Science.gov

Sample records for 15n isotope effects

  1. Kinetic 15N-isotope effects on algal growth

    PubMed Central

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-01-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies. PMID:28281640

  2. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  3. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores.

    PubMed

    Kurle, Carolyn M; Koch, Paul L; Tershy, Bernie R; Croll, Donald A

    2014-01-01

    We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.

  4. Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using (14)N/(15)N and solvent isotope effects.

    PubMed

    Mauve, Caroline; Giraud, Nicolas; Boex-Fontvieille, Edouard R A; Antheaume, Ingrid; Tea, Illa; Tcherkez, Guillaume

    2016-11-01

    Glutamine synthetase (GS, EC 6.3.1.2) catalyzes the production of glutamine from glutamate, ammonium and ATP. Although being essential in plants for N assimilation and recycling, kinetic commitments and transition states of the reaction have not been clearly established yet. Here, we examined (12)C/(13)C, (14)N/(15)N and H2O/D2O isotope effects in Arabidopsis GS1 catalysis and compared to the prokaryotic (Escherichia coli) enzyme. A(14)N/(15)N isotope effect ((15)V/K ≈ 1.015, with respect to substrate NH4(+)) was observed in the prokaryotic enzyme, indicating that ammonium utilization (deprotonation and/or amidation) was partially rate-limiting. In the plant enzyme, the isotope effect was inverse ((15)V/K = 0.965), suggesting that the reaction intermediate is involved in an amidation-deamidation equilibrium favoring (15)N. There was no (12)C/(13)C kinetic isotope effect ((13)V/K = 1.000), suggesting that the amidation step of the catalytic cycle involves a transition state with minimal alteration of overall force constants at the C-5 carbon. Surprisingly, the solvent isotope effect was found to be inverse, that is, with a higher turn-over rate in heavy water ((D)V ≈ 0.5), showing that restructuration of the active site due to displacement of H2O by D2O facilitates the processing of intermediates.

  5. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  6. Effect of age and ration on diet-tissue isotopic (Δ13C, Δ15N) discrimination in striped skunks (Mephitis mephitis).

    PubMed

    Hobson, Keith A; Quirk, Travis W

    2014-01-01

    An important prerequisite for the effective use of stable isotopes in animal ecology is the accurate assessment of isotopic discrimination factors linking animals to their diets for a multitude of tissue types. Surprisingly, these values are poorly known in general and especially for mammalian carnivores and omnivores in particular. Also largely unknown are the factors that influence diet-tissue isotopic discrimination such as nutritional quality and age. We raised adult and juvenile striped skunks (Mephitis mephitis) in captivity on a constant omnivore diet (Mazuri Omnivore A 5635). Adults (n=6) and juveniles (n=3) were kept for 7 months and young (n=7) to the age of 50 days. We then examined individuals for stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values of hair, nails, lipid, liver, muscle, bone collagen and the plasma, and cellular fractions of blood. Discrimination values differed among age groups and were significantly higher for young compared with their mothers, likely due to the effects of weaning. Δ(15)N isotopic discrimination factors ranged from 3.14 (nails) to 5.6‰ (plasma) in adults and 4.3 (nails) to 5.8‰ (liver) for young. For Δ(13)C, values ranged from-3.3 (fat) to 3.0‰ (collagen) in adults and from-3.3 (fat) to 2.0‰ (collagen) in young. Our data provide an important tool for predicting diets and source of feeding for medium-sized mammalian omnivorous adults integrated over short (e.g. liver, plasma) through long (e.g. collagen) periods and underline the potential effects of age on isotopic values in omnivore diets.

  7. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.

  8. The effects of preservation methods, dyes and acidification on the isotopic values (δ15N and δ13C) of two zooplankton species from the KwaZulu-Natal Bight, South Africa.

    PubMed

    de Lecea, Ander M; Cooper, Rachel; Omarjee, Aadila; Smit, Albertus J

    2011-07-15

    Stable isotope measurements are an important tool for ecosystem trophic linkage studies. Ideally, fresh samples should be used for isotopic analysis, but in many cases organisms must be preserved and analysed later. In some cases dyes must be used to help distinguish organisms from detritus. Since preservatives and dyes are carbon-based, their addition could influence isotopic readings. This study aims to improve understanding of the effects of sample storage method, dye addition and acidification on the δ(15)N and δ(13)C values of zooplankton (Euphasia frigida and Undinula vulgaris). Zooplankton was collected and preserved by freezing, or by the addition of 5% formalin, 70% ethanol, or 5% formalin with added Phloxine B or Rose Bengal, and stored for 1 month before processing. Samples in 5% formalin and 70% ethanol were also kept and processed after 3 and 9 months to study changes over time. Formalin caused the largest enrichment for δ(13)C and a slight enrichment for δ(15)N, while ethanol produced a slight depletion for δ(13)C, and different effects on δ(15)N depending on the species. In formalin, dyes depleted the δ(13)C values, but had variable effects on δ(15)N, relative to formalin alone. Acidification had no significant effect on δ(15)N or δ(13)C for either species. Long-term storage showed that the effects of the preservatives were species-dependent. Although the effects on δ(15)N varied, a relative enrichment in (13)C of samples occurred with time. This can have important consequences for the understanding of the organic flow within a food web and for trophic studies. .

  9. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis

    PubMed Central

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and

  10. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis.

    PubMed

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and

  11. Beneficial effects of sustained activity on the use of dietary protein and carbohydrate traced with stable isotopes 15N and 13C in gilthead sea bream (Sparus aurata).

    PubMed

    Felip, O; Blasco, J; Ibarz, A; Martin-Perez, M; Fernández-Borràs, J

    2013-02-01

    To determine the effects of sustained swimming on the use and fate of dietary nutrients in gilthead sea bream, a group of fish were forced to undertake moderate and sustained swimming (1.5 BL s(-1)) for 3 weeks and compared with a control group undertaking voluntary activity. The exercise group showed a significant increase in specific growth rate (C: 1.13 ± 0.05; E: 1.32 ± 0.06 % day(-1), P < 0.05) with no significant change in food intake (C: 3.56 ± 0.20; E: 3.84 ± 0.03 % of body weight). The addition of (13)C-starch and (15)N-protein to a single meal of 1 % ration allowed analysis of the fate of both nutrients in several tissues and in their components, 6 and 24 h after force-feeding. In exercised fish improved redistribution of dietary components increased the use of carbohydrates and lipid as fuels. Gilthead sea bream have a considerable capacity for carbohydrate absorption irrespective of swimming conditions, but in trained fish (13)C rose in all liver fractions with no changes in store contents. This implies higher nutrient turnover with exercise. Higher retention of dietary protein (higher (15)N uptake into white muscle during the entire post-prandial period) was found under sustained exercise, highlighting the protein-sparing effect. The combined effects of a carbohydrate-rich, low-protein diet plus sustained swimming enhanced amino acid retention and also prevented excessive lipid deposition in gilthead sea bream.

  12. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  13. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  14. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  15. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  16. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  17. Isotopic analysis of bulk, LMW, and HMW DON d15N indicates recycled nitrogen release from marine DON

    NASA Astrophysics Data System (ADS)

    Knapp, A. N.; Sigman, D. M.; Lipschultz, F.; Kustka, A.; Capone, D. G.

    2010-12-01

    Nitrogen (N) concentration and stable isotope ratio (d15N) measurements were made on bulk and size fractionated surface ocean dissolved organic nitrogen (DON) samples collected in the oligotrophic North Atlantic and Pacific Oceans. The bulk DON concentration in the upper 100 m is similar between the North Atlantic and North Pacific, between 4.5 and 5.0 uM, but the average d15N of bulk DON is significantly different, 3.9 per mil vs. air in the North Atlantic and 4.7 per mil in the North Pacific. The d15N of both bulk and HMW DON from the western tropical North Atlantic are similar to previous measurements, ~4.0 to 4.5 per mil. We report the first measurements of LMW DON d15N, which is consistently lower than HMW DON d15N. Neither the concentration nor d15N of bulk or size-fractionated DON varied with in situ N2 fixation rate, although significant variation in bulk and LMW DON d15N was observed between January and July of the same year in the western tropical North Atlantic. We propose a conceptual model to explain 1) the elevated d15N of bulk DON relative to other surface ocean N pools and fluxes, 2) the elevation of HMW DON d15N relative to LMW DON d15N, and 3) the inter-basin difference in the d15N of bulk DON. In this model, DON is produced from suspended particulate organic nitrogen (PON) without isotope fractionation because the conversion from PON to DON largely does not involve N-bearing bonds. In contrast, deamination and amide hydrolysis, with N isotope effects of 3 to 10 per mil, are major mechanisms by which DON is converted to ammonia and/or to other simple N compounds (e.g., amino acids). Thus these N-specific DON loss reactions result in an elevated d15N of residual DON relative to the parent DON and therefore also to the PON source. Moreover, the ammonium and simple organic N compounds released by microbial DON degradation are efficiently reassimilated back into the PON pool, as an integral part of the regenerated N cycle that further lowers the d15N

  18. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  19. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  20. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  1. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean cultivars under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change resulting from global warming is expected to affect crop production and seed quality. The objective of this research was to evaluate the response of soybean cultivars to the effect of drought and elevated temperature on seed composition and mineral nutrition. In a repeated growth cham...

  2. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  3. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  4. Solvent effects on 15N NMR coordination shifts.

    PubMed

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  5. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    PubMed

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  6. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  7. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  8. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  9. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  10. Limitations in detection of 15N incorporation by mass spectrometry in protein-based stable isotope probing (protein-SIP).

    PubMed

    Taubert, Martin; von Bergen, Martin; Seifert, Jana

    2013-05-01

    The method of protein-based stable isotope probing (protein-SIP) has previously been shown to allow the modeling of carbon fluxes in microbial communities, thus tackling one of the key questions in microbial ecology. The method allows the analysis of stable isotope distribution in peptides, revealing metabolic activities of the species present in an ecosystem. Besides carbon, an application of protein-SIP with nitrogen is of interest for resolving the nitrogen fluxes in microbial communities. Thus, the sensitivity and reliability of a protein-SIP approach employing (15)N was analyzed. For this, cultivations of Pseudomonas fluorescens ATCC 17483 with different ratios of (14)N/(15)N were performed, from 10 % down to 0.1 % (15)N. After incubation leading to complete labeling of biomass, proteins were extracted and separated by one-dimensional gel electrophoresis, followed by tryptic digest and UPLC Orbitrap MS/MS analysis. (15)N relative isotope abundance (RIA) was calculated based on isotopic patterns from identified peptides in mass spectra. Proteomics data have been deposited to ProteomeXchange with identifier PXD000127. The distribution of (15)N RIA values among peptides was analyzed in samples with different (15)N amount, and potential causes for variations within individual samples of either technical or biological origin were investigated. Using a number of 50 peptides, significant differences (p ≤ 0.05) in (15)N incorporation were found between samples of different (15)N RIA down to 0.1 %. The study demonstrates that protein-SIP using (15)N is sufficiently sensitive for quantitative investigation of microbial activity in nitrogen cycling processes.

  11. Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment.

    PubMed

    Pons, Thijs L; Perreijn, Kristel; van Kessel, Chris; Werger, Marinus J A

    2007-01-01

    * Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.

  12. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  13. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  14. Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon (δ13C) in a host-specific holocephalan tapeworm.

    PubMed

    Navarro, J; Albo-Puigserver, M; Coll, M; Saez, R; Forero, M G; Kutcha, R

    2014-09-01

    During the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host-parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ(15)N and δ(13)C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite-host system were negative for both isotopic values of N (Δδ(15)N = - 3.33 ± 0.63‰) and C (Δδ(13)C = - 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite-host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.

  15. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  16. STATISTICAL ESTIMATES OF VARIANCE FOR 15N ISOTOPE DILUTION MEASUREMENTS OF GROSS RATES OF NITROGEN CYCLE PROCESSES

    EPA Science Inventory

    It has been fifty years since Kirkham and Bartholmew (1954) presented the conceptual framework and derived the mathematical equations that formed the basis of the now commonly employed method of 15N isotope dilution. Although many advances in methodology and analysis have been ma...

  17. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  18. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  19. Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios.

    PubMed

    Billault, Isabelle; Courant, Frédérique; Pasquereau, Léo; Derrien, Solène; Robins, Richard J; Naulet, Norbert

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The 13C and 15N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the 15N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the delta15N values of MDMA are strongly influenced by a combination of the delta15N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the delta15N values of the synthetic MDMA and of the delta15N and delta13C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  20. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  1. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  2. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  3. 15N Isotopic Crop Exchange Residue Studies Suggest that IPCC N Input Methodologies to Assess N2O-N Emissions Should be Reevaluated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is difficult to quantify nitrogen (N) losses from agricultural systems to the environment, however we can use 15N isotopic techniques to conduct site specific studies to increase our knowledge about N management and fate. This manuscript synthesizes the review of two selected 15N isotopic studies...

  4. Nitrogen Transformations in Wetland Soil Cores Measured by (sup15)N Isotope Pairing and Dilution at Four Infiltration Rates

    PubMed Central

    Stepanauskas, R.; Davidsson, E. T.; Leonardson, L.

    1996-01-01

    The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil. PMID:16535352

  5. Soil and foliar nutrient and nitrogen isotope composition (δ(15)N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard.

    PubMed

    Bai, Shahla Hosseini; Xu, Cheng-Yuan; Xu, Zhihong; Blumfield, Timothy J; Zhao, Haitao; Wallace, Helen; Reverchon, Frédérique; Van Zwieten, Lukas

    2015-03-01

    This study aimed to evaluate the improvement in soil fertility and plant nutrient use in a macadamia orchard following biochar application. The main objectives of this study were to assess the effects of poultry litter and green waste biochar applications on nitrogen (N) cycling using N isotope composition (δ(15)N) and nutrient availability in a soil-plant system at a macadamia orchard, 5 years following application. Biochar was applied at 10 t ha(-1) dry weight but concentrated within a 3-m diameter zone when trees were planted in 2007. Soil and leaf samples were collected in 2012, and both soil and foliar N isotope composition (δ(15)N) and nutrient concentrations were assessed. Both soil and foliar δ(15)N increased significantly in the poultry litter biochar plots compared to the green waste biochar and control plots. A significant relationship was observed between soil and plant δ(15)N. There was no influence of either biochars on foliar total N concentrations or soil NH4 (+)-N and NO3 (-)-N, which suggested that biochar application did not pose any restriction for plant N uptake. Plant bioavailable phosphorus (P) was significantly higher in the poultry litter biochar treatment compared to the green waste biochar treatment and control. We hypothesised that the bioavailability of N and P content of poultry litter biochar may play an important role in increasing soil and plant δ(15)N and P concentrations. Biochar application affected soil-plant N cycling and there is potential to use soil and plant δ(15)N to investigate N cycling in a soil-biochar-tree crop system. The poultry litter biochar significantly increased soil fertility compared to the green waste biochar at 5 years following biochar application which makes the poultry litter a better feedstock to produce biochar compared to green waste for the tree crops.

  6. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  7. Mechanistic Determination of Nitrogen Removal By Advanced Soil-Based Wastewater Treatment Systems Using 15n Isotopes

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2014-12-01

    Current levels of nitrogen removal by onsite wastewater treatment systems (OWTS) are inadequate, with release of N from OWTS contributing to environmental N pollution, especially in coastal zones where aquatic ecosystems are sensitive to eutrophication. Current mechanistic understand of N removal are limited and mainly attributed to denitrification in the drainfield. Loss of N from N2O production during nitrification, a sparsely researched topic, may be a significant mechanism in advanced OWTS systems that enhance O2 diffusion by sand filter pre-treatment, shallow placement of infiltrative areas and timed dosing controls to prevent drainfield saturation. Replicate (n=3) intact soil mesocosms were used with 15N isotope to evaluate the effectiveness and mechanisms of N removal in drainfields with a conventional wastewater delivery (pipe-and-stone, P&S) compared to two advanced types of drainfields, pressurized shallow narrow drainfield (SND) and Geomat (GEO), a variation of a SND drainfield. Over the 11 day experiment, dissolved O2 was 1.6 mg/L for P&S and 3.0 mg/L for SND and GEO. Removal of total N was 13.5% for P&S, 4.8% for SND and 5.4% for GEO. 15NH4 labeled nitrogen inputs to drainfields were transformed primarily to 15NO3 in all outputs. Consistent low 15N2O levels were present in P&S, with increasing levels of N2 peaking 48h after 15NH4 injection, suggesting denitrification dominated N removal. By contrast, SND and GEO 15N2O levels rose quickly, peaking 8h after 15NH4 injection, suggesting N loss by nitrification. When the whole system is considered, including sand filter removal, 26 - 27% of total N was removed by the SND and GEO systems, whereas 14% of total N was removed in the P&S system. Our results suggest the SND and GEO systems as a whole are capable of removing a greater mass of N than the P&S system.

  8. Similarities and differences in 13C and 15N stable isotope ratios in two non-lethal tissue types from shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820)

    USGS Publications Warehouse

    DeVries, R. J.; Schramm, Harold L.

    2015-01-01

    We tested the hypothesis that δ13C and δ15N signatures of pectoral spines would provide measures of δ13C and δ15N similar to those obtained from fin clips for adult shovelnose sturgeon Scaphirhynchus platorynchus. Thirty-two shovelnose sturgeon (fork length [FL] = 500–724 mm) were sampled from the lower Mississippi River, USA on 23 February 2013. Isotopic relationships between the two tissue types were analyzed using mixed model analysis of covariance. Tissue types differed significantly for both δ13C (P < 0.01; spine: mean = −23.83, SD = 0.62; fin clip: mean = −25.74, SD = 0.97) and δ15N (P = 0.01; spine: mean = 17.01, SD = 0.51; fin clip: mean = 17.19, SD = 0.62). Neither FL nor the FL × tissue type interaction had significant (P > 0.05) effects on δ13C. Fin clip δ13C values were highly variable and weakly correlated (r = 0.16, P = 0.40) with those from pectoral spines. We found a significant FL-tissue type interaction for δ15N, reflecting increasing δ15N with FL for spines and decreasing δ15N with FL for fin clips. These results indicate that spines are not a substitute for fin clip tissue for measuring δ13C and δ15N for shovelnose sturgeon in the lower Mississippi River, but the two tissues have different turnover rates they may provide complementary information for assessing trophic position at different time scales.

  9. Methylamphetamine synthesis: does an alteration in synthesis conditions affect the δ(13) C, δ(15) N and δ(2) H stable isotope ratio values of the product?

    PubMed

    Salouros, Helen; Collins, Michael; Cawley, Adam; Longworth, Mitchell

    2012-05-01

    Conventional chemical profiling of methylamphetamine has long been employed by national forensic laboratories to determine the synthetic route and where possible the precursor chemicals used in its manufacture. This laboratory has been studying the use of stable isotope ratio mass spectrometry (IRMS) analysis as a complementary technique to conventional chemical profiling of fully synthetic illicit drugs such as methylamphetamine. As part of these investigations the stable carbon (δ(13) C), nitrogen (δ(15) N), and hydrogen (δ(2) H) isotope values in the precursor chemicals of ephedrine and pseudoephedrine and the resulting methylamphetamine end-products have been measured to determine the synthetic origins of methylamphetamine. In this study, results are presented for δ(13) C, δ(15) N, and δ(2) H values in methylamphetamine synthesized from ephedrine and pseudoephedrine by two synthetic routes with varying experimental parameters. It was demonstrated that varying parameters, such as stoichiometry, reaction temperature, reaction time, and reaction pressure, had no effect on the δ(13) C, δ(15) N, and δ(2) H isotope values of the final methylamphetamine product, within measurement uncertainty. Therefore the value of the IRMS technique in identifying the synthetic origin of precursors, such as ephedrine and pseudoephedrine, is not compromised by the potential variation in synthetic method that is expected from one batch to the next, especially in clandestine laboratories where manufacture can occur without stringent quality control of reactions.

  10. Enrichment of (15)N/(14)N in wastewater-derived effluent varies with operational performance of treatment systems: implications for isotope monitoring in receiving environments.

    PubMed

    Munksgaard, Niels C; Warnakulasooriya, Kanchana N; Kennedy, Karen; Powell, Lynne; Gibb, Karen S

    2017-01-01

    Stable nitrogen isotope ratios are routinely used to trace the dispersion and assimilation of wastewater-derived N in receiving environments, but few isotope studies have investigated wastewater treatment plants and ponds themselves. An improved understanding of N isotope compositions in effluent will help assess treatment plant processes and performance and will help trace sources of excess nutrients in receiving environments. Here, we assess N budgets and treatment processes in seven wastewater treatment plants and wastewater stabilisation ponds in northern Australia based on concentrations and isotope ratios of N in effluent. We show that δ(15)N values in effluent are linked to treatment type, effectiveness of conversion of ammonia and levels of gaseous N emissions. These relationships suggest that N isotope monitoring of wastewater treatment plants and ponds can provide an integrated assessment of treatment performance and gaseous N emissions on a pond- or plant-wide scale that is not readily available through other methods. Our findings further imply that monitoring N isotope ratios in receiving environments cannot be assumed to be universally effective as their sensitivity to uptake of wastewater-derived N will vary with the characteristics of individual treatment systems. Paradoxically, N isotope monitoring is less effective where treatment systems are functioning poorly and where monitoring needs are the greatest.

  11. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    PubMed

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  12. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups

    PubMed Central

    Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290) or δ13C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2) and the predators (1.73 mUr2), but largest for omnivores (3.83 mUr2

  13. Impact of seaweed beachings on dynamics of δ(15)N isotopic signatures in marine macroalgae.

    PubMed

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-08-15

    A fine-scale survey of δ(15)N, δ(13)C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM(∗), COU(∗)). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ(15)N signatures and N contents at GM(∗) and COU(∗). Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ(15)N at GM(∗) were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae.

  14. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  15. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  16. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  17. VizieR Online Data Catalog: 14N/15N isotopic ratio in L1544 (Bi

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Caselli, P.; Leonardo, E.; Dore, L.

    2013-06-01

    The observations towards L1544 were carried out with the IRAM 30m antenna, located at Pico Veleta (Spain) during observing sessions in June 2009 and July 2010. The J=1-0 transition of was observed with the EMIR receiver in the E090 configuration tuned at 90263.8360MHz and using the lower-inner sideband. The hyperfine-free rest frequencies were taken from the most recent laboratory investigation of 15N-dyazenilium species (Dore et al. 2009A&A...496..275D). (6 data files).

  18. A novel method for determination of the (15) N isotopic composition of Rubisco in wheat plants exposed to elevated atmospheric carbon dioxide.

    PubMed

    Aranjuelo, Iker; Molero, Gemma; Avice, Jean Christophe; Bourguignon, Jacques

    2015-02-01

    Although ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is mostly known as a key enzyme involved in CO2 assimilation during the Calvin cycle, comparatively little is known about its role as a pool of nitrogen storage in leaves. For this purpose, we developed a protocol to purify Rubisco that enables later analysis of its (15) N isotope composition (δ(15) N) at the natural abundance and (15) N-labeled plants. In order to test the utility of this protocol, durum wheat (Triticum durum var. Sula) exposed to an elevated CO2 concentration (700 vs 400 µmol mol(-1) ) was labeled with K(15) NO3 (enriched at 2 atom %) during the ear development period. The developed protocol proves to be selective, simple, cost effective and reproducible. The study reveals that (15) N labeling was different in total organic matter, total soluble protein and the Rubisco fraction. The obtained data suggest that photosynthetic acclimation in wheat is caused by Rubisco depletion. This depletion may be linked to preferential nitrogen remobilization from Rubisco toward grain filling.

  19. Mangrove isotopic15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    USGS Publications Warehouse

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  20. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  1. Establishing spatial trends in water chemistry and stable isotopes15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  2. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  3. Intrapopulation variation in gray wolf isotope (delta(15)N and delta(13)C) profiles: implications for the ecology of individuals.

    PubMed

    Urton, Erin J M; Hobson, Keith A

    2005-09-01

    Trophic relationships among organisms in terrestrial boreal ecosystems define ecological communities and are important in determining dynamics of energy flow and ecosystem function. We examined trophic relationships between the gray wolf (Canis lupus) and 18 mammalian species from the boreal forest of central Saskatchewan, Canada, using delta(13)C and delta(15)N stable isotope values measured in guard hair samples. Variance in isotope values for wolves and other carnivores was investigated as a proxy for variation in diet among individuals. Isosource, an isotopic source partitioning model, quantified the relative range in proportions of five most-likely prey items in the diets of wolves. The distribution of feasible contributions from each source was dominated by elk (Cervus elaphus; mean: 48%, range:11-75%), followed by white-tailed deer (Odocoileus virginianus; mean: 21%, range: 0-54%), moose (Alces alces; mean:14%, range: 0-41%), beaver (Castor canadensis; mean: 8%, range:0-25%) and snowshoe hare (Lepus americanus; mean: 8%, range: 0-24%). Despite social foraging, our results indicate highly variable diets among individuals and we discuss this in terms of individual versus group ecology of boreal wolves.

  4. A facile method for expression and purification of 15N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis

    PubMed Central

    Armand, Tara; Ball, K. Aurelia; Chen, Anna; Pelton, Jeffrey G.; Wemmer, David E.; Head-Gordon, Teresa

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality 15N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with 15N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the 15N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure 15N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼6 mg/L culture for 15N isotope-labeled Aβ42 peptide. Mass spectrometry and 1H–15N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with 15N and 13C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  5. The effect of manuring on cereal and pulse amino acid δ(15)N values.

    PubMed

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-06-01

    Amino acid δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown in manured and unmanured soil at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. Manuring was found to result in a consistent (15)N-enrichment of cereal grain amino acid δ(15)N values, indicating that manuring did not affect the metabolic routing of nitrogen (N) into cereal grain amino acids. The increase in cereal grain δ(15)N values with manuring is therefore due to a (15)N-enrichment in the δ(15)N value of assimilated inorganic-N. Greater variation was observed in the (15)N-enrichment of rachis amino acids with manuring, possibly due to enhanced sensitivity to changes in growing conditions and higher turnover of N in rachis cells compared to cereal grains. Total amino acid δ(15)N values of manured and unmanured broad beans and peas were very similar, indicating that the legumes assimilated N2 from the atmosphere rather than N from the soil, since there was no evidence for routing of (15)N-enriched manure N into any of the pulse amino acids. Crop amino acid δ(15)N values thus provide insights into the sources of N assimilated by non N2-fixing and N2-fixing crops grown on manured and unmanured soils, and reveal an effect of manure on N metabolism in different crop species and plant parts.

  6. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    NASA Astrophysics Data System (ADS)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  7. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  8. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  9. Ecological functions provided by dung beetles are interlinked across space and time: evidence from (15) N isotope tracing.

