Science.gov

Sample records for 15n nmr experiments

  1. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  2. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  3. 3D NMR Experiments for Measuring 15N Relaxation Data of Large Proteins: Application to the 44 kDa Ectodomain of SIV gp41

    NASA Astrophysics Data System (ADS)

    Caffrey, Michael; Kaufman, Joshua; Stahl, Stephen J.; Wingfield, Paul T.; Gronenborn, Angela M.; Clore, G. Marius

    1998-12-01

    A suite of 3D NMR experiments for measuring15N-{1H} NOE,15NT1, and15NT1ρvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H-15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.

  4. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  5. 15N NMR of 1,4-dihydropyridine derivatives.

    PubMed

    Goba, Inguna; Liepinsh, Edvards

    2013-07-01

    In this article, we describe the characteristic (15)N and (1)HN NMR chemical shifts and (1)J((15)N-(1)H) coupling constants of various symmetrically and unsymmetrically substituted 1,4-dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N-alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects.

  6. Solvent effects on 15N NMR coordination shifts.

    PubMed

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  7. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments.

    PubMed

    Stockman, Brian J; Kothe, Michael; Kohls, Darcy; Weibley, Laura; Connolly, Brendan J; Sheils, Alissa L; Cao, Qing; Cheng, Alan C; Yang, Lily; Kamath, Ajith V; Ding, Yuan-Hua; Charlton, Maura E

    2009-02-01

    Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.

  8. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.

    PubMed

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Yoshiyuki; Nencka, Radim; Sychrovský, Vladimír

    2016-02-11

    The (15)N NMR shifts of 9-ethyl-8-oxoguanine (OG) were calculated and measured in liquid DMSO and in crystal. The OG molecule is a model for oxidatively damaged 2'-deoxyguanosine that occurs owing to oxidative stress in cell. The DNA lesion is repaired with human 8-oxoguanine glycosylase 1 (hOGG1) base-excision repair enzyme, however, the exact mechanism of excision of damaged nucleobase with hOGG1 is currently unknown. This benchmark study on (15)N NMR shifts of OG aims their accurate structural interpretation and calibration of the calculation protocol utilizable in future studies on mechanism of hOGG1 enzyme. The effects of NMR reference, DFT functional, basis set, solvent, structure, and dynamics on calculated (15)N NMR shifts were first evaluated for OG in crystal to calibrate the best performing calculation method. The effect of large-amplitude motions on (15)N NMR shifts of OG in liquid was calculated employing molecular dynamics. The B3LYP method with Iglo-III basis used for B3LYP optimized geometry with 6-311++G(d,p) basis and including effects of solvent and molecular dynamic was the calculation protocol used for calculation of (15)N NMR shifts of OG. The NMR shift of N9 nitrogen of OG was particularly studied because the atom is involved in an N-glycosidic bond that is cleaved with hOGG1. The change of N9 NMR shift owing to oxidation of 9-ethylguanine (G) measured in liquid was -27.1 ppm. The calculated N9 NMR shift of OG deviated from experiment in crystal and in liquid by 0.45 and 0.65 ppm, respectively. The calculated change of N9 NMR shift owing to notable N9-pyramidalization of OG in one previously found polymorph was 20.53 ppm. We therefore assume that the pyramidal geometry of N9 nitrogen that could occur for damaged DNA within hOGG1 catalytic site might be detectable with (15)N NMR spectroscopy. The calculation protocol can be used for accurate structural interpretation of (15)N NMR shifts of oxidatively damaged guanine DNA residue.

  9. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2012-06-21

    Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.

  10. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  11. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  12. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  13. Proton-coupled 15N NMR spectra of neutral and protonated ethenoadenosine and ethenocytidine.

    PubMed Central

    Sierzputowska-Gracz, H; Wiewiórowski, M; Kozerski, L; von Philipsborn, W

    1984-01-01

    The 15N chemical shifts and 15N, 1H spin coupling constants were determined in the title compounds using the INEPT pulse sequence and assigned with the aid of selective proton decoupling. The delta/15N/ and J/N, H/ values are discussed in terms of involvement of the imidazole ring created by ethenobridging in the electronic structure of the whole molecule. Both spectral parameters indicate that the diligant nitrogen in this ring is the primary site of protonation in these modified nucleosides. It is concluded that 15N NMR of nucleoside bases can be largely a complementary method to 1H and 13C NMR studies and, in addition, can serve as a direct probe for studies of nitrogen environment in oligomeric fragments of nucleic acids even at moderately strong magnetic fields due to the higher spectral dispersion compared with 1H and 13C NMR spectra. PMID:6473107

  14. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  15. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  16. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  17. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  18. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen

    PubMed Central

    2016-01-01

    Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-15N with an excellent isotopic purity (98%) and good yield (55%). 15N nuclear spin label in nicotinamide-1-15N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc.2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-15N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of 15N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies. PMID:26999571

  19. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  20. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  1. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    PubMed

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  2. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  3. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  4. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  5. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  6. 15N Solid-State NMR as a Probe of Flavin H-bonding

    PubMed Central

    Cui, Dongtao; Koder, Ronald L.; Dutton, P. Leslie; Miller, Anne-Frances

    2011-01-01

    Flavins mediate a wide variety of different chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the 15N chemical shift tensor principal values (δii). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the δ11 of N5 although none of the H-bonds directly engage N5, and solution NMR detected only a 4 ppm increase in the isotropic chemical shift (δiso). Moreover SSNMR responded differently to different H-bonding environments as H-bonding with water caused δ11 to decrease by 6 ppm whereas δiso increased by less than 1 ppm. Our density functional theoretical (DFT) calculations reproduce the observations, validating the use of computed electronic structures to understand how H-bonds modulate the flavin’s reactivity. PMID:21619002

  7. 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.

    PubMed

    Koder, Ronald L; Walsh, Joseph D; Pometun, Maxim S; Dutton, P Leslie; Wittebort, Richard J; Miller, Anne-Frances

    2006-11-29

    Flavins are central to the reactivity of a wide variety of enzymes and electron transport proteins. There is great interest in understanding the basis for the different reactivities displayed by flavins in different protein contexts. We propose solid-state nuclear magnetic resonance (SS-NMR) as a tool for directly observing reactive positions of the flavin ring and thereby obtaining information on their frontier orbitals. We now report the SS-NMR signals of the redox-active nitrogens N1 and N5, as well as that of N3. The chemical shift tensor of N5 is over 720 ppm wide, in accordance with the predictions of theory and our calculations. The signal of N3 can be distinguished on the basis of coupling to 1H absent for N1 and N5, as well as the shift tensor span of only 170 ppm, consistent with N3's lower aromaticity and lack of a nonbonding lone pair. The isotropic shifts and spans of N5 and N1 reflect two opposite extremes of the chemical shift range for "pyridine-type" N's, consistent with their electrophilic and nucleophilic chemical reactivities, respectively. Upon flavin reduction, N5's chemical shift tensor contracts dramatically to a span of less than 110 ppm, and the isotropic chemical shift changes by approximately 300 ppm. Both are consistent with loss of N5's nonbonding lone pair and decreased aromaticity, and illustrate the responsiveness of the 15N chemical shift principal values to electronic structure. Thus. 15N chemical shift principal values promise to be valuable tools for understanding electronic differences that underlie variations in flavin reactivity, as well as the reactivities of other heterocyclic cofactors.

  8. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  9. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  10. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  11. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  12. Investigation of Uña De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa.

    PubMed

    Muhammad, I; Dunbar, D C; Khan, R A; Ganzera, M; Khan, I A

    2001-07-01

    The C-8-(S) isomer of deoxyloganic acid (7-deoxyloganic acid), together with beta-sitosteryl glucoside, five known stereoisomeric pentacyclic oxindole alkaloids and the tetracyclic oxindole isorhyncophylline, were isolated from the inner bark of Uncaria tomentosa. Structures of the isolated compounds were based on 1H and 13C NMR data, mainly 2D NMR experiments, including 1H-13C HMBC and 1H-1H NOESY correlation. Furthermore, the hitherto unreported 15N chemical shifts of the isomeric oxindole alkaloids, using 1H-15N HMBC experiments, were utilized to facilitate their characterization. Uncarine D showed weak cytotoxic activity against SK-MEL, KB, BT-549 and SK-OV-3 cell lines with IC(50) values between 30 and 40 microg/ml, while uncarine C exhibited weak cytotoxicity only against ovarian carcinoma (IC(50) at 37 microg/ml).

  13. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    PubMed Central

    Pomin, Vitor H.

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  14. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  15. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  16. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    PubMed Central

    2012-01-01

    Background Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. Results We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. Conclusions Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. PMID:22536902

  17. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  18. Target-specific NMR detection of protein-ligand interactions with antibody-relayed (15)N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. (1)H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed (15)N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A (15)N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  19. 15N and 13C NMR Determination of Allantoin Metabolism in Developing Soybean Cotyledons 1

    PubMed Central

    Coker, George T.; Schaefer, Jacob

    1985-01-01

    The metabolism of allantoin by immature cotyledons of soybean (Glycine max L. cv Elf) grown in culture was investigated using solid state 13C and 15N nuclear magnetic resonance. All of the nitrogens of allantoin were incorporated into protein in a manner similar to that of each other and to the amide nitrogen of glutamine. The C-2 of allantoin was not incorporated into cellular material; presumably it was lost as CO2. About 50% of the C-5 of allantoin was incorporated into cellular material as a methylene carbon; the other 50% was presumably also lost as CO2. The 13C-15N bonds of [5-13C;1-15N] and [2-13C;1,3-15N]allantoin were broken prior to the incorporation of the nitrogens into protein. These data are consistent with allantoin's degradation to two molecules of urea and one two-carbon fragment. Cotyledons grown on allantoin as a source of nitrogen accumulated 21% of the nitrogen of cotyledons grown on glutamine. Only 50% of the nitrogen of the degraded allantoin was incorporated into the cotyledon as organic nitrogen; the other 50% was recovered as NH4+ in the media in which the cotyledons had been grown. The latter results suggests that the lower accumulation of nitrogen by cotyledons grown on allantoin was in part due to failure to assimilate NH4+ produced from allantoin. The seed coats had a higher activity of glutamine synthetase and a higher rate of allantoin degradation than cotyledons indicating that seed coats play an important role in the assimilation and degradation of allantoin. PMID:16663995

  20. The Styrene Probe Applied to 15N and 77Se NMR

    DTIC Science & Technology

    1988-08-01

    Se, in chemical energetics and organic synthesis increase the value of learning more of their bonding properties through NMR. In the last 10-15 years...change of the substituent chemical shift of the cyanide carbon and the adjacent ring carbon to be reversed from each other: as X became more e withdrawing...the ring carbon became more deshielded (+ slope) and the cyanide carbon became more shielded (- slope), shown in XXVIII(A): [32] NOTE: Within this

  1. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    PubMed

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  2. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei.

  3. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.

    PubMed

    Yuwen, Tairan; Skrynnikov, Nikolai R

    2014-04-01

    (15)N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality (15)N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as (15)N spin-lock and CPMG can sample the relaxation decay only to ca. 150ms. This is much shorter than (15)N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample (15)N R2 relaxation decay up to ca. 0.5-1s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) (15)N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of (15)N(ε) spins in arginine side chains. We

  4. High Resolution NMR ^15N and ^31P NMR Of Antiferroelectric Phase Transition in Ammonium Dihydrogen Arsenate and Ammonium Dihydrogen Phosphate

    NASA Astrophysics Data System (ADS)

    Gunaydin-Sen, Ozge

    2005-03-01

    Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.

  5. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds.

  6. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    USGS Publications Warehouse

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  7. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  8. Proton-decoupled CPMG: A better experiment for measuring 15N R2 relaxation in disordered proteins

    NASA Astrophysics Data System (ADS)

    Yuwen, Tairan; Skrynnikov, Nikolai R.

    2014-04-01

    15N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality 15N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as 15N spin-lock and CPMG can sample the relaxation decay only to ca. 150 ms. This is much shorter than 15N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample 15N R2 relaxation decay up to ca. 0.5-1 s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) 15N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of 15Nε spins in arginine side chains. We anticipate that

  9. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  10. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  11. Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

    PubMed

    Beecher, Consuelo N; Manighalam, Matthew S; Nwachuku, Adanma F; Larive, Cynthia K

    2016-02-01

    Heparin and heparan sulfate (HS) are important in mediating a variety of biological processes through binding to myriad different proteins. Specific structural elements along the polysaccharide chains are essential for high affinity protein binding, such as the 3-O-sulfated N-sulfoglucosamine (GlcNS3S) residue, a relatively rare modification essential for heparin's anticoagulant activity. The isolation of 3-O-sulfated oligosaccharides from complex mixtures is challenging because of their low abundance. Although methods such as affinity chromatography are useful in isolating oligosaccharides that bind specific proteins with high affinity, other important 3-O-sulfated oligosaccharides may easily be overlooked. Screening preparative-scale size-exclusion chromatography (SEC) fractions of heparin or HS digests using [(1)H,(15)N] HSQC NMR allows the identification of fractions containing 3-O-sulfated oligosaccharides through the unique (1)H and (15)N chemical shifts of the GlcNS3S residue. Those SEC fractions containing 3-O-sulfated oligosaccharides can then be isolated using strong anion-exchange (SAX)-HPLC. Compared with the results obtained by pooling the fractions comprising a given SEC peak, SAX-HPLC analysis of individual SEC fractions produces a less complicated chromatogram in which the 3-O-sulfated oligosaccharides are enriched relative to more abundant components. The utility of this approach is demonstrated for tetrasaccharide SEC fractions of the low molecular weight heparin drug enoxaparin facilitating the isolation and characterization of an unsaturated 3-O-sulfated tetrasaccharide containing a portion of the antithrombin-III binding sequence.

  12. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints.

    PubMed

    Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D

    2014-12-01

    Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise.

  13. An NMR Kinetics Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Don; And Others

    1982-01-01

    Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

  14. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    PubMed

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  15. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  16. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  17. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    SciTech Connect

    Wilson, Jennifer E.; Sussman, Aviva Joy

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  18. A facile method for expression and purification of 15N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis

    PubMed Central

    Armand, Tara; Ball, K. Aurelia; Chen, Anna; Pelton, Jeffrey G.; Wemmer, David E.; Head-Gordon, Teresa

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality 15N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with 15N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the 15N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure 15N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼6 mg/L culture for 15N isotope-labeled Aβ42 peptide. Mass spectrometry and 1H–15N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with 15N and 13C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  19. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  20. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  1. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    PubMed

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  2. Backbone (1)H, (13)C, and (15)N NMR resonance assignments of the Krüppel-like factor 4 activation domain.

    PubMed

    Conroy, Brigid S; Weiss, Emma R; Smith, Steven P; Langelaan, David N

    2017-04-01

    Krüppel-like factor 4 (KLF4) is a transcription factor involved in diverse biological processes, including development, cellular differentiation and proliferation, and maintenance of tissue homeostasis. KLF4 has also been associated with disease states, such as cardiovascular disease and several cancers. KLF4 contains an activation domain, repression domain, and a structurally characterized C-terminal zinc finger domain that mediates its binding to DNA. The structurally uncharacterized KLF4 activation domain is critical for transactivation by KLF4 and mediates its binding to the transcriptional coactivator CBP/p300. Here, we report the (1)H, (15)N, (13)CO, (13)Cα and (13)Cβ NMR chemical shift assignments of KLF41-130, which contains the KLF4 activation domain. Narrow chemical shift dispersion in the (1)H dimension of the (1)H-(15)N HSQC spectrum suggests that the KLF41-130 fragment is intrinsically disordered.

  3. Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy.

    PubMed

    Xu, Yimin; Lorieau, Justin; McDermott, Ann E

    2010-03-19

    Microcrystalline uniformly (13)C,(15)N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.

  4. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds.

  5. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters.

    PubMed

    Grage, Stephan L; Strandberg, Erik; Wadhwani, Parvesh; Esteban-Martín, Santiago; Salgado, Jesús; Ulrich, Anne S

    2012-05-01

    Many solid-state nuclear magnetic resonance (NMR) approaches for membrane proteins rely on orientation-dependent parameters, from which the alignment of peptide segments in the lipid bilayer can be calculated. Molecules embedded in liquid-crystalline membranes, such as monomeric helices, are highly mobile, leading to partial averaging of the measured NMR parameters. These dynamic effects need to be taken into account to avoid misinterpretation of NMR data. Here, we compare two common NMR approaches: (2)H-NMR quadrupolar waves, and separated local field (15)N-(1)H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of α-helical transmembrane peptides. We first analyzed the model peptide WLP23 in oriented dimyristoylphosphatidylcholine (DMPC) membranes and then contrasted it with published data on GWALP23 in dilauroylphosphatidylcholine (DLPC). We only obtained consistent tilt angles from the two methods when taking dynamics into account. Interestingly, the two related peptides differ fundamentally in their mobility. Although both helices adopt the same tilt in their respective bilayers (~20°), WLP23 undergoes extensive fluctuations in its azimuthal rotation angle, whereas GWALP23 is much less dynamic. Both alternative NMR methods are suitable for characterizing orientation and dynamics, yet they can be optimally used to address different aspects. PISEMA spectra immediately reveal the presence of large-amplitude rotational fluctuations, which are not directly seen by (2)H-NMR. On the other hand, PISEMA was unable to define the azimuthal rotation angle in the case of the highly dynamic WLP23, though the helix tilt could still be determined, irrespective of any dynamics parameters.

  6. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  7. sup 13 C and sup 15 N NMR studies on the interaction between 6,7-dimethyl-8-ribityllumazine and lumazine protein

    SciTech Connect

    Vervoort, J.; Mueller, F. ); O'Kane, D.J.; Lee, J. ); Bacher, A.; Strobl, G. )

    1990-02-20

    The interaction between the prosthetic group 6,7-dimethyl-8-(1{prime}-D-ribityl)lumazine and the lumazine apoproteins from two marine bioluminescent bacteria, one from a relatively thermophilic species, Photobacterium leiognathi, and the other from a psychrophilic species, Photobacterium phosphoreum, was studied by {sup 13}C and {sup 15}N NMR using various selectively enriched derivatives. It is shown that the electron distribution in the protein-bound 6,7-dimethyl-8-ribityllumazine differs from that of free 6,7-dimethyl-8-ribityllumazine in buffer. The {sup 13}C and {sup 15}N chemical shifts indicate that the protein-bound 6,7-dimethyl-8-ribityllumazine is embedded in a polar environment and that the ring system is strongly polarized. It is concluded that the two carbonyl groups play an important role in the polarization of the molecule. The N(3)-H group is not accessible to bulk solvent. The N(8) atom is sp{sup 2} hybridized and has {delta}+ character. Nuclear Overhauser effect studies indicate that the 6,7-dimethyl-8-ribityllumazine ring is rigidly bound with no internal mobility. The NMR results indicate that the interaction between the ring system and the two apoproteins is almost the same.

  8. Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

    PubMed

    Meola, Annalisa; Deville, Célia; Jeffers, Scott A; Guardado-Calvo, Pablo; Vasiliauskaite, Ieva; Sizun, Christina; Girard-Blanc, Christine; Malosse, Christian; van Heijenoort, Carine; Chamot-Rooke, Julia; Krey, Thomas; Guittet, Eric; Pêtres, Stéphane; Rey, Félix A; Bontems, François

    2014-10-01

    Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in Escherichiacoli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.

  9. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  10. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  11. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  12. Analysis of internal motions of interleukin-13 variant associated with severe bronchial asthma using {sup 15}N NMR relaxation measurements

    SciTech Connect

    Yoshida, Yuichiro; Ohkuri, Takatoshi; Takeda, Chika; Kuroki, Ryota; Izuhara, Kenji; Imoto, Taiji; Ueda, Tadashi . E-mail: ueda@phar.kyushu-u.ac.jp

    2007-06-22

    The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13R{alpha}2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13R{alpha}2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13R{alpha}2.

  13. NMR studies on /sup 15/N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    SciTech Connect

    Kenyon, G.L.; Reddick, R.E.

    1986-05-01

    Recently, the authors have synthesized /sup 15/N-2-Cr, /sup 15/N-3-Crn, /sup 15/N-2-Crn, /sup 15/N-3-PCrn, /sup 15/N-3-PCr, and /sup 15/N-2-PCr. /sup 1/H, /sup 15/N, /sup 31/P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the /sup 31/P-/sup 15/N one-bond coupling constant in /sup 15/N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the /sup 14/N//sup 15/N positional isotope exchange of 3-/sup 15/N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity.

  14. The HSP90 binding mode of a radicicol-like E-oxime from docking, binding free energy estimations, and NMR 15N chemical shifts

    PubMed Central

    Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin

    2009-01-01

    We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409

  15. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  16. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons.

    PubMed

    Live, D H; Cowburn, D; Breslow, E

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, 15N labeling being used to identify specific backbone 15N and 1H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence of hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neurophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of 15N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene:  Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Thorne, Philip G.; Cox, Larry G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  18. The structural plasticity of heparan sulfate NA-domains and hence their role in mediating multivalent interactions is confirmed by high-accuracy 15N-NMR relaxation studies

    PubMed Central

    Mobli, Mehdi; Nilsson, Mathias

    2007-01-01

    Considering the biological importance of heparan sulfate (HS) and the significant activity of its highly-sulfated regions (S-domains), the paucity of known functions for the non-sulfated NA-domains is somewhat puzzling. It has been suggested that chain dynamics within the NA-domains are the key to their functional role in HS. In this study, we investigate this hypothesis using state-of-the-art nuclear magnetic resonance (NMR) experiments at multiple frequencies. To resolve the problem of severe overlap in 1H-NMR spectra of repetitive polysaccharides from proteoglycans, we have prepared oligosaccharides with the chemical structure of HS NA-domains containing the 15N nucleus, which has enough chemical shift dispersion to probe the central residues of octasaccharides at atomic resolution using 600 MHz NMR. By performing NMR relaxation experiments at three magnetic-field strengths, high quality data on internal dynamics and rotational diffusion was obtained. Furthermore, translational diffusion could also be measured by NMR using pulse field gradients. These experimental data were used, in concert with molecular dynamics simulations, to provide information on local molecular shape, greatly aiding our relaxation analyses. Our results, which are more accurate than those presented previously, confirm the higher flexibility of the NA-domains as compared with reported data on S-domains. It is proposed that this flexibility has two functional roles. First, it confers a greater area of interaction from the anchoring point on the core protein for the bioactive S-domains. Secondly, it allows multiple interactions along the same HS chain that are dynamically independent of each other. Electronic Supplementary Material The online version of this article (doi:10.1007/s10719-007-9081-9) contains supplementary material, which is available to authorized users. PMID:18080183

  19. Separation of Anisotropy and Exchange Broadening Using 15N CSA- 15N- 1H Dipole-Dipole Relaxation Cross-Correlation Experiments

    NASA Astrophysics Data System (ADS)

    Renner, Christian; Holak, Tad A.

