Science.gov

Sample records for 15n nmr spectroscopy

  1. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  2. Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-08-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C, 15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture.

  3. Post-grafting amination of alkyl halide-functionalized silica for applications in catalysis, adsorption, and 15N NMR spectroscopy.

    PubMed

    Moschetta, Eric G; Sakwa-Novak, Miles A; Greenfield, Jake L; Jones, Christopher W

    2015-02-24

    An anhydrous synthesis of aminosilica materials from alkyl halide-functionalized mesoporous SBA-15 silica by post-grafting amination is introduced for applications in CO2 adsorption, cooperative catalysis, and (15)N solid-state NMR spectroscopy. The synthesis is demonstrated to convert terminal alkyl halide-functionalized silica materials containing Cl, Br, and I to primary alkylamines using anhydrous ammonia in a high-pressure reactor. The benefits of the post-grafting amination procedure include (i) use of anhydrous isotopically labeled ammonia, (15)NH3, to create aminosilica materials that can be investigated using (15)N solid-state NMR to elucidate potential intermediates and surface species in CO2 adsorption processes and catalysis, (ii) similar CO2 uptake in experiments extracting CO2 from dry simulated air experiments, and (iii) improved activity in acid-base bifunctional catalysis compared to traditional amine-grafted materials. The effects of the type of halide, the initial halide loading, and the total reaction time on the conversion of the halides to primary amines are explored. Physical and chemical characterizations of the materials show that the textural properties of the silica are unaffected by the reaction conditions and that quantitative conversion to primary amines is achieved even at short reaction times and high initial alkyl halide loadings. Additionally, preliminary (15)N solid-state NMR experiments indicate formation of nitrogen-containing species and demonstrate that the synthesis can be used to create materials useful for investigating surface species by NMR spectroscopy. The differences between the materials prepared via post-grafting amination vs traditional aminosilane grafting are attributed to the slightly increased spacing of the amines synthesized by amination because the alkylhalosilanes are initially better spaced on the silica surface after grafting, whereas the aminosilanes likely cluster to a greater extent when grafted on the

  4. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  5. Incorporation of (15)N-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy.

    PubMed

    Knicker, Heike

    2003-06-01

    Solid-state double cross polarization magic angle spinning (DCPMAS) 15N 13C nuclear magnetic resonance (NMR) spectroscopy was applied to study the incorporation of TNT transformation products into humifying plant organic matter. For this approach, 13C-enriched plant material (Lolium perenne) was mixed with quartz sand and aerobically incubated for 11 months after addition of 15N(3)-2,4,6-trinitrotoluene (TNT). After successive extraction of the incubate with water, methanol and ethyl acetate, approximately 60% of the 15N added as 15N(3)-TNT (15N(add)) remained in the solid organic residue (SOR-fraction). The acid insoluble fraction (AI) obtained after NaOH and HCl extractions contained approximately 20% of 15N(add). For both fractions, 15N NMR spectroscopy revealed an almost complete reduction of the TNT after 11 months of aerobic incubation. Most of the reduced nitrogen groups underwent further condensation. The corresponding DCPMAS NMR spectra allowed the identification of amides that are further substituted by alkyl groups that resist even acid hydrolysis. This assigns them to relatively stable compounds rather than to newly synthesized microbial peptides. The results of this study suggest further that the covalent binding of TNT transformation products to plant derived organic matter is mediated by alkylation and acetylation reactions, rather than by 1,4 addition of TNT-derived nitrogenous groups to quinones of the humic material.

  6. Characterization of the nitrate complexes of Pu(IV) using absorption spectroscopy, {sup 15}N NMR, and EXAFS

    SciTech Connect

    Veirs, D.K.; Smith, C.A.; Zwick, B.D.; Marsh, S.F.; Conradson, S.D.