    PubMed

    Nervo, Beatrice; Caprio, Enrico; Celi, Luisella; Lonati, Michele; Lombardi, Giampiero; Falsone, Gloria; Iussig, Gabriele; Palestrini, Claudia; Said-Pullicino, Daniel; Rolando, Antonio

    2017-02-01

    Maintaining multiple ecological functions ("multifunctionality") is crucial to sustain viable ecosystems. To date most studies on biodiversity-ecosystem functioning (BEF) have focused on single or few ecological functions and services. However, there is a critical need to evaluate how species and species assemblages affect multiple processes at the same time, and how these functions are interconnected. Dung beetles represent excellent model organisms because they are key contributors to several ecosystem functions. Using a novel method based on the application of (15) N-enriched dung in a mesocosm field experiment, we assessed the role of dung beetles in regulating multiple aspects of nutrient cycling in alpine pastures over appropriate spatial (up to a soil depth of 20 cm) and temporal (up to 1 yr after dung application) scales. (15) N isotope tracing allowed the evaluation of multiple interrelated ecosystem functions responsible for the cycling of dung-derived nitrogen (DDN) in the soil and vegetation. We also resolved the role of functional group identity and the importance of interactions among co-occurring species for sustaining multiple functions by focusing on two different dung beetle nesting strategies (tunnelers and dwellers). Species interactions were studied by contrasting mixed-species to single-species assemblages, and asking whether the former performed multiple functions better than the latter. Dung beetles influenced at least seven ecological functions by facilitating dung removal, transport of DDN into the soil, microbial ammonification and nitrification processes, uptake of DDN by plants, herbage growth, and changes in botanical composition. Tunnelers and dwellers were found to be similarly efficient for most functions, with differences based on the spatial and temporal scales over which the functions operated. Although mixed-species assemblages seemed to perform better than single-species, this outcome may be dependent on the context. Most

  10. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    NASA Astrophysics Data System (ADS)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  11. Food partitioning of leaf-eating mangrove crabs ( Sesarminae): Experimental and stable isotope ( 13C and 15N) evidence

    NASA Astrophysics Data System (ADS)

    Kristensen, Ditte K.; Kristensen, Erik; Mangion, Perrine

    2010-05-01

    The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature ( δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ˜60% leaves in terms of biomass, leaving ˜40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ˜15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.

  12. A cross-shelf gradient in δ15N stable isotope values of krill and pollock indicates seabird foraging patterns in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Jones, Nathan M.; Hoover, Brian A.; Heppell, Scott A.; Kuletz, Kathy J.

    2014-11-01

    Concurrent measurements of predator and prey δ15N isotope values demonstrated that a cross-shelf isotopic gradient can propagate through a marine food web from forage species to top-tier predators and indicate foraging areas at a scale of tens of kilometers. We measured δ13C and δ15N in muscle tissues of thick-billed murres (Uria lomvia) and black-legged kittiwakes (Rissa tridactyla), and in whole body tissues of walleye pollock (Gadus chalcogrammus) and krill (Thysanoessa spp), sampled across the continental shelf break in the Bering Sea in 2008 and in 2009. We found significant basin-shelf differences at fine scales (<100 km) in δ15N among murres but not kittiwakes, and no such differences in δ13C in either seabird species at that scale. We then quantified the multi-trophic signal and spatial structure of a basin-shelf δ15Nitrogen gradient in the central and southern Bering Sea, and used it to contrast foraging patterns of thick-billed murres and kittiwakes on the open ocean. Seabird muscle δ15N values were compared to baselines created from measurements in krill and pollock tissues sampled concurrently throughout the study area. Krill, pollock, and murre tissues from northern, shallow, shelf habitat (<200 m) were enriched 1-2‰ in δ15N relative to samples taken from deeper habitats (>200 m) to the south and west. Krill δ15N baseline values predicted 35-42% of the variability in murre tissue values. Patterns between kittiwakes and prey were less coherent. The persistence of strong spatial autocorrelation among sample values, and a congruence of geospatial patterns in δ15N among murre and prey tissues, suggest that murres forage repeatedly in specific areas. Murre isotope values showed distinct geospatial stratification, coincident with the spatial distribution of three colonies: St. Paul, St. George, and Bogoslof. This suggests some degree of foraging habitat partitioning among colonies.

  13. A stable isotope (δ13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    PubMed

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  14. Regional patterns of δ13C and δ15N stable isotopes of size-fractionated zooplankton in the western tropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Wang, Xiaocheng; Wang, Yanqing

    2017-02-01

    Zooplankton play a prominent role in the biogeochemical cycles of marine ecosystems. Little is known about the trophodynamics of zooplankton in response to geographic patterns in isotopic baselines and physical processes in the western tropical North Pacific. In this study, stable isotope ratios of five size fractions of zooplankton (100 to >2000 μm) from different current regions in the western tropical North Pacific Ocean were analyzed. Both δ13C and δ15N isotopic values increased with zooplankton size class. The largest zooplankton group (>2000 μm), with a diverse composition, showed relatively higher stable isotope signatures, covering a wider range. Regional variations in the zooplankton stable isotope signatures were similar across all size classes, with generally higher values in the North Equatorial Counter Current (NECC) and the North Equatorial Current (NEC) and lower values in the Subtropical Counter Current (STCC). These regional patterns of zooplankton isotope signatures were consistent with the variation of oceanographic features (temperature, salinity, nutrients, chlorophyll a) and were also related to the isotopic baselines of particulate organic matter (POM) in the different current regions. Moreover, the nitrogen-fixing cyanobacteria Trichodesmium spp. may be the main contributor to low δ15N values in the STCC. The results of this study demonstrate the influence of physical processes on the stable isotopic signatures of zooplankton. This baseline information is crucial for future food web studies in the western tropical North Pacific Ocean.

  15. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (δ 13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope (δ 13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  16. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated?

    NASA Astrophysics Data System (ADS)

    Churchill, Diana A.; Heithaus, Michael R.; Dean Grubbs, R.

    2015-05-01

    Stable isotope analysis is broadly employed to investigate diverse ecological questions. In order to make appropriate comparisons among multiple taxa, however, it is necessary to standardize values to account for interspecific differences in factors that affect isotopic ratios. For example, varying concentrations of soluble nitrogen compounds, such as urea or trimethylamine oxide, can affect the analysis and interpretation of δ15N values of sharks or hagfish. The goal of this study was to assess the effects of a standard chloroform/methanol extraction on the stable isotope values of muscle tissue obtained from 10 species of sharks and three species of hagfish collected from poorly-known deep-water (>200 m) communities. We detected significant differences in δ15N, %N, and C:N values as a result of extractions in 8 of 10 shark and all three hagfish species. We observed increased δ15N values, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. However, they were not successful for two shark species. Therefore, performing extractions of all samples is recommended.

  17. Spatial and temporal variations in stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopic composition of symbiotic scleractinian corals.

    PubMed

    Nahon, Sarah; Richoux, Nicole B; Kolasinski, Joanna; Desmalades, Martin; Ferrier Pages, Christine; Lecellier, Gael; Planes, Serge; Berteaux Lecellier, Véronique

    2013-01-01

    Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ(13)C) and nitrogen (δ(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ(13)C and δ(15)N between coral host tissues and their photosymbionts (Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ(13)C and enriched δ(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ(13)C and δ(15)N values of coral host and photosymbiont tissues and in Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral

  18. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and new 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-04-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes obfuscate the absolute rate estimation of gaseous nitrogen production from individual pathway. Recently, the classical isotope pairing technique (IPT), the most common 15N-nitrate enrichment method to quantify denitrification, has been modified by different researchers to (1) discriminate relative contribution of N2 production by denitrification from anammox or to (2) provide more accurate denitrification rate by considering both N2O and N2 productions. Both modified methods, however, have deficiencies such as overlooking N2O production in case 1 and neglecting anammox in case 2. In this paper, a new method was developed to refine previous methods. We installed cryogenic traps to pre-concentrate N2 and N2O separately, thus, allowing simultaneous measurement for two gases generated by one sample. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, we further revised IPT formulae to truthfully resolve the production rates of N2 and N2O contributed from 3 specific nitrogen removal processes, i.e. N2 and N2O from denitrification, N2 from anammox and N2O from nitrification. To validate the applicability of our new method, incubation experiments were conducted using sediment cores taken from the Danshuei estuary in Taiwan. We successfully determined the rates of aforementioned nitrogen removal processes. Moreover, N2O yield was as high as 66%, which no doubt would significantly bias previous IPT approaches when N2O was not considered. Our new method not only complements the previous IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics through the water-sediment interface.

  19. Isotopic discrimination during litter decomposition and delta13C and delta15N soil profiles in a young artificial stand and in an old floodplain forest.

    PubMed

    Gioacchini, Paola; Masia, Andrea; Canaccini, Francesca; Boldreghini, Pietro; Tonon, Giustino

    2006-06-01

    In the present study, rates of litter decomposition and microbial biomass nitrogen were monitored over an 8-month period in a young broadleaf plantation (18 y) and in an old floodplain forest. Moreover, delta13C and delta15N temporal variations within soil profiles were evaluated at both sites. Rates of litter decomposition were higher in spring and autumn than in summer, in both forests. At the end of the observation period the percentage of original litter remaining was not statistically different between the young and the old forest and accounted for 60-70% of the original amount. Microbial biomass nitrogen in the remaining litter and the percentage of litter mass lost during decomposition were positively correlated. The difference in litter quality affected the decomposition rate and also the changes in carbon isotopic composition during the decomposition process. In contrast, 15N isotopic signatures showed a similar trend in the litter of the two forests irrespective of the litter quality. Although delta13Csoil and delta15Nsoil showed considerable temporal variation they increased with depth in the soils of both sites but their seasonal changes did not reflect those of the decomposing litter. Within the same soil horizon, both delta13C and delta15N showed similar seasonal trends in the soils of the two forests, suggesting the involvement of environmental factors acting at regional level, such as soil temperature and rainfall variations, in regulating seasonal delta13C and delta15N soil variations.

  20. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  1. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  2. Controls on the Nitrogen and Oxygen Isotopic Composition (δ 15N, δ 18O, δ 17O) of Atmospheric Nitrate in Princeton, NJ

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Malcolm, E.; Kaiser, J.; Sigman, D. M.

    2004-12-01

    The oxygen isotopic composition of atmospheric nitrate reflects the oxidative mechanisms that convert NOx to HNO3, while the nitrogen isotopic composition of atmospheric nitrate may reflect different NOx source signatures and/or fractionations related to NOx chemistry [Michalski et al., 2003; Hastings et al., 2003; Freyer et al., 1993]. New analysis techniques are capable of determining the 15N/14N, 18O/16O and 17O/16O isotope ratios in samples at the nanomolar level [Sigman et al., 2001; Casciotti et al., 2002; see Kaiser et al., session H38]. This allows for the analysis of short-term variations in the isotopes of HNO3 with the potential to diagnose causal relationships by comparing the isotopic data with other features of atmospheric deposition. The 15N/14N, 18O/16O and 17O/16O of nitrate were analyzed from precipitation samples collected on an event-basis in Princeton, NJ between December 2002 and 2003. The nitrate concentration in Princeton rain ranges from 2.5 to 99.7 μ M (mean=21.1 μ M, n=61), similar to that found in other urban areas of New Jersey by the National Atmospheric Deposition Program. The isotopes of nitrate fall in the wide range reported for various environments with the δ 15N ranging from -4.0 to 9.5‰ (vs. air), and the δ 18O and δ 17O ranging from 57.2 to 90.5‰ and 50.7 to 77.8‰ (vs. VSMOW), respectively. The correlation between nitrate and sulfate concentration (R2=0.66) and the lack of a relationship between these major ions and the isotopes of nitrate supports the conclusion that below cloud scavenging is not the dominant control on the isotopic variations observed. Seasonal variations are observed in both the nitrogen and oxygen isotopes of nitrate. Overall the δ 15N is not correlated with either δ 18O or δ 17O, although both the δ 15N and δ 18O average lowest in the summer and highest in the winter. δ 18O is highly correlated with δ 17O of nitrate with anomalous enrichment in 17O relative to 18O (Δ 17O ranges from 19

  3. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  4. Combination of the (87)Sr/(86)Sr ratio and light stable isotopic values (δ(13)C, δ(15)N and δD) for identifying the geographical origin of winter wheat in China.

    PubMed

    Liu, Hongyan; Wei, Yimin; Lu, Hai; Wei, Shuai; Jiang, Tao; Zhang, Yingquan; Guo, Boli

    2016-12-01

    This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.

  5. Trophic ecology of the supralittoral rocky shore (Roscoff, France): A dual stable isotope (δ 13C, δ 15N) and experimental approach

    NASA Astrophysics Data System (ADS)

    Laurand, Sandrine; Riera, Pascal

    2006-07-01

    The present study investigates the trophic transfers on the upper littoral rocky shore (i.e. the supralittoral zone together with the upper midlittoral and adlittoral) of northern Brittany. The population mainly consists of four invertebrate species: the littorinids Littorina saxatilis and Melarhaphe neritoides, the isopod Ligia oceanica and the insect Petrobius maritimus. The utilisation of food sources available to these grazers was examined in a laboratory microcosm feeding experiment and a field study using stable isotopes (δ 13C, δ 15N). The results indicated that although Ligia oceanica preferentially occurs in the supralittoral zone, its trophic subsidies originate mostly from the adlittoral and lower intertidal zones. The stable isotope data also suggested that adlittoral terrestrial organic material may be the major food source of Petrobius maritimus. δ 15N of Littorina saxatilis indicated a highly variable diet consisting of supralittoral lichens, midlittoral macroalgae and other food sources (e.g. microalgae). Both feeding experiments and stable isotope data show that only Melarhaphe neritoides has a clearly identifiable diet based on a mixture of lichens, mostly Verrucaria maura and Caloplaca marina, as estimated by an isotopic mixing model. Hence, the food web of this intertidal zone appears largely based on trophic subsidies from other habitats (i.e. upper and lower intertidal zones).

  6. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    PubMed Central

    von Holstein, Isabella C. C.; Walton Rogers, Penelope; Craig, Oliver E.; Penkman, Kirsty E. H.; Newton, Jason; Collins, Matthew J.

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700–1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples. PMID:27764106

  7. Nitrogen isotope exchange between NO and NO2 and its implications for δ15N variations in tropospheric NOx and atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Simonini, Damian S.; Michalski, Greg

    2016-01-01

    The nitrogen (N) isotope exchange between nitric oxide (NO) and nitrogen dioxide (NO2) has been previously suggested to influence N stable isotope compositions (δ15N) of these molecules. However, there is disagreement in the magnitude of the N isotopic fractionation (αNO2>/NO) resulting from this exchange process between previous experimental and theoretical studies. To this end, we measured αNO2>/NO associated with this exchange reaction at various temperatures. Our results indicate αNO2>/NO to be 1.0403 ± 0.0015, 1.0356 ± 0.0015, and 1.0336 ± 0.0014 at 278 K, 297 K, and 310 K, respectively. These measured values are within experimental error of the values we calculated using a modified version of the Bigeleisen-Mayer equation corrected for accurate zero-point energies, indicating an agreement between experiment and theory. Modeling of this exchange reaction demonstrates that δ15N-NO2 may exhibit a diurnal and seasonal profile if N isotopic equilibrium is achieved.

  8. Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H).

    PubMed

    von Holstein, Isabella C C; Walton Rogers, Penelope; Craig, Oliver E; Penkman, Kirsty E H; Newton, Jason; Collins, Matthew J

    2016-01-01

    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples.

  9. What can Δ 15N and Δ 18O isotopes tell us about sources, transport, and fate of nitrate in the Mississippi River Basin?

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.

    2003-12-01

    Water and nutrients, primarily nitrate (NO3) in Mississippi River discharge, affect the size and severity of the Gulf of Mexico hypoxic (depleted dissolved oxygen) zone. Approximately 120 water samples were collected from 16 sites on small streams and 6 sites on large rivers within the Mississippi River Basin in 1997-98 to see if NO3 sources and transformations can be identified using the stable isotopic ratios Δ 15N and Δ 18O. Results from Lagrangian sampling at the large river sites indicate that nitrate mass decreases slightly, while Δ 15N and Δ 18O isotope ratios are unchanged in the 1500 river kilometers between the Upper Mississippi-Ohio River confluence and the Gulf of Mexico. Results also show that Δ 15N and Δ 18O values from small streams draining lands dominated by row crops or livestock tended to be distinct from those dominated by urban or undeveloped land. Mean Δ 15N values at the 16 sites on small streams were most strongly correlated (Pearson's r) with manure production rate (0.64), percent residential land use (-0.45), and urea use rate (0.43). The best multiple linear regression (MLR) model for mean Δ 15N values (r2=0.69) used manure production rate and ammonium nitrate use rate as explanatory variables. Mean Δ 18O values were most strongly correlated with percent wetlands (0.72), mean NO3 concentration (-0.71), and percent residential land use (0.58). The best MLR model for mean Δ 18O values (r2=0.85) used percent residential land use, percent wetlands, and ammonium nitrate use rate as explanatory variables. Mean NO3 concentrations were most strongly correlated with percent row-crops land use (0.84), nitrogen-fertilizer use rate (0.74), and hog-manure production rate (0.66). The best MLR model for mean NO3 concentration (r2=0.85) used percent row-crops land use and percent grain-crops land use as explanatory variables. MLR equations developed from the 16 smaller streams were used to predict mean Δ 15N and Δ 18O values and NO3

  10. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  11. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  12. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  13. Spatial variation in the stable isotopes of 13C and 15N and trophic position of Leporinus friderici (Characiformes, Anostomidae) in Corumbá Reservoir, Brazil.

    PubMed

    Pereira, Alexandre L; Benedito, Evanilde; Sakuragui, Cássia M

    2007-03-01

    Stable isotopes of carbon (delta13C) and nitrogen (delta15N) were used to describe sources of energy and trophic position for adult Leporinus friderici in the area of the Corumbá Reservoir, Brazil. Samples were collected from April 1999 to March 2000. Spatial variations were not identified in the isotopic composition. The maximum and minimum contribution of C4 plants calculated integrating the variation of plants and fish were 47.7% and 2.4%, respectively. Among C3 plants, periphyton presented closer isotopic values to those observed for fishes, corresponding to an important carbon source. The proportion of ingested plant item is larger in rivers upstream from the reservoir (42.7%), which justifies the smaller trophic level among there. However, in the reservoir, the ingestion of fish was 81.4%, while ingested plants contributed with 18.6%. Downstream from the dam, participation of plant item was even smaller (14.4%). Although the trophic position calculated with diet data was proportional to the one calculated with delta15N values, the former elevated the trophic level of L. friderici in the food web, because estimated trophic positions were based on fish items belonging to the 2nd (a) and to the 3rd (b) trophic levels.

  14. Effects of 15N application frequency on nitrogen uptake efficiency in citrus trees.

    PubMed

    Quiñones, Ana; Bañuls, Josefina; Millo, Eduardo Primo; Legaz, Francisco

    2003-12-01

    Two irrigation systems were used to compare nitrogen uptake efficiency in citrus trees and to evaluate the NO3- runoff in "Navelina" orange trees [Citrus sinensis (L.) Osbeck] on Carrizo citrange rootstock (Citrus sinensis x Poncirus trifoliata Raf.). These were fertilized with 125 g N as labelled K15NO3 and grown outdoors in containers filled with a sand-loamy soil. Two groups of 3 trees received this N dose either in five equally split applications by a flooding irrigation system or in 66 applications by drip. Trees were harvested at the end of the vegetative cycle (December) and the isotopic ratios of 15N/14N were measured in the soil-plant system. The N uptake efficiency of the whole tree was higher with drip irrigation (75%) than with flooding system (64%). In the 0-90 cm soil profile, the N immobilized in the organic fraction was similar for both irrigation methods (around 13 %), whereas the N retained as NO3- was 1% of the N applied under drip and 10% under flooding. In the last case, most of NO3- remained under root system and it could be lost to leaching either by heavy rainfalls or excessive water applications. These results showed that a drip irrigation system was more efficient for improving water use and N uptake from fertilizer, in addition to potentially reduced leaching losses.

  15. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  16. Metabolic labeling with stable isotope nitrogen (15N) to follow amino acid and protein turnover of three plastid proteins in Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Background The length of time that a protein remains available to perform its function is significantly influenced by its turnover rate. Knowing the turnover rate of proteins involved in different processes is important to determining how long a function might progress even when the stimulus has been removed and no further synthesis of the particular proteins occurs. In this article, we describe the use of 15N-metabolic labeling coupled to GC-MS to follow the turnover of free amino acids and LC-MS/MS to identify and LC-MS to follow the turnover of specific proteins in Chlamydomonas reinhardtii. Results To achieve the metabolic labeling, the growth medium was formulated with standard Tris acetate phosphate medium (TAP) in which14NH4Cl was replaced with 15NH415NO3 and (14NH4)6Mo7O24.4H2O was replaced with Na2MoO4.2H2O. This medium designated 15N-TAP allowed CC-125 algal cells to grow normally. Mass isotopic distribution revealed successful 15N incorporation into 13 amino acids with approximately 98% labeling efficiency. Tryptic digestion of the 55 kDa SDS-PAGE bands from 14N- and 15N-labeled crude algal protein extracts followed by LC-MS/MS resulted in the identification of 27 proteins. Of these, five displayed peptide sequence confidence levels greater than 95% and protein sequence coverage greater than 25%. These proteins were the RuBisCo large subunit, ATP synthase CF1 alpha and beta subunits, the mitochondrial protein (F1F0 ATP synthase) and the cytosolic protein (S-adenosyl homocysteine hydroxylase). These proteins were present in both labeled and unlabeled samples. Once the newly synthesized 15N-labeled free amino acids and proteins obtained maximum incorporation of the 15N-label, turnover rates were determined after transfer of cells into 14N-TAP medium. The t½ values were determined for the three plastid proteins (RuBisCo, ATP synthase CF1 alpha and beta) by following the reduction of the 15N-fractional abundance over time. Conclusion We describe a more

  17. Identifying the African Wintering Grounds of Hybrid Flycatchers Using a Multi–Isotope (δ2H, δ13C, δ15N) Assignment Approach

    PubMed Central

    Van Wilgenburg, Steven L.; Hobson, Keith A.; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher. PMID:24847717

  18. Plan of study to determine if the isotopic ratios [delta]15 N and [delta]18 O can reveal the sources of nitrate discharged by the Mississippi River into the Gulf of Mexico

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Goolsby, Donald A.; Boyer, Laurie L.

    1997-01-01

    Nitrate and other nutrients discharged from the Mississippi River basin are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse effect on aquatic life and commercial fisheries. Commercial fertilizers are the dominant source of nitrogen input to the Mississippi basin. Other nitrogen sources include animal waste, fixation of atmospheric nitrogen by legumes, precipitation, domestic and industrial effluent, and the soil. The inputs of nitrogen from most of these sources to the Mississippi basin can be estimated and the outputs in surface water can be measured. However, nitrogen from each source is affected differently by physical, chemical, and biological processes that control nitrogen cycling in terrestrial and aquatic systems. Hence, the relative contributions from the various sources of nitrogen to nitrate load in the Mississippi River are unknown because the different sources may not contribute proportionally to their inputs in the basin. It may be possible to determine the relative contributions of the major sources of nitrate in river water using the stable isotopic ratios d15N and d18O of the nitrate ion. A few researchers have used the d15N and/or d18O isotope ratios to determine sources of nitrate in ground water, headwater catchments, and small rivers, but little is known about the isotopic composition of nitrate in larger rivers. The objective of this study is to measure the isotopic composition of nitrate and suspended organic matter in the Mississippi River and its major tributaries, in discharge to the Gulf of Mexico, and in streamflow from smaller watersheds that have distinct sources of nitrogen (row crops, animal wastes, and urban effluents) or are minimally impacted by man (undeveloped). Samples from seven sites on the Mississippi River and its tributaries and from 17 sites in smaller watersheds within the Mississippi River basin will be analyzed for d15N and

  19. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  20. Modern comparative approach for carrier transport in InAlN/AlN superlattice device with characteristics and modelling using nitride (14N,15N) isotopes

    NASA Astrophysics Data System (ADS)

    Mazumdar, Kaushik; Ranjan, Rajeev Kumar; Shankar, Ravi; Priyadarshini, Bindu; Ghosal, Aniruddha

    2017-03-01

    As we all know that, the performance and characteristics of any semiconductor device are effected by change in operating temperature. The temperature dependencies of the transport properties of InAlN/Al14N15N have been investigated using theoretical and mathematical study. Here we have considered the Al14N15N with different ratio of 14N and 15N for the analysis owing to considerable interest in superlattice structures of large band gap semiconductors having various favourable material properties such as very high thermal conductivity, high carrier mobility and wide bandwidth operation. This paper deals with analysis of temperature effect on some of the device modelling parameters like carrier mobility and scattering.

  1. Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique

    PubMed Central

    Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul

    2012-01-01

    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306

  2. Stable Isotope (δ13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope (δ13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  3. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  4. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China

    PubMed Central

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha–1) on the fate of urea-15N in the wheat–soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0–39.0%) than for band treatment (31.2–38.2%). Most of the soil residual N was retained in the 0–20 cm soil layer. At the N rates of 60 and 240 kg ha–1, the residual 15N was higher for band (34.4 and 108.7 kg ha–1, respectively) than for broadcast application (29.6 and 88.4 kg ha–1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat–soil system. Band application one time is an alternative N management practice for winter wheat in this region. PMID:27082246

  5. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  6. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  7. Upper limits to the fractionation of isotopes due to atmospheric escape: Implications for potential 14N/15N in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2014-12-01

    Formation and evolution of the solar system is studied in part using stable isotope ratios that are presumed to be primordial, or representative of conditions in the protosolar Nebula. Comets, meteorites and giant planet atmospheres provide measurements that can reasonably be presumed to represent primordial conditions while the terrestrial planets, Pluto and Saturn's moon Titan have atmospheres that have evolved over the history of the solar system. The stable isotope ratios measured in these atmospheres are, therefore, first a valuable tool for evaluating the history of atmospheric escape and once escape is constrained can provide indications of conditions of formation. D/H ratios in the atmosphere of Venus provide indications of the amount of water lost from Venus over the history of the solar system, while several isotope ratios in the atmosphere of Mars provide evidence for long-term erosion of the atmosphere. We have recently demonstrated that the nitrogen ratios, 14N/15N, in Titan's atmosphere cannot evolve significantly over the history of the solar system and that the primordial ratio for Titan must have been similar to the value recently measured for NH3 in comets. This implies that the building blocks for Titan formed in the protosolar nebula rather than in the warmer subnebula surrounding Saturn at the end of its formation. Our result strongly contrasts with works showing that 14N/15N in the atmosphere of Mars can easily fractionate from the terrestrial value to its current value due to escape processes within the lifetime of the solar system. The difference between how nitrogen fractionates in Mars and Titan's atmospheres presents a puzzle for the fractionation of isotopes in an atmosphere due to atmospheric escape. Here, we present a method aiming at determining an upper limit to the amount of fractionation allowed to occur due to escape, which is a function of the escape flux and the column density of the atmospheric constituent. Through this

  8. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

    PubMed

    Brereton, Nicholas J B; Pitre, Frederic E; Shield, Ian; Hanley, Steven J; Ray, Michael J; Murphy, Richard J; Karp, Angela

    2014-11-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and (15)N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production.

  9. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow

    PubMed Central

    Brereton, Nicholas J.B.; Pitre, Frederic E.; Shield, Ian; Hanley, Steven J.; Ray, Michael J.; Murphy, Richard J.; Karp, Angela

    2014-01-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and 15N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2–3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production. PMID:24186940

  10. Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C 4 plants

    NASA Astrophysics Data System (ADS)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen δ15N and δ13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen δ15N and local amount of precipitation. Results presented here similarly show an increase in δ15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between δ13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have δ15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their δ15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in δ15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  11. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  12. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds.