    2000-08-01

    Based on the measurement of cross-correlation rates between 15N CSA and 15N-1H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.

  20. 15N, 17O NMR and X-ray diffraction study of mesoionic 1,2,3,4-thiatriazolium-5-olate and its ethylated derivative

    NASA Astrophysics Data System (ADS)

    Jaźiwińsk, J.; Staszewska, O.; Staszewski, P.; Stefaniak, L.; Wiench, J. W.; Webb, G. A.

    1999-02-01

    Two mesoionic compounds with oxygenous exocyclic groups: 3-phenyl-1,2,3,4-thiatriazolium-5-olate 1 and its ethylated derivative 2 were investigated by means of 15N, 17O NMR and X-ray diffraction techniques. The exocyclic C5-O6 bond of thiatriazole 1 [1.224(3) Å] has a strong double bond character. Bond lengths in the thiatriazole ring are intermediate between single and double bond values except for S1-C5 [1.800(2) Å] which is close to a single Csp 3-S bond. The C5-O6 bond is significantly longer for the ethylated derivative 2 [1.314(4) Å]. The ethyl group attached to O6 is located in the trans position in relation to the ring S1 atom. The experimental data are compared with the results of ab initio molecular orbital calculations. The calculated absolute nuclear shieldings, chemical shifts and charge densities, in spite of some limitations, can be useful as an aid to signal assignments and for an understanding of the NMR parameters.

  1. An Inversion Recovery NMR Kinetics Experiment.

    PubMed

    Williams, Travis J; Kershaw, Allan D; Li, Vincent; Wu, Xinping

    2011-05-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.

  2. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  3. Nitrogen removal in maturation ponds: tracer experiments with 15N-labelled ammonia.

    PubMed

    Camargo Valero, M A; Mara, D D

    2007-01-01

    A primary maturation pond (M1) was spiked with labelled ammonium chloride (15NH4Cl) to track ammonium transformations associated with algal uptake and subsequent sedimentation. Conventional sampling based on grab samples collected from M1 influent, water column and effluent, and processed for unfiltered and filtered TKN, ammonium, nitrite and nitrate, found low total nitrogen removal (8%) and high ammonium nitrogen removal (90%). Stable isotope analysis of 15N from suspended organic and ammonium nitrogen fractions in M1 effluent revealed that labelled ammonium was mainly found in the organic fraction (69% of the 15N recovered), rather than the inorganic fraction (5%). Algal uptake was the predominant pathway for ammonia removal, even though conditions were favourable for ammonia volatilization (8.9 < pH <10.1 units, 15.2 < temperature <18.8 degrees C). Total nitrogen was removed by ammonia volatilization at 15 g N/ha d (3%), organic nitrogen sedimentation at 105 g N/ha d (20%), and in-pond accumulation due to algal uptake at 377 g N/ha d (71%). Algal uptake of ammonium and subsequent sedimentation and retention in the benthic sludge, after partial ammonification of the algal organic nitrogen, is thus likely to be the dominant mechanism for permanent nitrogen removal in maturation ponds during warm summer months in England.

  4. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  5. Nitrate removal in stream ecosystems measured by 15N addition experiments: 2. Denitrification

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Sobota, Daniel; Dodds, Walter; Findlay, Stuart; Grimm, Nancy; Hamilton, Stephen; McDowell, William; O'Brien, Jon; Tank, Jennifer; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Gregory, Stanley; Johnson, Sherri; Meyer, Judy; Peterson, Bruce; Poole, Geoff; Valett, H. Maurice; Webster, Jackson; Arango, Clay; Beaulieu, Jake; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; Niederlehner, Bobbie; Potter, Jody; Sheibley, Rich; Thomas, Suzanne

    2009-01-01

    We measured denitrification rates using a field {sup 15}N-NO{sub 3}{sup -} tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S{sub Wden}) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N{sub 2} production rates far exceeded N{sub 2}O production rates in all streams. The fraction of total NO{sub 3}{sup -} removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH{sub 4}{sup +} concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling S{sub Wden} were specific discharge (discharge/width) and NO{sub 3}{sup -} concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (U{sub den}) and NO{sub 3}{sup -} concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although U{sub den} increased with increasing NO{sub 3}{sup -} concentration, the efficiency of NO{sub 3}{sup -} removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO{sub 3}{sup -} load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO{sub 3}{sup -} concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO{sub 3}{sup -} concentration.

  6. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    USGS Publications Warehouse

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  7. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.

  8. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Tank, Jennifer; Sobota, Daniel; O'Brien, Jon; Webster, Jackson; Valett, H. Maurice; Dodds, Walter; Poole, Geoff; Peterson, Chris G.; Meyer, Judy; McDowell, William; Johnson, Sherri; Hamilton, Stephen; Gregory, Stanley; Grimm, Nancy; Dahm, Cliff; Cooper, Lee W; Ashkenas, Linda; Thomas, Suzanne; Sheibley, Rich; Potter, Jody; Niederlehner, Bobbie; Johnson, Laura; Helton, Ashley; Crenshaw, Chelsea; Burgin, Amy; Bernot, Melody; Beaulieu, Jake; Arango, Clay

    2009-01-01

    We measured uptake length of {sup 15}NO{sub 3}{sup -} in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO{sub 3}{sup -} uptake length. As part of the Lotic Intersite Nitrogen Experiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO{sub 3}{sup -} concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO{sub 3}{sup -} uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S{sub Wtot}). Uptake length increased with specific discharge (Q/w) and increasing NO{sub 3}{sup -} concentrations, showing a loss in removal efficiency in streams with high NO{sub 3}{sup -} concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO{sub 3}{sup -} removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO{sub 3}{sup -} uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO{sub 3}{sup -} uptake lengths via directly increasing both gross primary production and NO{sub 3}{sup -} concentration. Gross primary production shortened S{sub Wtot}, while increasing NO{sub 3}{sup -} lengthened S{sub Wtot} resulting in no net effect of land use on NO{sub 3}{sup -} removal.

  9. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  10. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by (13)C and (15)N solid-state NMR spectroscopy.

    PubMed

    Arrúa, Eva C; Ferreira, M João G; Salomon, Claudio J; Nunes, Teresa G

    2015-12-30

    Praziquantel is the drug of choice to treat several parasitic infections including the neglected tropical disease schistosomiasis. Due to its low aqueous solubility, cyclodextrins have been tested as potential host candidates to prepare praziquantel inclusion complexes with improved solubility. For the first time, the interactions of praziquantel with β-cyclodextrin and β-cyclodextrin derivatives (methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin) were investigated using high resolution solid-state NMR spectroscopy. The results of this work confirmed that solid-state NMR experiments provided structural characterization, demonstrating the formation of inclusion complexes most probably with PZQ adopting an anti conformation, also the most likely in amorphous raw PZQ. Further information on the interaction of praziquantel with methyl-β-cyclodextrin was obtained from proton rotating-frame relaxation time measurements, sensitive to kilohertz-regime motions but modulated by spin-diffusion. Evidences were presented in all cases for praziquantel complexation through the aromatic ring. In addition, 1:2 drug:carrier molar ratio appears to be the most probable and therefore suitable stoichiometry to improve pharmaceutical formulations of this antischistosomal drug.

  11. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  12. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  13. Design of a hyperpolarized (15)N NMR probe that induces a large chemical-shift change upon binding of calcium ions.

    PubMed

    Hata, Ryunosuke; Nonaka, Hiroshi; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2015-08-07

    Ca(2+) is a fundamental metal ion for physiological functioning. Therefore, molecular probes for Ca(2+) analysis are required. Recently, a hyperpolarized NMR probe has emerged as a promising tool. Here, we report a new design of a hyperpolarized NMR probe for Ca(2+), which showed a large chemical shift change upon binding to Ca(2+) and was applied for Ca(2+) sensing in a hyperpolarized state.

  14. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  15. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  16. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  17. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [(2)H, (15)N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [(15)N, (1)H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  18. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology

    PubMed Central

    Horst, Reto; Wüthrich, Kurt

    2016-01-01

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [2H, 15N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [15N, 1H]-correlation maps are used as “fingerprints” to assess the foldedness of the IMP in solution. For promising samples, these “inexpensive” data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer. PMID:27077076

  19. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  20. The acyl nitroso Diels-Alder (ANDA) reaction of sorbate derivatives: an X-ray and 15N NMR study with an application to amino-acid synthesis.

    PubMed

    Bollans, Lee; Bacsa, John; Iggo, Jonathan A; Morris, Gareth A; Stachulski, Andrew V

    2009-11-07

    We present a study of the acyl nitroso Diels-Alder (ANDA) reaction of sorbate esters and sorbic alcohol derivatives, using alkoxycarbonyl nitroso dienophiles. An optimisation of the reaction conditions for ethyl sorbate is first presented, and the product is used in an efficient synthesis of 5-methylornithine. Structure-reactivity trends in sorbic alcohol (E,E-2,4-hexadien-1-ol) and its acylated analogues are then discussed. We present single-crystal X-ray structural proof for key adducts in both series and present in detail a novel HMBC/HSQC ((1)H-(15)N) criterion for ready distinction of regioisomers arising from such ANDA reactions.

  1. Long-term influence of manure and mineral nitrogen applications on plant and soil 15N and 13C values from the Broadbalk Wheat Experiment.

    PubMed

    Senbayram, Mehmet; Dixon, Liz; Goulding, Keith W T; Bol, Roland

    2008-06-01

    The Broadbalk Wheat Experiment at Rothamsted Research in the UK provides a unique opportunity to investigate the long-term impacts of environmental change and agronomic practices on plants and soils. We examined the influence of manure and mineral fertiliser applications on temporal trends in the stable N ((15)N) and C ((13)C) isotopes of wheat collected during 1968-1979 and 1996-2005, and of soil collected in 1966 and 2000. The soil delta(15)N values in 1966 and 2000 were higher in manure than the mineral N supplied soil; the latter had similar or higher delta(15)N values than non-fertilised soil. The straw delta(15)N values significantly decreased in all N treatments during 1968 to 1979, but not for 1996-2005. The straw delta(15)N values decreased under the highest mineral N supply (192 kg N ha(-1) year(-1)) by 3 per thousand from 1968 to 1979. Mineral N supply significantly increased to straw delta(13)C values in dry years, but not in wet years. Significant correlations existed between wheat straw delta(13)C values with cumulative rainfall (March to June). The cultivar Hereward (grown 1996-2005) was less affected by changes in environmental conditions (i.e. water stress and fertiliser regime) than Cappelle Desprez (1968-1979). We conclude that, in addition to fertiliser type and application rates, water stress and, importantly, plant variety influenced plant delta(13)C and delta(15)N values. Hence, water stress and differential variety response should be considered in plant studies using plant delta(13)C and delta(15)N trends to delineate past or recent environmental or agronomic changes.

  2. Solution-state (15)N NMR spectroscopic study of alpha-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1.

    PubMed

    Hahn, Janina; Kühne, Ronald; Schmieder, Peter

    2007-12-17

    The detailed structure of the chromophore-binding pocket in phytochrome proteins and the structural changes associated with its photocycle are still matters of debate. Insight into the structure and dynamics of the binding pocket has been gained through the comparison of a (15)N NMR spectrum of alpha-C-phycocyanin, which is often used as a model system for the study of phytochromes, with the previously described (15)N NMR spectrum of the cyanobacterial phytochrome Cph1. The former spectrum supports the hypothesis that all four nitrogen atoms of the alpha-C-phycocyanin chromophore are protonated, in analogy with the proposed protonation state for the P(r) and P(fr) forms of Cph1. The spectra show that the chromophores in both proteins exhibit a distinct dynamic behavior, as also indicated by a NOESY spectrum of Cph1. Finally, stereochemical arguments and a Cph1 homology model support the hypothesis that the chromophore in Cph1 is most likely in the ZZZssa conformation in the P(r) form of the protein.

  3. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  4. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression.

    PubMed

    Ishima, Rieko

    2015-09-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having -Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed (1)H-(15)N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0-28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution.

  5. Application of rate equations to ELDOR and saturation recovery experiments on 14N: 15N spin-label pairs

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Hyde, James S.

    Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.

  6. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods.

    PubMed

    Canales-Mayordomo, Angeles; Fayos, Rosa; Angulo, Jesús; Ojeda, Rafael; Martín-Pastor, Manuel; Nieto, Pedro M; Martín-Lomas, Manuel; Lozano, Rosa; Giménez-Gallego, Guillermo; Jiménez-Barbero, Jesús

    2006-08-01

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR).

  7. Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy.

    PubMed Central

    Qian, H.; Rogers, M. S.; Schleucher, J.; Edlund, U.; Strehler, E. E.; Sethson, I.

    1998-01-01

    Human calmodulin-like protein (CLP) is closely related to vertebrate calmodulin, yet its unique cell specific expression pattern, overlapping but divergent biochemical properties, and specific target proteins suggest that it is not an isoform of calmodulin. To gain insight into the structural differences that may underlie the difference target specificities and biochemical properties of CLP when compared to calmodulin, we determined the sequential backbone assignment and associated secondary structure of 144 out of the 148 residues of Ca2+-CLP by using multinuclear multidimensional NMR spectroscopy. Despite a very high overall degree of structural similarity between CLP and calmodulin, a number of significant differences were found mainly in the length of alpha-helices and in the central nonhelical flexible region. Interestingly, the regions of greatest primary sequence divergence between CLP and calmodulin in helices III and VIII displayed only minor secondary structure differences. The data suggest that the distinct differences in target specificity and biochemical properties of CLP and calmodulin result from the sum of several minor structural and side-chain changes spread over multiple domains in these proteins. PMID:9828009

  8. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  9. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  10. Probing Hydronium Ion Histidine NH Exchange Rate Constants in the M2 Channel via Indirect Observation of Dipolar-Dephased (15)N Signals in Magic-Angle-Spinning NMR.

    PubMed

    Fu, Riqiang; Miao, Yimin; Qin, Huajun; Cross, Timothy A

    2016-12-14

    Water-protein chemical exchange in membrane-bound proteins is an important parameter for understanding how proteins interact with their aqueous environment, but has been difficult to observe in membrane-bound biological systems. Here, we demonstrate the feasibility of probing specific water-protein chemical exchange in membrane-bound proteins in solid-state MAS NMR. By spin-locking the (1)H magnetization along the magic angle, the (1)H spin diffusion is suppressed such that a water-protein chemical exchange process can be monitored indirectly by dipolar-dephased (15)N signals through polarization transfer from (1)H. In the example of the Influenza A full length M2 protein, the buildup of dipolar-dephased (15)N signals from the tetrad of His37 side chains have been observed as a function of spin-lock time. This confirms that hydronium ions are in exchange with protons in the His37 NH bonds at the heart of the M2 proton conduction mechanism, with an exchange rate constant of ∼1750 s(-1) for pH 6.2 at -10 °C.

  11. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  12. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  13. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  14. Estimation of internal and external nitrogen for corals with a long-term 15N-labelling experiment and subsequent model calculations

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuaki; Grottoli, Andréa; Matsui, Yohei; Suzuki, Atsushi; Sakai, Kazuhiko

    2014-05-01

    Coral reef ecosystems maintain high primary productivity though the seawater is extremely oligotrophic. One of the hypotheses to explain this paradox is the recycling of nutrients in animal-algal symbiotic organisms such as corals. It is relatively easy to measure nutrient uptake rates by corals from seawater, but the proportion of internally circulating nutrients between the coral host and the endosymbiotic algae (zooxanthellae) is more challenging. Here, we performed a long-term and continuous 15N-labelling experiment to quantify the proportionate contribution of seawater (external N source) and the animal host (internal N source) to the total N influx in the endosymbiotic algae. Branches from the scleractinian corals Porites cylindrica and Montipora digitata from Okinawa, Japan, were cultured for 2 months in indoor, flow-through, filtered seawater tanks with the continuous supply of 15N-labelled nitrate. At the initial and after 2, 4, and 9 weeks of the study, coral branches were collected and the algal and animal fractions were separated for isotopic analyses. In both corals, the N isotope ratio of symbiotic algae exponentially increased and the values were much higher than those of the host tissue, suggesting that the algae had a faster turnover N time than the animal host. Algal and host N biomass normalized to the coral surface area slowly decreased in both coral species over the study period. To calculate the contribution of internal and external N, a simple mixing model of algal N metabolism was designed. Using differential equations of 15N balance and N biomass balance, F1 and F2 (external and internal N fluxes to symbiotic algae, respectively) were expressed as the functions of time. The model calculations showed that F2 was much higher than F1 in P. cylindrica and the percentage of internal N to the total influx N (PIN) was >70%. On the other hand, the contribution of F1 and F2 was comparable in M. digitata and the PIN was 40-70%. These results

  15. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  16. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  17. Field Experiment Provides Ground Truth for Surface NMR Measurement

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Abraham, J. D.; Cannia, J. C.; Dlubac, K. I.; Grau, B.; Grunewald, E. D.; Irons, T.; Song, Y.; Walsh, D.

    2010-12-01

    Effective and sustainable long-term management of fresh water resources requires accurate information about the availability of water in groundwater aquifers. Proton Nuclear Magnetic Resonance (NMR) can provide a direct link to the presence of water in the pore space of geological materials through the detection of the nuclear magnetization of the hydrogen nuclei (protons) in the pore water. Of interest for groundwater applications is the measurement of the proton-NMR relaxation time constant, referred to as T2. This parameter is sensitive to the geometry of the water-filled pore space and can be related to the hydraulic conductivity. NMR logging instruments, which have been available since the 1980’s, provide direct measurements of T2 in boreholes. Surface NMR (SNMR) is a non-invasive geophysical method that uses a loop of wire on the surface to probe the NMR properties of groundwater aquifers to a depth of ~100 m, without the need for the drilling of boreholes. SNMR provides reliable measurements of a different NMR time constant referred to as T2*, that is related to, but not necessarily equivalent to, T2. The relationship between T2* and T2 is likely to depend upon the physical environment and the composition of the sampled material. In order to advance the use of SNMR as a non-invasive means of characterizing groundwater aquifers, we must answer the fundamental question: When probing a groundwater aquifer, what information is provided by T2*, the time constant measured with SNMR? Our approach was to conduct a field experiment in Nebraska, in an area underlain by the Quaternary Alluvium and Tertiary Ogallala aquifers. We first used SNMR to obtain a 1D profile of T2* to a depth of ~60 m. We then drilled a well inside the area of the SNMR loop, to a depth of ~150 m, and used the drill cuttings to describe the composition of the geologic material at the site. The borehole was kept open for 2 days to acquire logging NMR T2 measurements over the total depth. Three

  18. Faster and cleaner real-time pure shift NMR experiments.

    PubMed

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  19. Influence of roots and mycorrhiza on the internal nitrogen cycle in an organic forest soil ­revealed by a 15N tracing experiment

    NASA Astrophysics Data System (ADS)

    Holz, M.; Rutting, T.; Klemedtsson, L.; Kuzyakov, Y.

    2014-12-01

    The cycle of nitrogen in soil is complex, consisting of many simultaneous occurring transformation processes. So far, microorganisms have been thought to govern N cycling in soil. Nevertheless, plant roots and their associated mycorrhizal symbionts may exert control on N turnover for example by input of labile C to soil. However, studies investigating the effect of roots on gross N turnover rates are scarce. We conducted a 15N tracer study under field conditions to reveal the effect of plants on soil N cycle. The experiment includes three treatments: (a) control, (b) excluding roots and (c) excluding roots + mycorrhiza. On the study site, exclusion of roots + mycorrhiza has previously been shown to increase N2O emissions which indicate that plants affect internal N cycling. 15NH4NO3 and NH415NO3 were given to the soil and traced for a period of 10 days. Gross N turnover rates were determined applying a numerical 15N tracing model. Results on N turnover rates showed that roots and their fungal symbionts increased N cycling probably by input of labile C to soil which may results in an activation of the microbial biomass. While gross N mineralization increased by 270 and 313 % compared to the treatment excluding roots + mycorrhiza, NH4+ immobilization increased by 402 and 489 %. Differences in ammonium and nitrate immobilization further indicated that ammonium was the preferred N source for roots and microorganisms. While ammonium availability decreased with trenching (0.59 compared to -0.47 and -0.96 μg N g-1 d-1), the opposite was true for nitrate (0.50 compared to 2.08 and 2.18 μg N g-1 d-1), explaining the increased N2O emissions which were likely caused by denitrification. Further, plants increased dissimilarity nitrate reduction to ammonium (DNRA) and affected autotrophic nitrification probably by the release of nitrification inhibitors and by influencing ammonium availability. We conclude that plants and their mycorrhizal symbionts actively control N cycling

  20. Soil N transformations and its controlling factors in temperate grasslands in China: A study from 15N tracing experiment to literature synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Liang; Feng, Xiaojuan; Hu, Huifeng; Cai, Zucong; Müller, Christoph; Zhang, Jinbo

    2016-12-01

    Temperate grasslands in arid and semiarid regions cover about 40% of the total land area in China. So far, only a few studies have studied the N transformations in these important ecosystems. In the present study, soil gross N transformation rates in Inner Mongolia temperate grasslands in China were determined using a 15N tracing experiment and combined with a literature synthesis to identify the soil N transformation characteristics and their controlling factors in a global perspective. Our results showed that the rates of gross N mineralization and immobilization NH4+ were significantly lower, while autotrophic nitrification rates were significantly higher in Chinese temperate grassland soils compared to other regions in the world. In particular, the primary mineral N consumption processes, i.e., immobilization of NO3- and NH4+, and dissimilatory nitrate reduction to ammonium, were on average much lower in temperate grassland soils in China, compared to other temperate grassland regions. The reduced heterotrophic activity and microbial growth associated with lower soil organic carbon and arid climate (e.g., mean annual precipitation) were identified as the main factors regulating soil N cycling in the studied regions in China. To restrict NO3- accumulation and associated high risks of N losses in these arid and semiarid ecosystems in China, it is important to develop the regimes of soil organic C and water management that promote the retention of N in these grassland ecosystems.

  1. The determination of enantiomeric excess of valine by ODESSA solid-state NMR experiment.

    PubMed

    Tadeusiak, Elzbieta J; Ciesielski, Włodzimierz; Olejniczak, Sebastian

    2006-10-01

    The enantiomeric excess (ee) can be determined by many methods; one among them is nuclear magnetic resonance in solid-state (SS NMR). In this study we used the SS NMR ODESSA experiment for determination of the ee of valine.

