's ecosystems, and its isotope effect is a key parameter in isotope-based interpretations of the N cycle. The nitrogen isotopic composition (δ(15)N) of newly fixed N is currently believed to be ∼-1‰, based on measurements of organic matter from diazotrophs using molybdenum (Mo)-nitrogenases. We show that the vanadium (V)- and iron (Fe)-only "alternative" nitrogenases produce fixed N with significantly lower δ(15)N (-6 to -7‰). An important contribution of alternative nitrogenases to N2 fixation provides a simple explanation for the anomalously low δ(15)N (<-2‰) in sediments from the Cretaceous Oceanic Anoxic Events and the Archean Eon. A significant role for the alternative nitrogenases over Mo-nitrogenase is also consistent with evidence of Mo scarcity during these geologic periods, suggesting an additional dimension to the coupling between the global cycles of trace elements and nitrogen.

  5. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  6. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N{sub 2}

    SciTech Connect

    Randazzo, John B.; Croteau, Philip; Kostko, Oleg; Ahmed, Musahid; Boering, Kristie A.

    2014-05-21

    Photoionization efficiency spectra of {sup 14}N{sub 2}, {sup 15}N{sup 14}N, and {sup 15}N{sub 2} from 15.5 to 18.9 eV were measured using synchrotron radiation at the Advanced Light Source at Lawrence Berkeley National Laboratory with a resolution of 6 meV, and significant changes in peak energies and intensities upon isotopic substitution were observed. Previously, we reported the isotope shifts and their applications to Titan's atmosphere. Here, we report more extensive experimental details and tabulate the isotope shifts of many transitions in the N{sub 2} spectrum, including those for {sup 15}N{sup 14}N, which have not been previously reported. The isotope shifts are used to address several long-standing ambiguities in spectral peak assignments just above the ionization threshold of N{sub 2}. The feature at 15.677 eV (the so-called second “cathedral” peak) is of particular interest in this respect. The measured isotope shifts for this peak relative to {sup 14}N{sub 2} are 0.015 ± 0.001 eV for {sup 15}N{sub 2} and 0.008 ± 0.001 eV for {sup 15}N{sup 14}N, which match most closely with the isotope shifts predicted for transitions to the (A {sup 2}Π{sub u} v{sup ′} = 2)4sσ{sub g} {sup 1}Π{sub u} state using Herzberg equations for the isotopic differences in harmonic oscillator energy levels plus the first anharmonic correction of 0.0143 eV for {sup 15}N{sub 2} and 0.0071 eV for {sup 15}N{sup 14}N. More generally, the isotope shifts measured for both {sup 15}N{sub 2} and {sup 15}N{sup 14}N relative to {sup 14}N{sub 2} provide new benchmarks for theoretical calculations of interferences between direct and indirect autoionization states which can interact to produce intricate resonant structures in molecular photoionization spectra in regions near ionization thresholds.

  7. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    PubMed Central

    Yang, Yang; Siegwolf, Rolf T. W.; Körner, Christian

    2015-01-01

    Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. Two thousand five hundred meter elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3–4‰ and 7–8‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7‰) except in Fabaceae (Trifolium alpinum) and Juncaceae (Luzula lutea). There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic) and insensitive to obvious environmental cues. PMID:26097487

  8. Variation in foliar [sup 15]N abundance and the availability of soil nitrogen on Walker Branch Watershed

    SciTech Connect

    Garten, C.T. Jr. )

    1993-10-01

    Spatial patterns in natural [sup 15]N abundance ([sigma][sup 15]N) in soil, soil solutions, and non-N[sub 2]-fixing plants were studied in the deciduous forest on Walker Branch Watershed near Oak Ridge, Tennessee. This study was undertaken to test the hypothesis that foliar [sigma][sup 15]N values are related to the availability of inorganic nitrogen in mineral soil. Soils collected in or near valley bottoms on the watershed had higher levels of net nitrogen mineralization and net nitrification potential than those sampled from ridges and slopes. More positive foliar [sigma][sup 15]N values occurred in valley bottoms, which, relative to other positions on the watershed, were characterized by greater availability of soil nitrogen and lower C-to-N ratios in the O[sub 1]-horizon, in the surface mineral soil, and in autumn leaf fall. Although leaf nitrogen concentrations changed significantly over the course of the growing season, there was little seasonal variation in foliar [sigma][sup 15]N values. A hypothesis about the relative importance of different sources of nitrogen to the forest and how nitrogen cycling varies with topography in this nitrogen-deficient ecosystem was derived, in part, from spatial patterns in natural [sup 15]N abundance. There appear to be two processes affecting the topographic patterns in foliar [sup 15]N abundance on this watershed: (1) greater uptake from isotopically heavy pools of inorganic soil nitrogen by plants in valley bottoms, and (2) uptake of isotopically light ammonium-N in atmospheric deposition by plants on ridges and slopes (where the availability of inorganic soil nitrogen to plant roots is more limited). Results from this study indicate that foliar [sigma][sup 15]N values are positively correlated with net nitrification potential in surface soil. 34 refs., 13 figs., 8 tabs.

  9. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?

    PubMed

    Maharjan, Binita; Raghibi Boroujeni, Mahdi; Lefton, Jonathan; White, Ormacinda R; Razzaghi, Mortezaali; Hammann, Blake A; Derakhshani-Molayousefi, Mortaza; Eilers, James E; Lu, Yun

    2015-05-27

    The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and β-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

  10. Using macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs in Skagway, AK

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  11. Hydrogen in vanadium: Site occupancy and isotope