  13. Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the Western Central Valley, Costa Rica.

    PubMed

    Reynolds-Vargas, Jenny; Fraile-Merino, Julio; Hirata, Ricardo

    2006-08-01

    A study was conducted to evaluate long-term trends in nitrate concentrations and to try to identify the origin of nitrate using stable isotopes (15N(NO3-) and 18O(NO3-)) in the aquifers of the western Central Valley, Costa Rica, where more than 1 million people depend on groundwater to satisfy their daily needs. Data from 20 sites periodically sampled for 4 to 17 years indicate an increasing trend in nitrate concentrations at five sites, which in a period ranging from 10 to 40 years, will exceed recommended maximum concentrations. Results of isotopic analysis indicate a correspondence between land use patterns and the isotopic signature of nitrate in groundwater and suggest that urbanization processes without adequate waste disposal systems, followed by coffee fertilization practices, are threatening water quality in the region. We conclude that groundwater management in this area is not sustainable, and that land use substitution processes from agricultural activity to residential occupation that do not have proper sewage disposal systems may cause a significant increment in the nitrate contaminant load.

  14. Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry.

    PubMed

    Giavalisco, Patrick; Li, Yan; Matthes, Annemarie; Eckhardt, Aenne; Hubberten, Hans-Michael; Hesse, Holger; Segu, Shruthi; Hummel, Jan; Köhl, Karin; Willmitzer, Lothar

    2011-10-01

    The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.

  15. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  16. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas.

    PubMed

    Segers, Jordi L; Broders, Hugh G

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats.

  17. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  18. Assessment of trace elements, POPs, (210)Po and stable isotopes ((15)N and (13)C) in a rare filter-feeding shark: The megamouth.

    PubMed

    Moura, Jailson Fulgencio de; Merico, Agostino; Montone, Rosalinda Carmela; Silva, Josilene; Seixas, Tércia Guedes; Godoy, José Marcus de Oliveira; Saint'Pierre, Tatiana Dillenburg; Hauser-Davis, Rachel Ann; Di Beneditto, Ana Paula Madeira; Reis, Estéfane Cardinot; Tavares, Davi Castro; Lemos, Leila Soledade; Siciliano, Salvatore

    2015-06-15

    With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  1. Spatial variation in the strength of mutualism between a jumping spider and a terrestrial bromeliad: Evidence from the stable isotope 15N

    NASA Astrophysics Data System (ADS)

    Romero, Gustavo Q.; Vasconcellos-Neto, João; Trivelin, Paulo C. O.

    2008-05-01

    Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider-plant mutualism. We found a positive significant relationship between spider density and δ15N values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher δ15N values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider-plant system.

  2. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  3. Precise Measurement of Phenylalanine δ15N Values via Elemental Analysis-Isotope Ratio Mass Spectrometry Following Purification with High-Pressure Liquid Chromatography: A New Tool for Fine-Scale Paleo-Nitrogen Cycle Reconstructions

    NASA Astrophysics Data System (ADS)

    Broek, T.; Walker, B. D.; Batista, F. C.; Andreasen, D.; Hill, T. M.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Compound specific isotope analysis of individual amino acids (CSI-AA) in organic paleoarchives is emerging as a powerful tool for reconstructing the paleo-nitrogen (N) cycle. Because the δ15N of phenylalanine (Phe) remains almost unchanged with diagenesis or trophic transfer it has been demonstrated to be the most promising AA proxy for the δ15N of primary production. However, the precise measurement of AA δ15N values is currently limited by the standard gas chromatography-isotope ratio mass spectrometer (GC-IRMS) approach. The key problem with this approach is that GC-IRMS δ15N precision (±1‰) is almost an order of magnitude lower than typical bulk δ15N measurements (±0.1‰), posing a significant problem for assessing fine scale changes within paleo-climate records. Additionally, required instrumentation is both expensive, and not widely available. Here we present an offline approach in which Phe is purified via high-pressure liquid chromatography (HPLC), using an analytical scale, mixed-phase column and automated fraction collection. δ13C and δ15N values of the fractions are then determined via standard elemental analysis-isotope ratio mass spectrometry (EA-IRMS). We evaluate the precision of this HPLC-EA-IRMS method vs. traditional GC-IRMS for Phe δ15N values of isotopic AA standards and various proteinaceous marine samples (marine coral, sediment, and cyanobacteria). Typical HPLC-EA-IRMS δ15N precision is ±0.1‰ for isotopic AA standards and ±0.5‰ for marine coral, sediment, and cyanobacteria samples compared to ±0.5‰ and ±1.0‰ for AA standards and samples analyzed by GC-IRMS. In order to demonstrate the viability of our approach, we present a comparison of a Phe δ15N record produced from a deep-sea bamboo coral specimen from Monterey Bay, CA, using our offline HPLC-EA-IRMS method vs. standard GC-IRMS. Each method produced equivalent Phe δ15N values within error, however, the HPLC-EA-IRMS method produced Phe δ15N values with over

  4. Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes

    NASA Astrophysics Data System (ADS)

    Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin

    2017-01-01

    We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to

  5. Intra-trophic isotopic discrimination of 15N/14N for amino acids in plant flowers and leaves: Implications for isotopic ecological studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic reactions within heterotrophs cause discrimination in their stable nitrogen isotopic composition of amino acids (d15NAA) compared to their diets. Ecologists have exploited this measurable inter-trophic discrimination in the d15NAA value to estimate the trophic positions of heterotrophic an...

  6. Kinetic isotope effects for fast deuterium and proton exchange rates.

    PubMed

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  7. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N).

    PubMed

    Briand, Marine J; Bonnet, Xavier; Goiran, Claire; Guillou, Gaël; Letourneur, Yves

    2015-01-01

    A wide investigation was conducted into the main organic matter (OM) sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef), different associated ecosystems (mangroves and seagrass beds) and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM) were sampled. Isotopic signatures (C and N) of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰) and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰). Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰) whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰). The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is highlighted.

  8. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas--characterization by multivariate analysis.

    PubMed

    Foan, L; Leblond, S; Thöni, L; Raynaud, C; Santamaría, J M; Sebilo, M; Simon, V

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g(-1), as well as δ(13)C values of -32 to -29‰ and δ(15)N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ(13)C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.

  9. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    PubMed Central

    Carlisle, Eli; Yarnes, Chris; Toney, Michael D.; Bloom, Arnold J.

    2014-01-01

    Stable 15N isotopes have been used to examine movement of nitrogen (N) through various pools of the global N cycle. A central reaction in the cycle involves the reduction of nitrate (NO−3) to nitrite (NO−2) catalyzed by nitrate reductase (NR). Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO−3. Observed NR isotope discrimination ranged from 22 to 32‰ (kinetic isotope effects of 1.022–1.032) among the different isozymes at natural abundance 15N (0.37%). As the fractional 15N content of substrate NO−3 increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO−3 and NO−2 in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of the experimental artifacts with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils. PMID:25071800

  10. THE DEVELOPMENT OF A PREDICTIVE TOLL USING LARGEMOUTH BASS (MICROPTERUS SALMOIDES) SCALES TO ESTIMATE MERCURY (HG) CONCENTRATIONS AND STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN FISH MUSCLE TISSUE

    EPA Science Inventory

    Knowledge of the trophic structure of biota in aquatic sites offers potential for the construction of models to allow the prediction of contaminant bioaccumulation. Measurements of trophic position have been conducted using stable-nitrogen isotope ratios ( 15N) measured in fish m...

  11. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems

    PubMed Central

    Werner, Scott J.; Hobson, Keith A.; Van Wilgenburg, Steven L.; Fischer, Justin W.

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  12. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  13. Multi-Isotopic (δ2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    PubMed

    Werner, Scott J; Hobson, Keith A; Van Wilgenburg, Steven L; Fischer, Justin W

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  14. The signatures of stable isotopes δ 15N and δ 13C in anadromous and non-anadromous Coilia nasus living in the Yangtze River, and the adjacent sea waters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Tang, Wenqiao; Dong, Wenxia

    2015-12-01

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes ( δ 13C and δ 15N) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. δ 13C signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) ( P < 0.05). By contrast, δ 15N signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group ( P < 0.05). Basing on δ 13C and δ 15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in δ 15N but depleted in δ 13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply δ 15N and δ 13C to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes ( δ 15N and δ 13C) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.

  15. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen.

  16. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    PubMed

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  17. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta13C and delta15N isotope ratios as guides to trophic web structure.

    PubMed

    Takeuchi, Ichiro; Miyoshi, Noriko; Mizukawa, Kaoruko; Takada, Hideshige; Ikemoto, Tokutaka; Omori, Koji; Tsuchiya, Kotaro

    2009-05-01

    Biomagnification profiles of polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and polychlorinated biphenyls (PCBs) from the innermost part of Tokyo Bay, Japan were analyzed using stable carbon (delta(13)C) and nitrogen (delta(15)N) isotope ratios as guides to trophic web structure. delta(15)N analysis indicated that all species of mollusks tested were primary consumers, while decapods and fish were secondary consumers. Higher concentrations of PCBs occurred in decapods and fish than in mollusks. In contrast, concentrations of PAHs and alkylphenols were lower in decapods and fish than in mollusks. Unlike PCBs, whose concentrations largely increased with increasing delta(15)N (i.e. increasing trophic level), all PAHs and alkylphenols analyzed followed a reverse trend. Molecular weights of PAHs are lower than those of PCBs, therefore low membrane permeability caused by large molecular size is an unlikely factor in the "biodilution" of PAHs. Organisms at higher trophic levels may rapidly metabolize PAHs or they may assimilate less of them.

  18. Revisiting the use of δ15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures - The case of an open ecosystem: The Bay of Biscay (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Chouvelon, T.; Spitz, J.; Caurant, F.; Mèndez-Fernandez, P.; Chappuis, A.; Laugier, F.; Le Goff, E.; Bustamante, P.

    2012-08-01

    Most of the recent framework directives and environmental policies argue for the development and the use of indicators - notably trophodynamic indicators - that should be able to follow ecosystems' evolution in space and time, particularly under anthropogenic perturbations. In the last decades, the use of stable carbon and nitrogen isotopes ratios has increased exponentially, particularly in studies of marine ecosystems' trophic structure and functioning. This method is principally based on the assumption that the isotopic composition of a consumer directly reflects that of its food. Nevertheless, few studies have attempted to define the limits of this tool, before using it and drawing ecological conclusions from isotopic analysis. This study aimed to assess the importance of considering spatio-temporal variations in isotopic signatures of consumers when using δ13C and especially δ15N values in open ecosystems with complex food webs, using the Bay of Biscay (North-East Atlantic) as a case study. To this end, more than 140 species from this marine ecosystem were analysed for the isotopic signatures in their muscle tissue. They were sampled from coastal to oceanic and deep-sea areas and at different latitudes, to evaluate spatial variations of isotopic signatures. Selected species were also sampled over several years and in two seasons to account for inter-annual and seasonal variations. In the Bay of Biscay temperate ecosystem, which is subject to both coastal and oceanic influences - two main river inputs and upwelling areas - , δ13C and δ15N values significantly decreased from inshore to offshore species, and to a lesser extent from benthic to pelagic organisms. River discharges appeared to be the first factor influencing δ13C and δ15N values in consumers. From the important spatial variations detected in δ15N values in particular, we suggest that in such contrasted ecosystem, nitrogen isotopic ratios may also be revisited as an indicator of the feeding

  19. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Letourneur, Y.; Lison de Loma, T.; Richard, P.; Harmelin-Vivien, M. L.; Cresson, P.; Banaru, D.; Fontaine, M.-F.; Gref, T.; Planes, S.

    2013-12-01

    Stable isotope ratios (δ15N and δ13C) and diet of three fish species, Stegastes nigricans, Chaetodon citrinellus and Epinephelus merra, were analyzed on the fringing coral reefs of two bays that are differentially exposed to river runoff on Moorea Island, French Polynesia. S. nigricans and C. citrinellus relied mostly on turf algae and presented similar trophic levels and δ15N values, whereas E. merra fed on large invertebrates (crabs and shrimps) and had higher trophic levels and δ15N values. Discrepancies existed between stomach content and stable isotope analyses for the relative importance of food items. Bayesian mixing models indicated that sedimented organic matter was also an important additional food for S. nigricans and C. citrinellus, and fishes for E. merra. The main sources of organic matter involved in the food webs ending with these species were algal turfs and surface sediments, while water particulate organic matter was barely used. Significant spatial differences in C and N isotopic ratios for sources and fishes were found within and between bays. Lower 13C and higher 15N values were observed for various compartments of the studied trophic network at the end of each bay than at the entrance. Differences were observed between bays, with organic sources and consumers being, on average, slightly more 13C-depleted and 15N-enriched in Cook's Bay than in Opunohu Bay, linked with a higher mean annual flow of the river at Cook's Bay. Our results suggest that rivers bring continental material into these two bays, which is partly incorporated into the food webs of fringing coral reefs at least close to river mouths. Thus, continental inputs can influence the transfer of organic matter within coral reef food webs depending on the diet of organisms.

  20. The use of isotope effects to determine enzyme mechanisms.

    PubMed

    Cleland, W W

    2005-01-01

    Isotope effects are one of the most powerful kinetic tools for determining enzyme mechanisms. There are three methods of measurement. First, one can compare reciprocal plots with labeled and unlabeled substrates. The ratio of the slopes is the isotope effect on V/K, and the ratio of the vertical intercepts is the isotope effect on V(max). This is the only way to determine V(max) isotope effects, but is limited to isotope effects of 5% or greater. The second method is internal competition, where the labeled and unlabeled substrates are present at the same time and the change in their ratio in residual substrate or in product is used to calculate an isotope effect, which is that on V/K of the labeled reactant. This is the method used for tritium or (14)C, or with the natural abundances of (13)C, (15)N, or (18)O. The third method involves perturbations from equilibrium when a labeled substrate and corresponding unlabeled product are present at chemical equilibrium. This also gives just an isotope effect on V/K for the labeled reactant. The chemistry is typically not fully rate limiting, so that the isotope effect on V/K is given by: (x)(V/K)=((x)k+c(f)+c(r)(x)K(eq))/(1+c(f)+c(r)) where x defines the isotope (D, T, 13, 15, 18 for deuterium, tritium, (13)C, (15)N, or (18)O), and (x)(V/K), (x)k, and (x)K(eq) are the observed isotope effect, the intrinsic one on the chemical step, and the isotope effect on the equilibrium constant, respectively. The constants c(f) and c(r) are commitments in forward and reverse directions, and are the ratio of the rate constant for the chemical reaction and the net rate constant for release from the enzyme of the varied substrate (direct comparison) or labeled substrate (internal competition and equilibrium perturbation) for c(f), or the first product released or the one involved in the perturbation for c(r). The intrinsic isotope effect, (x)k, can be estimated by comparing deuterium and tritium isotope effects on V/K, or by comparing the

  1. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican

    PubMed Central

    Reudink, Matthew W.; Kyle, Christopher J.; McKellar, Ann E.; Somers, Christopher M.; Reudink, Robyn L. F.; Kyser, T. Kurt; Franks, Samantha E.; Nocera, Joseph J.

    2016-01-01

    Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia. PMID:26974163

  2. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-03-01

    Nitrate (NO3-) concentrations and dual isotopic composition (δ15N and δ18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO3- within this California estuary. We found the isotopic composition of NO3- was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO3- sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO3- concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO3- uptake and nitrification result in NO3- with low δ15N and high δ18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO3- isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO3- sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition.

  3. Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    PubMed

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  4. Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (δ15N) as Natural Tracers

    PubMed Central

    Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392

  5. Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (δ15N) as natural tracers.

    PubMed

    Badillo, Daniel; Herzka, Sharon Z; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ(15)N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources.

  6. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    PubMed

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  7. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.

  8. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer.

  9. Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: The importance of the isotopic baseline

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice; Mazzola, Antonio; Maci, Stefano; Basset, Alberto

    2013-12-01

    FishBase, a relational database freely available on the Internet, is to date widely used as a source of quantitative information on the trophic position of marine fish species. Here, we compared FishBase estimates for an assemblage of 30 fish species sampled in a Mediterranean lagoon (Acquatina lagoon, SE Italy) with their trophic positions calculated using nitrogen stable isotopes.

  10. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to testmore » the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.« less

  11. Legacy of contaminant N sources to the NO3‑ signature in rivers: a combined isotopic15N-NO3‑, δ18O-NO3‑, δ11B) and microbiological investigation

    NASA Astrophysics Data System (ADS)

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-02-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability.

  12. Legacy of contaminant N sources to the NO3− signature in rivers: a combined isotopic15N-NO3−, δ18O-NO3−, δ11B) and microbiological investigation

    PubMed Central

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-01-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability. PMID:28150819

  13. Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Komatsu, Daisuke D; Ishimura, Toyoho; Nakagawa, Fumiko; Tsunogai, Urumu

    2008-05-01

    We developed a rapid, sensitive, and automated analytical system to determine the delta15N, delta18O, and Delta17O values of nitrous oxide (N2O) simultaneously in nanomolar quantities for a single batch of samples by continuous-flow isotope-ratio mass spectrometry (CF-IRMS) without any cumbersome and time-consuming pretreatments. The analytical system consisted of a vacuum line to extract and purify N2O, a gas chromatograph for further purification of N2O, an optional thermal furnace to decompose N2O to O2, and a CF-IRMS system. We also used pneumatic valves and pneumatic actuators in the system so that we could operate it automatically with timing software on a personal computer. The analytical precision was better than 0.12 per thousand for delta15N with >4 nmol N2O injections, 0.25 per thousand for delta18O with >4 nmol N2O injections, and 0.20 per thousand for Delta17O with >20 nmol N2O injections for a single measurement. We were also easily able to improve the precision (standard errors) to better than 0.05 per thousand for delta15N, 0.10 per thousand for delta18O, and 0.10 per thousand for Delta17O through multiple analyses with more than four repetitions with 190 nmol samples using the automated analytical system. Using the system, the delta15N, delta18O, and Delta17O values of N2O can be quantified not only for atmospheric samples, but also for other gas or liquid samples with low N2O content, such as soil gas or natural water. Here, we showed the first ever Delta17O measurements of soil N2O.

  14. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  15. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  16. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    SciTech Connect

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  18. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  19. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth

    PubMed Central

    2017-01-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies.

  20. Isotope effects in ESR spectroscopy.

    PubMed

    Stößer, Reinhard; Herrmann, Werner

    2013-06-07

    In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  1. Simultaneous determination of stable isotopic compositions of nitrous oxide (δ15N and δ18O of N2O) and methane (δ13C of CH4) in nanomolar quantities from a single water sample

    NASA Astrophysics Data System (ADS)

    Hirota, A.; Tsunogai, U.; Komatsu, D. D.; Nakagawa, F.

    2010-12-01

    The stable isotopic compositions of nitrous oxide (δ15N of N2O and δ18O of N2O, respectively) and methane (δ13C of CH4) have provided us with some interesting geochemical insights. We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions of nanomolar quantities of N2O and CH4 in the environmental water, by combining continuous-flow isotope-ratio mass spectrometry and a He-sparging system to extract and purify the dissolved gases. Our system, which is composed of a sparging bottle, a chemical trap, four cold traps and a capillary gas chromatograph that use ultra-pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path subsequent to gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring m/z = 44, 45, and 46, on the bases of CO2+ and N2O+, respectively. The analytical system can be operated automatically with sequential software programmed on a personal computer. The analytical precisions (the standard deviation of a single measurement) were better than 0.2‰ for δ15N of N2O and 0.3‰ for δ18O of N2O, in the case of more than 6.7 nmol N2O injection and better than 1.4‰ for δ15N of N2O and 2.6‰ for δ18O of N2O, in the case of more than 0.2 nmol N2O injection, respectively. Simultaneously, the analytical precisions were better than 0.07‰ for δ13C of CH4, in the case of more than 5.5 nmol CH4 infection and better than 2.1‰ for δ13C of CH4, when more than 0.024 nmol CH4 injection. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample having

  2. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  3. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  4. The effects of Paraloid B-72 and Butvar B-98 treatment and organic solvent removal on δ(13)C, δ(15)N, and δ(18)O values of collagen and hydroxyapatite in a modern bone.

    PubMed

    France, Christine A M; Giaccai, Jennifer A; Doney, Charlotte R

    2015-06-01

    Stable isotopes in bones are a powerful tool for diet, provenance, climate, and physiological reconstructions, but necessarily require well-preserved specimens unaltered by postmortem diagenesis or conservation practices. This study examines the effects of Paraloid B-72 and Butvar B-98, two common consolidants used in field and museum conservation, on δ(13)C, δ(15)N, and δ(18)O values from bone collagen and hydroxyapatite. The effects of solvent removal (100% acetone, 100% ethanol, 9:1 acetone:xylenes, 9:1 ethanol:xylenes) and drying methods (ambient air, vacuum, oven drying at 80°C) were also examined to determine if bones treated with these consolidants can successfully be cleaned and used for stable isotope analyses. Results show that introduction of Paraloid B-72 or Butvar B-98 in 100% acetone or 100% ethanol, respectively, with subsequent removal by the same solvents and drying at 80°C facilitates the most successful removal of consolidants and solvents. The δ(13)C values in collagen, δ(15)N in collagen, δ(18)O in hydroxyapatite phosphate, and δ(13)C in hydroxyapatite structural carbonate were unaltered by treatments with Paraloid or Butvar and subsequent solvent removal. The δ(18)O in hydroxyapatite structural carbonate showed nonsystematic variability when bones were treated with Paraloid and Butvar, which is hypothesized to be a result of hydroxyl exchange when bones are exposed to consolidants in solution. It is therefore recommended that δ(18)O in hydroxyapatite structural carbonate should not be used in stable isotope studies if bones have been treated with Paraloid or Butvar.

  5. The effect of different cooking processes on stable C, N, and H isotopic compositions of beef.

    PubMed

    Zhou, Jiuqing; Guo, Boli; Wei, Yimin; Zhang, Guoquan; Wei, Shuai; Ma, Yiyan

    2015-09-01

    The variability in the stable C, N, and H isotopic composition caused by different beef processing operations (boiling, frying, and roasting) was studied. The aim was to evaluate the stability of stable isotopic fingerprint information during the beef cooking process. The δ(13)C, δ(15)N, and δ(2)H values for raw, boiled, fried and roasted beef were measured, and the differences in the stable isotopic composition between raw and processed beef products were assessed. The results indicated that the δ(13)C and δ(15)N values in raw beef were not significantly different compared with processed beef, but the δ(2)H values were significantly higher in processed beef than in raw beef. In general, boiling, frying, and roasting had no significant effect on δ(13)C and δ(15)N values, but the δ(2)H value of processed beef increased.

  6. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination.

  7. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow "fen-bog" gradient using digestive vacuole content and 13C and 15N isotopic analyses.

    PubMed

    Jassey, Vincent E J; Shimano, Satoshi; Dupuy, Christine; Toussaint, Marie-Laure; Gilbert, Daniel

    2012-05-01

    Population dynamics and feeding habits of the testate amoebae Nebela tincta and Hyalosphenia papilio were studied along a short "fen" to "bog" gradient in a Sphagnum-dominated mire (Jura, France). Samples were collected in living "top segments" (0-3 cm) and early declining "bottom segments" (3-6 cm) of Sphagnum fallax peat. Observations of digestive vacuole content and stable isotope analyses ((13)C and (15)N) were used to establish the feeding behavior of both testate amoeba species. Owing to their vertical distribution, the feeding habit of H. papilio was described from top segments, and that of N. tincta from bottom segments. Among identified food sources, those most frequently ingested by N. tincta were spores and mycelia of fungi (55%), microalgae (25%) and cyanobacteria (8.5%). For H. papilio, the most frequently ingested prey were ciliates (55%) and microalgae (35%). Nonmetric Multidimensional Scaling analysis clearly demonstrated that the two species did not have the same feeding habit along the "fen-bog" gradient, and furthermore that a significant spatial split exists in the feeding behavior of H. papilio. Additionally, isotope analyses suggested that H. papilio and N. tincta did not have the same trophic position in the microbial food web, probably resulting from their different feeding strategies.

  8. An isotopic (Δ14C, δ13C, and δ15N) investigation of particulate organic matter and zooplankton biomass in Lake Superior and across a size-gradient of aquatic systems

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Minor, E. C.; Werne, J. P.; McCallister, S. Leigh

    2012-04-01

    Food webs in aquatic systems can be supported both by carbon from recent local primary productivity and by carbon subsidies, such as material from terrestrial ecosystems or past in situ primary productivity. The importance of these subsidies to respiration and biomass production remains a topic of debate, but they may play major roles in determining the fate of organic carbon and in sustaining upper trophic levels, including those contributing to economically important fisheries. While some studies have reported that terrigenous organic carbon supports disproportionately high zooplankton production, others have suggested that phytoplankton preferentially supports zooplankton production in aquatic ecosystems. Here we apply natural abundance radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) analyses to show that zooplankton in Lake Superior selectively incorporate recently-fixed, locally-produced (autochthonous) organic carbon even though other carbon sources are readily available. Estimates from Bayesian isotopic modeling based on Δ14C values show that the average lakewide median contributions of recent in situ algal, terrestrial, sedimentary, and bacterial organic carbon to the bulk POM in Lake Superior were 23%, 28%, 15%, and 25%, respectively. However, the isotopic modeling estimates show that recent in situ production (algae) contributed a disproportionately large amount (median, 40-89%) of the carbon in zooplankton biomass in Lake Superior. Although terrigenous organic carbon and old organic carbon from resuspended sediments were significant portions of the available basal food resources, these contributed only a small amount to zooplankton biomass (average lakewide median, 2% from sedimentary organic carbon and 9% from terrigenous organic carbon). Comparison of zooplankton food sources based on their radiocarbon composition showed that terrigenous organic carbon was relatively more important in rivers and small lakes, and the proportion of terrestrially

  9. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species.

    PubMed

    Sah, Shambu P; Ilvesniemi, Hannu

    2006-12-01

    This study presents the impacts of clear-cutting and site preparation on soil and needle 15N-fractionation of Scots pine (Pinus sylvestris, L.) and Norway spruce (Picea abies (L.), Karst). Three microsites on different methods of site preparation were used: (i) mound (broken O/E/B horizons piled upside down over undisturbed humus), (ii) deep (exposed C-horizon) and (iii) shallow (exposed E/B horizon). We found significant differences between species, between closed forest and clear-cuts as well as between different site preparations. For instance, in the context of interspecific variations, the mean needle nitrogen concentrations of both seedlings (1.15,+/-0.10 %) and mature (1.09,+/-0.07 %) pine trees were significantly higher compared to corresponding needle concentrations of seedlings (0.88,+/-0.06 %) and mature trees (0.79,+/-0.02 %) of spruce. Similarly, we observed significantly more 15N-enriched needles of mature spruces (-4.0,+/-0.20 per thousand) as well as of seedlings (-5.0,+/-0.11 per thousand) relative to that of mature pine needles (-5.6,+/-0.10 per thousand) and seedlings (-6.0,+/-0.31 per thousand). These variations were assumed to be caused by the variation in mycorrhizal associations between the species. We assume that the proportion of mycorrhizal N-uptake of pines might have been larger than that of spruce. Regarding the clear-cut effects on N and 15N of both tree species, we observed that, in the mature natural stand, needle N concentrations of both pine (1.09,+/-0.07 %) and spruce (0.79,+/-0.02 %) tree species did not change significantly after clear-cutting (pine: 1.01,+/-0.06 %; spruce: 0.74,+/-0.04 % ). However, clear-cutting resulted in the significant increase in needle 15N natural abundance of both pine (-2.70,+/-0.06 per thousand) and spruce (-2.09,+/-0.05 per thousand) in comparison to that of natural stand (pine:-5.60,+/-0.10 per thousand; spruce:-4.00,+/-0.20 per thousand), which is assumed to be due to the increased level of

  10. Using d15 N in Fish Larvae as an Indicator of Watershed Sources of Anthropogenic Nitrogen: Response at Multiple Spatial Scales

    EPA Science Inventory

    The nitrogen stable isotope, 15N, is an effective tool to track anthropogenic N sources to aquatic ecosystems. It may be difficult to identify potential N sources, however, where 15N responds similarly to multiple, concurrent activities in the watershed that cause higher nutrient...