  2. Functional binding surface of a β-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells.

    PubMed

    Diana, Donatella; Russomanno, Anna; De Rosa, Lucia; Di Stasi, Rossella; Capasso, Domenica; Di Gaetano, Sonia; Romanelli, Alessandra; Russo, Luigi; D'Andrea, Luca D; Fattorusso, Roberto

    2015-01-02

    In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast (15)N-edited NMR spectroscopic experiments. To this aim, (15)N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope-edited NMR spectroscopic experiments, including (15)N relaxation measurements, allowed a precise characterization of the in-cell HPLW epitope recognized by VEGFR2.

  3. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  4. Collaborative development for setup, execution, sharing and analytics of complex NMR experiments

    NASA Astrophysics Data System (ADS)

    Irvine, Alistair G.; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R. P.; Pervushin, Konstantin

    2014-02-01

    Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community.

  5. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  6. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  7. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  8. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for E73 from Sulfolobus spindle-shaped virus ragged hills, a hyperthermophilic crenarchaeal virus from Yellowstone National Park.

    PubMed

    Schlenker, Casey; Menon, Smita; Lawrence, C Martin; Copié, Valérie

    2009-12-01

    Crenarchaeal viruses are commonly found in hyperthermal acidic environments such as those of Yellowstone National Park. These remarkable viruses not only exhibit unusual morphologies, but also display extreme genetic diversity. However, little is known about crenarchaeal viral life cycles, virus-host interactions, and their adaptation to hyperthermophilic environments. In an effort to better understand the functions of crenarchaeal viruses and the proteins encoded by their genomes, we have undertaken detailed structural and functional studies of gene products encoded in the open reading frames of Sulfolobus spindle-shaped virus ragged hills. Herein, we report ((15)N, (13)C, (1)H) resonance assignments of backbone and side chain atoms of a 19.1 kDa homodimeric E73 protein of SSVRH.

  9. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  10. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  11. Ammonium and nitrate uptake lengths in a small forested stream determined by {sup 15}N tracer and short-term nutrient enrichment experiments

    SciTech Connect

    Mulholland, P.J.; Tank, J.L.; Sanzone, D.M.; Webster, J.R.; Wollheim, W.; Peterson, B.J.; Meyer, J.L.

    1998-11-01

    Nutrient cycling is an important characteristic of all ecosystems, including streams. Nutrients often limit the growth rates of stream algae and heterotrophic microbes and the decomposition rate of allochthonous organic matter. Nutrient uptake (S{sub W}), defined as the mean distance traveled by a nutrient atom dissolved in stream water before uptake by biota is often used as an index of nutrient cycling in streams. It is often overlooked, however, that S{sub W} is not a measure of nutrient uptake rate per se, but rather a measure of the efficiency with which a stream utilizes the available nutrient supply. The ideal method for measuring S{sub W} involves short-term addition of a nutrient tracer. Regulatory constraints often preclude use of nutrient radiotracers in field studies and methodological difficulties and high analytical costs have previously hindered the use of stable isotope nutrient tracers (e.g., {sup 15}N). Short-term nutrient enrichments are an alternative to nutrient tracer additions for measuring S{sub W}.

  12. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  13. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  14. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  15. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  16. Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies.

    PubMed

    Reddy, Jithender G; Hosur, Ramakrishna V

    2014-03-01

    Resonance assignment is the first and the most crucial step in all nuclear magnetic resonance (NMR) investigations on structure-function relationships in biological macromolecules. Often, the assignment exercise has to be repeated several times when specific interactions with ligands, substrates etc., have to be elucidated for understanding the functional mechanisms. While the protein backbone serves to provide a scaffold, the side chains interact directly with the ligands. Such investigations will be greatly facilitated, if there are rapid methods for obtaining exhaustive information with minimum of NMR experimentation. In this context, we present here a pulse sequence which exploits the recently introduced technique of parallel detection of multiple nuclei, e.g. (1)H and (13)C, and results in two 3D-data sets simultaneously. These yield complete backbone resonance assignment ((1)H(N), (15)N, (13)CO, (1)Hα/(13)Cα, and (1)Hβ/(13)Cβ chemical shifts) and side chain assignment of D, E, N and Q residues. Such an exhaustive assignment has the potential of yielding accurate 3D structures using one or more of several algorithms which calculate structures of the molecules very reliably on the basis of NMR chemical shifts alone. The side chain assignments of D, E, N, and Q will be extremely valuable for interaction studies with different ligands; D and E side chains are known to be involved in majority of catalytic activities. Utility of this experiment has been demonstrated with Ca(2+) bound M-crystallin, which contains largely D, E, N and Q residues at the metal binding sites.

  17. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.

    PubMed

    Rozentur-Shkop, Eva; Goobes, Gil; Chill, Jordan H

    2016-12-01

    Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J((15)N,(13)Cα) couplings. This concept was realized using a unidirectional (H)NCO (13)C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J((15)N,(13)Cα) couplings were acquired for WIP residues 2-65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16-23 and 45-60, and a helical tendency at residues 28-42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP(2-65) conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein-protein interactions that stabilize the unfolded state. We conclude that J-couplings are

  18. Solid-State 15N NMR of 15N-Labeled Nylon 6 and Nylon 11

    DTIC Science & Technology

    1990-05-22

    S. Veeman, E. M. Menger, W. Ritchey, and E. de Boer, Macromolecules, 1979, 12, 924. 2. A. N. Garroway , W. M. Ritchey and W. B. Moniz, Macromolecules...S. Veeman and E. M. Menger, Bull. Magn. Reson., 1980, 2, 77. 26. D. L. VanderHart and A. N. Garroway , J. Chem. Phys., 1979, 71, 2773. 27. M. D

  19. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  20. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    PubMed

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.

  1. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  2. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  3. Characterization of Nylon 6 by 15N Solid State NMR

    DTIC Science & Technology

    1989-05-31

    M.; Ritchey, W.; de Boer, E. Macromolecules, 1979, 12, 924. 2. Garroway , A. N.; Ritchey, W. M.; Moniz, W. B.; Macromolecules, 1982, It, 1051. 3...E. Macromolecules, 1982, 15, 1406. 23. Veeman, W. S.; Menger, E. M. Bull. Magn. Reson., 1980,2,77. 24. VanderHart, D. L.; Garroway , A. N. J. Chem

  4. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  6. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  7. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  8. An NMR Study of Isotope Effect on Keto-Enol Tautomerization: A Physical Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Atkinson, D.; Chechik, V.

    2004-01-01

    Isotope substitution often affects the rate of an organic reaction and can be used to reveal the underlying mechanism. A series of experiments that use (super 1)H NMR to determine primary and secondary isotope effects, activation parameters, and the regioselectivity of butanone enolization are described.

  9. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  10. Parameterized signal calibration for NMR cryoporometry experiment without external standard

    NASA Astrophysics Data System (ADS)

    Stoch, Grzegorz; Krzyżak, Artur T.

    2016-08-01

    In cryoporometric experiments non-linear effects associated with the sample and the probehead bring unwanted contributions to the total signal along with the change of temperature. The elimination of these influences often occurs with the help of an intermediate measurement of a separate liquid sample. In this paper we suggest an alternative approach under certain assumptions, solely based on data from the target experiment. In order to obtain calibration parameters the method uses all of these raw data points. Its reliability is therefore enhanced as compared to other methods based on lesser number of data points. Presented approach is automatically valid for desired temperature range. The need for intermediate measurement is removed and parameters for such a calibration are naturally adapted to the individual sample-probehead combination.

  11. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems.

  12. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  13. Sensitivity Enhancement in Multiple-Quantum NMR Experiments with CPMG Detection

    NASA Astrophysics Data System (ADS)

    Lim, Kwang Hun; Nguyen, Tuan; Mazur, Tanya; Wemmer, David E.; Pines, Alexander

    2002-07-01

    We present a modified multiple-quantum (MQ) experiment, which implements the Carr-Purcell-Meiboom-Gill (CPMG) detection scheme in the static MQ NMR experiment proposed by W. S. Warren et al. (1980, J. Chem. Phys.73, 2084-2099) and exploited further by O. N. Antzutkin and R. Tycko (1999, J. Chem. Phys.110, 2749-2752). It is demonstrated that a significant enhancement in the sensitivity can be achieved by acquiring echo trains in the MQ experiments for static powder samples. The modified scheme employing the CPMG detection was superior to the original MQ experiment, in particular for the carbonyl carbon with a very large chemical shift anisotropy.

  14. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  15. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    PubMed

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  16. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  17. Ultrahigh resolution protein structures using NMR chemical shift tensors

    PubMed Central

    Wylie, Benjamin J.; Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Franks, W. Trent; Oldfield, Eric; Rienstra, Chad M.

    2011-01-01

    NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13Cα and 15N (peptide backbone) groups in a protein, the β1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13Cα and 15N CSTs were measured using synchronously evolved recoupling experiments in which 13C and 15N tensors were projected onto the 1H-13C and 1H-15N vectors, respectively, and onto the 15N-13C vector in the case of 13Cα. The orientations of the 13Cα CSTs to the 1H-13C and 13C-15N vectors agreed well with the results of ab initio calculations, with an rmsd of approximately 8°. In addition, the measured 15N tensors exhibited larger reduced anisotropies in α-helical versus β-sheet regions, with very limited variation (18 ± 4°) in the orientation of the z-axis of the 15N CST with respect to the 1H-15N vector. Incorporation of the 13Cα CST restraints into structure calculations, in combination with isotropic chemical shifts, transferred echo double resonance 13C-15N distances and vector angle restraints, improved the backbone rmsd to 0.16 Å (PDB ID code 2LGI) and is consistent with existing X-ray structures (0.51 Å agreement with PDB ID code 2QMT). These results demonstrate that chemical shift tensors have considerable utility in protein structure refinement, with the best structures comparable to 1.0-Å crystal structures, based upon empirical metrics such as Ramachandran geometries and χ1/χ2 distributions, providing solid-state NMR with a powerful tool for de novo structure determination. PMID:21969532

  18. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  19. Hypothesis: the sound of the individual metabolic phenotype? Acoustic detection of NMR experiments.

    PubMed

    Cacciatore, Stefano; Saccenti, Edoardo; Piccioli, Mario

    2015-03-01

    We present here an innovative hypothesis and report preliminary evidence that the sound of NMR signals could provide an alternative to the current representation of the individual metabolic fingerprint and supply equally significant information. The NMR spectra of the urine samples provided by four healthy donors were converted into audio signals that were analyzed in two audio experiments by listeners with both musical and non-musical training. The listeners were first asked to cluster the audio signals of two donors on the basis of perceived similarity and then to classify unknown samples after having listened to a set of reference signals. In the clustering experiment, the probability of obtaining the same results by pure chance was 7.04% and 0.05% for non-musicians and musicians, respectively. In the classification experiment, musicians scored 84% accuracy which compared favorably with the 100% accuracy attained by sophisticated pattern recognition methods. The results were further validated and confirmed by analyzing the NMR metabolic profiles belonging to two other different donors. These findings support our hypothesis that the uniqueness of the metabolic phenotype is preserved even when reproduced as audio signal and warrants further consideration and testing in larger study samples.

  20. Computer-intensive simulation of solid-state NMR experiments using SIMPSON

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr.; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

  1. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

  2. Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2010-01-01

    The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.

  3. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  4. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  5. Mechanism of dilute-spin-exchange in solid-state NMR

    SciTech Connect

    Lu, George J.; Opella, Stanley J.

    2014-03-28

    In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, {sup 1}H-{sup 1}H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of {sup 15}N-{sup 15}N spin-exchange mediated by {sup 1}H-{sup 1}H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the {sup 1}H to an off-resonance frequency so that it is at the “magic angle” during the spin-exchange interval in the experiment, since the “magic angle” irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in {sup 15}N-{sup 15}N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the “forbidden” spin-exchange condition under “magic angle” irradiation results in {sup 15}N-{sup 15}N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.

  6. Homodecoupled 1,1- and 1,n-ADEQUATE: Pivotal NMR Experiments for the Structure Revision of Cryptospirolepine.

    PubMed

    Saurí, Josep; Bermel, Wolfgang; Buevich, Alexei V; Sherer, Edward C; Joyce, Leo A; Sharaf, Maged H M; Schiff, Paul L; Parella, Teodor; Williamson, R Thomas; Martin, Gary E

    2015-08-24

    Cryptospirolepine is the most structurally complex alkaloid discovered and characterized thus far from any Cryptolepis specie. Characterization of several degradants of the original, sealed NMR sample a decade after the initial report called the validity of the originally proposed structure in question. We now report the development of improved, homodecoupled variants of the 1,1- and 1,n-ADEQUATE (HD-ADEQUATE) NMR experiments; utilization of these techniques was critical to successfully resolving long-standing structural questions associated with crytospirolepine.

  7. A PFG NMR experiment for translational diffusion measurements in low-viscosity solvents containing multiple resonances

    NASA Astrophysics Data System (ADS)

    Simorellis, Alana K.; Flynn, Peter F.

    2004-10-01

    Pulsed gradient simulated-echo (PGSE) NMR diffusion measurements provide a facile and accurate means for determining the self-diffusion coefficients for molecules over a wide range of sizes and conditions. The measurement of diffusion in solvents of low intrinsic viscosity is particularly challenging, due to the persistent presence of convection. Although convection can occur in most solvent systems at elevated temperatures, in lower viscosity solvents (e.g., short chain alkanes), convection may manifest itself even at ambient laboratory temperatures. In most circumstances, solvent suppression will also be required, and for solvents that have multiple resonances, effective suppression can likewise represent a substantial challenge. In this article, we report an NMR experiment that combines a double-stimulated echo PFG approach with a WET-based solvent suppression scheme that effectively and simultaneously address the issues of dynamic range and the deleterious effects of convection. The experiment described will be of general benefit to studies aimed at the characterization of diffusion of single molecules directly dissolved in low-viscosity solvents, and should also be of substantial utility in studies of supramolecular assemblies such as reverse-micelles dissolved in apolar solvents.

  8. Residue-specific NH exchange rates studied by NMR diffusion experiments

    NASA Astrophysics Data System (ADS)

    Brand, Torsten; Cabrita, Eurico J.; Morris, Gareth A.; Günther, Robert; Hofmann, Hans-Jörg; Berger, Stefan

    2007-07-01

    We present a novel approach to the investigation of rapid (>2 s -1) NH exchange rates in proteins, based on residue-specific diffusion measurements. 1H, 15N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.

  9. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    PubMed Central

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin–lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C). PMID:28067292

  10. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    NASA Astrophysics Data System (ADS)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin–lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  11. Spatial reorientation experiments for NMR of solids and partially oriented liquids.

    PubMed

    Martin, Rachel W; Kelly, John E; Collier, Kelsey A

    2015-11-01

    on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years.

  12. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-09-30

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40/sup 0/C for a tightly bound /sup 15/N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.

  13. Magnetization-recovery experiments for static and MAS-NMR of I = 3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.

    2006-05-01

    Multifrequency pulsed NMR experiments on quadrupole-perturbed I = 3/2 spins in single crystals are shown to be useful for measuring spin-lattice relaxation parameters even for a mixture of quadrupolar plus magnetic relaxation mechanisms. Such measurements can then be related to other MAS-NMR experiments on powders. This strategy is demonstrated by studies of 71Ga and 69Ga (both I = 3/2) spin-lattice relaxation behavior in a single-crystal (film) sample of gallium nitride, GaN, at various orientations of the axially symmetric nuclear quadrupole coupling tensor. Observation of apparent single-exponential relaxation behavior in I = 3/2 saturation-recovery experiments can be misleading when individual contributing rate processes are neglected in the interpretation. The quadrupolar mechanism (dominant in this study) has both a single-quantum process ( T1Q1) and a double-quantum process ( T1Q2), whose time constants are not necessarily equal. Magnetic relaxation (in this study most likely arising from hyperfine couplings to unpaired delocalized electron spins in the conduction band) also contributes to a single-quantum process ( T1M). A strategy of multifrequency irradiation with observation of satellite and/or central transitions, incorporating different initial conditions for the level populations, provides a means of obtaining these three relaxation time constants from single-crystal 71Ga data alone. The 69Ga results provide a further check of internal consistency, since magnetic and quadrupolar contributions to its relaxation scale in opposite directions compared to 71Ga. For both perpendicular and parallel quadrupole coupling tensor symmetry axis orientations small but significant differences between T1Q1 and T1Q2 were measured, whereas for a tensor symmetry axis oriented at the magic-angle (54.74°) the values were essentially equal. Magic-angle spinning introduces a number of complications into the measurement and interpretation of the spin-lattice relaxation

  14. Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three-dimensional NMR spectroscopy.

    PubMed Central

    Kroon, G. J.; Grötzinger, J.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1993-01-01

    This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray. PMID:8401218

  15. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  16. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate H NMR Experiment To Introduce Chiral Chemistry.

    PubMed

    Smith, David H; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Lucas, Kerry; Holmes, Andrea

    2011-03-01

    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting ester diastereomer is analyzed by NMR. This experiment is suitable for group work in the laboratory as several diastereomers are synthesized and compared to determine which enantiomer of 1-phenylethanol reacts with the enzyme.

  17. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate 1H NMR Experiment To Introduce Chiral Chemistry

    PubMed Central

    Smith, David H.; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Lucas, Kerry; Holmes, Andrea

    2010-01-01

    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting ester diastereomer is analyzed by NMR. This experiment is suitable for group work in the laboratory as several diastereomers are synthesized and compared to determine which enantiomer of 1-phenylethanol reacts with the enzyme. PMID:21359111

  18. Efficient Measurement of 3JN,Cγ and 3JC‧,Cγ Coupling Constants of Aromatic Residues in 13C, 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Löhr, Frank; Rüterjans, Heinz

    2000-09-01

    An NMR pulse sequence is proposed for the simultaneous determination of side chain χ1 torsion-angle related 3JN,Cγ and 3JC‧,Cγ couplings in aromatic amino acid spin systems. The method is of the quantitative J correlation type and takes advantage of attenuated 15N and 1H transverse relaxation by means of the TROSY principle. Unlike previously developed schemes for the measurement of either of the two coupling types, spectra contain internal reference peaks that are usually recorded in separate experiments. Therefore, the desired information is extracted from a single rather than four data sets. The new method is demonstrated with uniformly 13C/15N labeled Desulfovibrio vulgaris flavodoxin, which contains 14 aromatic out of 147 total amino acid residues.

  19. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  20. Reactions, characterization and uptake of ammoxidized kraft lignin labeled with 15N.

    PubMed

    Ramírez, F; Varela, G; Delgado, E; López-Dellamary, F; Zúñiga, V; González, V; Faix, O; Meier, D

    2007-05-01

    Ammoxidation of kraft lignin was carried out in a Parr reactor using (15)NH(3) as the main nitrogen source. Reaction parameters were set up until a total nitrogen content of approximately 13 wt.% in lignin was achieved, in accordance with conditions of previous studies. Analytical tools such as FTIR, Py-GC/MS, and solid state NMR were used in this research. The nature of nitrogen bondings is discussed. The incorporation of the (15)N from ammoxidized lignin was followed in pumpkins (Zucchini cucurbita pepo L.) by means of (15)N emission spectroscopy.

  1. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    PubMed

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  3. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  4. An NMR Experiment Based on Off-the-Shelf Digital Data-Acquisition Equipment

    ERIC Educational Resources Information Center

    Hilty, Christian; Bowen, Sean

    2010-01-01

    Nuclear magnetic resonance (NMR) poses significant challenges for teaching in the context of an undergraduate laboratory, foremost because of high equipment cost. Current off-the-shelf data-acquisition hardware, however, is sufficiently powerful to constitute the core of a fully digital NMR spectrometer operating at the earth's field. We present…

  5. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  6. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  7. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  8. Analytical optimization of active bandwidth and quality factor for TOCSY experiments in NMR spectroscopy

    PubMed Central

    Coote, Paul; Bermel, Wolfgang; Wagner, Gerhard; Arthanari, Haribabu

    2016-01-01

    Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50% of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum. They can therefore be used to design mixing sequences that will function favorably in experiments. Here, we develop optimization methods tailored to these two metrics, including precise control of off-diagonal cross peak buildup rates. These methods produce square shaped transfer efficiency profiles, directly matching the desirable properties that the metrics are intended to measure. The optimization methods are analytical, rather than numerical. The two resultant shaped pulses have significantly higher active bandwidth and quality factor, respectively, than all other known sequences. They are therefore highly suitable for use in NMR spectroscopy. We include experimental verification of these improved waveforms on small molecule and protein samples. PMID:27515670

  9. Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications

    NASA Astrophysics Data System (ADS)

    Glaser, Ralf W.; Ulrich, Anne S.

    2003-09-01

    Chemical shift referencing of solid-state NMR experiments on oriented membranes has to compensate for bulk magnetic susceptibility effects that are associated with the non-spherical sample shape, as described in the accompanying paper [J. Magn. Reson. 164 (2003) 115-127]. The resulting frequency deviations can be on the order of 10 ppm, which is serious for nuclei with a narrow chemical shift anisotropy such as 1H or 13C, and in some cases even 19F. Two referencing schemes are proposed here to compensate for these effects: A flat (0.4 mm) glass container with an isotropic reference molecule dissolved in a thin film of liquid is stacked on top of the oriented membrane sample. Alternatively, the intrinsic proton signal of the hydrated lipid can be used for chemical shift referencing. Further aspects related to magnetic susceptibility are discussed, such as air gaps in susceptibility-matched probeheads, the benefits of shimming, and limitations in the accuracy of orientational constraints. A biological application is illustrated by a series of experiments on the antimicrobial peptide PGLa, aimed at understanding its concentration-dependent membranolytic effect. To address a wide range of molar peptide/lipid ratios between 1:3000 and 1:8, multilayers of hydrated DMPC containing a 19F-labeled peptide were oriented between stacked glass plates. Maintaining an approximately constant amount of peptide gives rise to thick samples (18 plates) at low, and thin samples (3 plates) at high peptide/lipid ratio. Accurate referencing was critical to reveal a small but significant change over 5 ppm in the anisotropic chemical shift of the 19F label on the peptide, indicative of a change in the orientation and/or dynamics of PGLa in the membrane.

  10. Design of a Quantitative DEPT NMR Experiment for Carbon-13 Acquisitions

    DTIC Science & Technology

    2011-09-01

    NMR Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1977, //, 79-83. 7. Shaka, A.J.; Keeler , J.; Freeman, R. Evaluation of a New Broadband Decoupling Sequence: WALTZ-16. J. Magn. Reson. 1983, 53, 313-340. 15

  11. Collection of NMR Scalar and Residual Dipolar Couplings Using a Single Experiment.

    PubMed

    Gil-Silva, Leandro F; Santamaría-Fernández, Raquel; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-01-11

    A new DMSO-compatible aligning gel based on cross-linked poly(2-hydroxylethyl methacrylate) (poly-HEMA) has been developed. Due to a significant difference in bulk magnetic susceptibility between the DMSO inside and outside the gel, it is possible to simultaneously collect isotropic and anisotropic NMR data, such as residual dipolar couplings (RDC), in the same NMR tube. RDC-assisted structural analysis of menthol and the alkaloid retrorsine is reported as proof of concept.

  12. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    NASA Astrophysics Data System (ADS)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  13. Rayleigh-Bénard percolation transition study of thermal convection in porous media: numerical simulation and NMR experiments.

    PubMed

    Weber, M; Klemm, A; Kimmich, R

    2001-05-07

    Thermal convection was studied as a function of the porosity in random-site percolation model objects in a Rayleigh-Bénard configuration. NMR velocity mapping experiments and numerical simulations using the finite-volume method are compared. Velocity histograms were evaluated and can be described by power laws in a wide range. The maximum velocity as a function of the porosity indicates a combined percolation/Rayleigh-Bénard transition.

  14. Dynamics of Reassembled Thioredoxin Studied by Magic Angle Spinning NMR: Snapshots from Different Timescales

    PubMed Central

    Yang, Jun; Tasayco, Maria Luisa; Polenova, Tatyana

    2014-01-01

    Solid-state NMR spectroscopy can be used to probe internal protein dynamics in the absence of the overall molecular tumbling. In this study, we report 15N backbone dynamics in differentially enriched 1-73(U-13C, 15N)/74-108(U-15N) reassembled thioredoxin on multiple timescales using a series of 2D and 3D MAS NMR experiments probing the backbone amide 15N longitudinal relaxation, 1H-15N dipolar order parameters, 15N chemical shift anisotropy (CSA), and signal intensities in the temperature-dependent and 1H T2′ -filtered NCA experiments. The spin-lattice relaxation rates R1(R1 = 1/T1) were observed in the range from 0.012 to 0.64 s-1 indicating large site-to-site variations in dynamics on pico- to nanosecond time scales. The 1H-15N dipolar order parameters, , and 15N CSA anisotropies, δσ reveal the backbone mobilities in reassembled thioredoxin, as reflected in the average = 0.89 ± 0.06 and δσ = 92.3 ± 5.2 ppm, respectively. From the aggregate of experimental data from different dynamics methods, some degree of correlation between the motions on the different time scales has been suggested. Analysis of the dynamics parameters derived from these solid-state NMR experiments indicates higher mobilities for the residues constituting irregular secondary structure elements than for those located in the α-helices and β-sheets, with no apparent systematic differences in dynamics between the α-helical and β-sheet residues. Remarkably, the dipolar order parameters derived from the solid-state NMR measurements and the corresponding solution NMR generalized order parameters display similar qualitative trends as a function of the residue number. The comparison of the solid-state dynamics parameters to the crystallographic B-factors has identified the contribution of static disorder to the B-factors. The combination of longitudinal relaxation, dipolar order parameter, and CSA line shape analyses employed in this study provides snapshots of dynamics and a new

  15. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups.

    PubMed

    Chattopadhyay, Abhijnan; Esadze, Alexandre; Roy, Sourav; Iwahara, Junji

    2016-10-10

    NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear (15)N-(31)P and (1)H-(31)P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear (1)H-(15)N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around (1)H 14.3 ppm and (15)N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the (1)H-(15)N cross-peaks. Using heteronuclear (1)H, (15)N, and (31)P NMR experiments, we observed the hydrogen-bond scalar couplings between the His (15)Nδ1/(1)Hδ1 and DNA phosphate (31)P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.

  16. Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning

    PubMed Central

    2015-01-01

    Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5–30 kDa proteins. The approach relies on perdeuteration, amide 2H/1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR. PMID:25102442

  17. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-03

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  18. 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    PubMed Central

    Richter, Christian; Kovacs, Helena; Buck, Janina; Wacker, Anna; Fürtig, Boris; Bermel, Wolfgang

    2010-01-01

    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9429-5) contains supplementary material, which is available to authorized users. PMID:20544375

  19. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  20. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    SciTech Connect

    Hu, Jian Zhi

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  1. Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments

    PubMed Central

    Freitas, Jair C. C.; Scopel, Wanderlã L.; Paz, Wendel S.; Bernardes, Leandro V.; Cunha-Filho, Francisco E.; Speglich, Carlos; Araújo-Moreira, Fernando M.; Pelc, Damjan; Cvitanić, Tonči; Požek, Miroslav

    2015-01-01

    The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at 13C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18–21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials. PMID:26434597

  2. Investigations on computed 13C NMR one-dimensional non-refocused INEPT experiments for structural determinations in O-methylated glycosides

    NASA Astrophysics Data System (ADS)

    Pouységu, Laurent; Nobert, Philippe; Deffieux, Denis; De Jéso, Bernard; Lartigue, Jean-Claude; Pétraud, Michel; Ratier, Max

    1999-10-01

    A new one-dimensional 13C NMR approach for the determination of methoxyl substituents configuration in O-methylated glycosides is presented. Assignments are based on structural investigations by non-refocused INEPT experiments associated with numerical methods.

  3. Genetic Algorithm Optimized Triply Compensated Pulses in NMR Spectroscopy

    PubMed Central

    Manu, V. S.; Veglia, Gianluigi

    2015-01-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature’s evolutionary processes. The newly designed π and π/2 pulses belong to the ‘Type A’ (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U – 13C, 15N NAVL peptide as well as U – 13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327

  4. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    PubMed

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  5. Structure and Dynamics of the Aβ21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations

    PubMed Central

    Fawzi, Nicolas L.; Phillips, Aaron H.; Ruscio, Jory Z.; Doucleff, Michaeleen; Wemmer, David E.; Head-Gordon, Teresa

    2012-01-01

    We combine molecular dynamics simulations and new high-field NMR experiments to describe the solution structure of the Aβ21–30 peptide fragment that may be relevant for understanding structural mechanisms related to Alzheimer’s disease. By using two different empirical force-field combinations, we provide predictions of the three-bond scalar coupling constants (3JHNHα), chemical-shift values, 13C relaxation parameters, and rotating-frame nuclear Overhauser effect spectroscopy (ROESY) crosspeaks that can then be compared directly to the same observables measured in the corresponding NMR experiment of Aβ21–30. We find robust prediction of the 13C relaxation parameters and medium-range ROESY crosspeaks by using new generation TIP4P-Ew water and Amber ff99SB protein force fields, in which the NMR validates that the simulation yields both a structurally and dynamically correct ensemble over the entire Aβ21–30 peptide. Analysis of the simulated ensemble shows that all medium-range ROE restraints are not satisfied simultaneously and demonstrates the structural diversity of the Aβ21–30 conformations more completely than when determined from the experimental medium-range ROE restraints alone. We find that the structural ensemble of the Aβ21–30 peptide involves a majority population (~60%) of unstructured conformers, lacking any secondary structure or persistent hydrogen-bonding networks. However, the remaining minority population contains a substantial percentage of conformers with a β-turn centered at Val24 and Gly25, as well as evidence of the Asp23 to Lys28 salt bridge important to the fibril structure. This study sets the stage for robust theoretical work on Aβ1–40 and Aβ1–42, for which collection of detailed NMR data on the monomer will be more challenging because of aggregation and fibril formation on experimental timescales at physiological conditions. In addition, we believe that the interplay of modern molecular simulation and high

  6. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy.

    PubMed

    Fawzi, Nicolas L; Ying, Jinfa; Torchia, Dennis A; Clore, G Marius

    2012-07-19

    We present the protocol for the measurement and analysis of dark-state exchange saturation transfer (DEST), a novel solution NMR method for characterizing, at atomic resolution, the interaction between an NMR-'visible' free species and an NMR-'invisible' species transiently bound to a very high-molecular-weight (>1 MDa) macromolecular entity. The reduced rate of reorientational motion in the bound state that precludes characterization by traditional NMR methods permits the observation of DEST. (15)N-DEST profiles are measured on a sample comprising the dark state in exchange with an NMR-visible species; in addition, the difference (ΔR(2)) in (15)N transverse relaxation rates between this sample and a control sample comprising only the NMR-visible species is also obtained. The (15)N-DEST and ΔR(2) data for all residues are then fitted simultaneously to the McConnell equations for various exchange models describing the residue-specific dynamics in the bound state(s) and the interconversion rate constants. Although the length of the experiments depends strongly on sample conditions, approximately 1 week of NMR spectrometer time was sufficient for full characterization of samples of amyloid-β (Aβ) at concentrations of ~100 μM.

  7. Complete NMR analysis of oxytocin in phosphate buffer.

    PubMed

    Ohno, Akiko; Kawasaki, Nana; Fukuhara, Kiyoshi; Okuda, Haruhiro; Yamaguchi, Teruhide

    2010-02-01

    Complete NMR analysis of oxytocin (OXT) in phosphate buffer was elucidated by one-dimensional (1D)- and two-dimensional (2D)-NMR techniques, which involve the assignment of peptide amide NH protons and carbamoyl NH(2) protons. The (1)H-(15)N correlation of seven amide NH protons and three carbamoyl NH(2) protons were also shown by HSQC NMR of OXT without (15)N enrichment.

  8. Production of 15N-labeled α-amanitin in Galerina marginata

    PubMed Central

    DuBois, Brandon; Sgambelluri, R. Michael; Angelos, Evan R.; Li, Xuan; Holmes, Daniel

    2015-01-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes directly from A. phalloides, the death cap mushroom, which is collected from its natural habitat. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprobic mushroom that grows and produces α-amanitin in culture, we describe a method for producing 15N-labeled α-amanitin using growth media containing 15N as sole nitrogen source. A key to success was preparing 15N-enriched yeast extract via a novel method designated “glass bead-assisted maturation.” In the presence of the labeled yeast extract and 15N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR. PMID:26100667

  9. Production of (15)N-labeled α-amanitin in Galerina marginata.

    PubMed

    Luo, Hong; DuBois, Brandon; Sgambelluri, R Michael; Angelos, Evan R; Li, Xuan; Holmes, Daniel; Walton, Jonathan D

    2015-09-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes from Amanita phalloides, the death cap mushroom, which is collected from the wild. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprotrophic mushroom that grows and produces α-amanitin in culture, we describe a method for producing (15)N-labeled α-amanitin using growth media containing (15)N as sole nitrogen source. A key to success was preparing (15)N-enriched yeast extract via a novel method designated "glass bead-assisted maturation." In the presence of the labeled yeast extract and (15)N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR.

  10. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  11. A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins

    NASA Astrophysics Data System (ADS)

    Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof; Koźmiński, Wiktor

    2010-01-01

    This paper presents examples of techniques based on the principle of random sampling that allows acquisition of NMR spectra featuring extraordinary resolution. This is due to increased dimensionality and maximum evolution time reached. The acquired spectra of CsPin protein and maltose binding protein were analyzed statistically with the aim to evaluate each technique. The results presented include exemplary spectral cross-sections. The spectral data provided by the proposed techniques allow easy assignment of backbone and side-chain resonances.

  12. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    PubMed

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a

  13. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their

  14. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  15. Protein Motions and Folding Investigated by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2002-03-01

    NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed α_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, α_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

  16. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    NASA Astrophysics Data System (ADS)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  17. Identification of an Unknown Compound by Combined Use of IR, [to the first power]H NMR, [to the thirteenth power]C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination

    ERIC Educational Resources Information Center

    Liotta, Louis J.; James-Pederson, Magdalena

    2008-01-01

    In this introductory organic chemistry experiment, the students get an opportunity to analyze and identify an unknown compound as it is done in a real-laboratory setting. First, students are instructed on the proper operation of three major instruments, NMR, IR, and GC-MS, and are given a sample of an unknown compound. The students are expected to…

  18. The use of spin desalting columns in DMSO-quenched H/D-exchange NMR experiments.

    PubMed

    Chandak, Mahesh S; Nakamura, Takashi; Takenaka, Toshio; Chaudhuri, Tapan K; Yagi-Utsumi, Maho; Chen, Jin; Kato, Koichi; Kuwajima, Kunihiro

    2013-04-01

    Dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange is a powerful method to characterize the H/D-exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non-protected fast-exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO-quenched H/D-exchange studies of proteins so far reported, lyophilization was used to remove D2 O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two-dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2 O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D-exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride.

  19. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  20. Effect of phase fluctuations on INS and NMR experiments in the pseudogap regime of the high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Westfahl, Harry; Morr, Dirk K.

    2000-03-01

    In this talk we present a theoretical scenario for inelastic neutron (INS) and nuclear magnetic resonance (NMR) experiments in the pseudogap region of the underdoped high-Tc superconductors. Within the spin-fermion model we study the effect of phase fluctuations in the superconducting d-wave order parameter on the spin susceptibility, probed in INS and NMR experiments. We show that the spin susceptibility is determined by the average square Doppler shift, W(T), which results from the coupling between the quasiparticle momentum and the thermally excited supercurrents. Our scenario provides an explanation for the temperature dependence of the resonance peak and of the ^63Cu spin lattice relaxation rate, 1/T_1, in the region where the phase fluctuations are present. Moreover, we show that 1/T1 is a direct probe of W(T). Our results for W(T) are in good qualitative agreement with those obtained in scanning tunneling spectroscopy (Ch. Remer et al., Phys. Rev. Lett. 80), 149 (1998) and high frequency ac transport(J. Corson et al., Nature 398), 221 (1999)

  1. Direct observation of millisecond to second motions in proteins by dipolar CODEX NMR spectroscopy.

    PubMed

    Krushelnitsky, Alexey; deAzevedo, Eduardo; Linser, Rasmus; Reif, Bernd; Saalwächter, Kay; Reichert, Detlef

    2009-09-02

    We present a site-resolved study of slow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of slow (15)N-(1)H motions of the SH3 domain of chicken alpha-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.

  2. The position dependent 15N enrichment of nitrous oxide in the stratosphere.

    PubMed

    Röckmann, T; Kaiser, J; Brenninkmeijer, C A; Brand, W A; Borchers, R; Crowley, J N; Wollenhaupt, M; Crutzen, P J

    2001-01-01

    The position dependent 15N fractionation of nitrous oxide (N2O), which cannot be obtained from mass spectrometric analysis on molecular N2O itself, can be determined with high precision using isotope ratio mass spectrometry on the NO+ fragment that is formed on electron impact in the source of an isotope ratio mass spectrometer. Laboratory UV photolysis experiments show that strong position dependent 15N fractionations occur in the photolysis of N2O in the stratosphere, its major atmospheric sink. Measurements on the isotopic composition of stratospheric N2O indeed confirm the presence of strong isotope enrichments, in particular the difference in the fractionation constants for 15N14NO and 14N15NO. The absolute magnitudes of the fractionation constants found in the stratosphere are much smaller, however, than those found in the lab experiments, demonstrating the importance of dynamical and also additional chemical processes like the reaction of N2O with O(1D).

  3. Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Prestegard, James H.

    2011-10-01

    Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation during transfer periods for even the most efficient 15N- 1H HSQC experiments can result in more than an order of magnitude loss in sensitivity for molecules in the 100 kDa range. A relatively unexploited approach to preventing signal loss is to avoid coherence transfer steps entirely. Here we describe a scheme for multi-dimensional NMR spectroscopy that relies on direct frequency encoding of a second dimension by multi-frequency decoupling during acquisition, a technique that we call MD-DIRECT. A substantial improvement in sensitivity of 15N- 1H correlation spectra is illustrated with application to the 21 kDa ADP ribosylation factor (ARF) labeled with 15N in all alanine residues. Operation at 4 °C mimics observation of a 50 kDa protein at 35 °C.

  4. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs.

    PubMed

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  5. Structural study of synthetic mica montmorillonite by means of 2D MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Alba, M. D.; Castro, M. A.; Chain, P.; Naranjo, M.; Perdigón, A. C.

    2005-07-01

    Syn-1, is a synthetic mica montmorillonite interstratified mineral that forms one of the standard clay samples in the Clay Minerals Society Source Clays Project. However, there are still controversies regarding some structural aspects such as the interlayer composition or the location of the extra-aluminium determined by chemical analysis. The main objective of this paper is to shed light on those structural aspects that affect the reactivity of the interstratified minerals. For this purpose, we have used 1 H 29 Si and 1 H 27Al HETCOR MAS NMR to show that it is likely that the interlayer space of the beidellite part is composed of ammonium ions whereas ammonium and aluminium ions are responsible for the charge balance in the mica type layer.

  6. Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments.

    PubMed

    Yemloul, Mehdi; Steiner, Emilie; Robert, Anthony; Bouguet-Bonnet, Sabine; Allix, Florent; Jamart-Grégoire, Brigitte; Canet, Daniel

    2011-03-24

    An organogelation process depends on the gelator-solvent pair. This study deals with the solvent dynamics once the gelation process is completed. The first approach used is relaxometry, i.e., the measurement of toluene proton longitudinal relaxation time T(1) as a function of the proton NMR resonance frequency (here in the 5 kHz to 400 MHz range). Pure toluene exhibits an unexpected T(1) variation, which has been identified as paramagnetic relaxation resulting from an interaction of toluene with dissolved oxygen. In the gel phase, this contribution is retrieved with, in addition, a strong decay at low frequencies assigned to toluene molecules within the gel fibers. Comparison of dispersion curves of pure toluene and toluene in the gel phase leads to an estimate of the proportion of toluene embedded within the organogel (found around 40%). The second approach is based on carbon-13 T(1) and nuclear Overhauser effect measurements, the combination of these two parameters providing direct information about the reorientation of C-H bonds. It appears clearly that reorientation of toluene is the same in pure liquid and in the gel phase. The only noticeable changes in carbon-13 longitudinal relaxation times are due to the so-called chemical shift anisotropy (csa) mechanism and reflect slight modifications of the toluene electronic distribution in the gel phase. NMR diffusion measurements by the pulse gradient spin-echo (PGSE) method allow us to determine the diffusion coefficient of toluene inside the organogel. It is roughly two-thirds of the one in pure toluene, thus indicating that self-diffusion is the only dynamical parameter to be slightly affected when the solvent is inside the gel structure. The whole set of experimental observations leads to the conclusion that, once the gel is formed, the solvent becomes essentially passive, although an important fraction is located within the gel structure.

  7. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution.

  8. Diels-Alder Cycloadditions: A MORE Experiment in the Organic Laboratory Including a Diene Identification Exercise Involving NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus

    2005-01-01

    Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…

  9. Determination of Solvent Effects on Keto-Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Cook, A. Gilbert; Feltman, Paul M.

    2007-01-01

    The use of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents has been a classic physical chemistry experiment. We are presenting an expansion of the excellent description of this experiment by Garland, Shoemaker, and Nibler. Often the assumption is made that the keto tautomer is always the…

  10. Synthesis and NMR characterization of seven new substituted pyridine N-oxides

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Puszko, A.; Kolehmainen, E.; Lorenc, J.

    2008-10-01

    Seven 3-substituted (alkylamino, alkylnitramino and alkylnitrosoamino) derivatives of pyridine N-oxide have been prepared and their 1H, 13C and 15N NMR chemical shifts assigned based on PFG 1H, 13C HMQC and PFG 1H, X (X = 13C or 15N) HMBC experiments. In the sterically most crowded congener, 3-ethylnitramino-4-nitropyridine N-oxide, chemical non-equivalence or diastereotopicity of the N-CH 2 protons was observed probably due to the chirality of the adjacent amino nitrogen caused by its restricted inversion. The coalescence temperature for the 1H NMR chemical shifts of these geminal protons has been determined and the corresponding Δ G∗ for the energy barrier of the dynamic process has been estimated.

  11. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  12. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  13. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  14. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  15. EPIC- and CHANCE-HSQC: Two 15N Photo-CIDNP-Enhanced Pulse Sequences for the Sensitive Detection of Solvent-Exposed Tryptophan

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) of nuclei other than 1H offers a tremendous potential for sensitivity enhancement in liquid state NMR under mild, physiologically relevant conditions. Photo-CIDNP enhancements of 15N magnetization are much larger than those typically observed for 1H. However, the low gyromagnetic ratio of 15N prevents a full fruition of the potential signal-to-noise gains attainable via 15N photo-CIDNP. Here, we propose two novel pulse sequences, EPIC- and CHANCE-HSQC, tailored to overcome the above limitation. EPIC-HSQC exploits the strong 1H polarization and its subsequent transfer to non-equilibrium Nz magnetization prior to 15N photo-CIDNP laser irradiation. CHANCE-HSQC synergistically combines 1H and 15N photo-CIDNP. The above pulse sequences, tested on tryptophan (Trp) and the Trp-containing protein apoHmpH, were found to display up to two-fold higher sensitivity than the reference NPE-SE-HSQC pulse train (based on simple 15N photo-CIDNP followed by N-H polarization transfer), and up to a ca. 3-fold increase in sensitivity over the corresponding dark pulse schemes (lacking laser irradiation). The observed effects are consistent with the predictions from a theoretical model of photo-CIDNP and prove the potential of 15N and 1H photo-CIDNP in liquid state heteronuclear correlation NMR. PMID:19643649

  16. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  17. REDOR NMR Characterization of DNA Packaging in Bacteriophage T4

    PubMed Central

    Yu, Tsyr-Yan; Schaefer, Jacob

    2008-01-01

    Bacteriophage T4 is a large-tailed E. coli virus whose capsid is 120 × 86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 minutes during viral infection. We have isolated 50-mg quantities of uniform 15N and [ε-15N]lysine-labeled bacteriophage T4. We have also introduced 15NH4+ into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using 15N{31P} and 31P{15N} rotational-echo double resonance. The results of these experiments have shown that: (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of –NH2 groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid, are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging. PMID:18703073

  18. 14N overtone NMR spectra under magic angle spinning: Experiments and numerically exact simulations

    NASA Astrophysics Data System (ADS)

    O'Dell, Luke A.; Brinkmann, Andreas

    2013-02-01

    It was recently shown that high resolution 14N overtone NMR spectra can be obtained directly under magic angle spinning (MAS) conditions [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)], 10.1016/j.cplett.2011.08.030. Preliminary experimental results showed narrowed powder pattern widths, a frequency shift that is dependent on the MAS rate, and an apparent absence of spinning sidebands, observations which appeared to be inconsistent with previous theoretical treatments. Herein, we reproduce these effects using numerically exact simulations that take into account the full nuclear spin Hamiltonian. Under sample spinning, the 14N overtone signal is split into five (0, ±1, ±2) overtone sidebands separated by the spinning frequency. For a powder sample spinning at the magic angle, the +2ωr sideband is dominant while the others show significantly lower signal intensities. The resultant MAS powder patterns show characteristic quadrupolar lineshapes from which the 14N quadrupolar parameters and isotropic chemical shift can be determined. Spinning the sample at other angles is shown to alter both the shapes and relative intensities of the five overtone sidebands, with MAS providing the benefit of averaging dipolar couplings and shielding anisotropy. To demonstrate the advantages of this experimental approach, we present the 14N overtone MAS spectrum obtained from L-histidine, in which powder patterns from all three nitrogen sites are clearly resolved.