  11. Application of Screening Experimental Designs to Assess Chromatographic Isotope Effect upon Isotope-Coded Derivatization for Quantitative Liquid Chromatography–Mass Spectrometry

    PubMed Central

    2015-01-01

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography–mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, 13C6-, 15N2-, or 15N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett–Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of 15N or 13C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus 15N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with 15N- or 13C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  12. Tissue S/N ratios and stable isotopes (delta(34)S and delta(15)N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China.

    PubMed

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Wang, Yan-Li; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-05-01

    In urban cities in Southern China, the tissue S/N ratios of epilithic mosses (Haplocladium microphyllum), varied widely from 0.11 to 0.19, are strongly related to some atmospheric chemical parameters (e.g. rainwater SO(4)(2-)/NH(4)(+) ratios, each people SO(2) emission). If tissue S/N ratios in the healthy moss species tend to maintain a constant ratio of 0.15 in unpolluted area, our study cities can be divided into two classes: class I (S/N > 0.15, S excess) and class II (S/N < 0.15, N excess), possibly indicative of stronger industrial activity and higher density of population, respectively. Mosses in all these cities obtained S and N from rainwater at a similar ratio. Sulphur and N isotope ratios in mosses are found significantly linearly correlated with local coal delta(34)S and NH(4)(+)-N wet deposition, respectively, indicating that local coal and animal NH(3) are the major atmospheric S and N sources.

  13. Disentangling effects of growth and nutritional status on seabird stable isotope ratios

    USGS Publications Warehouse

    Sears, J.; Hatch, Shyla A.; O'Brien, D. M.

    2009-01-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather ??15N and ??13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing ??15N and ??13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in ??15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC ??15N, with chicks exhibiting lower ??15N when they were growing the fastest. As growth slowed, ??15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted ??15N in chick RBCs by 0.92???. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. ??15N values in RBCs of free-ranging auklets fell within a range of only 1.03???, while feather ??15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue. ?? 2008 Springer-Verlag.

  14. Coupling tree-ring delta13C and delta15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA.

    PubMed

    Balster, Nick J; Marshall, John D; Clayton, Murray

    2009-12-01

    Nitrogen (N) fertilization causes long-term increases in biomass production in many N-limited forests around the world, but the mechanistic basis underlying the increase is often unclear. One possibility, especially in summer-dry climates, is that N fertilization increases the efficiency with which a finite water supply is consumed to support photosynthesis. This increase is achieved by a reduction in the canopy-integrated concentration of internal CO(2) and thus discrimination against (13)C. We used stable isotopes of carbon (delta(13)C) in tree rings to experimentally test the physiological impact of N fertilization on mature Douglas-fir (Pseudotsuga menziesii Franco var. glauca) stands across the geographic extent of the Intermountain West, USA. The concentration and the stable isotopes of N (delta(15)N) in tree rings were also used to assess the presence and activity of fertilizer N. We hypothesized that N fertilization would (i) increase delta(15)N and N concentration of stemwood relative to non-fertilized stands and (ii) increase stemwood delta(13)C as photosynthetic gas exchange responded to the additional N. This experiment included two rates of urea addition, 178 kg ha(-1) (low) and 357 kg ha(-1) (high), which were applied twice over a 6-year interval bracketed by the 18 years of wood production measured in this study. Foliar N concentrations measured the year after each fertilization treatment suggest that the fertilizer N had been assimilated by the trees (P < 0.001). The N fertilization significantly enriched stemwood delta(15)N by 1.3 per thousand at the low fertilization rate and by 2.4 per thousand at the high rate (P < 0.001) despite variation in soil N between sites. However, we found no significant effect of the N fertilizer on delta(13)C of the annual rings (P = 0.76). These data lead us to suggest that alternative mechanisms underlie the growth response to fertilizer, i.e., increase in canopy area and shifts in biomass allocation.

  15. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2016-10-01

    Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.

  16. Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O.

    PubMed

    Su, Xun-Cheng; Loh, Choy-Theng; Qi, Ruhu; Otting, Gottfried

    2011-05-01

    Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that reduction of E. coli S30 extracts with NaBH(4) presents a simple and inexpensive way to achieve cleaner selective isotope labelling in cell-free protein synthesis reactions. The purpose of the NaBH(4) is to inactivate all pyridoxal-phosphate (PLP) dependent enzymes by irreversible reduction of the Schiff bases formed between PLP and lysine side chains of the enzymes or amino groups of free amino acids. The reduced S30 extracts retain their activity of protein synthesis, can be stored as well as conventional S30 extracts and effectively suppress conversions between different amino acids. In addition, inactivation of PLP-dependent enzymes greatly stabilizes hydrogens bound to α-carbons against exchange with water, minimizing the loss of α-deuterons during cell-free production of proteins from perdeuterated amino acids in H(2)O solution. This allows the production of highly perdeuterated proteins that contain protons at all exchangeable positions, without having to back-exchange labile deuterons for protons as required for proteins that have been synthesized in D(2)O.

  17. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  18. Coupled nitrification-denitrification in sediment of the eastern Bering Sea shelf leads to 15N enrichment of fixed N in shelf waters

    NASA Astrophysics Data System (ADS)

    Granger, J.; Prokopenko, M. G.; Sigman, D. M.; Mordy, C. W.; Morse, Z. M.; Morales, L. V.; Sambrotto, R. N.; Plessen, B.

    2011-11-01

    We studied the nitrogen biogeochemistry of the ice-covered eastern Bering Sea shelf using the isotope ratios (15N/14N and 18O/16O) of NO3- and other N species. The 15N/14N of late winter NO3- on the shelf decreases inshore and is inversely correlated with bottom water [NH4+], consistent with an input of low-15N/14N NO3- from partial nitrification of NH4+ remineralized from the sediments. An inshore 15N/14N increase in total dissolved N (TDN) suggests that (1) the sediment-derived NH4+ is elevated in 15N due to the same partial nitrification that yields the low-15N/14N NO3-, and (2) 15N-deplete NO3- from partial nitrification within the sediments is denitrified to N2. The proportion of newly nitrified NO3- on the shelf, evidenced by an inshore decrease in NO3- 18O/16O, is correlated with the N deficit, further implicating nitrification coupled to denitrification; however, a simple N isotope budget indicates a comparable rate of denitrification supported by diffusion of NO3- into the sediments. The isotopic impact of benthic N loss is further demonstrated by a correlation between the 15N/14N of shelf surface sediment and the N deficit of the overlying water column, both of which increase inshore and northward, as well as by Arctic NO3- isotope data indicating that the fixed N transported through Bering Strait has a 15N/14N higher than is found in the open Bering Sea. The significant net isotope effect of benthic N loss on the Bering shelf, 6-8 ‰, is at odds with previous assumptions regarding the global ocean's N isotope budget.

  19. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  20. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  1. Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects

    SciTech Connect

    Schell, D.M.

    1995-12-31

    Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratin of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.

  2. Nitrification-coupled denitrification in sediment of the eastern Bering Sea shelf leads to 15N-enrichment of fixed N in shelf waters

    NASA Astrophysics Data System (ADS)

    Granger, J.; Prokopenko, M. G.; Mordy, C. W.; Sigman, D. M.

    2010-12-01

    We present a survey of the N and O isotope ratios of NO3- (15N/14N and 18O/16O) on the eastern Bering Sea shelf. We participated in two consecutive field campaigns in April 2007 and April 2008, for which we evaluate the N isotope budget of the ice-covered shelf prior to the onset of significant phytoplankton spring growth. The 15N/14N of NO3- was progressively 15N-deplete inshore and northward, and inversely correlated with incident [NH4+], whereas the 15N/14N of [NH4+] was 15N-enriched relative to incident NO3-. This is best explained by N isotope discrimination during partial nitrification of the NH4+ released from sediment, which indicates that remineralization of organic material in sediment contributes appreciably to replenishment of water column NO3- throughout the winter months. These observations further invoke a mechanism of fixed N loss from sediment where 15N-deplete NO3- generated from nitrification in oxygenated surface sediment fuels underlying denitrification, leading to the net loss of 15N-deplete N as N2. A parallel efflux of 15N-enriched NH4+ from sediment should lead to a net 15N-enrichment of fixed N in the water column. This mechanism is corroborated by measurements of the 15N/14N of surface sediment on the shelf, which were progressively 15N-enriched with hydrographic distance from shelf edge, in proportion to the extent of N loss to sedimentary denitrification recorded in the overlying water column. Moreover, the fraction of newly nitrified nitrate on the shelf, evidenced by a decrease in the 18O/16O, correlated strongly with the extent of fixed N loss to sedimentary denitrification, further implicating nitrification-coupled denitrification as the predominant mechanism of fixed N loss on the shelf. The isotope effect of nitrification-couple denitrification on the shelf, derived from the 15N/14N of surface sediment relative the water column N loss, is surprisingly elevated, ranging between 6.2‰ and 8.1‰. The sizeable amplitude of the

  3. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ13C, δ15N, and δ18O measurements

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Jordan, James A.

    2016-01-01

    Comparative measurements of stable hydrogen and oxygen isotopes in wood are hampered by the lack of proper reference materials (RMs). The U.S. Geological Survey (USGS) has prepared three powdered, whole-wood RMs, USGS54 (Pinus contorta, Canadian lodgepole pine), USGS55 (Cordia cf. dodecandra, Mexican ziricote), and USGS56 (Berchemia cf. zeyheri, South African red ivorywood). The stable isotopes of hydrogen, oxygen, carbon, and nitrogen in these RMs span ranges as δ2HVSMOW from –150.4 to –28.2 mUr or ‰, as δ18OVSMOW from + 17.79 to + 27.23 mUr, as δ13CVPDB from –27.13 to –24.34 mUr, and as δ15N AIR-N2 from –2.42 to + 1.8 mUr. These RMs will enable users to normalize measurements of wood samples to isotope–delta scales, and they are intended primarily for the normalization of δ2H and δ18O measurements of unknown wood samples. However, they also are suitable for normalization of stable isotope measurements of carbon and nitrogen in wood samples. In addition, these RMs are suitable for inter-laboratory calibration for the dual-water suilibration procedure for the measurements of δ2HVSMOW values of non-exchangeable hydrogen. The isotopic compositions with 1-σ uncertainties, mass fractions of each element, and fractions of exchangeable hydrogen of these materials are:USGS54 (Pinus contorta, Canadian Lodgepole pine)δ2HVSMOW = –150.4 ± 1.1 mUr (n = 29), hydrogen mass fraction = 6.00 ± 0.04 % (n = 10)Fraction of exchangeable hydrogen = 5.4 ± 0.6 % (n = 29)δ18OVSMOW = + 17.79 ± 0.15 mUr (n = 18), oxygen mass fraction = 40.4 ± 0.2 % (n = 6)δ13CVPDB = –24.43 ± 0.02 mUr (n = 18), carbon mass fraction = 48.3 ± 0.4 % (n = 12)δ15NAIR-N2 = –2.42 ± 0.32 mUr (n = 17), nitrogen mass fraction = 0.05 % (n = 4)USGS55 (Cordia cf. dodecandra, Mexican ziricote)δ2HVSMOW = –28.2 ± 1.7 mUr (n = 30), hydrogen mass fraction = 5.65 ± 0.06 % (n = 10)Fraction of exchangeable

  4. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    BACKGROUND Monitoring of nitrous oxide concentration only started during the last 30 years in North America, but anthropogenic atmospheric nitrogen has been significantly emitted over the last 150 years. Can geochemical characteristics of tree rings be used to infer past changes in the nitrogen cycle of temperate regions? To address this question we use nitrogen stable isotopes in 125 years-long ring series from beech specimens (Fagus grandifolia) of the Georgian Bay Islands National Park (eastern Ontario), and pine (Pinus strobus) and beech trees of the Arboretum Morgan near Montreal (western Quebec). To evaluate the reliability of the N stable isotopes in wood treated for removal of soluble materials, we tested both tree species from the Montreal area. The reproducibility from tree to tree was excellent for both pine and beech trees, the isotopic trends were strongly concordant, and they were not influenced by the heartwood-sapwood transition zone. The coherence of changes of the isotopic series observed for the two species suggests that their tree-ring N isotopic values can serve as environmental indicator. RESULTS AND INTERPRETATION In Montreal and Georgian Bay, the N isotopes show strong and similar parallel agreement (Gleichlaufigkeit test) with the climatic parameters. So in fact, the short-term isotopic fluctuations correlate directly with summer precipitation and inversely with summer and spring temperature. A long-term decreasing isotope trend in Montreal indicates progressive changes in soil chemistry after 1951. A pedochemical change is also inferred for the Georgian Bay site on the basis of a positive N isotopic trend initiated after 1971. At both sites, the long-term ^15N series correlate with a proxy for NOx emissions (Pearson correlation), and carbon-isotope ring series suggest that the same trees have been impacted by phytotoxic pollutants (Savard et al., 2009a). We propose that the contrasted long-term nitrogen-isotope changes of Montreal and

  5. Mammalian DNA δ15N exhibits 40‰ intramolecular variation and is unresponsive to dietary protein level

    PubMed Central

    Strable, Maggie S.; Tschanz, Carolyn L.; Varamini, Behzad; Chikaraishi, Yoshito; Ohkouchi, Naohiko; Brenna, J. Thomas

    2014-01-01

    We report the first high precision characterization of molecular and intramolecular δ15N of nucleosides derived from mammalian DNA. The influence of dietary protein level on brain amino acids and deoxyribonucleosides was determined to investigate whether high protein turnover would alter amino acid 15N or 13C. Pregnant guinea pig dams were fed control diets, or high or low levels of dietary protein throughout gestation, and all pups were fed control diets. Cerebellar DNA of offspring was extracted at 2 and 120 days of life, nucleosides isolated and δ15N and δ13C characterized. Mean diet δ15N = 0.45±0.33‰, compared to cerebellar whole tissue and DNA δ15N = +4.1±0.7‰ and −4.5±0.4‰, respectively. Cerebellar deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), and deoxyguanosine (dG) δ15N were +1.4±0.4, −2.1±0.9, −7.2±0.3, and −10.4±0.5‰, respectively. There were no changes in amino acid or deoxyribonucleoside δ15N due to dietary protein level. Using known metabolic relationships, we developed equations to calculate the intramolecular δ15N originating from aspartate (asp) in purines (pur) or pyrimidines (pyr), glutamine (glu), and glycine (gly) to be δ15NASP-PUR, δ15NASP-PYR, δ15NGLN, and δ15NGLY +11.9±2.3‰, +7.0±2.0‰, −9.1±2.4‰, and −31.8±8.9‰, respectively. A subset of twelve amino acids from food and brain had mean δ15N of 4.3±3.2‰ and 13.8±3.1‰, respectively, and δ15N for gly and asp were 12.6±2.2‰ and 15.2±0.8‰, respectively. A separate isotope tracer study detected no significant turnover of cerebellar DNA in the first six months of life. The large negative δ15N difference between gly and cerebellar purine N at the gly (7) position implies either that there is a major isotope effect during DNA synthesis, or that in utero gly has a different isotope ratio during rapid growth and metabolism than in adult life. Our data show that cerebellar nucleoside intramolecular δ15N vary over more than

  6. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  7. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    NASA Astrophysics Data System (ADS)

    Alkhatib, M.; Lehmann, M. F.; Del Giorgio, P. A.

    2011-12-01

    The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. Benthic N isotope exchange, as well as the nitrate and TDN isotope effects of benthic nitrification-denitrification coupling on the water column, ϵapp and ϵsed, respectively, were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net nitrate elimination was barely expressed at the scale of sediment-water-exchange, with ϵapp values <3‰. The strongest under-expression of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate ϵapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of ϵsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly enhance ϵsed. Calculated ϵsed values were within the range of 4.6 ± 2‰, and were related to organic matter reactivity and oxygen penetration depth in the sediments. ϵsed reflects the δ15N of the N2

  8. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling.

    PubMed

    Conrads, T P; Alving, K; Veenstra, T D; Belov, M E; Anderson, G A; Anderson, D J; Lipton, M S; Pasa-Tolić, L; Udseth, H R; Chrisler, W B; Thrall, B D; Smith, R D

    2001-05-01

    We describe the combined use of 15N-metabolic labeling and a cysteine-reactive biotin affinity tag to isolate and quantitate cysteine-containing polypeptides (Cys-polypeptides) from Deinococcus radiodurans as well as from mouse B16 melanoma cells. D. radiodurans were cultured in both natural isotopic abundance and 15N-enriched media. Equal numbers of cells from both cultures were combined and the soluble proteins extracted. This mixture of isotopically distinct proteins was derivatized using a commercially available cysteine-reactive reagent that contains a biotin group. Following trypsin digestion, the resulting modified peptides were isolated using immobilized avidin. The mixture was analyzed by capillary reversed-phase liquid chromatography (LC) online with ion trap mass spectrometry (MS) as well as Fourier transform ion cyclotron resonance (FTICR) MS. The resulting spectra contain numerous pairs of Cyspolypeptides whose mass difference corresponds to the number of nitrogen atoms present in each of the peptides. Designation of Cys-polypeptide pairs is also facilitated by the distinctive isotopic distribution of the 15N-labeled peptides versus their 14N-labeled counterparts. Studies with mouse B16 cells maintained in culture allowed the observation of hundreds of isotopically distinct pairs of peptides by LC-FTICR analysis. The ratios of the areas of the pairs of isotopically distinct peptides showed the expected 1:1 labeling of the 14N and 15N versions of each peptide. An additional benefit from the present strategy is that the 15N-labeled peptides do not display significant isotope-dependent chromatographic shifts from their 14N-labeled counterparts, therefore improving the precision for quantitating peptide abundances. The methodology presented offers an alternate, cost-effective strategy for conducting global, quantitative proteomic measurements.

  9. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data.

    PubMed

    Chakraborty, Subrata; Muskatel, B H; Jackson, Teresa L; Ahmed, Musahid; Levine, R D; Thiemens, Mark H

    2014-10-14

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from -400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ(15)N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ(15)N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula.

  10. delta15N and delta13C diet-tissue discrimination factors for large sharks under semi-controlled conditions.

    PubMed

    Hussey, Nigel E; Brush, Jaclyn; McCarthy, Ian D; Fisk, Aaron T

    2010-04-01

    Stable isotopes (delta(15)N and delta(13)C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors ((13)C and (15)N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated (15)N and (13)C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean+/-SD for (15)N and (13)C in lipid extracted muscle using lipid extracted prey data were 2.29 per thousand+/-0.22 and 0.90 per thousand+/-0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar (15)N and (13)C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of (15)N and (13)C in lipid extracted liver and prey were 1.50 per thousand+/-0.54 and 0.22 per thousand+/-1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage (15)N and (13)C values were 1.45 per thousand+/-0.61 and 3.75 per thousand+/-0.44, respectively. Organ (15)N and (13)C values were more variable among individual sharks but heart tissue was consistently enriched by approximately 1-2.5 per thousand. Minimal variability in muscle and liver delta(15)N and delta(13)C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our

  11. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  12. Mother-egg stable isotope conversions and effects of lipid extraction and ethanol preservation on loggerhead eggs.

    PubMed

    Kaufman, Temma J; Pajuelo, Mariela; Bjorndal, Karen A; Bolten, Alan B; Pfaller, Joseph B; Williams, Kristina L; Vander Zanden, Hannah B

    2014-01-01

    Carbon and nitrogen stable isotope (δ(13)C and δ(15)N) analysis has been used to elucidate foraging and migration behaviours of endangered sea turtle populations. Isotopic analysis of tissue samples from nesting females can provide information about their foraging locations before reproduction. To determine whether loggerhead (Caretta caretta) eggs provide a good proxy for maternal isotope values, we addressed the following three objectives: (i) we evaluated isotopic effects of ethanol preservation and lipid extraction on yolk; (ii) we examined the isotopic offset between maternal epidermis and corresponding egg yolk and albumen tissue δ(13)C and δ(15)N values; and (iii) we assessed the accuracy of foraging ground assignment using egg yolk and albumen stable isotope values as a proxy for maternal epidermis. Epidermis (n = 61), albumen (n = 61) and yolk samples (n = 24) were collected in 2011 from nesting females at Wassaw Island, GA, USA. Subsamples from frozen and ethanol-preserved yolk samples were lipid extracted. Both lipid extraction and ethanol preservation significantly affected yolk δ(13)C, while δ(15)N values were not altered at a biologically relevant level. The mathematical corrections provided here allow for normalization of yolk δ(13)C values with these treatments. Significant tissue conversion equations were found between δ(13)C and δ(15)N values of maternal epidermis and corresponding yolk and albumen. Finally, the consistency in assignment to a foraging area was high (up to 84%), indicating that these conversion equations can be used in future studies where stable isotopes are measured to determine female foraging behaviour and trophic relationships by assessing egg components. Loggerhead eggs can thus provide reliable isotopic information when samples from nesting females cannot be obtained.

  13. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    SciTech Connect

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  14. Importance of Nitrate Attenuation In A Small Wetland Following Forest Harvest: 18O/16O, 15N/14N in nitrate and 15N/14N) in vegetation

    NASA Astrophysics Data System (ADS)

    Spoelstra, J.; Schiff, S. L.; Semkin, R. G.; Jeffries, D. S.; Elgood, R. J.

    2004-05-01

    Forest harvest can result in elevated nitrate concentrations in streams and groundwater affecting forest regeneration and downstream aquatic ecosystems. Turkey Lakes Watershed, located near Sault Ste Marie, Ontario (TLW), exhibits relatively high nitrate export due to naturally high rates of nitrification. During a forest harvest experiment at the TLW, stable isotope techniques were used to investigate nitrate attenuation in an intermediate position natural wetland receiving high concentrations of nitrate following forest clear-cutting. Isotopic analysis of nitrate (18O/16O, 15N/14N) and vegetation (15N/14N) demonstrated that denitrification and plant uptake of nitrate resulted in significantly lower nitrate concentrations in wetland outflow compared to incoming stream water and groundwater. The 0.2-hectare forested swamp, too small to show up on standard topographic maps, retained 65 to 100 percent of upgradient nitrate inputs, elevated due to increased nitrification in soils. The 15N/14N enrichment factor associated with nitrate attenuation in wetland surface water was lower than observed during denitrification in groundwaters, suggesting that denitrification proceeded to completion in some areas of the wetland. Even small, shallow, carbon rich pockets of organic matter in topographic depressions can significantly affect biogeochemical fluxes of C, N, S and Ca. Future forest management practices designed to recognize and preserve small wetlands could significantly reduce the potentially detrimental effects of forest harvest on aquatic systems.

  15. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    NASA Astrophysics Data System (ADS)

    Alkhatib, M.; Lehmann, M. F.; del Giorgio, P. A.

    2012-05-01

    The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. N isotope effects on the water column associated with the benthic exchange of nitrate (ϵapp) and TDN (ϵsed) during benthic nitrification-denitrification coupling were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net fixed N loss was barely expressed at the scale of sediment-water exchange, with ϵapp values <3‰. The strongest under-expression (i.e. lowest ϵapp) of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate ϵapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of ϵsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly elevate ϵsed above ϵapp. Calculated ϵsed values were within the range of 4.6 ± 2‰ and were related to organic matter reactivity and oxygen penetration depth in the sediments. &varepsilon

  16. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  17. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    PubMed

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer

  18. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  19. Isotope effects of hydrogen and atom tunnelling

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Pliss, E. M.

    2016-06-01

    The abnormally high mass-dependent isotope effects in liquid-phase hydrogen (deuterium) atom transfer reactions, which are customarily regarded as quantum effects, are actually the products of two classical effects, namely, kinetic and thermodynamic ones. The former is determined by the rate constants for atom transfer and the latter is caused by nonbonded (or noncovalent) isotope effects in the solvation of protiated and deuterated reacting molecules. This product can mimic the large isotope effects that are usually attributed to tunnelling. In enzymatic reactions, tunnelling is of particular interest; its existence characterizes an enzyme as a rigid molecular machine in which the residence time of reactants on the reaction coordinate exceeds the waiting time for the tunnelling event. The magnitude of isotope effect becomes a characteristic parameter of the internal dynamics of the enzyme catalytic site. The bibliography includes 61 references.

  20. Discrimination against 15N among recombinant inbred lines of Phaseolus vulgaris L. contrasting in phosphorus use efficiency for nitrogen fixation.

    PubMed

    Lazali, Mohamed; Bargaz, Adnane; Carlsson, Georg; Ounane, Sidi Mohamed; Drevon, Jean Jacques

    2014-02-15

    Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant(-1) week(-1)) versus P-deficient (75 μmol P plant(-1) week(-1)) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of (15)N over total N content ((15)N/Nt) for shoots, roots and nodules were determined. The results showed lower (15)N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in (15)N/Nt in shoots (-0.18%) than in nodules (-0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (-0.33%) and 104 (-0.25%). Nodule (15)N/Nt was significantly related to both the quantity of N2 fixed (R(2)=0.96***) and the P content of nodules (R(2)=0.66*). We conclude that the discrimination against (15)N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the (15)N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation.

  1. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    PubMed

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  2. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  3. Effect of the phase composition of the surface layer on the mechanical properties of 23Kh15N5AM3-Sh TRIP steel sheets

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.; Sirotinkin, V. P.; Ashmarin, A. A.; Eliseev, E. A.; Rybal'chenko, O. V.

    2016-04-01

    The static and cyclic mechanical properties of cold-rolled corrosion-resistant VNS 9-Sh (23Kh15N5AM3-Sh) TRIP sheet steel from two batches having different deformation martensite contents in the surface layer are studied. An increase in the deformation martensite content is shown to cause an increase in the strength properties, a certain decrease in the plasticity, and an increase in the fatigue limit at 107 cycles.

  4. Effect of temperature, ration, body size and age on sulphur isotope fractionation in fish.

    PubMed

    Barnes, Carolyn; Jennings, Simon

    2007-01-01

    Sulphur isotope analysis (delta(34)S) is increasingly identified as a valuable tool for source differentiation and the determination of trophic level in food webs, but there are still many uncertainties associated with the interpretation of delta(34)S data. To investigate the effects of temperature, ration, body size and age on sulphur trophic fractionation (Deltadelta(34)S) in fish, we reared European sea bass (Dicentrarchus labrax) on identical diets at 11 and 16 degrees C at three ration levels for over 600 days. Deltadelta(34)S was between 0 and -1 per thousand. The effect of temperature on Deltadelta(34)S was small and inconsistent, varying over the course of the experiment and depending on ration. This contrasts with temperature effects on bass Deltadelta(13)C and Deltadelta(15)N, where Deltadelta(13)C increases at warm temperatures while Deltadelta(15)N falls. Body size and age had a positive relationship with Deltadelta(34)S but the relationship with size was not significant for bass that weighed >20 g. As Deltadelta(34)S is small and the range in delta(34)S of potential diet items can be much greater than the range in delta(13)C or delta(15)N, our results show that sulphur stable isotopes are particularly useful for source differentiation in fish.

  5. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  6. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  7. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  8. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  9. Natural (15)N Abundance in Key Amino Acids from Lamb Muscle: Exploring a New Horizon in Diet Authentication and Assessment of Feed Efficiency in Ruminants.

    PubMed

    Cantalapiedra-Hijar, Gonzalo; Ortigues-Marty, Isabelle; Schiphorst, Anne-Marie; Robins, Richard J; Tea, Illa; Prache, Sophie

    2016-05-25

    Natural (15)N abundance (δ(15)N) varies between individual amino acids (AAs). We hypothesized that δ(15)N of nontransaminating and essential AAs ("source" AAs, such as phenylalanine) present in animal tissues could be used as a marker of dietary origin, whereas δ(15)N of transaminating AAs ("trophic" AAs, such as glutamic acid) could give more detailed insights into animal feed efficiency. Two diets based on dehydrated Lucerne pellets were tested in growing lambs, which promoted different feed efficiencies. No dietary effects were noted on δ(15)N of any AAs analyzed in lamb muscle. In addition, δ(15)N of phenylalanine was unexpectedly similar to that of glutamic acid, suggesting that δ(15)N of AAs is significantly derived from the metabolism of the rumen microbiota and, thus, are not suited for diet authentication in ruminants. In contrast, the δ(15)N of transaminating AAs facilitates an improved prediction of animal feed efficiency compared to the classical isotopic bulk N analysis.

  10. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  11. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  12. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  13. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    NASA Astrophysics Data System (ADS)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  14. Comment on "Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N"

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-05-01

    In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that "it would certainly be useful to perform a Coulomb dissociation experiment to find the low-energy capture cross section for the reaction" 15N(n ,γ )16N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in 16N, which do not contribute in a Coulomb dissociation experiment. An estimate of the total 15N(n ,γ )16N cross section from Coulomb dissociation of 16N requires a precise knowledge of the γ -ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground-state branching of the order of 0.05% to 0.6% at energies between 100 and 500 keV, which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, Shubhchintak, and Chatterjee deviates significantly from the expected energy dependence for p -wave capture.

  15. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  16. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase†

    PubMed Central

    Luk, Louis Y. P.; Ruiz‐Pernía, J. Javier; Adesina, Aduragbemi S.; Loveridge, E. Joel

    2015-01-01

    Abstract Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N‐terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C‐terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N‐terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C‐terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C‐terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. PMID:26079622

  17. Theoretical calculation of polarizability isotope effects.

    PubMed

    Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés

    2017-03-01

    We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

  18. Asymmetric Induction by a Nitrogen (14) N/(15) N Isotopomer in Conjunction with Asymmetric Autocatalysis.

    PubMed

    Matsumoto, Arimasa; Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi; Soai, Kenso

    2016-12-05

    Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N(2) ,N(2) ,N(3) ,N(3) -tetramethyl-2,3-butanediamine containing nitrogen ((14) N/(15) N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis.

  19. Asymmetric Induction by a Nitrogen 14N/15N Isotopomer in Conjunction with Asymmetric Autocatalysis

    PubMed Central

    Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi

    2016-01-01

    Abstract Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N 2 ,N 2 ,N 3 ,N 3‐tetramethyl‐2,3‐butanediamine containing nitrogen (14N/15N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis. PMID:27754589

  20. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  1. Distribution of 15N Among Plant Parts of Nodulating and Nonnodulating Isolines of Soybeans 1

    PubMed Central

    Shearer, Georgia; Kohl, Daniel H.; Harper, James E.

    1980-01-01

    Differences among plant parts in the natural abundance of 15N are of interest from the point of view of developing a sampling strategy for using 15N measurements to estimate the contribution of symbiotically fixed N to N2 fixing plants, and because they reflect isotopic fractionation associated with degradation, transport, and resynthesis of N-bearing molecules. This paper reports such differences in nodulating and nonnodulating isolines of soybeans (Glycine max [L] (Merrill, variety Harosoy)) grown under several different conditions. Nodules were strikingly enriched in 15N compared to other plant parts (by an average of 8.3‰ excess 15N), and the enrichment increased with time during the growing season. 15N was much more uniformly distributed among other plant parts. Although there were significant differences among other plant parts, the maximum deviation of the 15N abundance of any plant part from that of the entire plant was about 2‰ 15N excess. The 15N abundance of the seed N was most representative of the whole plant. There were significant differences between isolines in the distribution of 15N. The distribution of 15N within plants also varied with experimental conditions. The implications of these results for estimation of N2 fixation from measurements of the natural abundance of 15N are discussed. PMID:16661393

  2. Longitudinal differences in 15N between mothers and offspring during and after weaning in a small cooperative mammal, the meerkat (Suricata suricatta).

    PubMed

    Dalerum, Fredrik; Bennett, Nigel C; Clutton-Brock, Tim H

    2007-01-01

    Gestation and subsequent lactation are energetically costly life history events for mammalian females. We used longitudinal delta15N data from hair samples from offspring and their mothers to explore lactation patterns in a small cooperative mammal, the meerkat (Suricata suricatta). Lactation enriched hair from meerkat offspring in 15N compared with that of their mothers, and this enrichment gradually declined after weaning. Although the observed peak enrichment of approximately 1 per thousand was substantially below the predicted levels of trophic enrichment in capital versus income breeders, we suggest that our results reflect an income breeding tactic in this species. Our study supports the notion that delta15N analyses can be a useful tool to investigate lactation schedules in mammals. However, reliable conclusions from 15N data regarding the nutritional tactics of mammalian females during reproduction may be limited by our scant understanding of the effects of various physiological variables on isotope assimilation.

  3. Isotopic effects of nitrate photochemistry in snow: A field study at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Berhanu, T. A.; Erbland, J.; Savarino, J. P.

    2012-12-01

    Nitrate (NO3-) is the end product of NOx (NO+NO2) oxidation in the atmosphere and one of the most abundant anions present in the Antarctic snow pack. The comprehensive isotopic composition of nitrate (δ18O, Δ17O and δ15N) obtained from deep ice-cores may provide valuable information regarding the oxidative capacity of the atmosphere and could provide constraints on the global NOx budget. Nitrogen stable isotope ratios are typically thought to trace NOx sources while oxygen isotope ratios convey quantitative information regarding the oxidation pathways leading to nitrate formation. However, nitrate deposited at low accumulation sites in Polar Regions such as Dome C, Antarctica, is exposed to post depositional processes that modify its original isotopic composition. Among these processes, photolysis has been identified as the most significant mechanism leading to large nitrate mass loss and isotopic fractionation. Emission of NOx and OH from photolysis of nitrate, as well as formation of by-products such as HONO, can have a significant impact on the overlying boundary layer chemistry of polar regions. The quantitative effect of photolysis on the isotopic signature of nitrate is presently not well constrained and previous experimental and modelling studies have resulted in differing conclusions regarding the role of photolysis in the post processing of nitrate deposited to snow. In order to quantify the effect of photolysis on the isotopic composition of nitrate in snow, we have conducted a field study at Dome C, Antarctica. In this study, two snow sampling fields (1m wide, 2m long and 0.5m deep) within close proximity of each other were studied for the effect of UV light using a plexi glass filter experiment. The two fields were filled with wind blown snow at the beginning of December 2011 and then covered with plexi glass sheets. One of these sheets was equipped with a UV filter. Sampling was conducted every 10 days at a 2-5 cm depth resolution during the period

  4. The influence of fish cage culture on δ13C and δ15N of filter-feeding Bivalvia (Mollusca).

    PubMed

    Benedito, E; Figueroa, L; Takeda, A M; Manetta, G I

    2013-11-01

    The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.

  5. 15N NMR of 1,4-dihydropyridine derivatives.

    PubMed

    Goba, Inguna; Liepinsh, Edvards

    2013-07-01

    In this article, we describe the characteristic (15)N and (1)HN NMR chemical shifts and (1)J((15)N-(1)H) coupling constants of various symmetrically and unsymmetrically substituted 1,4-dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N-alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects.

  6. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    SciTech Connect

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  7. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  8. Experimental Studies of the Isotope Effect in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Franck, Jürgen P.

    The following sections are included: * INTRODUCTION * BACKGROUND * DEFINITIONS * CONNECTION WITH THEORY * OUTLINE * EXPERIMENTAL METHODS * SAMPLE PREPARATION * DETERMINATION OF ISOTOPIC SHIFTS * THE OXYGEN ISOTOPE EFFECT IN HIGH Tc CUPRATES * YBa2Cu3O7 AND RELATED SYSTEMS * Completely Isotope Exchanged * Partially and Selectively Isotope Exchanged * SUBSTITUTED YBa2Cu3O7 AND RELATED SYSTEMS * YBa2Cu4O8 * La2-xMxCuO4 (M = Sr, Ba) AND RELATED SYSTEMS * Bi-Sr-Ca-Cu OXIDES * (Nd1-xCex)2CuO4 * Tℓ BASED SYSTEMS * PARTIAL ISOTOPE EFFECTS FOR ELEMENTS OTHER THAN OXYGEN IN HIGH Tc CUPRATES * THE COPPER ISOTOPE EFFECT * ISOTOPE EFFECT FOR ELEMENTS OTHER THAN OXYGEN OR COPPER * THE OXYGEN ISOTOPE EFFECT IN RELATED SUPERCONDUCTORS * Ba-Pb-Bi OXIDE AND Ba-K-Bi OXIDE * FULLERENES * DISCUSSION * SUMMARY OF EXPERIMENTAL RESULTS * THEORETICAL CONSIDERATIONS * CONCLUSION * ACKNOWLEDGEMENTS * REFERENCES

  9. Microturbulence study of the isotope effect

    SciTech Connect

    Bustos, A.; Bañón Navarro, A.; Görler, T.; Jenko, F.

    2015-01-15

    The influence of the ion mass on the dynamics of magnetized plasmas is an important challenge in fusion research. The discrepancies between the improvement of the magnetic confinement with the ion mass in tokamak experiments and diffusive turbulent transport predictions have remained unexplained for several decades. We refer to this phenomenon as the isotope effect. In this paper, we study this effect with gyrokinetic theory using the GENE code. We find several sets of plasma parameters that correspond to low wavenumber turbulence for which the isotope effect is present, although the intensity is smaller than the experimental observations. We also relate these results to the zonal flow intensity of the system, which is characterized by the average shear flow rate.

  10. Enrichment of natural (15)N abundance during soil N losses under 20years of continuous cereal cropping.

    PubMed

    Jones, Andrew R; Dalal, Ram C

    2017-01-01

    It is generally accepted that the enrichment of natural (15)N abundance in soil over time is reflective of historic N cycling and loss, but this process in cropping soils is not yet clear. In this study, we identified an enrichment gradient of natural (15)N abundance during 20-year chronosequence of cereal cropping on Alfisols in southwest Queensland, Australia, that have no history of fertilisation. We demonstrate that the increase in soil (15)N abundance is explained by isotopic fractionation of (15)N during organic N mineralisation and nitrification, which lead to isotopically heavier ammonium retained in the soil and isotopically lighter soil nitrate taken up and removed by seasonal crops during harvest. Here we present a framework for natural (15)N isotopic fractionation co-occurring with N losses during long-term cultivation.

  11. The position dependent 15N enrichment of nitrous oxide in the stratosphere.

    PubMed

    Röckmann, T; Kaiser, J; Brenninkmeijer, C A; Brand, W A; Borchers, R; Crowley, J N; Wollenhaupt, M; Crutzen, P J

    2001-01-01

    The position dependent 15N fractionation of nitrous oxide (N2O), which cannot be obtained from mass spectrometric analysis on molecular N2O itself, can be determined with high precision using isotope ratio mass spectrometry on the NO+ fragment that is formed on electron impact in the source of an isotope ratio mass spectrometer. Laboratory UV photolysis experiments show that strong position dependent 15N fractionations occur in the photolysis of N2O in the stratosphere, its major atmospheric sink. Measurements on the isotopic composition of stratospheric N2O indeed confirm the presence of strong isotope enrichments, in particular the difference in the fractionation constants for 15N14NO and 14N15NO. The absolute magnitudes of the fractionation constants found in the stratosphere are much smaller, however, than those found in the lab experiments, demonstrating the importance of dynamical and also additional chemical processes like the reaction of N2O with O(1D).

  12. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit.

  13. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions.

    PubMed

    Zhu, Renbin; Liu, Yashu; Li, Xianglan; Sun, Jianjun; Xu, Hua; Sun, Liguang

    2008-11-01

    Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the

  14. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    PubMed

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a

  15. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their

  16. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures

    PubMed Central

    Heraty, Linnea; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, J. K.; Hatzinger, Paul B.

    2016-01-01

    ABSTRACT Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also

  17. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine.

    PubMed

    Pati, Sarah G; Shin, Kwanghee; Skarpeli-Liati, Marita; Bolotin, Jakov; Eustis, Soren N; Spain, Jim C; Hofstetter, Thomas B

    2012-11-06

    Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.

  18. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    SciTech Connect

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël; Meusinger, Carl; Johnson, Matthew S.; Jost, Rémy; Bhattacharya, S. K.

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  19. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  20. Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.

    PubMed

    Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola

    2010-01-01

    Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.

  1. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  2. Determination of the abundance of delta15N in nitrate ion in contaminated groundwater samples using an elemental analyzer coupled to a mass spectrometer.

    PubMed

    Ogawa, Y; Nishikawa, M; Nakasugi, O; Ii, H; Hirata, T

    2001-07-01

    A rapid method for measuring the delta15N of nitrate ion in water samples using an isotope ratio mass spectrometer coupled to an elemental analyzer system (EA-MS) was investigated. The water should be removed from the analytical sample before measurement with this system. We investigated the application of a super-absorbent polymer resin powder to various water samples. Each 1 mg of polymer resin powder can absorb about 50-100 mg of solution depending on the concentrations of major ions. Only samples which contain more than 100 mg l(-1) of nitrate-nitrogen are suitable to be absorbed by the polymer resin for the determination of delta15N of nitrate. Preconcentration by rotary evaporation was necessary for dilute samples but the temperature should be kept below 60 degrees C. The polymer resin (about 8 mg) containing the nitrate was directly analyzed using an EA-MS after being oven-dried at 80 degrees C. Good accuracy (precision +/- 0.3%) for delta15N measurements of nitrate-nitrogen in a sample without any isotope fractionation effects during pre-treatment was observed. Results for delta15N of nitrate in contaminated groundwater samples collected in the spring at a tea plantation area in Shizuoka, Japan, were from 9.8 to 10.6%, which were close to the delta15N abundance in organic fertilizers.

  3. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  4. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  5. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is

  6. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  7. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed.

  8. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  9. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  10. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data

    PubMed Central

    Chakraborty, Subrata; Muskatel, B. H.; Jackson, Teresa L.; Ahmed, Musahid; Levine, R. D.; Thiemens, Mark H.

    2014-01-01

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from −400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ15N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ15N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643

  11. Preparation and characterization of 15N-enriched, size-defined heparan sulfate precursor oligosaccharides

    PubMed Central

    Sigulinsky, Crystal; Babu, Ponnusamy; Victor, Xylophone V.; Kuberan, Balagurunathan

    2009-01-01

    We report the preparation of size-defined [15N]N-acetylheparosan oligosaccharides from Escherichia coli-derived 15N-enriched N-acetylheparosan. Optimized growth conditions of E. coli in minimal media containing 15NH4Cl yielded [15N]N-acetylheparosan on a preparative scale. Depolymerization of [15N]N-acetylheparosan by heparitinase I yielded resolvable, even-numbered oligosaccharides ranging from disaccharide to icosaccharide. Anion-exchange chromatography-assisted fractionation afforded size-defined [15N]N-acetylheparosan oligosaccharides identifiable by ESI-TOFMS. These isotopically labeled oligosaccharides will prove to be valuable research tools for the chemoenzymatic synthesis of heparin and heparan sulfate oligosaccharides and for the study of their structural biology. PMID:19945695

  12. Isotope and multiband effects in layered superconductors.

    PubMed

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  13. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    PubMed

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs.

  14. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  15. Effects of demineralization on the stable isotope analysis of bone samples

    PubMed Central

    Tomaszewicz, Calandra Turner; Seminoff, Jeffrey A.; Ramirez, Matthew D.; Kurle, Carolyn M.

    2015-01-01

    Rationale The sampling of sequential, annually formed bone growth layers for stable carbon (δ13C values) and nitrogen (δ15N values) isotope analysis (SIA) can provide a time series of foraging ecology data. To date, no standard protocol exists for the pre-SIA treatment of cortical samples taken from fresh, modern, bones. Methods Based on the SIA of historical bone, it is assumed that fresh bone samples must be pre-treated with acid prior to SIA. Using an elemental analyzer coupled to an isotope ratio mass spectrometer to measure stable carbon and nitrogen ratios, we tested the need to acidify cortical bone powder with 0.25M HCl prior to SIA to isolate bone collagen for the determination of δ13C and δ15N values. We also examined the need for lipid extraction to remove potential biases related to δ13C analysis, based on a C:N ratio threshold of 3.5. Results It was found that acidification of micromilled cortical bone samples from marine turtles does not affect their δ15N values, and the small effect acidification has on δ13C values can be mathematically corrected for, thus eliminating the need for pre-SIA acidification of cortical bone. The lipid content of the cortical bone samples was low, as measured by their C:N ratios, indicating that lipid extracting cortical bone samples from modern marine turtles is unnecessary. Conclusions We present a standard protocol for testing fresh, modern cortical bone samples prior to SIA, facilitating direct comparison of future studies. Based on the results obtained from marine turtle bones, pre-acidification and lipid removal of cortical bone are not recommended. This is especially useful as there is frequently not enough bone material removed via micromilling of sequential growth layers to accommodate both acid treatment and SIA. PMID:26411509

  16. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments

    USGS Publications Warehouse

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mark A.; Pearson, Ann

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass – and by extension, surface waters – the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3−, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7–8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed

  17. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  18. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes

    SciTech Connect

    Bunn, S.E.; Kempster, M.A.; Loneragan, N.R.

    1995-05-01

    We investigated the effects of acid washing on the carbon and nitrogen composition and stable isotope ratios of C and N in shrimp (Metapenaeus spp.) and seagrass (Enhalus acoroides). Acid washing did not affect the mean {delta}{sup 13}C ratios for juvenile Metapenaeus moyebi and resulted in only an ecologically insignificant change (0.3%) in mean {delta}{sup 13}C ratios for larger metapenaeus bennettae. In contrast, acid washing increased the mean {delta}{sup 15}N signatures of shrimp tissue ({approximately}3%) and decreased that of seagrass ({approximately}1.8%) to a degree that may confound the interpretation of food webs. The increase in %C and %N in both shrimp and seagrass after acid washing suggests that the changes in isotope ratios are due to loss of molecules comparatively low in C and N. Treating samples by acid washing also resulted in an increase in the variation among individuals for both {delta}{sup 15}N and {delta}{sup 13}C, which would lead to a loss of statistical power for testing differences between species, sites, or seasons. 13 refs., 2 figs., 1 tab.

  19. Elevated atmospheric carbon dioxide and temperature effects on seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...

  20. Reconstruction of the oceanic nitrate inventory in the Pliocene Caribbean Sea: Foraminifera-bound δ15N - A new approach

    NASA Astrophysics Data System (ADS)

    Straub, M.; Haug, G. H.; Sigman, D. M.; Ren, H.

    2010-12-01

    The nitrate budget in the low-latitude surface ocean is mainly controlled by the opposing effects of denitrification and nitrate fixation. The state of the global ocean nitrate inventory highly affects primary production, which allows sequestering CO2 into the deep ocean. This may influence climate variability and control warm and cold periods in Earth history. Studies have shown that nitrogen isotopes reflect the nutrient status of the upper water column and therefore can be used as proxy for the state of the ocean’s ‘biological pump’. The nitrate inventory has mostly been reconstructed based on bulk sedimentary N-isotope measurements, which can be affected by syn- and post-sedimentary processes. Promising approaches to circumvent these potential biases are based on measurements of foraminifera-bound δ15N isotopes. In the subtropical and tropical ocean, planktonic foraminifera are a main component of the sinking particle flux. The organic compounds encapsulated within the foraminiferal tests are protected from sedimentary diagenetic processes and record a pristine signal of the nitrate composition of the upper water column. The novel method used in this study employs denitrifying bacteria (Pseudomonas chlororaphis and Pseudomonas aureofaciens) to produce nitrous oxide (N2O), recovered from the nitrate extracted from the organic matter sheltered within the foraminifera shell. The extracted N2O is analyzed for δ15N with a Gas bench II - IRMS and yields results with reproducible isotopic measurements of samples with nitrate concentrations down to 1 μM. Previous data from the investigated site (ODP Leg 165, Site 999A, Caribbean Sea), spanning the last 30’000 yrs using the same method, indicate a systematic difference between glacial and interglacial values. The glacial state is characterized by high δ15N values around ~ 5 ‰ (suggesting less N-fixation) and the interglacial by low δ15N values around ~ 3 ‰ (N-fixation increase). Pliocene data from

  1. Effects of preservatives on stable isotope analyses of four marine species

    NASA Astrophysics Data System (ADS)

    Carabel, Sirka; Verísimo, Patricia; Freire, Juan

    2009-04-01

    The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.

  2. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    PubMed

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.

  3. Nutrient Status and δ15N Values in Leaves and Soils: A Cross-Biome Comparison

    NASA Astrophysics Data System (ADS)

    Mayor, J. R.; Schuur, E. A.; Turner, B. L.; Wright, S. J.

    2011-12-01

    Stable nitrogen (N) isotope ratios (δ15N) are often assumed to provide an integrated measure of multiple nitrogen cycling processes. For instance, shifts in the bioavailability of soil N forms are thought to alter plant δ15N values. Demonstrating this relationship is important as ecosystems undergo anthropogenic disturbances. We evaluated patterns and implied mechanisms of the N cycle using ecosystem δ15N values from 16 plots in boreal black spruce (Picea mariana) forest and lowland wet tropical forest. Fertilizer N and phosphorus (P) was applied annually for five and 11 years prior to measurement of ecosystem δ15N values. Full sun canopy foliage and soil extractable nitrate, ammonium, and dissolved organic N (DON) were sampled in fertilized and control plots and analyzed for δ15N. In boreal forest, N fertilization reduced DON concentrations and caused a depletion of δ15N in foliage and fungal sporocarps. Of four species occurring in all plots in the tropical forest, one (Alseis blackiana) had increased foliar δ15N values following N fertilization, one (Tetragastris panamensis) had increased foliar δ15N values following P fertilization, and one (Oenocarpus mapora) had increased foliar δ15N following N+P fertilization. Surprisingly, soil nitrate in the boreal forest became substantially 15N-enriched under P fertilization, whereas nitrate in the tropical forest soil was enriched only under N or N+P fertilization. Collectively, nitrate enrichment is likely due to enhanced rates of soil denitrification as evidenced by elevated resin extractable soil nitrate concentrations and close correlations between δ15N and δ18O values. On average, foliar δ15N in tropical trees corresponded well with δ15N in soil nitrate in control and P fertilized plots, but was 2-3% more enriched than DON under N and N+P fertilization. In boreal forests, N and N+P fertilization increased foliar N concentration and δ15N values indicating substantial use of applied fertilizer. Taken

  4. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    NASA Astrophysics Data System (ADS)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  5. Nuclear Volume Effects in Equilibrium Stable Isotope Fractionations of Hg, Tl and Pb Isotope Systems

    NASA Astrophysics Data System (ADS)

    Yang, S.; Liu, Y.

    2014-12-01

    Many evidences showed that heavy isotope systems could be significantly fractionated as the consequence of the nuclear volume effect (NVE) or so-called nuclear field shift effect. Here we investigate NVEs of Hg, Tl and Pb isotope systems by using quantum chemistry computational methods with careful evaluation on quantum relativistic effects via the Dirac's formalism of full-electron wavefunction. Our results generally agree with previous studies but with noticeable differences in many cases. With the unique NVE driving force, equilibrium 202Hg/198Hg and 205Tl/203Tl isotopes can be fractionated up to 3.94‰ and 2.78‰ at 0℃, respectively, showing potentially large equilibrium isotope fractionations can be expected for future studies of these two isotope systems. Moreover, the NVE causes large mass-independent fractionations (MIF) for odd-mass isotopes (e.g., ∆199NVHg and ∆201NVHg) and small MIFs for even-mass isotopes (e.g., ∆200NVHg). For Pb isotope system, NVEs induce isotope fractionations up to 1.62‰ (207Pb/206Pb) and 4.06‰ (208Pb/206Pb) at 0℃. However, contributions from classical mass-dependent driving force are small, about 0.1-0.5‰ for 207Pb/206Pb and 0.2-0.9‰ for 208Pb/206Pb. We find that Pb4+-bearing species can be significantly enriched heavy isotopes than Pb2+-bearing species. Comparing to Pb0, Pb2+-bearing species even enrich lighter Pb isotopes. A very strange and interesting thing is that the beta value of Pb2+-bearing species can be smaller than the unity (1.000). Similar thing has been found on Tl+-bearing species. This is an impossible and unexplained situation if only based on classical mass-dependent isotope fractionation theory (e.g., Bigeleisen-Mayer equation). The consequence is that the different direction of beta values of Pb2+-bearing species will let the Pb isotope fractionation even larger when they fractionate with Pb4+-bearing species. Moreover, NVEs also cause mass-independent fractionation (MIF) of odd 207Pb

  6. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  7. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  8. Formalism for the determination of structural isotope effects with neutrons

    SciTech Connect

    Neuefeind, Joerg C; Benmore, Chris J

    2009-01-01

    In general the analysis of neutron isotopic substitution experiments in terms of partial structure factors and partial pair distribution functions is based on the assumption that the structure of isotopic variants of a molecule is identical. This assumption is clearly only an approximation especially in the case of hydrogen bonding molecular liquids like liquid water and structural isotope effects have been measured with X-rays for more than 20 years. A analysis method of neutron isotope data is presented that avoids the necessity to assume structural equality and allows the determination of the isotope effect in the hydrogen-hydrogen partial structure factor of liquid water from neutron data. It is shown that a combination of X-ray and neutron scattering measurements allows in principle the determination of the isotope effects on all all partials structure factors of liquid water.

  9. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Brusati, Elizabeth D.; Grosholz, Edwin D.