  19. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  20. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  1. Determination of γ -ray widths in 15N using nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-07-01

    Background: The stable nucleus 15N is the mirror of 15O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler shift attenuation method in 15O. As a reference and for testing the method, level lifetimes in 15N have also been determined in the same experiment. Purpose: The latest compilation of 15N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement to enable a comparison to the AGATA demonstrator data. The widths of several 15N levels have been studied with the NRF method. Method: The solid nitrogen compounds enriched in 15N have been irradiated with bremsstrahlung. The γ rays following the deexcitation of the excited nuclear levels were detected with four high-purity germanium detectors. Results: Integrated photon-scattering cross sections of 10 levels below the proton emission threshold have been measured. Partial γ -ray widths of ground-state transitions were deduced and compared to the literature. The photon-scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Conclusions: Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.

  2. A Qualitative-Quantitative H-NMR Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Phillips, John S.; Leary, James J.

    1986-01-01

    Describes an experiment combining qualitative and quantitative information from hydrogen nuclear magnetic resonance spectra. Reviews theory, discusses the experimental approach, and provides sample results. (JM)

  3. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  4. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  5. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  6. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  7. Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.

    PubMed

    Gu, Yina; Hansen, Alexandar L; Peng, Yu; Brüschweiler, Rafael

    2016-02-24

    Functional motions of (15)N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1ρ and CPMG-type experiments. CEST also simultaneously reports on site-specific R1 and R2 parameters. It is shown here how CEST-derived R1 and R2 relaxation parameters can be measured within a few hours at an accuracy comparable to traditional relaxation experiments. Using a "lean" version of the model-free approach S(2) order parameters can be determined that match those from the standard model-free approach applied to (15)N R1, R2 , and {(1)H}-(15)N NOE data. The new methodology, which is demonstrated for ubiquitin and arginine kinase (42 kDa), should serve as an effective screening tool of protein dynamics from picosecond-to-millisecond timescales.

  8. Efficient Resonance Assignment of Proteins in MAS NMR by Simultaneous Intra- and Inter-residue 3D Correlation Spectroscopy

    PubMed Central

    Daviso, Eugenio; Eddy, Matthew T.; Andreas, Loren B.; Griffin, Robert G.; Herzfeld, Judith

    2013-01-01

    Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP 15N-13C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR 15N-13C transfers provide simultaneous NCO and NCa transfers with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D TEDOR-CC experiment provides heteronuclear sidechains correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles. PMID:23334347

  9. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  10. Protein dynamics from chemical shift and dipolar rotational spin-echo sup 15 N NMR

    SciTech Connect

    Garbow, J.R.; Jacob, G.S.; Stejskal, E.O.; Schaefer, J. )

    1989-02-07

    The partial collapse of dipolar and chemical shift tensors for peptide NH and for the amide NH at cross-link sites in cell wall peptidoglycan, of intact lyophilized cells of Aerococcus viridans, indicates NH vector root-mean-square fluctuations of 23{degree}. This result is consistent with the local mobility calculated in typical picosecond regime computer simulations of protein dynamics in the solid state. The experimental root-mean-square angular fluctuations for both types of NH vectors increase to 37{degree} for viable wet cells at 10{degree}C. The similarity in mobilities for both general protein and cell wall peptidoglycan suggests that one additional motion in wet cells involves cooperative fluctuations of segments of cell walls, attached proteins, and associated cytoplasmic proteins.

  11. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  12. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  13. The Fourier Transform in Chemistry-NMR, Part 3. Multiple-Pulse Experiments.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; King, Roy W.

    1990-01-01

    Described are six multipulse experiments with an emphasis on their application to common problems in chemistry. Exercises in relaxation time measurement, spin echoes, and polarization transfer are proposed. (CW)

  14. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  15. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  16. Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift assignment of aromatic side chains in proteins.

    PubMed

    Peti, Wolfgang; Norcross, James; Eldridge, Gary; O'Neil-Johnson, Mark

    2004-05-12

    A specially designed microcoil probe for use in biomolecular NMR spectroscopy is presented. The microcoil probe shows a mass-based sensitivity increase of a minimal factor of 7.5, allowing for the first time routine biomolecular NMR spectroscopy with microgram amounts of proteins. In addition, the exceptional radio frequency capabilities of this probe allowed us to record an aliphatic-aromatic HCCH-TOCSY spectrum for the first time. Using this spectrum, the side chains of aliphatic and aromatic amino acids can be completely assigned using only a single experiment. Using the conserved hypothetical protein TM0979 from Thermotoga maritima, we demonstrate the capabilities of this microcoil NMR probe to completely pursue the sequence specific backbone assignment with less than 500 microg of (13)C,(15)N labeled protein.

  17. Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate [superscript 1]H NMR Experiment to Introduce Chiral Chemistry

    ERIC Educational Resources Information Center

    Faraldos, Juan A.; Giner, Jos-Luis; Smith, David H.; Wilson, Mark; Ronhovde, Kyla; Wilson, Erin; Clevette, David; Holmes, Andrea E.; Rouhier, Kerry

    2011-01-01

    This organic laboratory experiment introduces students to stereoselective enzyme reactions, resolution of enantiomers, and NMR analysis of diastereomers. The reaction between racemic 1-phenylethanol and vinyl acetate in hexane to form an ester is catalyzed by acylase I. The unreacted alcohol is then treated with a chiral acid and the resulting…

  18. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  19. Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests.

    PubMed

    Chen, Rui Rui; Dittert, Klaus

    2008-06-01

    Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.

  20. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    SciTech Connect

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashion would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.

  1. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGES

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  2. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  3. Importance of Nitrate Attenuation In A Small Wetland Following Forest Harvest: 18O/16O, 15N/14N in nitrate and 15N/14N) in vegetation

    NASA Astrophysics Data System (ADS)

    Spoelstra, J.; Schiff, S. L.; Semkin, R. G.; Jeffries, D. S.; Elgood, R. J.

    2004-05-01

    Forest harvest can result in elevated nitrate concentrations in streams and groundwater affecting forest regeneration and downstream aquatic ecosystems. Turkey Lakes Watershed, located near Sault Ste Marie, Ontario (TLW), exhibits relatively high nitrate export due to naturally high rates of nitrification. During a forest harvest experiment at the TLW, stable isotope techniques were used to investigate nitrate attenuation in an intermediate position natural wetland receiving high concentrations of nitrate following forest clear-cutting. Isotopic analysis of nitrate (18O/16O, 15N/14N) and vegetation (15N/14N) demonstrated that denitrification and plant uptake of nitrate resulted in significantly lower nitrate concentrations in wetland outflow compared to incoming stream water and groundwater. The 0.2-hectare forested swamp, too small to show up on standard topographic maps, retained 65 to 100 percent of upgradient nitrate inputs, elevated due to increased nitrification in soils. The 15N/14N enrichment factor associated with nitrate attenuation in wetland surface water was lower than observed during denitrification in groundwaters, suggesting that denitrification proceeded to completion in some areas of the wetland. Even small, shallow, carbon rich pockets of organic matter in topographic depressions can significantly affect biogeochemical fluxes of C, N, S and Ca. Future forest management practices designed to recognize and preserve small wetlands could significantly reduce the potentially detrimental effects of forest harvest on aquatic systems.

  4. Kinetic 15N-isotope effects on algal growth

    PubMed Central

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-01-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies. PMID:28281640

  5. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  6. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    PubMed

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-02

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.

  7. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is

  8. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.

  9. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  10. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  11. Quadrupolar solid-state NMR and repetitive experiments: Some aspects in the Liouville space. Application to spins I=1.

    PubMed

    Odin, Christophe

    2016-12-29

    The aim of this work is to generalize the Ernst-Anderson model developed to account of the steady-state regime of isolated spins I=1/2 subject to a train of strictly identical pulse sequences separated by free evolution periods of same duration. We generalize this model to the general case of spins I≥1 and general pulse sequence within the framework of the Liouville space. In particular, it is proved that under reasonable assumptions, a well defined steady-state regime is reached which is independent of the initial conditions. The general formal expressions obeyed by the steady-state density operator are given as a function of pulse propagators and relaxation operator for single and two-pulse sequences. In solid-state NMR where recycle time can be made, at the same time, much longer than typical coherence relaxation times and smaller than typical population relaxation times, further simplification leads to more tractable formula. As an example, the formalism is applied to I=1 spins with hard and soft single pulse sequence, or to the solid echo sequence. In particular, we were able to generalize the Ernst-Anderson formula to spins I=1. The pertinence of the theory is verified by comparing the theoretical and numerical simulations outputs to (2)H single crystal experiments performed on nonadecane/urea C19D40/urea-H4 compound.

  12. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  13. Analysis and optimization of saturation transfer difference NMR experiments designed to map early self-association events in amyloidogenic peptides.

    PubMed

    Huang, Hao; Milojevic, Julijana; Melacini, Giuseppe

    2008-05-08

    Saturation transfer difference (STD) methods recently have been proposed to be a promising tool for self-recognition mapping at residue and atomic resolution in amyloidogenic peptides. Despite the significant potential of the STD approach for systems undergoing oligomer/monomer (O/M) equilibria, a systematic analysis of the possible artifacts arising in this novel application of STD experiments is still lacking. Here, we have analyzed the STD method as applied to O/M peptides, and we have identified three major sources of possible biases: offset effects, intramonomer cross-relaxation, and partial spin-diffusion within the oligomers. For the purpose of quantitatively assessing these artifacts, we employed a comparative approach that relies on 1-D and 2-D STD data acquired at different saturation frequencies on samples with different peptide concentrations and filtration states. This artifact evaluation protocol was applied to the Abeta(12-28) model system, and all three types of artifacts appear to affect the measured STD spectra. In addition, we propose a method to minimize the biases introduced by these artifacts in the Halpha STD distributions used to obtain peptide self-recognition maps at residue resolution. This method relies on the averaging of STD data sets acquired at different saturation frequencies and provides results comparable to those independently obtained through other NMR pulse sequences that probe oligomerization, such as nonselective off-resonance relaxation experiments. The artifact evaluation protocol and the multiple frequencies averaging strategy proposed here are of general utility for the growing family of amyloidogenic peptides, as they provide a reliable analysis of STD spectra in terms of polypeptide self-recognition epitopes.

  14. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed.

  15. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  16. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  17. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    transferred to P. mariana roots (mean δ15N at 1 and 2 months of 15.26 × 3.30 and 16.19 × 1.21) more than shoots (mean δ15N at 1 and 2 months of 6.57 × 0.52 and 4.67×0.17) (initial δ15N values of roots and shoots of 2.16 × 0.37 and 5.54 × 0.35, respectively). Nitrogen also was transferred to V. oxycoccos roots (δ15N at 2 months of 21.46 × 3.61) more than shoots (δ15N 2 months of -2.17 × 0.23) (initial δ15N values of roots and shoots of -6.41 × 0.21 and -6.85 × 0.15, respectively). A two-way ANOVA and Tukey's HSD verified that both vascular plants' roots were significantly enriched with 15N (P. mariana roots; p < 0.0001, V. oxycoccus roots; p < 0.0001) after 1 month. These results indicate that bog vascular plants may derive considerable nitrogen from biological N2-fixation taking place in Sphagnum moss capitula. The experiment was subsequently repeated in-situ.

  18. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  19. In Vivo Fluxes in the Ammonium-Assimilatory Pathways in Corynebacterium glutamicum Studied by 15N Nuclear Magnetic Resonance

    PubMed Central

    Tesch, M.; de Graaf, A. A.; Sahm, H.

    1999-01-01

    Glutamate dehydrogenase (GDH) and glutamine synthetase (GS)–glutamine 2-oxoglutarate-aminotransferase (GOGAT) represent the two main pathways of ammonium assimilation in Corynebacterium glutamicum. In this study, the ammonium assimilating fluxes in vivo in the wild-type ATCC 13032 strain and its GDH mutant were quantitated in continuous cultures. To do this, the incorporation of 15N label from [15N]ammonium in glutamate and glutamine was monitored with a time resolution of about 10 min with in vivo 15N nuclear magnetic resonance (NMR) used in combination with a recently developed high-cell-density membrane-cyclone NMR bioreactor system. The data were used to tune a standard differential equation model of ammonium assimilation that comprised ammonia transmembrane diffusion, GDH, GS, GOGAT, and glutamine amidotransferases, as well as the anabolic incorporation of glutamate and glutamine into biomass. The results provided a detailed picture of the fluxes involved in ammonium assimilation in the two different C. glutamicum strains in vivo. In both strains, transmembrane equilibration of 100 mM [15N]ammonium took less than 2 min. In the wild type, an unexpectedly high fraction of 28% of the NH4+ was assimilated via the GS reaction in glutamine, while 72% were assimilated by the reversible GDH reaction via glutamate. GOGAT was inactive. The analysis identified glutamine as an important nitrogen donor in amidotransferase reactions. The experimentally determined amount of 28% of nitrogen assimilated via glutamine is close to a theoretical 21% calculated from the high peptidoglycan content of C. glutamicum. In the GDH mutant, glutamate was exclusively synthesized over the GS/GOGAT pathway. Its level was threefold reduced compared to the wild type. PMID:10049869

  20. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  1. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  2. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments.

    PubMed

    Blunder, Martina; Orthaber, Andreas; Bauer, Rudolf; Bucar, Franz; Kunert, Olaf

    2017-03-01

    We present a standardized, straightforward and efficient approach applicable in routine analysis of flavonoids combining sensitive NMR and HPLC experiments. The determination of the relative configuration of sugar moieties usually requires the acquisition of (13)C NMR shift values. We use a combination of HPLC and sensitive NMR experiments (1D-proton, 2D-HSQC) for the unique identification of known flavones, flavanones, flavonols and their glycosides. Owing to their broad range of polarity, we developed HPLC and UHPLC methods (H2O/MeOH/MeCN/HCOOH) which we applied and validated by analyzing 46 common flavones and flavanones and exemplified for four plant extracts. A searchable data base is provided with full data comprising complete proton and carbon resonance assignments, expansions of HSQC-spectra, HPLC parameters (retention time, relative retention factor), UV/Vis and mass spectral data of all compounds, which enables a rapid identification and routine analysis of flavones and flavanones from plant extracts and other products in nutrition and food chemistry.

  3. NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2004-01-01

    The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.

  4. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  5. [Platanus orientalis foliar N% and delta15 N responses to nitrogen of atmospheric wet deposition in urban area].

    PubMed

    Wang, Yan-Li; Xiao, Hua-Yun; Xiao, Hong-Wei

    2012-04-01

    Leaves of Platanus orientalis were collected since Mar. 2009 till Apr. 2010, in an urban area at Guiyang. After mass of experiments and analysis, we carried out constructing the temporal variation of foliar N% and delta15 N: both higher in Spring/Summer, lower in Autumn, no data of Winter because of leaf abscission. Results showed that foliar N% varied from 1.48% to 5.27%, with an annual average of 3.36%, while the average concentration of total N in rhizospheric soil was 0.29%. The foliar N% rose and fell relative to DIN in rainwater (range from 0.57 mg x L(-1) to 6.74 mg x L(-1)), indicating that the N% content in foliar tissue of plant was approximately proportional to atmospheric N inputs. The range of foliar delta15N were from 4.48 per thousand to 8.39 per thousand, with the average of 6.33 per thousand, much higher than the delta15N-NH4+ of rain water (-19.76 per thousand(-) -10.41 per thousand) and delta15TN of rhizospheric soil (3.19 per thousand +/- 1.04 per thousand). Besides, a good uniform correlation between foliar delta15N and delta15N-NH4+ of rain water were found. As synthesis of two main N sources, the more positive delta15N values of Platanus orientalis can be explained by isotopic fractionation during N uptake and basipetal translocation. These responses of both foliar N% and delta15N to atmospheric nitrogen deposition, revealed the potential value in using vascular leaves as bio-monitors for assessment of N deposition, furthermore, for prevention and control of air pollution in urban ecosystem.

  6. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  7. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  8. Rooting depth distribution and nitrogen acquisition using 15N tracer, Barrow, Alaska, 2013

    SciTech Connect

    Colleen Iversen

    2016-12-01

    Permafrost thaw and degradation may lead to altered thickness of the active soil layer and a changing distribution of plant-available nutrients throughout the soil, but little is known about the nutrient acquisition strategies of dominant tundra plant species. We conducted an 15N isotope tracer experiment to assess the vertical distribution of nutrient acquisition among three dominant species representing important plant functional types (PFTs) on the Barrow Environmental Observatory (BEO) in Barrow, Alaska. We found that vertical patterns of root distribution and nutrient acquisition varied among plant species, and that root density may not entirely explain patterns of nutrient acquisition for all species.

  9. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    systems with strong homonuclear dipolar couplings, such as uniformly-13C labeled biological solids. We demonstrate RNCSA NMR experiments and numerical simulations establishing the utility of this approach to the measurements of 13C and 15N CSA parameters in model compounds, [15N]-N-acetyl-valine (NAV), [U-13C, 15N]-alanine, [U-13C,15N]-histidine, and present the application of this approach to [U-13C/15N]-Tyr labeled C-terminal domain of HIV-1 CA protein.

  10. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  11. Fischer indolisation of N-(α-ketoacyl)anthranilic acids into 2-(indol-2-carboxamido)benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study.

    PubMed

    Proisl, Karel; Kafka, Stanislav; Urankar, Damijana; Gazvoda, Martin; Kimmel, Roman; Košmrlj, Janez

    2014-12-21

    N-(α-ketoacyl)anthranilic acids reacted with phenylhydrazinium chloride in boiling acetic acid to afford 2-(indol-2-carboxamido)benzoic acids in good to excellent yields and 2-indolyl-3,1-benzoxazin-4-ones as by-products. The formation of the latter products could easily be suppressed by a hydrolytic workup. Alternatively, by increasing the reaction temperature and/or time, 2-indolyl-3,1-benzoxazin-4-ones can be obtained exclusively. Optimisations of the reaction conditions as well as the scope and the course of the transformations were investigated. The products were characterized by (1)H, (13)C and (15)N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments ((1)H-(1)H gs-COSY, (1)H-(13)C gs-HSQC, (1)H-(13)C gs-HMBC) with (1)H-(15)N gs-HMBC as a practical tool to determine (15)N NMR chemical shifts at the natural abundance level of (15)N isotope.

  12. On the use of time-averaging restraints when deriving biomolecular structure from [Formula: see text]-coupling values obtained from NMR experiments.

    PubMed

    Smith, Lorna J; van Gunsteren, Wilfred F; Hansen, Niels

    2016-09-01

    Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]. Ways to properly handle these issues in structure refinement of biomolecules are discussed and illustrated using the protein hen egg white lysozyme as example.

  13. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    NASA Astrophysics Data System (ADS)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  14. delta15N and delta13C diet-tissue discrimination factors for large sharks under semi-controlled conditions.

    PubMed

    Hussey, Nigel E; Brush, Jaclyn; McCarthy, Ian D; Fisk, Aaron T

    2010-04-01

    Stable isotopes (delta(15)N and delta(13)C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors ((13)C and (15)N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated (15)N and (13)C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean+/-SD for (15)N and (13)C in lipid extracted muscle using lipid extracted prey data were 2.29 per thousand+/-0.22 and 0.90 per thousand+/-0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar (15)N and (13)C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of (15)N and (13)C in lipid extracted liver and prey were 1.50 per thousand+/-0.54 and 0.22 per thousand+/-1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage (15)N and (13)C values were 1.45 per thousand+/-0.61 and 3.75 per thousand+/-0.44, respectively. Organ (15)N and (13)C values were more variable among individual sharks but heart tissue was consistently enriched by approximately 1-2.5 per thousand. Minimal variability in muscle and liver delta(15)N and delta(13)C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our

  15. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  16. Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR

    PubMed Central

    Palmer, Melissa R.; Wenrich, Broc R.; Stahlfeld, Phillip

    2014-01-01

    Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20–40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling 1H,15N-HSQC experiments on natural abundance protein samples and 1H,13C-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data. PMID:24682944

  17. Ureide Assay for Measuring Nitrogen Fixation by Nodulated Soybean Calibrated by 15N Methods 1

    PubMed Central

    Herridge, David F.; Peoples, Mark B.

    1990-01-01

    We report experiments to quantify the relationships between the relative abundance of ureide-N in root-bleeding sap, vacuum-extracted sap, and hot water extracts of stems and petioles of nodulated soybean (Glycine max [L.] Merrill cv Bragg) and the proportion of plant N derived from nitrogen fixation. Additional experiments examined the effects of plant genotype and strain of rhizobia on these relationships. In each of the five experiments reported, plants of cv Bragg (experiment 1), cv Lincoln (experiments 3, 4, 5), or six cultivars/genotypes (experiment 2) were grown in a sand:vermiculite mixture in large pots in a naturally lit, temperature-controlled glasshouse during summer. Pots were inoculated at sowing with effective Bradyrhizobium japonicum CB1809 (USDA 136) or with one of 21 different strains of rhizobia. The proportions of plant N derived from nitrogen fixation were determined using 15N dilution. In one experiment with CB1809, plants were supplied throughout growth with either N-free nutrients or with nutrients supplemented with 1, 2, 4, or 8 millimolar 15N-nitrate and harvested on eight occasions between V6 and R7 for root-bleeding sap, vacuum-extracted sap, stems (including petioles), and whole plant dry matter. Analyses of the saps and stem extracts for ureides (allantoin plus allantoic acid), α-amino-N, and nitrate, and of dry matter for N and 15N, indicated a positive effect of nitrate supply on concentrations of nitrate in saps and extracts and a negative effect on ureides and on the proportion of plant N derived from nitrogen fixation. The relative abundance of ureide-N in root-bleeding sap, vacuum-extracted sap (100 [ureide-N]/[ureide-N+ α-amino-N + nitrate-N]) and stem extracts (100 [ureide-N]/[ureide-N + nitrate-N]) and the proportion of plant N, derived from nitrogen fixation between successive samplings were highly correlated (r = 0.97-1.00). For each variable, two standard curves were prepared to account for the shifts in the compositions

  18. Quantification of ammonia binding sites in Davison (Type 3A) zeolite desiccant : a solid-state Nitrogen-15 MAS NMR spectroscopy investigation.

    SciTech Connect

    Alam, Todd Michael; Holland, Gregory P.; Cherry, Brian Ray

    2004-01-01

    The quantitative analysis of ammonia binding sites in the Davison (Type 3A) zeolite desiccant using solid-state {sup 15}N MAS NMR spectroscopy is reported. By utilizing 15N enriched ammonia ({sup 15}NH{sub 3}) gas, the different adsorption/binding sites within the zeolite were investigated as a function of NH{sub 3} loading. Using {sup 15}N MAS NMR multiple sites were resolved that have distinct cross-polarization dynamics and chemical shift behavior. These differences in the {sup 15}N NMR were used to characterize the adsorption environments in both the pure 3A zeolite and the silicone-molded forms of the desiccant.

  19. Chimeric Avidin--NMR structure and dynamics of a 56 kDa homotetrameric thermostable protein.

    PubMed

    Tossavainen, Helena; Kukkurainen, Sampo; Määttä, Juha A E; Kähkönen, Niklas; Pihlajamaa, Tero; Hytönen, Vesa P; Kulomaa, Markku S; Permi, Perttu

    2014-01-01

    Chimeric avidin (ChiAVD) is a product of rational protein engineering remarkably resistant to heat and harsh conditions. In quest of the fundamentals behind factors affecting stability we have elucidated the solution NMR spectroscopic structure of the biotin-bound form of ChiAVD and characterized the protein dynamics through 15N relaxation and hydrogen/deuterium (H/D) exchange of this and the biotin-free form. To surmount the challenges arising from the very large size of the protein for NMR spectroscopy, we took advantage of its high thermostability. Conventional triple resonance experiments for fully protonated proteins combined with methyl-detection optimized experiments acquired at 58°C were adequate for the structure determination of this 56 kDa protein. The model-free parameters derived from the 15N relaxation data reveal a remarkably rigid protein at 58°C in both the biotin-bound and the free forms. The H/D exchange experiments indicate a notable increase in hydrogen protection upon biotin binding.

  20. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  1. [Dynamics of 15N-isobutylidene diurea (IBDU) in sheep. 1. IBDU conversion in the digestive tract].

    PubMed

    Görsch, R; Bergner, H; Adam, K

    1978-07-01

    Four Merino Landrace wethers averaging 47.6 kg body weight were adapted to a semi-synthetic diet containing as the only N-source 60 g of IBDU per day. After the adaptation phase, on the 1 st experimental day the IBDU of the morning feed was given in 15N-labelled form (701 mg 15N-excess). After 2 1/2, 7 1/4, 12 and 24 hours the experimental animals were killed without having been fed again. The comparison of the IBDU-concentrations in the content of the rumen bottom with the residual rumen content did not allow to draw conclusions regarding IBDU-sedimentation at the bottom of the rumen. For the 15N-decline in the rumen content, a relationship was established following y = 76.3 - 2.62 (r = 0.96) (see fig. 2). In the order of killing times the following 15N-IBDU amounts were retrieved (% of intake): I = 15.6%, II = 24.1%, III = 3.3% and IV = 3.6%. 7 1/4 hours after starting the experiment, 40% of the 15N-labelled material were found in the rumen in the form IBDU; after 12 hours it came to 10%. Except for sheep I, 15N-urea was not found but in small amounts. Only sheep I and III revealed IBDU-traces in the abomasum, but in the small intestine of all sheep 2 to 6% of the amount taken in. This fact is explained with the endogenous influx of IBDU from the blood. An additional experimental sheep provided with a ligature at the abomasum entry, revealed that IBDU is absorbed from the rumen and allowed to enter the individual segments of the intestine in small amounts.

  2. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  3. Tracking the flow of bacterially derived 13C and 15N through soil faunal feeding channels.

    PubMed

    Crotty, F V; Blackshaw, R P; Murray, P J

    2011-06-15

    The soil food web has been referred to as a 'black box', a 'poor man's tropical rainforest' and an 'enigma', due to its opacity, diversity and the limited insight into feeding specificity. Here we investigate the flow of C and N through the soil food web as a way to gain understanding of the feeding interactions occurring. A bacterium, Pseudomonas lurida, was introduced to soil cores from two different habitats, a grassland and a woodland with the same soil type, enriched to 99 atom% in (13)C and (15)N, to trace the flow of bacterial C and N through the soil food web. Throughout the experiment the soil remained enriched in (13)C and (15)N. Almost all the invertebrates tested gained C and N enrichment indicative of the labelled bacteria, implying that bacterial feeding is a common mechanism within the soil. Only three groups were significantly enriched in both (13)C and (15)N in both habitats. These were Collembola (Entomobryomorpha), Acari (Oribatida), and Nematoda, indicating that these organisms are consuming the most bacteria within both systems. When the invertebrates were grouped into hypothesised trophic levels, those considered secondary decomposers were gaining the most enrichment across all invertebrates tested. This enrichment was also high in the micro-predators within the soil, implying that their main food source was the secondary decomposers, particularly the Collembola. Using an enriched bacterium to track the trophic transfer between organisms within the soil food web is a novel way of empirically showing that interactions are occurring, which normally cannot be seen.

  4. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  5. Understanding Structure-Property Correlation in Monocationic and Dicationic Ionic Liquids through Combined Fluorescence and Pulsed-Field Gradient (PFG) and Relaxation NMR Experiments.

    PubMed

    Kumar Sahu, Prabhat; Ghosh, Arindam; Sarkar, Moloy

    2015-11-05

    Steady state, time-resolved fluorescence and NMR experiments are carried out to gain deeper insights into the structure-property correlation in structurally similar monocationic and dicationic room-temperature ionic liquids (RTILs). The excitation wavelength dependent fluorescence response of fluorophore in 1-methy-3-propyllimidazolium bis(trifluoromethylsulfonyl)amide [C3MIm][NTf2] is found to be different from that of 1,6-bis(3-methylimidazolium-1-yl)hexane bis(trifluoromethylsulfonyl)amide [C6(MIm)2][NTf2]2 and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [C6MIm][NTf2]. The outcomes of the present solvent dynamics study in [C3MIm][NTf2] when compared with those in [C6(MIm)2][NTf2]2 and in [C6MIm][NTf2] from our previous studies (Phys. Chem. Chem. Phys. 2014, 16, 12918-12928) indicate the involvement of dipolar rotation of imidazolium cation during solvation. To correlate the findings of solvation dynamics study with the dipolar rotation of the imidazolium ring, pulsed-field gradient (PFG)-NMR technique for translational diffusion coefficient measurement and (1)H as well as (19)F spin-lattice relaxation measurements are employed. NMR investigation reveals that an ultrafast component of solvation can be related to the dipolar rotation of imidazolium cation; hence, the role of dipolar rotation of cations in governing the dynamics of solvation in ILs cannot be ignored. Analysis of the rotational relaxation dynamics data by the Stokes-Einstein-Debye hydrodynamic theory unveils distinctive features of solute-solvent interaction in [C3MIm][NTf2] and [C6(MIm)2][NTf2]2.

  6. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    before the isotopic label was introduced and weekly thereafter. In May 2012, the upland garden captured 6.2 grams of TN from the added stormwater (55% of TN added), and the wetland garden captured 7.1 grams of TN from the added stormwater (67% of TN added). Within two weeks of adding the label, the 15N ratio increased 500‰ to 3,000‰ in all plant tissues tested in both systems. The results of the isotopic labeling experiment support the hypothesis that the plants used in both vegetated bioretention systems directly contribute to stormwater N treatment through N assimilation.

  7. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  8. Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments

    PubMed Central

    2015-01-01

    Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton–proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated 3J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental 3J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2′ hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6′ atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. PMID:24552401

  9. Distribution of 15N Among Plant Parts of Nodulating and Nonnodulating Isolines of Soybeans 1

    PubMed Central

    Shearer, Georgia; Kohl, Daniel H.; Harper, James E.

    1980-01-01

    Differences among plant parts in the natural abundance of 15N are of interest from the point of view of developing a sampling strategy for using 15N measurements to estimate the contribution of symbiotically fixed N to N2 fixing plants, and because they reflect isotopic fractionation associated with degradation, transport, and resynthesis of N-bearing molecules. This paper reports such differences in nodulating and nonnodulating isolines of soybeans (Glycine max [L] (Merrill, variety Harosoy)) grown under several different conditions. Nodules were strikingly enriched in 15N compared to other plant parts (by an average of 8.3‰ excess 15N), and the enrichment increased with time during the growing season. 15N was much more uniformly distributed among other plant parts. Although there were significant differences among other plant parts, the maximum deviation of the 15N abundance of any plant part from that of the entire plant was about 2‰ 15N excess. The 15N abundance of the seed N was most representative of the whole plant. There were significant differences between isolines in the distribution of 15N. The distribution of 15N within plants also varied with experimental conditions. The implications of these results for estimation of N2 fixation from measurements of the natural abundance of 15N are discussed. PMID:16661393

  10. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  11. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  12. Development and application of 15N-tracer substances for measuring the whole-body protein turnover rates in the human, especially in neonates: a review.

    PubMed

    Wutzke, Klaus D

    2012-06-01

    Our research group of the Children's Hospital of the University of Rostock (Rostock group) has long-time experience in (15)N-labelling and in using yeast protein and its hydrolysates for tracer kinetic studies to evaluate parameters of the whole-body protein metabolism in premature infants. The particular advantage of applying an economically convenient, highly (15)N-enriched, and completely labelled yeast protein for evaluating protein turnover rates is the fact that the (15)N dose is spread among all proteinogenic amino acids. The absorption has been improved by hydrolysing [(15)N]yeast protein with thermitase into a mixture of amino acids, dipeptides and tripeptides so that faecal analysis becomes unnecessary when determining turnover rates. The review shows that, in contrast to the application of single (15)N-labelled amino acids with resulting overestimation of protein turnover rates, the (15)N-labelled yeast protein thermitase hydrolysate represents the amino acid metabolism more closely without causing amino acid imbalances. The (15)N-labelled yeast protein thermitase hydrolysate leads to the estimation of reliable protein turnover rates, particularly in premature infants.

  13. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  14. Contrasting food web linkages for the grazing pathway in 3 temperate forested streams using {sup 15}N as a tracer

    SciTech Connect

    Tank, J.L.; Mulholland, P.J.; Meyer, J.L.; Bowden, W.B.; Webster, J.R.; Peterson, B.J.

    1998-11-01

    Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen. The authors are learning more about the fate of inorganic nitrogen entering streams through {sup 15}N tracer additions. The Lotic Intersite Nitrogen Experiment (LINX) is studying the uptake, cycling, and fate of {sup 15}N-NH{sub 4} in the stream food web of 10 streams draining different biomes. Using the {sup 15}N tracer method and data from 3 sites in the study, the authors can differentiate patterns in the cycling of nitrogen through the grazing pathway (N from the epilithon to grazing macroinvertebrates) for 3 temperate forested streams. Here, they quantify the relationship between the dominant grazer and its proposed food resource, the epilithon, by comparing {sup 15}N levels of grazers with those of the epilithon, as well as the biomass, nitrogen content, and chlorophyll a standing stocks of the epilithon in 3 streams.

  15. The influence of fish cage culture on δ13C and δ15N of filter-feeding Bivalvia (Mollusca).

    PubMed

    Benedito, E; Figueroa, L; Takeda, A M; Manetta, G I

    2013-11-01

    The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.

  16. Estimation of nitric oxide synthase activity via LC-MS/MS determination of 15N3-citrulline in biological samples

    PubMed Central

    Shin, Beom Soo; Fung, Ho-Leung; Upadhyay, Mahesh; Shin, Soyoung

    2015-01-01

    Rationale We showed that the metabolite peaks of 15N3-citrulline (15N3-CIT) and 15N3-arginine (15N3-ARG) could be detected when 15N4-ARG was metabolized by nitric oxide synthase (NOS) in endothelial cells. The usefulness of these metabolites as potential surrogate indices of nitric oxide (NO) generation is evaluated. Methods A hydrophilic-interaction liquid chromatography electrospray tandem mass spectrometric assay (LC-MS/MS) was utilized for the simultaneous analysis of 15N4-ARG, ARG, CIT, 15N3-CIT and 15N3-ARG. 15N3-CIT and 15N3-ARG from impurities of 15N4-ARG were determined and corrected for the calculation of their concentration. 15N4-ARG-derived NO, i.e., 15NO formation was determined by analyzing 15N-nitrite accumulation by another LC-MS/MS assay. Results After EA.hy926 human endothelial cells were challenged with 15N4-ARG for 2 hours, the peak intensities of 15N3-CIT and 15N3-ARG significantly increased with 15N4-ARG concentration and positively correlated with 15N-nitrite production. The estimated Km values were independent of the metabolite (i.e., 15N3-CIT, 15N3-CIT+15N3-ARG or 15N-nitrite) used for calculation. However, after correction for its presence as a chemical contaminant of 15N4-ARG, 15N3-ARG was only a marginal contributor for the estimation of NOS activity. Conclusions These data suggest that the formation of 15N3-CIT can be used as an indicator of NOS activity when 15N4-ARG is used as a substrate. This approach may be superior to the radioactive 14C-CIT method which can be contaminated by 14C-urea, and to the 14N-nitrite method which lacks sensitivity. PMID:26349467

  17. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  18. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  19. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  20. (1)H, (13)C, and (15)N resonance assignments for the pro-inflammatory cytokine interleukin-36α.

    PubMed

    Goradia, Nishit; Wißbrock, Amelie; Wiedemann, Christoph; Bordusa, Frank; Ramachandran, Ramadurai; Imhof, Diana; Ohlenschläger, Oliver

    2016-10-01

    Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the (1)H, (13)C, and (15)N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.

  1. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    NASA Astrophysics Data System (ADS)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  2. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  3. sup 13 C and sup 15 N nuclear magnetic resonance evidence of the ionization state of substrates bound to bovine dihydrofolate reductase

    SciTech Connect

    Selinsky, B.S.; Perlman, M.E.; London, R.E. ); Unkefer, C.J. ); Mitchell, J. ); Blakley, R.L. Univ. of Tennessee, Memphis )

    1990-02-06

    The state of protonation of substrates bound to mammalian dihydrofolate reductase (DHFR) has significance for the mechanism of catalysis. To investigate this, dihydrofolate and dihydropteroylpentaglutamate have been synthesized with {sup 15}N enrichment at N-5. {sup 15}N NMR studies have been performed on the binary complexes formed by bovine DHFR with these compounds and with (5-{sup 15}N)dihydrobiopterin. The results indicate that there is no protonation at N-5 in the binary complexes, and this was confirmed by {sup 13}C NMR studies with folate and dihydrofolate synthesized with {sup 13}C enrichment at C-6. The chemical shift displacements produced by complex formation are in the same direction as those which result from deprotonation of the N-3/C-4-O amide group and are consistent with at least partial loss of the proton from N-3. This would be possible if, as crystallographic data indicate, there is interaction of N-3 and the 2-amino group of the bound ligands with the carboxylate of the active site glutamate residue (Glu{sup 30}).

  4. ENDOR and ESEEM of the 15N labelled radical cations of chlorophyll a and the primary donor P 700 in photosystem I

    NASA Astrophysics Data System (ADS)

    Käβ, H.; Bittersmann-Weidlich, E.; Andréasson, L.-E.; Bönigk, B.; Lubitz, W.

    1995-05-01

    The hyperfine couplings of the nitrogen nuclei in the radical cations of both 15N-labelled chlorophyll a and the primary donor P 700 in Photosystem I of Synechococcus elongatus and spinach ( Spinacea oleracea) in frozen solutions were investigated by ENDOR and, for confirmation, by two-dimensional ESEEM techniques. In addition, 1H ENDOR experiments were performed on these compounds. The experimental 15N hyperfine couplings of the chlorophyll a radical cation are compared with theoretical ones obtained by RHF-INDO/SP calculations and with the respective hyperfine couplings in the closely related 15N-bacteriochlorophyll a radical cation. Based on the observed 15N and 1H hyperfine couplings two possible models are discussed for P 700+: (a) the special pair model with a strongly asymmetric spin density distribution over the dimer halves; (b) the model of a strongly perturbed chlorophyll a monomer.

  5. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    NASA Astrophysics Data System (ADS)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  6. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  7. [15N-flow after in sacco incubation and feeding of sheep and goats with untreated wheat straw or straw treated with 15N horse urine].

    PubMed

    Schubert, R; Flachowsky, G; Bochröder, B

    1994-01-01

    Chopped wheat straw was homogeneously mixed with urine of horses (5.75 gN per 1, 16.88 atom-% 15N-excess) and airtightly stored in plastic containers for 6 months. Three rumen fistulated sheep and goats each were fed with untreated or urine treated straw. Concentrate was added to straw. Untreated and urine treated straw were given in nylon bags and incubated in the rumen of sheep and goats for 1, 3, 6, 12, 24, 48 and 72 hours. A three compartment exponential function was used to fit the measurements of 15N-excess and 15N-amount of bag content. The curves and the calculated partial Y-values of the three compartments show the inflow and outflow of 15N into or from the bags and allow conclusions about the binding of urine N. Most N of urine was not compactly bound by straw during storage. Primarily microbial N was attached to the straw in the rumen. About 6% of urine N were bound more compact to the straw. Similar curves were calculated for 15N-excess and 15N-amount of nylon bags. The curves allow conclusions about tracer flows without quantitative knowledge. There were no significant differences between animal species.

  8. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both (13)C and (15)N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  9. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  10. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  11. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  12. Nutrient Status and δ15N Values in Leaves and Soils: A Cross-Biome Comparison

    NASA Astrophysics Data System (ADS)

    Mayor, J. R.; Schuur, E. A.; Turner, B. L.; Wright, S. J.

    2011-12-01

    Stable nitrogen (N) isotope ratios (δ15N) are often assumed to provide an integrated measure of multiple nitrogen cycling processes. For instance, shifts in the bioavailability of soil N forms are thought to alter plant δ15N values. Demonstrating this relationship is important as ecosystems undergo anthropogenic disturbances. We evaluated patterns and implied mechanisms of the N cycle using ecosystem δ15N values from 16 plots in boreal black spruce (Picea mariana) forest and lowland wet tropical forest. Fertilizer N and phosphorus (P) was applied annually for five and 11 years prior to measurement of ecosystem δ15N values. Full sun canopy foliage and soil extractable nitrate, ammonium, and dissolved organic N (DON) were sampled in fertilized and control plots and analyzed for δ15N. In boreal forest, N fertilization reduced DON concentrations and caused a depletion of δ15N in foliage and fungal sporocarps. Of four species occurring in all plots in the tropical forest, one (Alseis blackiana) had increased foliar δ15N values following N fertilization, one (Tetragastris panamensis) had increased foliar δ15N values following P fertilization, and one (Oenocarpus mapora) had increased foliar δ15N following N+P fertilization. Surprisingly, soil nitrate in the boreal forest became substantially 15N-enriched under P fertilization, whereas nitrate in the tropical forest soil was enriched only under N or N+P fertilization. Collectively, nitrate enrichment is likely due to enhanced rates of soil denitrification as evidenced by elevated resin extractable soil nitrate concentrations and close correlations between δ15N and δ18O values. On average, foliar δ15N in tropical trees corresponded well with δ15N in soil nitrate in control and P fertilized plots, but was 2-3% more enriched than DON under N and N+P fertilization. In boreal forests, N and N+P fertilization increased foliar N concentration and δ15N values indicating substantial use of applied fertilizer. Taken

  13. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  14. NMR assignment method for amide signals with cell-free protein synthesis system.

    PubMed

    Kohno, Toshiyuki

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used to determine the three-dimensional structures of proteins, to estimate protein folding, and to discover high-affinity ligands for proteins. However, one of the problems to apply such NMR methods to proteins is that we should obtain mg quantities of (15)N and/or (13)C labeled pure proteins of interest. Here, we describe the method to produce dual amino acid-selective (13)C-(15)N labeled proteins for NMR study using the improved wheat germ cell-free system, which enables sequence-specific assignments of amide signals simply even for very large protein.

  15. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic

  16. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  17. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  18. Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H-H and N-H Proximities in Solids.

    PubMed

    Reddy, G N Manjunatha; Malon, Michal; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2016-12-06

    A fast magic-angle spinning (MAS, 70 kHz) solid-state NMR experiment is presented that combines (1)H Double-Quantum (DQ) and (14)N-(1)H HMQC (Heteronuclear Multiple-Quantum Coherence) pulse-sequence elements, so as to simultaneously probe H-H and N-H proximities in molecular solids. The proposed experiment can be employed in both two-dimensional (2D) and three-dimensional (3D) versions: first, a 2D (14)N HMQC-filtered (1)H-DQ experiment provides specific DQ-SQ correlation peaks for proton pairs that are in close proximities to the nitrogen sites, thereby achieving spectral filtration. Second, a proton-detected three-dimensional (3D) (1)H(DQ)-(14)N(SQ)-(1)H(SQ) experiment correlates (1)H(DQ)-(1)H(SQ) chemical shifts with (14)N shifts such that longer range N···H-H correlations are observed between protons and nitrogen atoms with internuclear NH distances exceeding 3 Å. Both 2D and 3D versions of the proposed experiment are demonstrated for an amino acid hydrochloride salt, l-histidine·HCl·H2O, and a DNA nucleoside, guanosine·2H2O. In the latter case, the achieved spectral filtration ensures that DQ cross peaks are only observed for guanine NH and CH8 (1)H resonances and not ribose and water (1)H resonances, thus providing insight into the changes in the solid-state structure of this hydrate that occur over time; significant changes are observed in the NH and NH2(1)H chemical shifts as compared to the freshly recrystallized sample previously studied by Reddy et al., Cryst. Growth Des. 2015, 15, 5945.

  19. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  1. δ 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...

  2. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    SciTech Connect

    Hou, Guangjin E-mail: tpolenov@udel.edu; Lu, Xingyu E-mail: lexvega@comcast.net; Vega, Alexander J. E-mail: lexvega@comcast.net; Polenova, Tatyana E-mail: tpolenov@udel.edu

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  3. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.