    2007-02-01

    Ecosystem engineers can influence community and ecosystem dynamics by controlling resources, modifying the flow of energy or biomass, or changing physical characteristics of the habitat. Invasive hybrid cordgrass ( Spartina alterniflora × Spartina foliosa ) is an ecosystem engineer in salt marshes in San Francisco Bay, California, U.S.A. that raises intertidal elevations and may be either increasing C4 plant carbon input into food webs or tying up carbon in a form that is not usable by consumers. A manipulative experiment compared abundance, growth, and stable isotope (δ 13C and δ 15N) composition of the clam Macoma petalum (= M. balthica) among native marsh, hybrid Spartina, and mudflats in central San Francisco Bay. We found higher densities (individuals m -2) of M. petalum on mudflats compared to either native or hybrid Spartina ( p < 0.001). Macoma petalum shell growth was significantly greater in mudflats than in either vegetation type in 2002 ( p = 0.005) but not 2003. Differences in shell growth between native and hybrid Spartina were not significant. Stable isotope results showed differences between habitats in δ 13C but not δ 15N. Carbon signatures of M. petalum placed in Spartina were much more depleted than the isotopic signature of Spartina. Neither native nor hybrid Spartina appears to be a significant carbon source for M. petalum in San Francisco Bay, and we found no evidence that hybrid Spartina contributes carbon to M. petalum beyond what is provided by S. foliosa, despite the hybrid's much greater biomass. Our results show that loss of mudflat habitat, rather than increased input of C4 carbon, is the greatest effect of the invasion of hybrid Spartina on M. petalum.

  10. Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects

    SciTech Connect

    Kim, S.C.; Singh, A.N.; Raushel, F.M.

    1988-11-15

    The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of (beta-18O2, alpha beta-18O)UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for (1-2H)-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.

  11. A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that

  12. Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon

    NASA Astrophysics Data System (ADS)

    Como, S.; Magni, P.; Van Der Velde, G.; Blok, F. S.; Van De Steeg, M. F. M.

    2012-12-01

    The analysis of the contribution of a food source to a consumer's diet or the trophic position of a consumer is highly sensitive to the variability of the isotopic values used as input data. However, little is known in coastal lagoons about the spatial variations in the isotopic values of primary consumers considered 'end members' in the isotope mixing models for quantifying the diet of secondary consumers or as a baseline for estimating the trophic position of consumers higher up in the food web. We studied the spatial variations in the δ13C and δ15N values of primary consumers and sedimentary organic matter (SOM) within a selected area of the Cabras lagoon (Sardinia, Italy). Our aim was to assess how much of the spatial variation in isotopic values of primary consumers was due to the spatial variability between sites and how much was due to differences in short distances from the shore. Samples were collected at four stations (50-100 m apart) selected randomly at two sites (1.5-2 km apart) chosen randomly at two distances from the shore (i.e. in proximity of the shore -Nearshore - and about 200 m away from the shore -Offshore). The sampling was repeated in March, May and August 2006 using new sites at the two chosen distances from the shore on each date. The isotopic values of size-fractionated seston and macrophytes were also analyzed as a complementary characterization of the study area. While δ15N did not show any spatial variations, the δ13C values of deposit feeders, Alitta (=Neanthes) succinea, Lekanesphaera hookeri, Hydrobia acuta and Gammarus aequicauda, were more depleted Offshore than Nearshore. For these species, there were significant effects of distance or distance × dates in the mean δ13C values, irrespective of the intrinsic variation between sites. SOM showed similar spatial variations in δ13C values, with Nearshore-Offshore differences up to 6‰. This indicates that the spatial isotopic changes are transferred from the food sources to the

  13. Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada.

    PubMed

    Drucker, Dorothee G; Hobson, Keith A; Ouellet, Jean-Pierre; Courtois, Rehaume

    2010-03-01

    Stable isotope composition (delta(13)C and delta(15)N) of moose (Alces alces) and caribou (Rangifer tarandus) hair from the boreal forest of Jacques-Cartier Park and Cote-Nord (Quebec) and arctic tundra of Queen Maud Gulf and Southampton Island (Nunavut) was investigated as an indicator of dietary preferences and habitat use. Values of delta(13)C(hair) and delta(15)N(hair) in moose were consistently lower compared to those of caribou. This is consistent with the depletion in (13)C and (15)N in the plants preferred by moose, essentially browse (shrub and tree leaves), compared to caribou forage, which included significant amounts of graminoids, lichen and fungi. The delta(13)C(hair) values of caribou differed between closed boreal forest and open-tundra ecosystems. This pattern followed that expected from the canopy effect observed in plant communities. Variation in delta(15)N(hair) values of caribou was probably linked to the effect of different climatic conditions on plant communities. This study underlines the potential of isotopic analysis for studies on diet and habitat selection within a pure C(3) plant environment.

  14. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate changes due to elevated temperature and CO2 is expected to lead to high heat and drought in some regions, affecting crop production and seed nutrition. Soybean is one of the most valuable crops worldwide because of its content of protein (40%) and oil (20%), fatty acids, amino acids, ...

  15. Assessing the subsequent effect of nitrogen released from tobacco-waste on maize crop using a ¹⁵N isotope technique.

    PubMed

    Karaman, M Rüştü; Brohi, A Reşit

    2013-06-01

    The investigation of the residual effect of nitrogen (N) released from tobacco-waste (TW) using isotope techniques will provide valuable data for sustainable organic farming. For this aim, a pot experiment was conducted using the (15)N isotope technique. The experiment was based on a completely randomised design with four replications and was conducted on a calcareous ustochrepts soil. TW at levels of 0, 10, 20, 30 and 40 t ha(-1) and N fertiliser as (NH₄)₂SO₂ at levels of 0, 20, 40, 60 and 80 kg N ha(-1) were used for the Bezostaja-1 wheat variety. Concerning mineral N fertilisation with 20 and 80 kg N ha(-1), additional treatments with (15)N-labelled (NH₄)₂SO₂ (10 at.% exc.) have been applied. Following harvesting wheat plants, the Pioneer 3377 maize variety was used to see the residual effect of TW. After harvesting, dry matter yields were recorded and total N concentrations were determined. (15)N determinations and calculations were also made for (15)N treatments separately. TW had a significant residual effect on the growth of corn plant under the pot condition. Increasing rates of TW significantly increased the dry matter yield of corn plant following wheat from 3.31 t ha(-1) (at control) to 7.89 t ha(-1) (at the TW treatment of 40 t ha(-1)). The (15)N values derived from the (15)N fertiliser decreased with increasing TW application. The average values of N derived from N fertiliser (Ndff) varied from 2.14 to 3.09% at the rates of 20 and 80 kg N ha(-1), respectively. However, N derived from TW (Ndftw) significantly increased from 16.93 to 24.59% (at 20 kg N ha(-1)), and it also increased from 23.06 to 28.15% (at 80 kg N ha(-1)) with increasing TW applications from 20 to 40 t ha(-1), respectively.

  16. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    NASA Astrophysics Data System (ADS)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  17. Possible isotopic fractionation effects in sputtered minerals

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Watson, C. C.; Tombrello, T. A.

    1980-01-01

    A model which makes definite predictions for the fractionation of isotopes in sputtered material is discussed. The fractionation patterns are nonlinear, and the pattern for a particular set of isotopes depends on the chemical matrix within which those isotopes are contained. Calculations are presented for all nonmonoisotopic elements contained in the minerals perovskite, anorthite, ackermanite, enstatite, and troilite. All isotopes are fractionated at the level of approximately 4-6 deg/o per atomic mass unit. Oxygen is always positively fractionated (heavier isotopes sputtered preferentially), and heavier elements are generally negatively fractioned (light isotopes sputtered preferentially). The value of Delta (O-18:O-16) is always less by about 1.8 deg/o than a linear extrapolation based upon the calculated delta (O-17:O-16) value would suggest. The phenomenon of both negative and positive fractionation patterns from a single target mineral are used to make an experimental test of the proposed model.

  18. Evidence of magnetic isotope effects during thermochemical sulfate reduction.

    PubMed

    Oduro, Harry; Harms, Brian; Sintim, Herman O; Kaufman, Alan J; Cody, George; Farquhar, James

    2011-10-25

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for (33)S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed (36)S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant (36)S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples.

  19. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs.

    PubMed

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  20. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).

    PubMed

    Nair, Richard; Weatherall, Andrew; Perks, Mike; Mencuccini, Maurizio

    2014-10-01

    Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.

  1. Seasonal characteristics of the nitrogen isotope biogeochemistry of settling particles in the western subarctic Pacific: A model study

    NASA Astrophysics Data System (ADS)

    Shigemitsu, Masahito; Yamanaka, Yasuhiro; Watanabe, Yutaka W.; Maeda, Nobuhiro; Noriki, Shinichiro

    2010-04-01

    We used moored time-series sediment traps to collect settling particles at station KNOT (44°N, 155°E; trap depth 770 m) in the western subarctic Pacific (WSAP) from October 1999 to May 2006. Particulate nitrogen content (PN) and isotope ratios ( δ15N PN) were measured in the samples collected. The general pattern of variation in δ15N PN results showed lower values during the spring bloom periods and summer, and higher values during winter. To interpret the processes controlling such variations quantitatively and reveal some implications for paleoceanographic use of δ15N PN, we developed an ecosystem model that included nitrogen isotopes. This model was validated with an observed data set and successfully reproduced the seasonal variations of δ15N PN. In simulations, the lower δ15N PN during the spring bloom period was caused mainly by the highest proportion of dead large phytoplankton (diatom) in PN within a year, the highest f-ratio of the year, and phytoplankton assimilation of nitrate with the lowest δ15N of the year. The lower δ15N PN in summer was due to the high relative proportion of dead non-diatom small phytoplankton and microzooplankton fecal pellet with the lowest δ15N values among all the PN components in our model. The higher δ15N PN in winter was mainly caused by the highest proportion of zooplankton components in PN, with higher δ15N values than phytoplankton components, and the enhanced δ15N values of ammonium induced by nitrification and its subsequent assimilation by phytoplankton. Our identification of nitrification as one cause of higher δ15N PN in winter is consistent with previous findings in a proximal marginal sea, the Okhotsk Sea, with an ecosystem model simpler than our model. This might indicate that the cause of higher δ15N PN in winter is common in the WSAP. In our model, we optimized the isotope effect of each process using our observational data of δ 15N PN and δ 15N of nitrate published elsewhere as constraints, and

  2. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes.

    PubMed

    Yao, F Y; Wang, G A; Liu, X J; Song, L

    2011-07-15

    This study assesses the effects of the atmospheric nitrogen (N) deposition on the N uptake and the long-term water-use efficiency of two C(3) plants (Agropyron cristatum and Leymus chinensis) and two C(4) plants (Amaranthus retroflexus and Setaria viridis) using N and C stable isotopes. In addition, this study explores the potential correlation between leaf N isotope (δ(15)N) values and leaf C isotope (δ(13)C) values. This experiment shows that the atmospheric N deposition has significant effects on the N uptake, δ(15)N and leaf N content (N(m)) of C(3) plants. As the atmospheric N deposition rises, the proportion and the amount of N absorbed from the simulated atmospheric deposition become higher, and the δ(15)N and N(m) of the two C(3) plants both also increase, suggesting that the rising atmospheric N deposition is beneficial for C(3) plants. However, C(4) plants display different patterns in their N uptake and in their variations of δ(15)N and N(m) from those of C(3) plants. C(4) plants absorb less N from the atmospheric deposition, and the leaf N(m) does not change with the elevated atmospheric N deposition. Photosynthetic pathways may account for the differences between C(3) and C(4) plants. This study also shows that atmospheric N deposition does not play a role in determining the δ(13)C and in the long-term water-use efficiency of C(3) and C(4) plants, suggesting that the long-term water-use pattern of the plants does not change with the atmospheric N input. In addition, this study does not observe any relationship between leaf δ(15)N and leaf δ(13)C in both C(3) and C(4) plants.

  3. Shifts in relative tissue delta15N values in snowy egret nestlings with dietary mercury exposure: a marker for increased protein degradation.

    PubMed

    Shaw-Allen, Patricia L; Romanek, Christopher S; Bryan, A L; Brant, Heather; Jagoe, Charles H

    2005-06-01

    Shifts in tissue nitrogen isotope composition may be a more sensitive general indicator of stress than measurement of high-turnover defensive biomolecules such as metallothionein and glutathione. As a physical resource transmitted along the trophic web, perturbations in protein nitrogen metabolism may also help resolve issues concerning the effects of contaminants on organisms and their consequential hierarchical linkages in ecotoxicology. Snowy egret nestlings (Egretta thula) fed mercury-contaminated diets of constant nitrogen isotope composition exhibited increased relative delta15N values in whole liver (p = 0.0011) and the acid-soluble fraction (ASF) of the liver (p = 0.0005) when compared to nestlings fed a reference diet. When nitrogen isotope data were adjusted for the source term of the diet, liver mercury concentrations corresponded with both whole liver relative 15N enrichment (r2 = 0.79, slope 0.009, p < 0.0001) and relative 15N enrichment in the acid-soluble fraction of the liver (r2 = 0.85, slope 0.026, p < 0.0001). Meanwhile, significant differences were not observed in hepatic levels of the metal-binding peptides metallothionein and glutathione despite a nearly 3-fold difference in liver mercury content. Because increases in tissue delta15N values result from increased rates of protein breakdown relative to synthesis, we propose that the increased relative liver delta15N values reflect a shift in protein metabolism. The relationship between ASF and mercury was significantly stronger (p < 0.0001) than that for whole liver, suggesting that the relationship is driven by an increase in bodily derived amino acids in the acid-soluble, free amino acid pool.

  4. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, E. S.; Adande, G.; Milam, S. N.; Charnley, S. B.; Cordiner, M. A.

    2016-10-01

    We briefly review what is currently known of 14N/15N ratios in interstellar molecules. We summarize the fractionation ratios measured in HCN, HNC, CN, N2 and NH3, and compare these to theoretical predictions and to the isotopic inventory of cometary volatiles.

  5. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  6. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  7. Spatial and Short-Temporal Variability of δ(13)C and δ(15)N and Water-Use Efficiency in Pine Needles of the Three Forests Along the Most Industrialized Part of Poland.

    PubMed

    Sensuła, Barbara M

    In this study, stable carbon and nitrogen isotope ratios in the samples of pine needles collected in 2013 and 2014 from heavily urbanized area in close proximity to point-source pollution emitters, such as a heat and power plant, nitrogen plant, and steelworks in Silesia (Poland), were analyzed as bio-indicators of contemporary environmental changes. The carbon isotope discrimination has been proposed as a method for evaluating water-use efficiency. The measurement of carbon and nitrogen isotopes was carried out using the continuous flow isotope ratio mass spectrometer. The isotope ratio mass spectrometer allows the precise measurement of mixtures of naturally occurring isotopes. The δ(15)N values were calibrated relative to the NO-3 and USGS34 international standards, whereas the δ(13)C values were calibrated relative to the C-3 and C-5 international standards. The strong year-to-year correlations between the δ(13)C in different sampling sites, and also the inter-annual correlation of δ(15)N values in the pine needles at each of the investigated sampling sites confirm that the measured δ(13)C and δ(15)N and also intrinsic water-use efficiency (iWUE) trends are representative of the sampling site. Diffuse air pollution caused the variation in δ (13)C, δ(15)N, and iWUE dependent on type of emitter, the localization in the space (distance and direction) from factories and some local effect of other human activities. The complex short-term variation analysis can be helpful to distinguish isotopic fractionation, which is not an effect explainable by climatic conditions but by the anthropogenic effect. Between 2012 and 2014, an increase in iWUE is observed at leaf level.

  8. Bromine and carbon isotope effects during photolysis of brominated phenols.

    PubMed

    Zakon, Yevgeni; Halicz, Ludwik; Gelman, Faina

    2013-12-17

    In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (εreactive position up to +5.1‰) along with normal carbon isotope effect (εreactive position of -12.6‰ to -23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C-Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C-Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation.

  9. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    particles typically also contain numerous {sup 15}N-rich N-hotspots, occasional C isotopic anomalies, and abundant presolar silicate grains. In contrast, the other ''isotopically normal'' IDPs have normal bulk N isotopic compositions and, although some contain {sup 15}N-rich hotspots, none exhibit C isotopic anomalies and none contain presolar silicate or oxide grains. Thus, isotopically interesting IDPs can be identified and selected on the basis of their N isotopic compositions for further study. However, this distinction does not extend to H isotopic compositions. Although both H and N anomalies are frequently attributed to the survival of molecular cloud material in IDPs and, thus, should be more common in IDPs with anomalous bulk N compositions, D anomalies are as common in normal IDPs as they are in those characterized as isotopically primitive, based on their N isotopes. This may be due to different effects of secondary processing on the isotopic systems involved.

  10. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines

    NASA Astrophysics Data System (ADS)

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Edwards, Felicity A.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2012-04-01

    Nitrogen isotope signatures (δ15N) provide powerful measures of the trophic positions of individuals, populations and communities. Obtaining reliable consumer δ15N values depends upon controlling for spatial variation in plant δ15N values, which form the trophic `baseline'. However, recent studies make differing assumptions about the scale over which plant δ15N values vary, and approaches to baseline control differ markedly. We examined spatial variation in the δ15N values of plants and ants sampled from eight 150-m transects in both unlogged and logged rainforests. We then investigated whether ant δ15N values were related to variation in plant δ15N values following baseline correction of ant values at two spatial scales: (1) using `local' means of plants collected from the same transect and (2) using `global' means of plants collected from all transects within each forest type. Plant δ15N baselines varied by the equivalent of one trophic level within each forest type. Correcting ant δ15N values using global plant means resulted in consumer values that were strongly positively related to the transect baseline, whereas local corrections yielded reliable estimates of consumer trophic positions that were largely independent of transect baselines. These results were consistent at the community level and when three trophically distinct ant subfamilies and eight abundant ant species were considered separately. Our results suggest that assuming baselines do not vary can produce misleading estimates of consumer trophic positions. We therefore emphasise the importance of clearly defining and applying baseline corrections at a scale that accounts for spatial variation in plant δ15N values.

  11. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines.

    PubMed

    Woodcock, Paul; Edwards, David P; Newton, Rob J; Edwards, Felicity A; Khen, Chey Vun; Bottrell, Simon H; Hamer, Keith C

    2012-04-01

    Nitrogen isotope signatures (δ(15)N) provide powerful measures of the trophic positions of individuals, populations and communities. Obtaining reliable consumer δ(15)N values depends upon controlling for spatial variation in plant δ(15)N values, which form the trophic 'baseline'. However, recent studies make differing assumptions about the scale over which plant δ(15)N values vary, and approaches to baseline control differ markedly. We examined spatial variation in the δ(15)N values of plants and ants sampled from eight 150-m transects in both unlogged and logged rainforests. We then investigated whether ant δ(15)N values were related to variation in plant δ(15)N values following baseline correction of ant values at two spatial scales: (1) using 'local' means of plants collected from the same transect and (2) using 'global' means of plants collected from all transects within each forest type. Plant δ(15)N baselines varied by the equivalent of one trophic level within each forest type. Correcting ant δ(15)N values using global plant means resulted in consumer values that were strongly positively related to the transect baseline, whereas local corrections yielded reliable estimates of consumer trophic positions that were largely independent of transect baselines. These results were consistent at the community level and when three trophically distinct ant subfamilies and eight abundant ant species were considered separately. Our results suggest that assuming baselines do not vary can produce misleading estimates of consumer trophic positions. We therefore emphasise the importance of clearly defining and applying baseline corrections at a scale that accounts for spatial variation in plant δ(15)N values.

  12. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  13. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  14. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  15. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    USGS Publications Warehouse

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  16. Plant community change mediates the response of foliar delta15N to CO2 enrichment in mesic grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf delta15N by increasing plant community productivity,...

  17. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  18. Isotopic and Physiological Effects of Disease in a Sea Fan from Bermuda

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.

    2009-05-01

    Aspergillosis, a disease caused by the fungus, Aspergillus sydowii, has impacted gorgonian populations throughout much of the Caribbean, including Bermuda. Stable carbon (δ13C) and nitrogen (δ15N) isotopes have been shown to be a useful tool for tracking physiological changes in coral species. To assess the relationship between δ13C, δ15N, and physiological effects of disease in corals, healthy and diseased colonies of the purple sea fan (Gorgonia ventalina) were analyzed. Visibly healthy and diseased samples were collected from a near-shore reef location in July 2007. Healthy samples were also collected from an off-shore reef location, where there was no visible incidence of disease on the reef. The proportion of purpled sclerites was measured for each sample and verified the severity of disease for each colony. Diseased sections of G. ventalina had lower lipid concentrations than healthy sections of the same colony, suggesting that lipid stores are selectively utilized within each colony. Interestingly, healthy sections from near-shore colonies where disease was present had more lipid stores than healthy sections from off-shore colonies where disease was absent. Total biomass was greatest in healthy off-shore colonies. Both δ13C and δ15N did not differ between healthy and diseased colonies, but were more enriched in near-shore compared to off-shore locations. These preliminary results suggest that consumption of lipid stores may be a species-wide physiological strategy amongst corals for coping with stressful events and that soft corals may track levels of local land-based pollution.

  19. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  20. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  1. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  2. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  3. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  4. Aerobic respiration along isopycnals leads to overestimation of the isotope effect of denitrification in the ocean water column

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Kopf, Sebastian; Rafter, Patrick A.; Sigman, Daniel M.

    2017-01-01

    The nitrogen (N) isotopes provide an integrative geochemical tool for constraining the fixed N budget of the ocean. However, N isotope budgeting requires a robust estimate for the organism-scale nitrogen isotope effect of denitrification, in particular as it occurs in water column denitrification zones (εwcd). Ocean field data interpreted with the Rayleigh model have typically yielded estimates for εwcd of between 20 and 30‰. However, recent findings have raised questions about this value. In particular, culture experiments can produce a substantially lower isotope effect (∼13‰) under conditions mimicking those of ocean suboxic zones. In an effort to better understand prior field estimates of εwcd, we use a geochemical multi-box model to investigate the combined effects of denitrification, aerobic respiration, and isopycnal exchange on the δ15N of nitrate. In the context of this admittedly simplistic model, we consider three isopycnals extending from the Southern Ocean to the Eastern Tropical North Pacific (ETNP). We show that the data from the ETNP suboxic zone can be reproduced with an εwcd of 13‰, given a rate of aerobic respiration consistent with the nutrient data on these isopycnals and a plausible range in the δ15N of the sinking flux being remineralized. We discuss the limitations of our analysis, additional considerations, as well as possible data-based tests for the proposal of a lower εwcd than previously estimated. All else held constant, a lower εwcd would imply a lower global ocean rate of denitrification that is more similar to the estimated rate of N input to the global ocean, providing a major impetus for further investigation.

  5. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  6. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  7. Heavy Atom Labeled Nucleotides for Measurement of Kinetic Isotope Effects

    PubMed Central

    Weissman, Benjamin P.; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A.

    2015-01-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. Implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review we highlight current approaches to the synthesis of nucleic acids site-specifically enriched for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. PMID:25828952

  8. Unified picture of the oxygen isotope effect in cuprate superconductors.

    PubMed

    Chen, Xiao-Jia; Struzhkin, Viktor V; Wu, Zhigang; Lin, Hai-Qing; Hemley, Russell J; Mao, Ho-kwang

    2007-03-06

    High-temperature superconductivity in cuprates was discovered almost exactly 20 years ago, but a satisfactory theoretical explanation for this phenomenon is still lacking. The isotope effect has played an important role in establishing electron-phonon interaction as the dominant interaction in conventional superconductors. Here we present a unified picture of the oxygen isotope effect in cuprate superconductors based on a phonon-mediated d-wave pairing model within the Bardeen-Cooper-Schrieffer theory. We show that this model accounts for the magnitude of the isotope exponent as functions of the doping level as well as the variation between different cuprate superconductors. The isotope effect on the superconducting transition is also found to resemble the effect of pressure on the transition. These results indicate that the role of phonons should not be overlooked for explaining the superconductivity in cuprates.

  9. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen

    PubMed Central

    2016-01-01

    Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-15N with an excellent isotopic purity (98%) and good yield (55%). 15N nuclear spin label in nicotinamide-1-15N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc.2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-15N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of 15N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies. PMID:26999571

  10. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  11. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  12. Unusual origins of isotope effects in enzyme-catalysed reactions

    PubMed Central

    Northrop, Dexter B

    2006-01-01

    High hydrostatic pressure is a neglected tool for probing the origins of isotope effects. In chemical reactions, normal primary deuterium isotope effects (DIEs) arising solely from differences in zero point energies are unaffected by pressure; but some anomalous isotope effects in which hydrogen tunnelling is suspected are partially suppressed. In some enzymatic reactions, high pressure completely suppresses the DIE. We have now measured the effects of high pressure on the parallel 13C heavy atom isotope effect of yeast alcohol dehydrogenase and found that it is also suppressed by high pressure and, similarly, suppressed in its entirety. Moreover, the volume changes associated with the suppression of both deuterium and heavy atom isotope effects are virtually identical. The equivalent decrease in activation volumes for hydride transfer, when one mass unit is added to the carbon end of a scissile C–H bond as when one mass unit is added to the hydrogen end, suggests a common origin. Given that carbon is highly unlikely to undergo tunnelling, it follows that hydrogen is not doing so either. The origin of these isotope effects must lie elsewhere. We offer protein domain motions as a possibility. PMID:16873122

  13. Interpretation of the seasonal variations in nitrogen isotopic signals of settling particles in the western subarctic Pacific with an ecosystem model including nitrogen isotopes

    NASA Astrophysics Data System (ADS)

    Shigemitsu, M.; Yamanaka, Y.; Watanabe, Y. W.; Maeda, N.; Noriki, S.

    2008-12-01

    Settling particles were collected by time-series sediment trap moored at station KNOT (44N 155E, water depth 770m) during periods from October 25th 1999 to June 20th 2001, and from June 25th 2002 to May 11th 2006. Particulate nitrogen contents and its isotope ratios (d15N) in the collected samples were measured. The results of d15N showed the general variations that are lower during the spring bloom periods and higher during winter periods. In order to interpret the processes controlling such variations quantitatively, we developed an ecosystem model including nitrogen isotopes on the basis of the recent ecosystem model of Fujii et al. (Deep Sea Research, vol. 49, pp. 5441-5461, 2002), which successfully simulated the observed seasonal cycles of ecosystem dynamics at station KNOT. In our model, we took it into consideration that the isotope fractionations by nitrate and ammonium assimilation by phytoplankton, excretion and egestion by zooplankton, nitrification, remineralization of particulate and dissolved organic nitrogen (PON, DON) and decomposition of PON, which influence the d15N values of settling particles. This model was validated using an actual data set and successfully reproduced the seasonal variations in d15N of settling particles. Simulated lower d15N values in spring bloom period were mainly caused by phytoplankton assimilation of nitrate with the lowest d15N in a year. Simulated higher d15N values in winter were mainly determined by the two processes: 1) enhanced d15N values of ammonium by nitrification and following assimilation of ammonium by phytoplankton, and 2) increase of relative proportion of zooplankton, with higher d15N values compared to phytoplankton, in settling particles. Of the two processes, the former had much larger impacts on d15N values of settling particles than the latter did. In our model, we investigated the sensitivity of isotopic fractionation effect of each process to the seasonal variations in d15N values of settling

  14. Prediction of Isotope Effects for Anticipated Intermediate Structures in the Course of Bacterial Denitrification

    NASA Astrophysics Data System (ADS)

    Morgenstern, M. A.; Schowen, R. L.