    PubMed

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J; Polenova, Tatyana

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X = (13)C, (15)N, (31)P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the (1)H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the (1)H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from (1)H chemical shift anisotropy, while keeping the (1)H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [(15)N]-N-acetyl-valine and [U-(13)C,(15)N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate (1)H-(15)N dipolar couplings in the context of 3D experiments is presented on U-(13)C,(15)N-enriched dynein light chain protein LC8.

  4. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins.

    PubMed

    Ward, Meaghan E; Ritz, Emily; Ahmed, Mumdooh A M; Bamm, Vladimir V; Harauz, George; Brown, Leonid S; Ladizhansky, Vladimir

    2015-12-01

    Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.

  5. Preparation and characterization of 15N-enriched, size-defined heparan sulfate precursor oligosaccharides

    PubMed Central

    Sigulinsky, Crystal; Babu, Ponnusamy; Victor, Xylophone V.; Kuberan, Balagurunathan

    2009-01-01

    We report the preparation of size-defined [15N]N-acetylheparosan oligosaccharides from Escherichia coli-derived 15N-enriched N-acetylheparosan. Optimized growth conditions of E. coli in minimal media containing 15NH4Cl yielded [15N]N-acetylheparosan on a preparative scale. Depolymerization of [15N]N-acetylheparosan by heparitinase I yielded resolvable, even-numbered oligosaccharides ranging from disaccharide to icosaccharide. Anion-exchange chromatography-assisted fractionation afforded size-defined [15N]N-acetylheparosan oligosaccharides identifiable by ESI-TOFMS. These isotopically labeled oligosaccharides will prove to be valuable research tools for the chemoenzymatic synthesis of heparin and heparan sulfate oligosaccharides and for the study of their structural biology. PMID:19945695

  6. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  7. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    USGS Publications Warehouse

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  8. The effect of manuring on cereal and pulse amino acid δ(15)N values.

    PubMed

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-06-01

    Amino acid δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown in manured and unmanured soil at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. Manuring was found to result in a consistent (15)N-enrichment of cereal grain amino acid δ(15)N values, indicating that manuring did not affect the metabolic routing of nitrogen (N) into cereal grain amino acids. The increase in cereal grain δ(15)N values with manuring is therefore due to a (15)N-enrichment in the δ(15)N value of assimilated inorganic-N. Greater variation was observed in the (15)N-enrichment of rachis amino acids with manuring, possibly due to enhanced sensitivity to changes in growing conditions and higher turnover of N in rachis cells compared to cereal grains. Total amino acid δ(15)N values of manured and unmanured broad beans and peas were very similar, indicating that the legumes assimilated N2 from the atmosphere rather than N from the soil, since there was no evidence for routing of (15)N-enriched manure N into any of the pulse amino acids. Crop amino acid δ(15)N values thus provide insights into the sources of N assimilated by non N2-fixing and N2-fixing crops grown on manured and unmanured soils, and reveal an effect of manure on N metabolism in different crop species and plant parts.

  9. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  10. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    NASA Astrophysics Data System (ADS)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  11. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  12. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  13. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  14. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  15. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  16. Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment.

    PubMed

    Pons, Thijs L; Perreijn, Kristel; van Kessel, Chris; Werger, Marinus J A

    2007-01-01

    * Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.

  17. [Absorption and distribution of nitrogen from 15N labelled urea applied at core-hardening stage in winter jujube].

    PubMed

    Zhao, Dengchao; Jiang, Yuanmao; Peng, Futian; Zhang, Jin; Zhang, Xu; Ju, Xiaotang; Zhang, Fusuo

    2006-01-01

    The study with pot experiment showed that at the rapid-swelling stage of winter jujube fruit, the percent of nitrogen derived from fertilizer (Ndff%) was the highest (10.64%) in fine roots, followed by new-growth nutritive organs. The absorbed urea-15N decreased in leaves and deciduous supers, and accumulated preferentially in root systems after harvest. The Ndff% in coarse roots was the highest (3.69%) before budding stage, while that in new-growth organs (new branches, deciduous supers, leaves and flowers) was the highest at full-blooming stage. The urea-15N applied at core-hardening stage mainly allocated in nutritive organs (leaves, deciduous supers, roots) in the first year, with the distribution rate 54.01% in root systems in winter, which was higher than that in branches (45.99%). The 15N stored in main branches changed drastically from post-harvest to budding stage. Main branches could be regarded as the 'target organs' of N storage, while coarse roots were the 'long-term sink' of N storage. The N reserve distributed preferentially in contiguity organs, and the distribution center changed with the growth and development of winter jujube in next spring.

  18. Bioconcentration of (15)N-tamoxifen at environmental concentration in liver, gonad and muscle of Danio rerio.

    PubMed

    Orias, Frédéric; Simon, Laurent; Mialdea, Gladys; Clair, Angéline; Brosselin, Vanessa; Perrodin, Yves

    2015-10-01

    Pharmaceutical compounds (PCs) are ubiquitous in aquatic ecosystems. In addition to the direct ecotoxicological risk presented by certain PCs, others can accumulate inside organisms and along trophic webs, subsequently contaminating whole ecosystems. We studied the bioconcentration of a bioaccumulative PC already found several times in the environment: tamoxifen. To this end, we exposed Danio rerio for 21d to (15)N-tamoxifen concentrations ranging from 0.1 to 10µg/L and used an analytic method based on stable isotopes to evaluate the tamoxifen content in these organisms. The evolution of the (15)N/(14)N ratio was thus measured in liver, muscle and gonads of exposed fish compared to control fish. We succeeded in quantifying (15)N-tamoxifen bioconcentrations at all the exposure concentrations tested. The highest bioconcentration factors of tamoxifen measured were 14,920 in muscle, 73,800 in liver and 85,600 in gonads of fish after 21d exposure at a nominal concentration of 10µg/L. However, these bioconcentration factors have to be considered as maximal values (BCFMAX). Indeed, despite its proven stability, tamoxifen can be potentially partially degraded during experiments. We now need to refine these results by using a direct analytic method (i.e. LC-MS/MS).

  19. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  20. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    SciTech Connect

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast cancer vaccine design.

  1. 15N natural abundance during early and late succession in a middle-European dry acidic grassland.

    PubMed

    Beyschlag, W; Hanisch, S; Friedrich, S; Jentsch, A; Werner, C

    2009-09-01

    delta(15)N and total nitrogen content of above- and belowground tissues of 13 plant species from two successional stages (open pioneer community and ruderal grass stage) of a dry acidic grassland in Southern Germany were analysed, in order to evaluate whether resource use partitioning by niche separation and N input by N(2)-fixing legumes are potential determinants for species coexistence and successional changes. Within each stage, plants from plots with different legume cover were compared. Soil inorganic N content, total plant biomass and delta(15)N values of bulk plant material were significantly lower in the pioneer stage than in the ruderal grass community. The observed delta(15)N differences were rather species- than site-specific. Within both stages, there were also species-specific differences in isotopic composition between above- and belowground plant dry matter. Species-specific delta(15)N signatures may theoretically be explained by (i) isotopic fractionation during microbial-mediated soil N transformations; (ii) isotopic fractionation during plant N uptake or fractionation during plant-mycorrhiza transfer processes; (iii) differences in metabolic pathways and isotopic fractionation within the plant; or (iv) partitioning of available N resources (or pools) among plant groups or differential use of the same resources by different species, which seems to be the most probable route in the present case. A significant influence of N(2)-fixing legumes on the N balance of the surrounding plant community was not detectable. This was confirmed by the results of an independent in situ removal experiment, showing that after 3 years there were no measurable differences in the frequency distribution between plots with and without N(2)-fixing legumes.

  2. Nitrogen Fractionation in Protoplanetary Disks from the H13CN/HC15N Ratio

    NASA Astrophysics Data System (ADS)

    Guzmán, V. V.; Öberg, K. I.; Huang, J.; Loomis, R.; Qi, C.

    2017-02-01

    Nitrogen fractionation is commonly used to assess the thermal history of solar system volatiles. With ALMA it is for the first time possible to directly measure {}14{{N}}/{}15{{N}} ratios in common molecules during the assembly of planetary systems. We present ALMA observations of the {{{H}}}13{CN} and {{HC}}15{{N}} J=3-2 lines at 0.″5 angular resolution, toward a sample of six protoplanetary disks, selected to span a range of stellar and disk structure properties. Adopting a typical {}12{{C}}/{}13{{C}} ratio of 70, we find comet-like {}14{{N}}/{}15{{N}} ratios of 80–160 in five of the disks (3 T Tauri and 2 Herbig Ae disks) and lack constraints for one of the T Tauri disks (IM Lup). There are no systematic differences between T Tauri and Herbig Ae disks, or between full and transition disks within the sample. In addition, no correlation is observed between disk-averaged D/H and {}14{{N}}/{}15{{N}} ratios in the sample. One of the disks, V4046 Sgr, presents unusually bright HCN isotopologue emission, enabling us to model the radial profiles of {{{H}}}13{CN} and {{HC}}15{{N}}. We find tentative evidence of an increasing {}14{{N}}/{}15{{N}} ratio with radius, indicating that selective photodissociation in the inner disk is important in setting the {}14{{N}}/{}15{{N}} ratio during planet formation.

  3. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.

  4. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. ); Lodwig, S.N. . Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  5. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    PubMed

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose.

  6. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.

    PubMed

    Ba, Yong; Mao, Yougang; Galdino, Luiz; Günsen, Zorigoo

    2013-01-01

    The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  8. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  9. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  10. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  11. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  12. Protein NMR Studies of substrate binding to human blood group A and B glycosyltransferases.

    PubMed

    Peters, Thomas; Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica

    2017-03-03

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies have shown these enzymes to adopt an open conformation in the absence of substrates. Binding of either the donor substrate UDP-Gal, or of UDP induces a semi-closed conformation. In the presence of both, donor- and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical shift titrations of uniformly 2H,15N labeled GTA or GTB with UDP affected about 20% of all cross peaks in 1H,15N-TROSY-HSQC spectra reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical shift perturbation experiments using 1-13C-methyl Ile labeled samples revealed two Ile residues, Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY based relaxation dispersion experiments do not reveal s to ms time scale motions. Although this study reveals substantial conformational plasticity of GTA and GTB it remains enigmatic how binding of substrates shifts the enzymes into catalytically competent states.

  13. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  14. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  15. (1)H, (13)C and (15)N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa.

    PubMed

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-10-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the (1)H, (13)C and (15)N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. This is further supported by (15)N-{(1)H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif.

  16. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  17. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi; Hadipour, Nasser L

    2007-06-01

    A computational investigation was carried out to characterize the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen. We found that N-H...O and O-H...O hydrogen bonds around the acetaminophen molecule in the crystal lattice have different influences on the calculated (17)O, (15)N and (13)C chemical shielding eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the B3LYP method and 6-311++G(d, p) and 6-311+G(d) standard basis sets using the Gaussian 98 suite of programs. Calculated chemical shielding tensors were used to evaluate the (17)O, (15)N, and (13)C NMR chemical shift tensors in crystalline acetaminophen, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the chemical shielding tensors of each nucleus. The computed (17)O chemical shielding tensor on O(1), which is involved in two intermolecular hydrogen bonds, shows remarkable sensitivity toward the choice of the cluster model, whereas the (17)O chemical shielding tensor on O(2) involved in one N-H...O hydrogen bond, shows smaller improvement toward the hydrogen-bonding interactions. Also, a reasonably good agreement between the experimentally obtained solid-state (15)N and (13)C NMR chemical shifts and B3LYP/6-311++G(d, p) calculations is achievable only in molecular cluster model where a complete hydrogen-bonding network is considered. Moreover, at the B3LYP/6-311++G(d, p) level of theory, the calculated (17)O, (15)N and (13)C chemical shielding tensor orientations are able to reproduce the experimental values to a reasonably good degree of accuracy.

  18. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  19. Angular distributions for /sup 16/O(/gamma/,p)/sup 15/N at intermediate energies

    SciTech Connect

    Adams, G.S.; Kinney, E.R.; Matthews, J.L.; Sapp, W.W.; Soos, T.; Owens, R.O.; Turley, R.S.; Pignault, G.

    1988-12-01

    The photoproton knockout reaction on /sup 16/O leaving /sup 15/N in low-lying bound states has been observed over the photon energy range from 196 to 361 MeV. The angular distribution for the reaction populating the ground state of /sup 15/N develops sharp structure as the photon energy is increased but that for population of the excited states is smooth. The results are not explained by existing theoretical models.

  20. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  1. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.

  2. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  3. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  4. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  5. Direct observation of minimum-sized amyloid fibrils using solution NMR spectroscopy

    PubMed Central

    Yoshimura, Yuichi; Sakurai, Kazumasa; Lee, Young-Ho; Ikegami, Takahisa; Chatani, Eri; Naiki, Hironobu; Goto, Yuji

    2010-01-01

    It is challenging to investigate the structure and dynamics of amyloid fibrils at the residue and atomic resolution because of their high molecular weight and heterogeneous properties. Here, we used solution nuclear magnetic resonance (NMR) spectroscopy to characterize the conformation and flexibility of amyloid fibrils of β2-microglobulin (β2m), for which direct observation of solution NMR could not be made. Ultrasonication led to fragmentation producing a solution of minimum-sized fibrils with a molecular weight of around 6 MDa. In 1H-15N heteronuclear single-quantum correlation measurements, five signals, derived from N-terminal residues (i.e., Ile1, Gln2, Arg3, Thr4, and Lys6), were newly detected. Signal strength decreased with the distance from the N-terminal end. Capping experiments with the unlabeled β2m monomer indicated that the signals originated from molecules located inside the fibrils. Ultrasonication makes the residues with moderate flexibility observable by reducing size of the fibrils. Thus, solution NMR measurements of ultrasonicated fibrils will be promising for studying the structure and dynamics of fibrils. PMID:20936689

  6. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: Aromatic substituents

    NASA Astrophysics Data System (ADS)

    Dürr, Ulrich H. N.; Grage, Stephan L.; Witter, Raiker; Ulrich, Anne S.

    2008-03-01

    Structural parameters of peptides and proteins in biomembranes can be directly measured by solid state NMR of selectively labeled amino acids. The 19F nucleus is a promising label to overcome the low sensitivity of 2H, 13C or 15N, and to serve as a background-free reporter group in biological compounds. To make the advantages of solid state 19F NMR fully available for structural studies of polypeptides, we have systematically measured the chemical shift anisotropies and relaxation properties of the most relevant aromatic and aliphatic 19F-labeled amino acids. In this first part of two consecutive contributions, six different 19F-substituents on representative aromatic side chains were characterized as polycrystalline powders by static and MAS experiments. The data are also compared with results on the same amino acids incorporated in synthetic peptides. The spectra show a wide variety of lineshapes, from which the principal values of the CSA tensors were extracted. In addition, temperature-dependent T1 and T2 relaxation times were determined by 19F NMR in the solid state, and isotropic chemical shifts and scalar couplings were obtained in solution.

  7. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds.

    PubMed

    Aspers, Ruud L E G; Ampt, Kirsten A M; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, (n)J(CF)- and (n)J(FF)-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all (n)J(CF)- and (n)J(FF)-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to

  8. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  9. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  10. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  11. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  12. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  13. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  14. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    PubMed

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (p<0.05). We conclude that N balance and gas exchange measurements may be affected by endogenously produced nitrogen, especially in metabolic situations with elevated nitrosation, for instance in oxidative and nitrosative stress-related diseases such as H. pylori infections.

  15. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    PubMed

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  16. 1H–13C hetero-nuclear dipole–dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins

    PubMed Central

    Wu, Chin H.; Das, Bibhuti B.; Opella, Stanley J.

    2010-01-01

    13C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure 1H–13C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the 1H–13C hetero-nuclear dipolar interactions of 13C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of 13C3 labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. PMID:19896874

  17. Soil N and 15N variation with time in a California annual grassland ecosystem

    USGS Publications Warehouse

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  18. Sewage derive [sup 15]N in the Baltic traced in fucus

    SciTech Connect

    Hobbie, J.E.; Fry, B. ); Larsson, U.; Elmgren, R. )

    1990-01-09

    Himmerfjarden, a fjord-like bay on the eastern shore of the Baltic, receives treated sewage from 250,000 inhabitants. Because the inorganic N in the effluent is enriched in [sup 15]N through denitrification, nitrification, and ammonia volatilization, an analysis of the distribution of [sup 15]N in the Bay tells how far from the source the sewage nitrogen moves. The attached macroalga Fucus vesiculosus was collected in early May from rocky shore at 0-0.5 m depth and the [sup 15]N content of the tips of the fronds analyzed. This N represents uptake and storage during the previous six months and growth during March and April. The [delta][sup 15]N was uniformly high (11-13[per thousand]) in the main body of the Bay within 15 km from the sewage source. Beyond 15 km values decreased with distance to a low of 4.6[per thousand] at 35 km, where the Bay ends and the coastal waters begin. Using the 11-13 and 4.6[per thousand] as endmembers, the percentage of sewage N making up the Fucus at any point may be calculated. The [delta][sub 15]N of particulate organic matter in the offshore Baltic waters was around 0[per thousand] and Fucus had an [delta][sup 15]N about 1.5[per thousand] higher than the POM. From this and other evidence we conclude that there is a belt of coastal water with an elevated [delta][sup 15]N lying along the east coast of the Baltic. This presumably derives from sewage and perhaps from agriculture and is potentially of use as a tracer of coastal zone/pelagic zone interactions.

  19. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    addressing cases iii. and iv.. Furthermore we present some experimental data illustrating this. These include two data sets from denitrification experiments exhibiting substantial deviations in 15N enrichment between the N pools producing N2 and N2O. Moreover, results from a lab incubation study to quantify NH4+-derived N2O with increasing NH4+ amendment under conditions favouring nitrification are shown, were non-labelled NH4+ was added together with 15N labelled NO3-. Here we found large deviations between the 15N enrichment of NO3- in extracted soil water and the 15N enrichment of the labelled N pool as calculated from N2O isotopologues (Bergsma et al., 2001). We think that this reflects type iv. bias, probably because enrichment of NO3- in anoxic micro-sites was less diluted by non-labelled NO3- from nitrification compared to NO3- in oxic zones. Our data analysis provides a means to overcome bias iv. and thus to obtain correct source apportionment. References: Arah, J.R.M. (1992): Soil Sci. Soc. Am. J. 56, 795 - 800, 1992. Bergsma, T. et al. (2001): Env. Sci. & Technol. 35(21): 4307-4312. Hauck, R.D., et al.(1958): Soil Science 86, 287 - 291, 1958. Lewicka-Szczebak, D. et al.(2013): Rapid Comm. Mass Spectrom., 27 1548-1558. Müller, C. et al. (2004): Soil Biol. Biochem. 36(4): 619-632. Mulvaney, R.L.(1984):. Soil Sci. Soc. Am. J. 48:690 - 692. Spott, O, et al.. (2006): Rapid Comm. Mass Spectrom., 20: 3267-3274. Spott, O. and C. F. Stange (2007): Rapid Comm. Mass Spectrom., 21: 2398-2406.

  20. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  1. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  2. NMR studies of osmoregulation in methanogenic archaebacteria. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Robertson, D.E.

    1991-01-01

    Methanogens are strict anaerobic archaebacteria whose metabolism centers around the reduction of CO[sub 2] to CH[sub 4]. Their environments are often extreme (high temperatures, high salt, few nutrients, etc.) and they may have evolved unique ways to handle these stresses. It is proposed that methanogenic archaebacteria respond to osmotic stress by accumulating a series of organic solutes. In two strains of marine methanogens, Methanogenium cariaci and Methanococcus thermolithotrophicus, four key organic solutes are observed: L-[alpha]-glutamate, [beta]-glutamate, N[sup e]-acetyl-[beta]-lysine, and glycine betaine. The first three of these are synthesized de novo; glycine betaine is transported into the Mg. cariaci cells from the medium. In the absence of betaine, Mg. cariaci synthesizes N[sup e]-acetyl-[beta]-lysine as the dominant osmolyte. Mc. thermolithotrophicus also synthesizes N[sup e]-acetyl-[beta]-lysine but only at salt concentrations greater than 1 M. In Mc. thermolithotrophicus intracellular potassium ion concentrations, determined by [sup 39]K NMR spectroscopy, are balanced by the total concentration of anionic amino acid species, [alpha]-glutamate and [beta]-glutamate. Turnover of the organic solutes has been monitored using [sup 13]C-pulse/[sup 12]C-chase, and [sup 15]N-pulse/[sup 14]N-chase experiments. The [beta]-amino acids exhibit slower turnover rates compared to L-[alpha]-glutamate or aspartate, consistent with their role as compatible solutes. Biosynthetic information for the [beta]-amino acids was provided by [sup 13]C-label incorporation and steady state labeling experiments. [beta]-glutamate shows a lag in [sup 13]C uptake from [sup 13]CO[sub 2], indicative of its biosynthesis from a precursor not in equilibrium with the soluble L-[alpha]-glutamate pool, probably a macromolecule. A novel biosynthetic pathway is proposed for N[sup e]-acetyl-[beta]-lysine from the diaminopimelate pathway.

  3. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).

    PubMed

    Nair, Richard; Weatherall, Andrew; Perks, Mike; Mencuccini, Maurizio

    2014-10-01

    Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.

  4. Rivermouth alteration of agricultural impacts on consumer tissue δ15N

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.

  5. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  6. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  7. Expression, purification, and characterization of coiled coil and leucine zipper domains of C-terminal myosin binding subunit of myosin phosphatase for solution NMR studies.

    PubMed

    Sharma, Alok K; Sawhney, Paramvir; Memisoglu, Gonen; Rigby, Alan C

    2012-01-01

    Protein-protein interactions between MBS and PKG are mediated by the involvement of C-terminal domain of MBS, MBS(CT180) and N-terminal coiled coil (CC) leucine zipper (LZ) domain of PKG-Iα, PKG-Iα1(-59). MBS(CT180) is comprised of three structurally variant domains of non-CC, CC, and LZ nature. Paucity of three-dimensional structural information of these MBS domains precludes atomic level understanding of MBS-PKG contractile complex structure. Here we present data on cloning, expression, and purification of CC, LZ, and CCLZ domains of MBS(CT180) and their biophysical characterization using size exclusion chromatography (SEC), circular dichroism (CD), and two-dimensional (1)H-(15)N HSQC NMR. The methods as detailed resulted in high level protein expression and high milligram quantities of purified isotopically ((15)N and (13)C) enriched polypeptides. SEC, CD, and (1)H-(15)N HSQC NMR experiments demonstrated that recombinantly expressed MBS CC domain is well folded and exists as a dimer within physiologic pH range, which is supported by our previous findings. The dimerization of CC MBS is likely mediated through formation of coiled coil conformation. In contrast, MBS LZ domain was almost unfolded that exists as non-stable low structured monomer within physiologic pH range. Protein folding and stability of MBS LZ was improved as a function of decrease in pH that adopts a folded, stable, and structured conformation at acidified pH 4.5. SEC and NMR analyses of LZ vs. CCLZ MBS domains indicated that inclusion of CC domain partially improves protein folding of LZ domain.