    1989-05-01

    Vibrational-analysis methods have been used to estimate the equilibrium 14N/15N isotope effects to be expected for conversion of nitrite anion to thirteen possible intermediate-state and productstate structures [HONO, NO+ , NO, NO-, FeNO, ON*NO2, O*NNO2, O2NNO2, ONO*N, O*NON, ONNO, *NNO, N*NO] in the reduction of nitrite ion to nitrous oxide denitrifying bacteria. The results, taken in combination with previous experimental isotope-effect and tracer studies of the Pseudomonas stutzeri and related systems, are consistent with a suggestion that a second nitrite anion enters the enzyme-catalytic cycle at the stage of a nitrosyl-ion intermediate but re-emerges after entry of the reducing electrons; the product nitrous oxide is then formed by disproportionation of enzymically generated hyponitrous acid. The calculations are consistent with contributions, under different experimental conditions, of several different transition states to limiting the rate of the enzymic reaction. These transition states (and the corresponding experimental conditions) are the transition states for N -O fission in the generation of a mononitrogen electrophilic species from nitrite anion (high reductant, high nitrite concentrations), for attack of nitrite on this electrophile (high reductant, low nitrite concentrations) and for electron transfer to a dinitrogen-trioxide-like species (low reductant concentration).

  15. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator.

    PubMed

    Inamura, O; Zhang, J; Minagawa, M

    2012-01-15

    We have investigated the effectiveness of using the Micropterus salmoides largemouth bass, which is a top predator found throughout the world, as the index of a hydrosphere environment and its food chain. To this end, we used stable carbon and nitrogen isotope analysis (SIA). Largemouth bass were collected from eight dam reservoirs and two ponds in Toyama Prefecture, Japan. Toyama is located in central Japan and features a variety of distinct geographical environments, a result of the 3000-m elevation that changes over short distances, and abundant water systems. The mean δ(13)C and δ(15)N values for the lipid-extracted muscle of largemouth bass from all sampling locations showed large variability, but there were only small standard deviations at each sampling location. The isotope ratios for largemouth bass express the characteristics of each investigated hydrosphere environment and food chain. A very high correlation (δ(13)C: Y(scale) = 0.96 X(muscle) + 1.58, R(2) = 0.98, δ(15)N: Y(scale) = 0.92 X(muscle) - 1.15, R(2) = 0.95) of SIA values was found between largemouth bass scales and lipid-extracted muscles, which suggests that the more easily analyzed scales are useful as SIA samples for the monitoring and comparison of hydrosphere environments throughout the world.

  16. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    NASA Astrophysics Data System (ADS)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  17. Bomb-pulse 14C analysis combined with 13C and 15N measurements in blood serum from residents of Malmö, Sweden.

    PubMed

    Georgiadou, Elisavet; Stenström, Kristina Eriksson; Uvo, Cintia Bertacchi; Nilsson, Peter; Skog, Göran; Mattsson, Sören

    2013-05-01

    The (14)C content of 60 human blood serum samples from residents of Malmö (Sweden) in 1978, obtained from a biobank, has been measured to estimate the accuracy of (14)C bomb-pulse dating. The difference between the date estimated using the Calibomb software and sampling date varied between -3 ± 0.4 and +0.2 ± 0.5 years. The average age deviation of all samples was -1.5 ± 0.7 years, with the delay between production and consumption of foodstuffs being probably the dominating cause. The potential influence of food habits on the (14)C date has been evaluated using stable isotope δ(13)C and δ(15)N analysis and information about the dietary habits of the investigated individuals. Although the group consisting of lacto-ovo vegetarians and vegans (pooled group) was not completely separated from the omnivores in a stable isotopic trophic level diagram, this analysis proved to add valuable information on probable dietary habits. The age deviation of the sampling date from the respective Calibomb date was found strongly correlated with the δ(13)C values, probably due to influence from marine diet components. For the omnivore individuals, there were indications of seasonal effects on δ(13)C and the age deviation. No significant correlation was found between the age deviation and the δ(15)N values of any dietary group. No influence of sex or year of birth was found on neither the (14)C nor the δ(13)C and δ(15)N values of the serum samples. The data were also divided into two groups (omnivores and pooled group), based on the level of δ(15)N in the samples. The consumption of high δ(15)N-valued fish and birds can be responsible for this clustering.

  18. Modeling the isotope effect in Walden inversion reactions

    NASA Astrophysics Data System (ADS)

    Schechter, Israel

    1991-05-01

    A simple model to explain the isotope effect in the Walden exchange reaction is suggested. It is developed in the spirit of the line-of-centers models, and considers a hard-sphere collision that transfers energy from the relative translation to the desired vibrational mode, as well as geometrical properties and steric requirements. This model reproduces the recently measured cross sections for the reactions of hydrogen with isotopic silanes and older measurements of the substitution reactions of tritium atoms with isotopic methanes. Unlike previously given explanations, this model explains the effect of the attacking atom as well as of the other participating atoms. The model provides also qualitative explanation of the measured relative yields and thresholds of CH 3T and CH 2TF from the reaction T + CH 3F. Predictions for isotope effects and cross sections of some unmeasured reactions are given.

  19. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  20. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods.

  1. Changes in nitrogen isotopic compositions during composting of cattle feedlot manure: effects of bedding material type.

    PubMed

    Kim, Young-Joo; Choi, Woo-Jung; Lim, Sang-Sun; Kwak, Jin-Hyeob; Chang, Scott X; Kim, Han-Yong; Yoon, Kwang-Sik; Ro, Hee-Myong

    2008-09-01

    Temporal changes in delta(15)N of cattle feedlot manure during its composting with either rice hull (RHM) or sawdust (SDM) as bedding materials were investigated. Regardless of the bedding material used, the delta(15)N of total N in the manure increased sharply from +7.6 per thousand to +9.9 per thousand and from +11.4 per thousand to +14.3 per thousand, respectively, in RHM or SDM, within 10 days from the commencement of composting. Such increases could be attributed primarily to N loss via NH(3) volatilization and denitrification based on the very high delta(15)N values (greater than +20 per thousand) of NH(4)(+) and NO(3)(-) in the co-composted manure. The delta(15)N of total N in RHM was substantially lower (by more than 3 per thousand) than that in SDM, suggesting that the delta(15)N of the composted manure was affected not only by N loss but also by the type of bedding material used. Specifically, the higher N concentration in the rice hull than in the saw dust could lead to a greater (15)N isotope dilution.

  2. Determining the nitrogen and oxygen isotope effects of microbial denitrification

    NASA Astrophysics Data System (ADS)

    Philp, C.; Martin, T. S.; Casciotti, K. L.

    2013-12-01

    The nitrogen cycle describes how nitrogen, a critical nutrient for life, moves throughout the ground, oceans, and atmosphere. An essential component of the nitrogen cycle is denitrification, in which bioavailable nitrogen is transformed into nitrous oxide and nitrogen gas and can no longer be harnessed by most organisms. We can further understand the importance of this nitrogen cycle process by examining the N and O isotope effects of microbial denitrification. We have cultured four denitrifying bacteria: P. stutzeri, P. putida, P. aureofaciens, and P. aeruginosa. After providing them with an initial amount of nitrite we tracked the rate at which each type of bacteria consumed the nitrite through a time series experiment. We then measured the N and O isotope ratios of the nitrite at each time point using a gas-source isotope ratio mass spectrometer. The subsequent isotope effects calculated using the Rayleigh equation provide an important tool for modeling denitrification in the environment.

  3. Measurements of Volatile Circumstellar Isotopes: Effects of Fractionation vs. Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie

    /13C, 14N/15N, 16O/17O, and 16O/18O will be determined and compared to previous studies conducted on species now considered to be affected by chemistry in the circumstellar shell. These observations will provide constraints on the true internal processes that are occurring in evolved stars as well as photo-selective isotope chemistry affecting molecular abundances in the envelopes. The data analysis program proposed here will provide a self-consistent study of the natal isotopic composition of circumstellar envelopes and test recent theories of circumstellar chemistry. Isotopically enriched matter found in some primitive materials has been associated with dust derived from these objects, though there is a lack of data currently available to fully constrain the origins. Realization of our project goals will greatly enhance the scientific return from the Herschel Space Observatory, and provide powerful context and motivation for astronomical observations to be made by future missions such as JWST and SOFIA as well as ground-based studies. This work is highly relevant to the Astrophysics Data Analysis Program by focusing on the analysis of archival data from NASA space astrophysics missions and will address questions difficult to answer in the individual observing programs.

  4. Detection of 2,4,6-Trinitrotoluene-Utilizing Anaerobic Bacteria by 15N and 13C Incorporation ▿

    PubMed Central

    Gallagher, Erin M.; Young, Lily Y.; McGuinness, Lora M.; Kerkhof, Lee J.

    2010-01-01

    2,4,6-Trinitrotoluene (15N or 13C labeled) was added to Norfolk Harbor sediments to test whether anaerobic bacteria use TNT for growth. Stable-isotope probing (SIP)-terminal restriction fragment length polymorphism (TRFLP) detected peaks in the [15N]TNT cultures (60, 163, and 168 bp). The 60-bp peak was also present in the [13C]TNT cultures and was related to Lysobacter taiwanensis. PMID:20081008

  5. Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests.

    PubMed

    Chen, Rui Rui; Dittert, Klaus

    2008-06-01

    Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.

  6. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice.

    PubMed

    Kanstrup, Marie; Thomsen, Ingrid K; Andersen, Astrid J; Bogaard, Amy; Christensen, Bent T

    2011-10-15

    The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.

  7. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  8. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    PubMed

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p < 0.0001), consistent with fractionation from denitrification. However, δ(15)N of extracted NO3 (-) was often lower than bulk soil δ(15)N (by up to 24 ‰), indicative of fractionation during nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification.

  9. Simulating the density of HC15N in the Titan atmosphere with a coupled ion-neutral photochemical model

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Lavvas, P.; Hörst, S. M.

    2015-10-01

    The 14 N/ 15 N ratio for HCN in the atmosphere of Titan has been measured to be 2 to 3 times as less as the corresponding ratio for N2. Using a coupled ionneutral photochemical model incorporating state-of-the-art chemistry and cross-sections for N2, we show that the difference in the ratio of 14 N/15 N between HCN and N2 can be explained exclusively by the photo-induced isotopic fractionation of 14 N14 N and 14 N 15 N,without any further putative nitrogen input.

  10. First ice core records of NO3- stable isotopes from Lomonosovfonna, Svalbard

    NASA Astrophysics Data System (ADS)

    Vega, C. P.; Pohjola, V. A.; Samyn, D.; Pettersson, R.; Isaksson, E.; Björkman, M. P.; Martma, T.; Marca, A.; Kaiser, J.

    2015-01-01

    from two ice cores drilled at Lomonosovfonna, Svalbard, covering the period 1957-2009, and 1650-1995, respectively, were analyzed for NO3-concentrations, and NO3- stable isotopes15N and δ18O). Post-1950 δ15N has an average of (-6.9 ± 1.9)‰, which is lower than the isotopic signal known for Summit, Greenland but agrees with values observed in recent Svalbard snow and aerosol. Pre-1900 δ15N has an average of (4.2 ± 1.6)‰ suggesting that natural sources, enriched in the 15 N isotope, dominated before industrialization. The post-1950 δ18O average of (75.1 ± 4.1)‰ agrees with data from low and polar latitudes, suggesting similar atmospheric NOy (NOy = NO + NO2 + HNO3) processing pathways. The combination of anthropogenic source δ15N and transport isotope effect was estimated as -29.1‰ for the last 60 years. This value is below the usual range of NOx (NOx = NO + NO2) anthropogenic sources which is likely the result of a transport isotope effect of -32‰. We suggest that the δ15N recorded at Lomonosovfonna is influenced mainly by fossil fuel combustion, soil emissions, and forest fires; the first and second being responsible for the marked decrease in δ15N observed in the post-1950s record with soil emissions being associated to the decreasing trend in δ15N observed up to present time, and the third being responsible for the sharp increase of δ15N around 2000.

  11. Preservation effects on the isotopic and elemental composition of skeletal structures in the deep-sea bamboo coral Lepidisis spp. (Isididae)

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Thresher, R. E.; Revill, A. T.; Smith, C. I.; Komugabe, A. F.; Fallon, S. F.

    2014-01-01

    Trace elements and stable isotopes (δ13C and δ15N) in deep-sea coral have been used as proxies to reconstruct past climate, and to investigate food web structure. However, there is a paucity of information regarding the effect of preservation on the chemical integrity of archived coral. In this study a live-caught colony of Bamboo coral (southern Australia), genus (Lepidisis), was sectioned into three pieces and stored for approximately one year to investigate the influence of preservation in ethanol and preservation in seawater, that mimics the early stages of fossilization, against a dry preserved control. Storage and preservation have no significant effect on the isotopic signature of Δ14C, bulk δ15N, δ15N and δ13C of individual amino acids, or C:N in the fibrillar protein matrix, with the only offset (~0.2‰) being observed in part of the δ13C record. In the high-magnesium calcite lattice Ba/Ca appears to be significantly different after storage in ethanol, whereas Δ14C, B/Ca, Mg/Ca, Sr/Ca, and U/Ca remain largely unaltered. Possible mechanisms responsible for these observed differences center around the decomposition, or contamination, by organics and we recommend further investigation, and caution when comparing samples with differing preservation histories.

  12. Kinetic H/D/T isotope and solid state effects on the tautomerism of the conjugate porphyrin monoanion

    SciTech Connect

    Braun, J.; Limbach, H.H.; Schwesinger, R.; Williams, P.G.; Morimoto, Hiromi; Wemmer, D.E.

    1996-11-13

    Using dynamic NMR spectroscopy, the kinetic isotope effects of the degenerate single hydron transfer in the conjugate {sup 15}N-labeled porphyrin anion Por-H{sup -} dissolved in organic solvents have been measured as a function of temperature. Por-H{sup -} was generated by dissolving the labeled parent compound porphyrin together with the phosphazene base 1,1,1,5,5, 5-hexakis(dimethylamino)-3-[1,1,2, 2-tetramethylpropylimino]-3-[[tris(dimethylamino)- phosphoran yliden]amino]-1{lambda}{sup 5},3{lambda}{sup 5},5{lambda}{sup 5} 1,1,4-triphosphazadiene (tHept-P{sup 4}) in organic solvents. In addition, by reaction of porphyrin with the base 1,1,1,5,5, 5-tetrakis[tris(dimethylamino)phosphoranylidene]amino phosphonium fluoride(P{sup 5}{sup +}F{sup -}) Por-H{sup -} could be embedded into the solid state and its tautomerism followed by {sup 15}N CPMAS NMR. Surprisingly, within the margin of error, the generacy of the tautomerism was not lifted in the solid state and the rate constants of the proton transfer were identical in the liquid and the solid. The kinetic isotope effects at 240 K (extrapolated) are given by k{sup H}/k{sup D} = 34 and k{sup H}/k{sup T} = 152. The size and the temperature dependence of the isotope effects indicates a proton tunneling mechanism as in the parent porphyrin where this process is nondegenerate. 29 refs., 9 figs., 3 tabs.

  13. Production of 15N-labeled α-amanitin in Galerina marginata

    PubMed Central

    DuBois, Brandon; Sgambelluri, R. Michael; Angelos, Evan R.; Li, Xuan; Holmes, Daniel

    2015-01-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes directly from A. phalloides, the death cap mushroom, which is collected from its natural habitat. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprobic mushroom that grows and produces α-amanitin in culture, we describe a method for producing 15N-labeled α-amanitin using growth media containing 15N as sole nitrogen source. A key to success was preparing 15N-enriched yeast extract via a novel method designated “glass bead-assisted maturation.” In the presence of the labeled yeast extract and 15N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR. PMID:26100667

  14. Production of (15)N-labeled α-amanitin in Galerina marginata.

    PubMed

    Luo, Hong; DuBois, Brandon; Sgambelluri, R Michael; Angelos, Evan R; Li, Xuan; Holmes, Daniel; Walton, Jonathan D

    2015-09-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes from Amanita phalloides, the death cap mushroom, which is collected from the wild. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprotrophic mushroom that grows and produces α-amanitin in culture, we describe a method for producing (15)N-labeled α-amanitin using growth media containing (15)N as sole nitrogen source. A key to success was preparing (15)N-enriched yeast extract via a novel method designated "glass bead-assisted maturation." In the presence of the labeled yeast extract and (15)N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR.

  15. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Schauble, Edwin A.

    2016-06-01

    Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar

  16. Soil N and 15N variation with time in a California annual grassland ecosystem

    USGS Publications Warehouse

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  17. Variability and directionality of temporal changes in δ(13)C and δ (15)N of aquatic invertebrate primary consumers.

    PubMed

    Woodland, Ryan J; Magnan, Pierre; Glémet, Hélène; Rodríguez, Marco A; Cabana, Gilbert

    2012-05-01

    Seasonal oscillations in the carbon (δ(13)C) and nitrogen (δ(15)N) isotope signatures of aquatic algae can cause seasonal enrichment-depletion cycles in the isotopic composition of planktonic invertebrates (e.g., copepods). Yet, there is growing evidence that seasonal enrichment-depletion cycles also occur in the isotope signatures of larger invertebrate consumers, taxa used to define reference points in isotope-based trophic models (e.g., trophic baselines). To evaluate the general assumption of temporal stability in non-zooplankton aquatic invertebrates, δ(13)C and δ(15)N time series data from the literature were analyzed for seasonality and the influence of biotic (feeding group) and abiotic (trophic state, climate regime) factors on isotope temporal patterns. The amplitude of δ(13)C and δ(15)N enrichment-depletion cycles was negatively related to body size, although all size-classes of invertebrates displayed a winter-to-summer enrichment in δ(13)C and depletion in δ(15)N. Among feeding groups, periphytic grazers were more variable and displayed larger temporal changes in δ(13)C than detritivores. For nitrogen, temporal variability and magnitude of directional change of δ(15)N was most strongly related to ecosystem trophic state (eutrophic > mesotrophic, oligotrophic). This study provides evidence of seasonality in the isotopic composition of aquatic invertebrates across very broad geographical and ecological gradients as well as identifying factors that are likely to modulate the strength and variability of seasonality. These results emphasize the need for researchers to recognize the likelihood of temporal changes in non-zooplankton aquatic invertebrate consumers at time scales relevant to seasonal studies and, if present, to account for temporal dynamics in isotope trophic models.

  18. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  19. Quantum-instanton evaluation of the kinetic isotope effects.

    PubMed

    Vanícek, Jirí; Miller, William H; Castillo, Jesús F; Aoiz, F Javier

    2005-08-01

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum-instanton approximation for the rate constant and on the path-integral Metropolis-Monte Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method should be more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single tunneling path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H + H2 --> H2 + H. In all seven test cases, for temperatures between 250 and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than approximately 10%.

  20. Quantum instanton evaluation of the kinetic isotope effects

    SciTech Connect

    Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

    2005-04-19

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

  1. Kinetic Isotope Effects and Stereochemical Studies on a Ribonuclease Model: Hydrolysis Reactions of Uridine 3'-Nitrophenyl Phosphate.

    PubMed

    Hengge; Bruzik; Tobin; Cleland; Tsai

    2000-06-01

    The reactions of a ribonuclease model substrate, the compound uridine-3'-p-nitrophenyl phosphate, have been examined using heavy-atom isotope effects and stereochemical analysis. The cyclization of this compound is subject to catalysis by general base (by imidazole buffer), specific base (by carbonate buffer), and by acid. All three reactions proceed by the same mechanistic sequence, via cyclization to cUMP, which is stable under basic conditions but which is rapidly hydrolyzed to a mixture of 2'- and 3'-UMP under acid conditions. The isotope effects indicate that the specific base-catalyzed reaction exhibits an earlier transition state with respect to bond cleavage to the leaving group compared to the general base-catalyzed reaction. Stereochemical analysis indicates that both of the base-catalyzed reactions proceed with the same stereochemical outcome. It is concluded that the difference in the nucleophile in the two base-catalyzed reactions results in a difference in the transition state structure but both reactions are most likely concerted, with no phosphorane intermediate. The (15)N isotope effects were also measured for the reaction of the substrate with ribonuclease A. The results indicate that considerably less negative charge develops on the leaving group in the transition state than for the general base-catalyzed reaction in solution. Copyright 2000 Academic Press.

  2. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  3. STELLAR ORIGINS OF EXTREMELY {sup 13}C- AND {sup 15}N-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE?

    SciTech Connect

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco; José, Jordi; Nguyen, Ann

    2016-04-01

    Extreme excesses of {sup 13}C ({sup 12}C/{sup 13}C < 10) and {sup 15}N ({sup 14}N/{sup 15}N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized {sup 13}C- and {sup 15}N-enriched presolar SiC grains ({sup 12}C/{sup 13}C < 16 and {sup 14}N/{sup 15}N < ∼100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in {sup 13}C and {sup 15}N, but with quite diverse Si isotopic signatures. Four grains with {sup 29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with {sup 30}Si excesses and {sup 29}Si depletions show lower-than-solar {sup 34}S/{sup 32}S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also {sup 13}C enriched, but have a range of higher {sup 14}N/{sup 15}N. We found that {sup 15}N-enriched AB grains (∼50 < {sup 14}N/{sup 15}N < ∼100) have distinctive isotopic signatures compared to putative nova grains, such as higher {sup 14}N/{sup 15}N, lower {sup 26}Al/{sup 27}Al, and lack of {sup 30}Si excess, indicating weaker proton-capture nucleosynthetic environments.

  4. C Diffusion in Fe: Isotope Effects and Other Complexities

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.

    2011-12-01

    Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial

  5. Effects of lipid extraction on stable isotope ratios in avian egg yolk: Is arithmetic correction a reliable alternative?

    USGS Publications Warehouse

    Oppel, S.; Federer, R.N.; O'Brien, D. M.; Powell, A.N.; Hollmén, Tuula E.

    2010-01-01

    Many studies of nutrient allocation to egg production in birds use stable isotope ratios of egg yolk to identify the origin of nutrients. Dry egg yolk contains >50% lipids, which are known to be depleted in 13C. Currently, researchers remove lipids from egg yolk using a chemical lipid-extraction procedure before analyzing the isotopic composition of protein in egg yolk. We examined the effects of chemical lipid extraction on ??13C, ??15N, and ??34S of avian egg yolk and explored the utility of an arithmetic lipid correction model to adjust whole yolk ??13C for lipid content. We analyzed the dried yolk of 15 captive Spectacled Eider (Somateriafischeri) and 20 wild King Eider (S. spectabilis) eggs, both as whole yolk and after lipid extraction with a 2:1 chloroform:methanol solution. We found that chemical lipid extraction leads to an increase of (mean ?? SD) 3.3 ?? 1.1% in ??13C, 1.1 ?? 0.5% in ??15N, and 2.3 ?? 1.1% in ??34S. Arithmetic lipid correction provided accurate values for lipid-extracted S13C in captive Spectacled Eiders fed on a homogeneous high-quality diet. However, arithmetic lipid correction was unreliable for wild King Eiders, likely because of their differential incorporation of macronutrients from isotopically distinct environments during migration. For that reason, we caution against applying arithmetic lipid correction to the whole yolk ??13C of migratory birds, because these methods assume that all egg macronutrients are derived from the same dietary sources. ?? 2010 The American Ornithologists' Union.

  6. Microscale reservoir effects on microbial sulfur isotope fractionation

    NASA Astrophysics Data System (ADS)

    Louca, Stilianos; Crowe, Sean A.

    2017-04-01

    Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO42- over the heavier 34SO42-. The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfate-limited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and

  7. Effect of storage on the isotopic composition of nitrate in bulk precipitation.

    PubMed

    Spoelstra, John; Schiff, Sherry L; Jeffries, Dean S; Semkin, Ray G

    2004-09-15

    Stable isotopic analysis of atmospheric nitrate is increasingly employed to study nitrate sources and transformations in forested catchments. Large volumes have typically been required for delta18O and delta15N analysis of nitrate in precipitation due to relatively low nitrate concentrations. Having bulk collectors accumulate precipitation over an extended time period allows for collection of the required volume as well as reducing the total number of analyses needed to determine the isotopic composition of mean annual nitrate deposition. However, unfiltered precipitation left in collectors might be subject to microbial reactions that can alter the isotopic signature of nitrate in the sample. Precipitation obtained from the Turkey Lakes Watershed was incubated under conditions designed to mimic unfiltered storage in bulk precipitation collectors and monitored for changes in nitrate concentration, delta15N, and delta18O. Results of this experiment indicated that no detectable nitrate production or assimilation occurred in the samples during a two-week incubation period and that atmospheric nitrate isotopic ratios were preserved. The ability to collect unfiltered precipitation samples for an extended duration without alteration of nitrate isotope ratios is particularly useful at remote study sites where daily retrieval of samples may not be feasible.

  8. Rapid, storm-induced changes in the natural abundance of sup 15 N in a planktonic ecosystem, Chesapeake Bay, USA

    SciTech Connect

    Montoya, J.P.; McCarthy, J.J. ); Horrigan, S.G. )

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), and two species of zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of {sup 15}N ({delta} {sup 15}N) in the major dissolved and planktonic pools of nitrogen suggested that the {delta}{sup 15}N of PN was largely determined by isotopic fractionation during uptake of NH{sub 4}{sup +} by phytoplankton. Averaged over the transect as a whole, the {delta}{sup 15}N of the herbivorous calanoid copepod Acartia tonsa was 4.1% higher than that of the PN, while the {delta}{sup 15}N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4% higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH{sub 4}{sup +} into the surface layer of the bay. In combination with ancillary physical, chemical, and biological data, these changes in {delta}{sup 15}N provided estimates of the isotopic fractionation factor for NH{sub 4}{sup +} uptake by phytoplankton ({alpha} = 1.0065-1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in {delta}{sup 15}N observed during this cruise, the relative distribution of {sup 15}N between trophic levels was preserved: during the second transect, the difference in {delta}{sup 15}N between Acartia tonsa and PN was 3.6%, and the difference in {delta}{sup 15}N between Mnemiopsis leidyi and PN was 7.3%. These results demonstrate that the natural abundance of {sup 15}N can change dramatically on a time scale of days, and that time-series studies of the natural abundance of {sup 15}N can be a useful complement to studies using tracer additions of {sup 15}N to document nitrogen transformations in planktonic ecosystems.

  9. Isotopic evidence for nitrification in the Antarctic winter mixed layer

    NASA Astrophysics Data System (ADS)

    Smart, Sandi M.; Fawcett, Sarah E.; Thomalla, Sandy J.; Weigand, Mira A.; Reason, Chris J. C.; Sigman, Daniel M.

    2015-04-01

    We report wintertime nitrogen and oxygen isotope ratios (δ15N and δ18O) of seawater nitrate in the Southern Ocean south of Africa. Depth profile and underway surface samples collected in July 2012 extend from the subtropics to just beyond the Antarctic winter sea ice edge. We focus here on the Antarctic region (south of 50.3°S), where application of the Rayleigh model to depth profile δ15N data yields estimates for the isotope effect (the degree of isotope discrimination) of nitrate assimilation (1.6-3.3‰) that are significantly lower than commonly observed in the summertime Antarctic (5-8‰). The δ18O data from the same depth profiles and lateral δ15N variations within the mixed layer, however, imply O and N isotope effects that are more similar to those suggested by summertime data. These findings point to active nitrification (i.e., regeneration of organic matter to nitrate) within the Antarctic winter mixed layer. Nitrite removal from samples reveals a low δ15N for nitrite in the winter mixed layer (-40‰ to -20‰), consistent with nitrification, but does not remove the observation of an anomalously low δ15N for nitrate. The winter data, and the nitrification they reveal, explain the previous observation of an anomalously low δ15N for nitrate in the temperature minimum layer (remnant winter mixed layer) of summertime depth profiles. At the same time, the wintertime data require a low δ15N for the combined organic N and ammonium in the autumn mixed layer that is available for wintertime nitrification, pointing to intense N recycling as a pervasive condition of the Antarctic in late summer.

  10. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    NASA Astrophysics Data System (ADS)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  11. Effect of different fertilizers on nitrogen isotope composition and nitrate content of Brassica campestris.

    PubMed

    Yuan, Yuwei; Zhao, Ming; Zhang, Zhiheng; Chen, Tianjin; Yang, Guiling; Wang, Qiang

    2012-02-15

    The effect of different fertilizers on the δ(15)N value, nitrate concentration, and nitrate reductase activity of Brassica campestris and the δ(15)N value of soil has been investigated through a pot experiment. The δ(15)N mean value of B. campestris at the seedling stage observed in the composted chicken treatment (+8.65‰) was higher than that of chemical fertilizer treatment (+5.73‰), compost-chemical fertilizer (+7.53‰), and control check treatment (+7.86‰). There were significantly different δ(15)N values (p < 0.05) between B. campestris cultivated with composted chicken manure treatment and with chemical fertilizer treatment. The similar results were also found at the middle stage and the terminal stage. The variation of δ(15)N value in soil for different treatments was smaller than that of B. campestris, which was +6.71-+8.12‰, +6.83-+8.24‰, and +6.85-8.4‰, respectively, at seedling stage, middle stage, and terminal stage. With the growth of B. campestris, the nitrate content decreased in all treatments, and the nitrate reductase activity in B. campestris increased except for the CK. Results suggested that the δ(15)N values of B. campestris and soil were more effected by the fertilizer than by the dose level, and the δ(15)N value analysis could be used as a tool to discriminate the B. campestris cultivated with composted manure or chemical fertilizer.

  12. "Anticlumping" and Other Combinatorial Effects on Clumped Isotopes: Implications for Tracing Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Yeung, L.

    2015-12-01

    I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can

  13. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  14. The origin of carbon isotope vital effects in coccolith calcite

    PubMed Central

    McClelland, H. L. O.; Bruggeman, J.; Hermoso, M.; Rickaby, R. E. M.

    2017-01-01

    Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive. PMID:28262764

  15. The origin of carbon isotope vital effects in coccolith calcite

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Bruggeman, J.; Hermoso, M.; Rickaby, R. E. M.

    2017-03-01

    Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive.

  16. Stable isotope analysis of breath using the optogalvanic effect

    NASA Astrophysics Data System (ADS)

    Murnick, Daniel E.; Colgan, M. J.; Lie, H. P.; Stoneback, D.

    1996-05-01

    A new technique based on the optogalvanic effect has been developed for the measurement of stable isotope ratios in the carbon dioxide of exhaled breath. Data obtained before and after ingestion of harmless stable isotope labeled compounds, metabolized to carbon dioxide, can be used for sensitive noninvasive diagnostics of various disease conditions. The technique uses the specificity of laser resonance spectroscopy and achieves sensitivity and accuracy typical of sophisticated isotope ratio mass spectrometers. Using fixed frequency carbon dioxide lasers, 13C/12C ratios can be determined with a precision of 2 ppm with 100 second averaging times. Multiple samples can be analyzed simultaneously providing real time continuous calibration. In a first application, analysis of 13C/12C ratios in exhaled human breath after ingestion of 13C labeled urea is being developed as a diagnostic for the bacterium H-pylori, known to be the causative agent for most peptic and duodenal ulcers.

  17. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    PubMed

    Popa-Lisseanu, Ana G; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado-Huertas, Antonio; Kelm, Detlev H; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers.

  18. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  19. Radiocarbon, 13C and 15N analysis of fossil bone: Removal of humates with XAD-2 resin

    NASA Astrophysics Data System (ADS)

    Stafford, Thomas W., Jr.; Brendel, Klaus; Duhamel, Raymond C.

    1988-09-01

    Humic acids are the predominant source of error in the 14C and stable isotope analysis of fossil bone organic matter. XAD-2 resin will quantitatively remove humates and give the highest yields of protein from bones with variable types of preservation. Decalcified bone, gelatin and base-leached residues can vary up to 5%. for δ 13C and by 1%. on δ 15N relative to XAD-treated fractions. Simultaneous analysis of 14C age, δ 13C and δ 15N is recommended because each isotope value can be independently affected by the bone's diagenetic history. Radiocarbon analysis is the most sensitive and δ 15N is least sensitive for detecting exogenous organic matter. The uncertainty of analyses on the best pretreated protein is ±0.5%. for both δ 13C and δ 15N and is larger than previous estimates. The accuracy for all isotope analyses will be better assessed by using individual amino acids instead of total collagenous residues. Inaccurate 14C dates on severely degraded bone are an indication that this class of fossils may be unsuitable for any isotopic analysis.

  20. Using macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs in Skagway, AK

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  1. Clumped isotope effects during OH and Cl oxidation of methane

    NASA Astrophysics Data System (ADS)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan A.; Wang, David T.; Johnson, Matthew S.; Ono, Shuhei

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE). The deviation from this relationship is 0.3‰ ± 1.2‰ and 3.5‰ ± 0.7‰ for OH and Cl oxidation, respectively. This is consistent with model calculations performed using quantum chemistry and transition state theory. The OH and Cl reactions enrich the residual methane in the clumped isotopologue in open system reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane, will only have a minor (∼0.3‰) impact on the clumped isotope signature (Δ13CH3D, measured as a deviation from a stochastic distribution of isotopes) of tropospheric methane. This paper shows that Δ13CH3D will provide constraints on methane source strengths, and predicts that Δ12CH2D2 can provide information on methane sink strengths.

  2. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  3. δ15N-Size Relationships in River Invertebrate Communities: An Integrated Measure of Food web Structure?

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Cabana, G.

    2005-05-01

    Anthropogenic perturbations can alter the composition and structure of benthic communities in rivers. Here, we examine the use of estimates of fish trophic position measured with stable nitrogen isotope ratios (δ15N), and δ15N-size relationships for the invertebrate community, as indicators of food web structure in rivers affected by various anthropogenic disturbances. Results revealed that δ15N-size relationships of invertebrate communities showed a variety of responses, some sites (50%) showing significant increases in δ15N with invertebrate size, whereas others did not. Similarly, the number of trophic levels between invertebrate-eating fish and primary consumers varied greatly among study sites, ranging from 0.6 to 2.2 levels. To investigate whether these estimates of fish trophic position integrated changes in invertebrate community structure, we compared slopes of invertebrate δ15N versus size with slopes of baseline-corrected fish δ15N versus size. Both slopes tended to be correlated, although the relationship was not significant (r2 = 0.26, p = 0.07). This trend suggests, however, that invertebrate-feeding fish trophic position measured with δ15N might reflect overall community structure, and could possibly be used as an easily measured indicator of food chain collapse following anthropogenic perturbations.

  4. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  5. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters.

    PubMed

    Hinkle, Stephen R; Böhlke, J K; Fisher, Lawrence H

    2008-12-15

    Septic tank systems are an important source of NO3(-) to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent delta15N-NH4+ values were almost constant and averaged +4.9 per thousand+/-0.4 per thousand (1 sigma). In contrast, delta15N values of NO3(-) leaving mature packed-bed filters were variable (+0.8 to +14.4 per thousand) and averaged +7.2 per thousand+/-2.6 per thousand. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl(-)-normalized N concentrations and 2-3 per thousand increases in delta15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3(-) in a local, shallow aquifer. Values of delta18O-NO3(-) leaving mature packed-bed filters ranged from -10.2 to -2.3 per thousand (mean -6.4 per thousand+/-1.8 per thousand), and were intermediate between a 2/3 H2O-O+1/3 O2-O conceptualization and a 100% H2O-O conceptualization of delta18O-NO3(-) generation during nitrification.

  6. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  7. Monthly variations in nitrogen isotopes of ammonium and nitrate in wet deposition at Guangzhou, south China

    NASA Astrophysics Data System (ADS)

    Jia, Guodong; Chen, Fajin

    2010-06-01

    Monthly nitrogen isotopes of ammonium and nitrate in wet deposition in the city of Guangzhou, and the causes of their variability, are reported in this paper. Nitrate δ 15N showed nearly constant values around zero in the dry season (October to April), but oscillating values from negative to positive in the rainy season (May to September). By contrast, ammonium δ 15N displayed lower values during the rainy season than in the dry season. The rural area north of the city was considered as the prominent source of ammonium and nitrate in spring and early summer (May and June), as suggested by their concurrent negative isotopic trends and higher NH 4+/NO 3- ratios. From July to September, different dominating sources from the city, i.e., fossil fuel combustion for nitrate, and sewage and waste emission for ammonium, caused disparate δ 15N trends of the two species, showing positive nitrate δ 15N, but still negative ammonium δ 15N. During the cool dry season, the high values of ammonium δ 15N and concurrently low NH 4+/NO 3- ratios suggested the decrease in NH 3 volatilization and relatively important thermogenic origin of ammonium, but the intermediate nitrate δ 15N values around zero may be a result of a balanced emission of NO x from the city and the rural areas. The isotopic effects of chemical conversion of NO x to nitrate and washout of nitrate were ruled out as significant causes of nitrate δ 15N variability, but ammonium washout, during which 15N is assumed to be preferentially removed, may partly contribute to the ammonium δ 15N variability.

  8. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    PubMed Central

    Yang, Yang; Siegwolf, Rolf T. W.; Körner, Christian

    2015-01-01

    Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. Two thousand five hundred meter elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3–4‰ and 7–8‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7‰) except in Fabaceae (Trifolium alpinum) and Juncaceae (Luzula lutea). There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic) and insensitive to obvious environmental cues. PMID:26097487

  9. Menopause effect on blood Fe and Cu isotope compositions.

    PubMed

    Jaouen, Klervia; Balter, Vincent

    2014-02-01

    Iron (δ(56) Fe) and copper (δ(65) Cu) stable isotope compositions in blood of adult human include a sex effect, which still awaits a biological explanation. Here, we investigate the effect of menopause by measuring blood δ(56) Fe and δ(65) Cu values of aging men and women. The results show that, while the Fe and Cu isotope compositions of blood of men are steady throughout their lifetime, postmenopausal women exhibit blood δ(65) Cu values similar to men, and δ(56) Fe values intermediate between men and premenopausal women. The residence time of Cu and Fe in the body likely explains why the blood δ(65) Cu values, but not the δ(56) Fe values, of postmenopausal women resemble that of men. We suggest that the Cu and Fe isotopic fractionation between blood and liver resides in the redox reaction occurring during hepatic solicitation of Fe stores. This reaction affects the Cu speciation, which explains why blood Cu isotope composition is impacted by the cessation of menstruations. Considering that Fe and Cu sex differences are recorded in bones, we believe this work has important implications for their use as a proxy of sex or age at menopause in past populations.

  10. Anomalously large isotope effect in the glass transition of water

    SciTech Connect

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Nelson, Helge; Köster, Karsten W.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Böhmer, Roland; Loerting, Thomas; Sokolov, Alexei P.

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.

  11. Anomalously large isotope effect in the glass transition of water

    DOE PAGES

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; ...

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperaturemore » dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less

  12. Racing carbon atoms. Atomic motion reaction coordinates and structural effects on Newtonian kinetic isotope effects.

    PubMed

    Andujar-De Sanctis, Ivonne L; Singleton, Daniel A

    2012-10-19

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of methacrolein. Trajectory studies accurately predict the isotope effects and support an origin in Newton's second law of motion, with no involvement of zero-point energy or transition state recrossing. Atomic motion reaction coordinate diagrams are introduced as a way to qualitatively understand the selectivity.

  13. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  14. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    PubMed

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets.

  15. Effects of Water on Carbonate Clumped Isotope Bond Reordering Kinetics

    NASA Astrophysics Data System (ADS)

    Brenner, D. C.; Passey, B. H.

    2015-12-01

    Carbonate clumped isotope geothermometry is a powerful tool for reconstructing past temperatures, both in surface environments and in the shallow crust. The method is based on heavy isotope "clumps" within single carbonate groups (e.g., 13C18O16O2-2), whose overabundance beyond levels predicted by chance is determined by mineralization temperature. The degree of clumped isotope overabundance can change at elevated temperatures (ca. >100ºC) owing to solid-state diffusion of C and O through the mineral lattice. Understanding the kinetics of this clumped isotope reordering process is a prerequisite for application to geological questions involving samples that have been heated in the subsurface. Thus far, the effect of water on reordering kinetics has not been explored. The presence of water dramatically increases rates of oxygen self-diffusion in calcite, but whether this water-enhanced diffusion is limited to the mineral surface or extends into the bulk crystal lattice is not clear. Here we present experimentally determined Arrhenius parameters for reordering rates in optical calcite heated under aqueous high pressure (100 MPa) conditions. We observe only marginal increases in reordering rates under these wet, high pressure conditions relative to rates observed for the same material reacted under dry, low pressure conditions. The near identical clumped isotope reordering rates for wet and dry conditions contrasts with the orders of magnitude increase in oxygen diffusivity at the mineral surface when water is present. This suggests the latter effect arises from surface reactions that have minimal influence on the diffusivity of C or O in the bulk mineral. Our results also imply that previously published reordering kinetics determined under dry, low pressure experimental conditions are applicable to geological samples that have been heated in the presence of water.

  16. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  17. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  18. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  19. Isotope effect in dissociative electron attachment to HCN

    SciTech Connect

    Chourou, S. T.; Orel, A. E.

    2011-03-15

    We performed nuclear dynamics calculations on HCN and DCN to study the isotope effect in dissociative electron attachment. Our previous calculations at 333 K led to a ratio {sigma}{sup (CN-/HCN)}/{sigma}{sup (CN-/DCN)} of about 13, which is significantly higher than recent experimental findings. This discrepancy is attributed to the neglect of correlation and polarization effects in the scattering calculation performed. We carried out a relaxed-self-consistent field calculation to determine the variation of the resonance parameters under these effects. We observe a shift in the positions of the shape resonance as well as a narrowing of the autoionization widths resulting in an isotope ratio of 3.2 at T=333 K; in closer agreement with the measured value.

  20. Tree-Ring Nitrogen Isotopes As Environmental Monitoring Tools - Inferring Air Quality Changes And Climate Effects

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Begin, C.; Smirnoff, A.; Marion, J.

    2008-12-01

    Anthropogenic emissions of atmospheric nitrogen greatly increased over the last 150 years, however the monitoring of nitrous oxide concentration in North America started only recently, generally during the last 30 years. Could the geochemical characteristics of tree rings be used to infer past changes in nitrogen cycles of temperate regions? To address this question we use long-term series (125 years) of nitrogen stable isotopes15N) obtained from rings of pine (Pinus strobus) and beech (Fagus grandifolia) trees in the Montreal region (western Quebec), and of beech specimens in the Georgian Bay Islands National Park (central Ontario). Reliability tests of N concentrations in wood treated for removal of soluble materials reveal that the reproducibility from tree to tree is poor, and that the concentrations in both Pine and Beech trees change in the heartwood-sapwood transition zones. We therefore reject N concentration as environmental indicator. Alternatively, the N stable isotopes pass all reliability tests. In Montreal, short-term δ15N fluctuations correlate directly with precipitation and inversely with temperature. A long-term decreasing isotope trend suggests progressive changes in soil chemistry after 1951. A pedochemical change is also inferred for the Georgian Bay site on the basis of a positive δ15N trend initiated after 1971. At both sites, the long-term δ15N series correlate with a proxy for NOx emissions, and the δ13C values of the same ring series suggest that all studied trees have been stressed by phytotoxic pollutants. We propose that the contrasted long-term δ15N changes of Montreal and Georgian Bay reflect deposition of NOx emissions from cars and coal-power plants, with higher proportions from coal burning in Georgian Bay. This interpretation is conceivable because recent monitoring indicates that coal-power plant NOx emissions play an important role in the annual N budget in Ontario, but they seem negligible on the Quebec side. This

  1. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient.

    PubMed

    Vallano, Dena M; Sparks, Jed P

    2013-05-01

    Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.

  2. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.

  3. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  4. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  5. Exploring the Nitrogen Ingestion of Aphids — A New Method Using Electrical Penetration Graph and 15N Labelling

    PubMed Central

    Kuhlmann, Franziska; Opitz, Sebastian E. W.; Inselsbacher, Erich; Ganeteg, Ulrika; Näsholm, Torgny; Ninkovic, Velemir

    2013-01-01

    Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen (15N). We combined the Electrical Penetration Graph (EPG) technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS) to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae) fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae) that were cultivated with a 15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their 15N uptake. All other single behavioural phases were not correlated with 15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and 15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed. PMID:24376642

  6. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15)N labelling.

    PubMed

    Kuhlmann, Franziska; Opitz, Sebastian E W; Inselsbacher, Erich; Ganeteg, Ulrika; Näsholm, Torgny; Ninkovic, Velemir

    2013-01-01

    Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15)N). We combined the Electrical Penetration Graph (EPG) technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS) to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae) fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae) that were cultivated with a (15)N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15)N uptake. All other single behavioural phases were not correlated with (15)N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15)N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  7. Kinematic Isotope Effects in Low Energy Electron Capture

    SciTech Connect

    Stancil, P.C.; Zygelman, B.

    1995-08-21

    The replacement of hydrogen with its isotope deuterium, in collisions with multiply charged ions, is shown to lead to a suppression of total charge transfer cross sections at collision energies much higher than previously thought. We demonstrate, using a fully quantal calculation of electron capture in collisions of N{sup 4+}(2{ital s}) with H(1{ital s}) and D(1{ital s}), that this isotope effect is significant for capture into the N{sup 3+}(3{ital d}) states at collision energies approaching 10 eV/amu. Estimates of the magnitude of the effect, using the semiclassical Landau-Zener-Stueckelberg model, are made for several multiply charged systems.

  8. On the nitrogen isotope composition of the solar nebula

    NASA Astrophysics Data System (ADS)

    Marty, B.; Burnard, P.; Chaussidon, M.; Hashizume, K.; Wieler, R.; Zimmermann, L.

    The two isotopes of nitrogen, 14 N and 15 N, have relative abundances extremely variable among solar system reservoirs such as planets and their atmospheres, primitive and differentiated meteorites, comets. Based on nitrogen isotope variations in lunar soil grains on one hand 1 , and on the in-situ analysis of the Jovian atmosphere on another hand 2 , it has been proposed that the Sun is depleted in 15 N by ˜ 30 % or more, whereas planetary bodies are enriched in 15 N due to incorporation of 15 N-rich compounds carried by e.g., organics. The Sun represents 99 % of the solar system mass and is probably our best representative of the solar nebula. The origin of the 15 N enrichment of the non-solar component is unclear. Isotope fractionation at low temperature during ion-molecule reaction in the interstellar medium has been proposed but apparently the magnitude of the effect cannot fully account for the range of N isotope ratios observed in the solar system. Other possibilities include isotopic effects during irradiation of the solar nebula by a very active young Sun as recently proposed to account for extreme oxygen isotope effects recorded in meteoritic organics 3 . Up to now, the exact isotopic composition of solar nitrogen as well as possible isotopic fractionation upon different solar wind regimes are not known. This constitutes one of the top priorities of the Genesis mission aimed to measure the isotopic composition of the solar wind implanted at different energies in targets exposed in space for 28 months. Despite a hard landing due to a parachute opening failure, the samples are back to Earth and treated accordingly to eliminate terrestrial contamination. The CRPG team is presently developing a UV laser rastering technique coupled with ultralow background mass spectrometry to analyse N implanted in gold covering sapphire targets. We shall present our most recent developments in selectively extracting solar wind nitrogen and analysing its isotopic composition

  9. Synthesis of 14C-Labelled Octahydor-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMx0 and 15N-Isotopic Hexahyrro-1,3,5-Trinitro-1,3,5-Triazine (RDX) for use in Microcosm Experiments.

    DTIC Science & Technology

    2000-02-01

    bioremediation process. To synthesize C(14)HMX, acetylation of labelled hexamethylenetetramine (C(14)HMTA) was done yielding 3,7-diacetyl-1,3,5,7... hexamethylenetetramine (N(15)HMTA) was done according to the Hale Process. N(15)HMTA was prepared by reaching cold formaldehyde with isotopic nitrogen-15 ammonium hydroxide.

  10. Measurement of (15)N enrichment of glutamine and urea cycle amino acids derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Nakamura, Hidehiro; Karakawa, Sachise; Watanabe, Akiko; Kawamata, Yasuko; Kuwahara, Tomomi; Shimbo, Kazutaka; Sakai, Ryosei

    2015-05-01

    6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is an amino acid-specific derivatizing reagent that has been used for sensitive amino acid quantification by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In this study, we aimed to evaluate the ability of this method to measure the isotopic enrichment of amino acids and to determine the positional (15)N enrichment of urea cycle amino acids (i.e., arginine, ornithine, and citrulline) and glutamine. The distribution of the M and M+1 isotopomers of each natural AQC-amino acid was nearly identical to the theoretical distribution. The standard deviation of the (M+1)/M ratio for each amino acid in repeated measurements was approximately 0.1%, and the ratios were stable regardless of the injected amounts. Linearity in the measurements of (15)N enrichment was confirmed by measuring a series of (15)N-labeled arginine standards. The positional (15)N enrichment of urea cycle amino acids and glutamine was estimated from the isotopic distribution of unique fragment ions generated at different collision energies. This method was able to identify their positional (15)N enrichment in the plasma of rats fed (15)N-labeled glutamine. These results suggest the utility of LC-MS/MS detection of AQC-amino acids for the measurement of isotopic enrichment in (15)N-labeled amino acids and indicate that this method is useful for the study of nitrogen metabolism in living organisms.

  11. Stable isotopes may provide evidence for starvation in reptiles.

    PubMed

    McCue, Marshall D; Pollock, Erik D

    2008-08-01

    Previous studies have attempted to correlate stable isotope signatures of tissues with the nutritional condition of birds, mammals, fishes, and invertebrates. Unfortunately, very little is known about the relationship between food limitation and the isotopic composition of reptiles. We examined the effects that starvation has on delta13C and delta15N signatures in the tissues (excreta, carcass, scales, and claws) of six, distantly related squamate reptiles (gaboon vipers, Bitis gabonica; ball pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus exanthematicus). Analyses revealed that the isotopic composition of reptile carcasses did not change significantly in response to bouts of starvation lasting up to 168 days. In contrast, the isotopic signatures of reptile excreta became significantly enriched in 15N and depleted in 13C during starvation. The isotopic signatures of reptile scales and lizard claws were less indicative of starvation time than those of excreta. We discuss the physiological mechanisms that might be responsible for the starvation-induced changes in 13C and 15N signatures in the excreta, and present a mixing model to describe the shift in excreted nitrogen source pools (i.e. from a labile source pool to a nonlabile source pool) that apparently occurs during starvation in these animals. The results of this study suggest that naturally occurring stable isotopes might ultimately have some utility for characterizing nitrogen and carbon stress among free-living reptiles.

  12. Towards interpreting nitrate-δ15N records in ice cores in terms of nitrogen oxide sources

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Buffen, A. M.

    2011-12-01

    The isotopic composition of nitrate preserved in ice cores offers unique potential for reconstructing past contributions of nitrogen oxides (NOx = NO and NO2) to the atmosphere. Sources of NOx imprint a nitrogen stable isotopic15N) signature, which can be conserved during subsequent oxidation to form nitrate. Major sources of NOx include fossil fuels combustion, biomass burning, microbial processes in soils, and lightning, and thus a quantitative tracer of emissions would help detail connections between the atmosphere, the biosphere, and climate. Unfortunately, the δ15N signatures of most NOx sources are not yet well enough constrained to allow for quantitative partitioning, though new methodology for directly collecting NOx for isotopic analysis is promising (Fibiger and Hastings, A43D-0265, AGU 2010). Still, a growing network of ice core δ15N records may offer insight into source signatures, as different sources are important to different regions of the world. For example, a 300-year ice core record of nitrate-δ15N from Summit, Greenland shows a clear and significant 12% (vs. N2) decrease since the Preindustrial that reflects emissions from fossil fuel combustion and/or soils related to changing agricultural practices in North America and Europe. Over the same time period, Antarctic ice cores show no such trend in δ15N. This would be consistent with previous work suggesting that biomass burning and/or stratospheric intrusion of NOx produced from N2O oxidation are dominant sources for nitrate formation at high southern latitudes. In comparison to the polar records, nitrate in tropical ice cores should represent more significant inputs from lightning, microbial processes in soils, and biomass burning. This may be reflected in new results from a high-elevation site in the Peruvian Andes that shows strong seasonal δ15N cycles of up to 15% (vs. N2). We compare and contrast these records in an effort to evaluate the contribution of NOx sources to nitrate over

  13. The N-isotope effect and fractionation of nitrification in the tidal influenced Elbe River estuary, Germany

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Dähnke, Kirstin

    2014-05-01

    Estuaries act as a nutrient filter for coastal waters. The eutrophic Elbe River estuary is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of reactive nitrogen. Nitrification plays a key role in this estuarine nutrient regeneration but has to be quantified. The aim of our study was to assess the impact of nitrification on seasonal nitrogen loads and turnover using stable N- isotopes to identify the natural fractionation factor of nitrification. Therefor we measured the dissolved inorganic nitrogen (ammonium, nitrite and nitrate), their stable isotope signatures and the in-situ nitrification rates in the tidal influenced part of the river during 9 cruises from August 2011 to August 2013. The DIN load was higher in winter than in summer, the main compound was nitrate. In summer concentrations of nitrate entering the estuary were between 50 and 100 μM and δ15N and δ18O were enriched to 15.5 to 21.5 o and 7.5 to 11.5 o respectively. Strong nitrification was found in the Hamburg port region. The nitrate concentrations increased significantly downstream after the port of Hamburg, along with a decrease of isotope values. Ammonium and nitrite peaked in the Hamburg port region with up to 25 μM and 12 μM, respectively. In July 2013, δ15N of ammonium has shown a mean value of 16.2±3.3 o and nitrite of -9.8±4.7 ‰The N-fractionation of nitrification in July 2013 was 15ɛnit -10o the sub-process ammonia oxidation 15ɛamox-24o and the nitrite oxidation of 15ɛniox 13o while fractionation was less pronounced during the other cruises Our data show that N-isotope fractionation generally confirmed culture experiments, but that it strongly depended on discharge, availability of substrate, temperature and the coupling of ammonia and nitrite oxidation.

  14. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    PubMed

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  15. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the qua