  8. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor.

    PubMed

    Kalverda, Arnout P; Gowdy, James; Thompson, Gary S; Homans, Steve W; Henderson, Peter J F; Patching, Simon G

    2014-06-01

    Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [(15)N-(1)H]- and [(13)C-(1)H]-methyl-TROSY NMR spectra with a 52 kDa membrane protein that putatively has 12 transmembrane-spanning α-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48 h at a temperature of 25 °C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan (15)N backbone positions and also resolved signals for (15)N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [(13)C-(1)H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex α-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.

  9. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    PubMed Central

    Carlisle, Eli; Yarnes, Chris; Toney, Michael D.; Bloom, Arnold J.

    2014-01-01

    Stable 15N isotopes have been used to examine movement of nitrogen (N) through various pools of the global N cycle. A central reaction in the cycle involves the reduction of nitrate (NO−3) to nitrite (NO−2) catalyzed by nitrate reductase (NR). Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO−3. Observed NR isotope discrimination ranged from 22 to 32‰ (kinetic isotope effects of 1.022–1.032) among the different isozymes at natural abundance 15N (0.37%). As the fractional 15N content of substrate NO−3 increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO−3 and NO−2 in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of the experimental artifacts with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils. PMID:25071800

  10. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice.

    PubMed

    Kanstrup, Marie; Thomsen, Ingrid K; Andersen, Astrid J; Bogaard, Amy; Christensen, Bent T

    2011-10-15

    The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.

  11. [Responses of Soil and Plant 15N Natural Abundance to Long-term N Addition in an N-Saturated Pinus massoniana Forest in Southwest China].

    PubMed

    Liu, Wen-jing; Kang, Rong-hua; Zhang, Ting; Zhu, Jing; Duan, Lei

    2015-08-01

    Increasing N deposition in China will possibly cause N saturation of forest ecosystem, further resulting in a series of serious environmental problems. In order to explore the response of forest ecosystem to N deposition in China, and further evaluate and predict the N status of ecosystem, the 15N natural abundance (delta 15N) of soil and plants was measured in a typical Masson pine (Pinus massoniana) forest in southwest China to examine the potential use of delta 15N enrichment factor (epsilon(p/s)) as an effective indicator of N status. Long-term high N addition could significantly increase delta 15N of soil and plants, which was suggested by an on-going N fertilizing experiment with NH4NO3 or NaNO3 for 7 years. Meanwhile, delta 15N of soil and plants under NH, deposition was significantly higher than that under NO- deposition, suggesting different responses of ecosystem to different N-forms of deposition. The "N enrichment factor (epsilon(p/s)) had positive correlations with N deposition, N nitrification, and N leaching in the soil water. Linear correlation between "N enrichment factor and N deposition was found for all Masson pine forests investigated in this and previous studies in China, demonstrating that 15N enrichment factor could be used as an indicator of N status. The NH3 emission control should also be carried out accompanying with NOx emission control in the future, because NH4- deposition had significantly greater impact on the forest ecosystem than NO3- deposition with the same equivalence.

  12. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    PubMed

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets.

  13. Nitrogen assimilation and dissimilation by bacteria and benthic microalgae in tidal mudflat sediment in a 15N labeling study

    NASA Astrophysics Data System (ADS)

    Dähnke, K.; Moneta, A.; Veuger, B.; Soetaert, K.; Middelburg, J. J.

    2012-04-01

    In a short-term 15N-labeling experiment, we investigated the changes in relative utilization of reactive nitrogen in tidal flat sediment, focusing on the relative importance of assimilatory versus dissimilatory processes and the role of benthic microalgae therein. 15N-labeled ammonium and nitrate were added separately to homogenized tidal flat sediment, and 15N was subsequently traced into bulk sediment and inorganic nutrients in pore water. Integration of results in an N cycle model allowed us to quantify rates for the major assimilatory and dissimilatory processes in the sediment. Overall, the results indicate that the equilibrium between assimilation and dissimilation in this tidal mudflat is mainly dependent on the nitrogen source: Nitrate is utilized almost exclusively dissimilatory via denitrification, whereas ammonium is rapidly assimilated, with about a quarter of this assimilation due to BMA activity. The major influence of benthic microalgae is on assimilation of ammonium, ceasing BMA activity turns the sediments from a net ammonium sink to a net source. There is little evidence of dissimilative processes like nitrification in undisturbed sediments, but high initial nitrification rates suggest that in a dynamic environment like tidal flats, intense and fast nitrification/denitrification of ammonium is abundant. The driving mechanisms for assimilation or dissimilation accordingly appear to be ruled to a large extent by external physical forcing, with the entire system being capable of rapid shifts following environmental changes. Our combined experimental and model approach reveals that selective removal of labeled compounds takes place for both ammonium and nitrate. Mechanisms remain unclear, but this finding clearly challenges the traditional labeling approach and underscores the need to consider selective uptake in future labeling studies. Ignoring such selective uptake mechanisms will lead to misinterpretation of process rates when these are estimated

  14. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  15. Determination of δ18O and δ15N in Nitrate

    USGS Publications Warehouse

    Revesz, K.; Böhlke, J.K.; Yoshinari, T.

    1997-01-01

    The analyses of both O and N isotopic compositions of nitrate have many potential applications in studies of nitrate sources and reactions in hydrology, oceanography, and atmospheric chemistry, but simple and precise methods for these analyses have yet to be developed. Testing of a new method involving reaction of potassium nitrate with catalyzed graphite (C + Pd + Au) at 520 °C resulted in quantitative recovery of N and O from nitrate as free CO2, K2CO3, and N2. The δ18O values of nitrate reference materials were obtained by analyzing both the CO2 and K2CO3 from catalyzed graphite combustion. Provisional values of δ18OVSMOW for the internationally distributed KNO3 reference materials IAEA-N3 and USGS-32 were both equal to +22.7 ± 0.5‰. Because the fraction of free CO2 and the isotopic fractionation factor between CO2 and K2CO3 were constant in the combustion products, the δ18O value of KNO3 could be calculated from measurements of the δ18O of free CO2. Thus, δ18OKNO3 = aδ18Ofree CO2 − b, where a and b were equal to 0.9967 and 3.3, respectively, for the specific conditions of the experiments. The catalyzed graphite combustion method can be used to determine δ18O of KNO3 from measurements of δ18O of free CO2 with reproducibility on the order of ±0.2‰ or better if local reference materials are prepared and analyzed with the samples. Reproducibility of δ15N was ±0.1‰ after trace amounts of CO were removed.

  16. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    PubMed Central

    Cassaignau, Anaïs M. E.; Cabrita, Lisa D.

    2016-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on Nz during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies. PMID:26253948

  17. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled ((13)C, (15)N) glycine to test for direct uptake by dominant grasses.

    PubMed

    Streeter, T C; Bol, R; Bardgett, R D

    2000-01-01

    It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.

  18. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  19. Differential characterization using readily accessible NMR experiments of novel N- and O-alkylated quinolin-4-ol, 1,5-naphthyridin-4-ol and quinazolin-4-ol derivatives with antimycobacterial activity.

    PubMed

    Pitta, Eleni; Balabon, Olga; Rogacki, Maciej K; Gómez, Jesús; Cunningham, Fraser; Joosens, Jurgen; Augustyns, Koen; van der Veken, Pieter; Bates, Robert

    2017-01-05

    During the construction of bioactive molecules, regioselective alkylation of heterocyclic, N/O ambident nucleophiles is a frequently encountered synthetic transformation. In this framework, specific attention is required to unambiguously determine the structures of obtained reaction products. As part of our project on quinoloxyacetamide based antimycobacterial agents, a series of N- or O- alkylated quinolin-4-ol, 1,5-naphthyridin-4-ol and quinazolin-4-ol derivatives were prepared during the course of which we observed unexpected selectivity issues. After finding that no consistent procedure existed in the literature for assigning regioisomers of this type, we applied three readily accessible NMR experiment types ((13)C NMR, HSQC/HMBC and NOE) to resolve any uncertainties regarding the obtained regioisomeric structures. Furthermore, the antimycobacterial activity of all final compounds was evaluated with the best compound 23 showing potent antitubercular activity (MIC = 1.25 μM) without cytotoxic effects.

  20. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    PubMed Central

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano

    2016-01-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases 15N-1H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include 1) using a global metric of structural accuracy, the Discriminating Power (DP) score, for guiding model selection during the iterative NOE interpretation process, and 2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  1. Intramolecular hydrogen bonds involving organic fluorine in the derivatives of hydrazides: an NMR investigation substantiated by DFT based theoretical calculations.

    PubMed

    Mishra, Sandeep Kumar; Suryaprakash, N

    2015-06-21

    The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H∙∙∙F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)JFH, and (1h)JFN, provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and (15)N-(1)H HSQC experiments. The (1)H DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.

  2. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  3. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  4. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs

    PubMed Central

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-01

    Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. PMID:26789765

  5. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  6. A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy.

    PubMed

    Subramanian, R; Kelley, W P; Floyd, P D; Tan, Z J; Webb, A G; Sweedler, J V

    1999-12-01

    An HPLC NMR system is presented that integrates a commercial microbore HPLC system using a 0.5-mm column with a 500-MHz proton NMR spectrometer using a custom NMR probe with an observe volume of 1.1 microL and a coil fill factor of 68%. Careful attention to capillary connections and NMR flow cell design allows on-line NMR detection with no significant loss in separation efficiency when compared with a UV chromatogram. HPLC NMR is performed on mixtures of amino acids and small peptides with analyte injection amounts as small as 750 ng; the separations are accomplished in less than 10 min and individual NMR spectra are acquired with 12 s time resolution. Stopped-flow NMR is achieved by diversion of the chromatographic flow after observation of the beginning of the analyte band within the NMR flow cell. Isolation of the compound of interest within the NMR detection cell allows multidimensional experiments to be performed. A stopped-flow COSY spectrum of the peptide Phe-Ala is acquired in 3.5 h with an injected amount of 5 micrograms.

  7. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    PubMed

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.

  8. /sup 15/N kinetic analysis of N/sub 2/O production by Nitrosomonas europaea: an examination of nitrifier denitrification

    SciTech Connect

    Poth, M.; Focht, D.D.

    1985-05-01

    A series of /sup 15/N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the denitrifying enzyme nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% /sup 14/N) and 0.4 mM nitrite (99% /sup 15/N) was performed. No labeled nitirte was reduced to ammonium. All labeled material added was accounted for as either nitrite or nitrous oxide. The hypothesis that nitrous oxide is produced directly from nitrification was rejected since (i) it does not allow for the large amounts of double-labeled (m/z 46) nitrous oxide observed; (ii) the observed patterns of m/z 44, 45, 46 nitrous oxide were completely consistent with a kinetic analysis based on denitrification as the sole mechanism of nitrous oxide production but not with a kinetic analysis based on both mechanisms; (iii) the asymptotic ratio of m/z 45 to m/z 46 nitrous oxide was consistent with denitrification kinetics but inconsistent with nitrification kinetics, which predicted no limit to m/z 45 production. It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide.

  9. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    SciTech Connect

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  10. Measurement of Internuclear Distances in Solids Using Variations of Rotational-Echo Double-Resonance NMR.

    NASA Astrophysics Data System (ADS)

    Holl, Susan Mueller

    Rotational-echo, double-resonance (REDOR) nuclear magnetic resonance (NMR) has been used to measure internuclear distances in solids in many isotopically labeled biological solids. The goals of my research have been to adapt this technique to make it suitable for some special systems, such as samples with low isotopic label concentrations, samples with NMR resonances that have large chemical shift anisotropies, non-biological samples with high NMR-active spin concentrations but no isotopic spin labels, and samples having interactions between a nuclear spin and an electron. This work has included the development of multiple-resonance, background suppression techniques, such as double REDOR, rotational-echo, triple-resonance (RETRO) and transferred -echo, double-resonance (TEDOR), to be used in conjunction with REDOR on labeled biological solids. These methods have enabled the determination of a ^{13 }C-^{15}N one-bond distance of 1.48 A in glyphosate by double REDOR, and a ^{13}C- ^{19}F internuclear distance of 8.0 A in emerimicin using TEDOR-REDOR. Semiconductor materials are more difficult to specifically label than biological samples because they are made by solid-state, high-temperature methods. Using REDOR and a simple statistical model, accurate one-bond internuclear distances in cadmium phosphide ranging from 2.55 to 2.58 A were measured. The lattice contractions of crystalline domains in a mixed-phase (part amorphous, part crystalline) sample were measured to be four to five percent using REDOR. The multiple resonance, magic-angle spinning, solid-state NMR techniques described in this dissertation require up to four radiofrequency channels in the same experiment.

  11. Cysteine-Specific Labeling of Proteins with a Nitroxide Biradical for Dynamic Nuclear Polarization NMR.

    PubMed

    Voinov, Maxim A; Good, Daryl B; Ward, Meaghan E; Milikisiyants, Sergey; Marek, Antonin; Caporini, Marc A; Rosay, Melanie; Munro, Rachel A; Ljumovic, Milena; Brown, Leonid S; Ladizhansky, Vladimir; Smirnov, Alex I

    2015-08-13

    Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.

  12. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  13. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  14. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  15. Cold brittleness of corrosion-resistant maraging steel 08Kh15N5D2T

    NASA Astrophysics Data System (ADS)

    Makhneva, T. M.

    2012-03-01

    Results of a study of the effect of the method of remelting and of heat treatment modes on the behavior of serial curves of impact toughness and on the position of cold-shortness threshold in steel 08Kh15N5D2T are presented.

  16. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  17. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    NASA Astrophysics Data System (ADS)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  18. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  19. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    PubMed

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  20. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, E. S.; Adande, G.; Milam, S. N.; Charnley, S. B.; Cordiner, M. A.

    2016-10-01

    We briefly review what is currently known of 14N/15N ratios in interstellar molecules. We summarize the fractionation ratios measured in HCN, HNC, CN, N2 and NH3, and compare these to theoretical predictions and to the isotopic inventory of cometary volatiles.

  1. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  2. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  3. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  4. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  5. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    PubMed

    Yang, Lijie; Zhang, Lili; Yu, Chunxiao; Li, Dongpo; Gong, Ping; Xue, Yan; Song, Yuchao; Cui, Yalan; Doane, Timothy A; Wu, Zhijie

    2017-01-01

    This study investigated the influence of nitrogen (N) fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK), N fertilizer (NF) and N fertilizer plus rice straw (NS). We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment) increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  6. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages

    PubMed Central

    Yu, Chunxiao; Li, Dongpo; Gong, Ping; Xue, Yan; Song, Yuchao; Cui, Yalan; Doane, Timothy A.; Wu, Zhijie

    2017-01-01

    This study investigated the influence of nitrogen (N) fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK), N fertilizer (NF) and N fertilizer plus rice straw (NS). We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment) increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed. PMID:28045989

  7. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China

    PubMed Central

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha–1) on the fate of urea-15N in the wheat–soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0–39.0%) than for band treatment (31.2–38.2%). Most of the soil residual N was retained in the 0–20 cm soil layer. At the N rates of 60 and 240 kg ha–1, the residual 15N was higher for band (34.4 and 108.7 kg ha–1, respectively) than for broadcast application (29.6 and 88.4 kg ha–1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat–soil system. Band application one time is an alternative N management practice for winter wheat in this region. PMID:27082246

  8. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    SciTech Connect

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.

  9. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  10. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    PubMed

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  11. [Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.)].

    PubMed

    Zhao, Feng-Xia; Jiang, Yuan-Mao; Peng, Fu-Tian; Gao, Xiang-Bin; Liu, Bing-Hua; Wang, Hai-Yun; Zhao, Lin

    2008-03-01

    With five-year old 'Zaodaguo' sweet-cherry (Prunus avium L.) as test material, this paper studied the characteristics of its urea 15N absorption, allocation, and utilization when applied before bud-break. The results showed that the Ndff of different organs increased gradually with time, and was higher in fine roots and storage organs at full-blooming stage. At fruit core-hardening stage, the Ndff of long shoots and leaves increased quickly, reaching to 0.72% and 0.59% , respectively. From fruit core-hardening to harvesting stage, the Ndff of fruit had a rapid increase, with the peak (1.78%) at harvesting stage. After harvest, the Ndff of neonatal organs increased slowly while that of storage organs increased quickly. At full-blooming stage, the absorbed 15N in roots was firstly allocated to storage organs, with the highest allocation rate (54.91%) in large roots. At fruit core-hardening stage, the allocation rate in fine roots and storage organs decreased from 85.43% to 55.11%, while that in neonatal branches and leaves increased to 44.89%. At harvesting stage, the allocation rate in different organs had no significant change, but after harvest, the absorbed 15N had a rapid translocation to storage organs, and the allocation rate in fine roots and storage organs reached the highest (72.26%) at flower bud differentiation stage. The 15N allocation rate in neonatal branches and leaves at flower bud differentiation stage was decreased by 19.31%, compared with that at harvesting stage. From full-blooming to flower bud differentiation stage, the utilization rate of urea 15N was increasing, and reached the peak (16.86%) at flower bud differentiation stage.

  12. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  13. NMR reveals a dynamic allosteric pathway in thrombin

    PubMed Central

    Handley, Lindsey D.; Fuglestad, Brian; Stearns, Kyle; Tonelli, Marco; Fenwick, R. Bryn; Markwick, Phineus R. L.; Komives, Elizabeth A.

    2017-01-01

    Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs, and relaxation dispersion NMR experiments were measured to capture motions across the ps to ms timescale. The ps-ns motions were not significantly altered upon substrate binding. The relaxation dispersion data revealed that apo-thrombin is highly dynamic, with μs-ms motions throughout the molecule. The region around the N-terminus of the heavy chain, the Na+-binding loop, and the 170 s loop, all of which are implicated in allosteric coupling between effector binding sites and the active site, were dynamic primarily in the apo-form. Most of the loops surrounding the active site become more ordered upon PPACK-binding, but residues in the N-terminal part of the heavy chain, the γ-loop, and anion-binding exosite 1, the main allosteric binding site, retain μs-ms motions. These residues form a dynamic allosteric pathway connecting the active site to the main allosteric site that remains in the substrate-bound form. PMID:28059082

  14. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and (2)H NMR experiments.

    PubMed

    Eichner, Adina; Stahlberg, Sören; Sonnenberger, Stefan; Lange, Stefan; Dobner, Bodo; Ostermann, Andreas; Schrader, Tobias E; Hauß, Thomas; Schroeter, Annett; Huster, Daniel; Neubert, Reinhard H H

    2017-05-01

    The stratum corneum (SC) provides the main barrier properties in native skin. The barrier function is attributed to the intercellular lipids, forming continuous multilamellar membranes. In this study, SC lipid membranes in model ratios were enriched with deuterated lipids in order to investigate structural and dynamical properties by neutron diffraction and (2)H solid-state NMR spectroscopy. Further, the effect of the penetration enhancer isopropyl myristate (IPM) on the structure of a well-known SC lipid model membrane containing synthetically derived methyl-branched ceramide [EOS], ceramide [AP], behenic acid and cholesterol (23/10/33/33wt%) was investigated. IPM supported the formation of a single short-periodicity phase (SPP), in which we determined the molecular organization of CER[AP] and CER[EOS]-br for the first time. Furthermore, the thermotropic phase behavior of the lipid system was analyzed by additional neutron diffraction studies as well as by (2)H solid-state NMR spectroscopy, covering temperatures of 32°C (physiological skin temperature), 50°C, and 70°C with a subsequent cooldown back to skin temperature. Both techniques revealed a phase transition and a hysteresis effect. During the cooldown, Bragg peaks corresponding to a long-periodicity phase (LPP) appeared. Additionally, (2)H NMR revealed that the IPM molecules are isotopic mobile at all temperatures.

  15. Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Tatton, Andrew S.

    Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental

  16. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    SciTech Connect

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  17. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  18. Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by sup 15 N methods. [Glycine max

    SciTech Connect

    Herridge, D.F. ); Peoples, M.B. )

    1990-06-01

    We report experiments to quantify the relationships between the relative abundance of ureide-N in root-bleeding sap, vacuum-extracted sap, and hot water extracts of stems and petioles of nodulated soybean (Glycine max (L.) Merrill cv Bragg) and the proportion of plant N derived from nitrogen fixation. Additional experiments examined the effects of plant genotype and strain of rhizobia on these relationships. In each of the five experiments reported, plants of cv Bragg (experiment 1), cv Lincoln (experiments 3, 4, 5), or six cultivars/genotypes (experiment 2) were grown in a sand:vermiculite mixture in large pots in a naturally lit, temperature-controlled glasshouse during summer. Pots were inoculated at sowing with effective Bradyrhizobium japonicum CB 1809 (USDA 136) or with one of 21 different strains of rhizobia. The proportions of plant N derived from nitrogen fixation were determined using {sup 15}N dilution. Results show that assessment of nitrogen fixation by soybean using the ureide technique should now be possible with the standard curves presented, irrespective of genotype or strain of rhizobia occupying the nodules.

  19. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  20. 1H, 15N and 13C resonance assignments of light organ-associated fatty acid-binding protein of Taiwanese fireflies.

    PubMed

    Tseng, Kai-Li; Lee, Yi-Zong; Chen, Yun-Ru; Lyu, Ping-Chiang

    2016-04-01

    Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14-C18. However, the structural details are unknown, and the structure-function relationship has remained to be further investigated. In this study, we finished the (1)H, (15)N and (13)C chemical shift assignments of (15)N/(13)C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP.

  1. Near-complete 1H, 13C, 15N resonance assignments of dimethylsulfoxide-denatured TGFBIp FAS1-4 A546T.

    PubMed

    Kulminskaya, Natalia V; Yoshimura, Yuichi; Runager, Kasper; Sørensen, Charlotte S; Bjerring, Morten; Andreasen, Maria; Otzen, Daniel E; Enghild, Jan J; Nielsen, Niels Chr; Mulder, Frans A A

    2016-04-01

    The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D (1)H-(15)N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain (1)H, (13)C and (15)N resonances for unfolded FAS1-4 A546T at 25 °C.

  2. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  3. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  4. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Irwin, P. G. J.; Mousis, O.; Sinclair, J. A.; Giles,