    1993-12-01

    Nitrate complexes of Pu(IV) are studied in solutions containing nitrate up to 13 molar (M). Three major nitrato complexes are observed and identified using absorption spectroscopy, {sup 15}N nuclear magnetic resonance (NMR), and extended x-ray absorption fine structure (EXAFS) as Pu(NO{sub 3}){sub 2}{sup 2+}, Pu(NO{sub 3}){sub 4}, and Pu(NO{sub 3}){sub 6}{sup 2{minus}}. The possibility that Pu(NO{sub 3}){sub 1}{sup 3+}, Pu(NO{sub 3}){sub 3}{sup 1+} and Pu(NO{sub 3}){sub 5}{sup 1{minus}} are major species in solution is not consistent with these results and an upper limit of 0.10 can be set on the fraction for each of these three nitrate complexes in nitrate containing solutions. Fraction of the three major species in nitric acid over the 1--13 M range were calculated from absorption spectra data. The fraction of Pu(NO{sub 3}){sub 6}{sup 2{minus}} as a function of nitric acid concentration is in good agreement with the literature, whereas the fraction of Pu(NO{sub 3}){sub 2}{sup 2+} and Pu(NO{sub 3}){sub 4} species differ from previous studies. We have modeled the chemical equilibria up to moderate ionic strength ( < 6 molal) using the specific ion interaction theory (SM. Comparison of our experimental observations to literature stability constants that assume the presence of mononitrate species is poor. Stability constant at zero ionic strength for the dinitrato complex is determined to be log({beta}{sub 2}{sup 0})=3.77 {plus_minus} 0.14 (2{sigma}).

  7. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  8. Structure Determination of an Ag(I) -Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with (1) H/(15) N/(109) Ag NMR Spectroscopy.

    PubMed

    Dairaku, Takenori; Furuita, Kyoko; Sato, Hajime; Šebera, Jakub; Nakashima, Katsuyuki; Kondo, Jiro; Yamanaka, Daichi; Kondo, Yoshinori; Okamoto, Itaru; Ono, Akira; Sychrovský, Vladimír; Kojima, Chojiro; Tanaka, Yoshiyuki

    2016-09-01

    The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair. PMID:27505707

  9. Structure Determination of an Ag(I) -Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with (1) H/(15) N/(109) Ag NMR Spectroscopy.

    PubMed

    Dairaku, Takenori; Furuita, Kyoko; Sato, Hajime; Šebera, Jakub; Nakashima, Katsuyuki; Kondo, Jiro; Yamanaka, Daichi; Kondo, Yoshinori; Okamoto, Itaru; Ono, Akira; Sychrovský, Vladimír; Kojima, Chojiro; Tanaka, Yoshiyuki

    2016-09-01

    The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair.

  10. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  11. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  12. 15N-15N Proton Assisted Recoupling in Magic Angle Spinning NMR

    PubMed Central

    Lewandowski, Józef R.; De Paëpe, Gaël; Eddy, Matthew T.; Griffin, Robert G.

    2009-01-01

    We describe a new magic angle spinning (MAS) NMR experiment for obtaining 15N-15N correlation spectra. The approach yields direct information about the secondary and tertiary structure of proteins, including identification of α-helical stretches and inter-strand connectivity in antiparallel β-sheets, which are of major interest for structural studies of membrane proteins and amyloid fibrils. The method, 15N-15N proton assisted recoupling (PAR), relies on a second order mechanism, third spin assisted recoupling (TSAR), used previously in the context of 15N-13C and 13C-13C polarization transfer schemes. In comparison to 15N-15N proton driven spin diffusion experiments, the PAR technique accelerates polarization transfer between 15N’s by a factor of ~102−103, and is furthermore applicable over the entire range of currently available MAS frequencies (10–70 kHz). PMID:19334788

  13. Solid-phase peptide synthesis and solid-state NMR spectroscopy of (Ala/sup 3/-/sup 15/N)(Val/sup 1/)gramicidin A

    SciTech Connect

    Fields, G.B.; Fields, C.G.; Petefish, J.; Van Wart, H.E.; Cross, T.A.

    1988-03-01

    (Ala/sup 3-15/N)(Val/sup 1/)Gramicidin A has been prepared by solid-phase peptide synthesis and studied by solid-state /sup 15/N nuclear magnetic resonance spectroscopy. The synthesis of desformyl(Ala/sup 3-15/N)(Val/sup 1/)gramicidin A employed N-hydroxysuccinimide esters of 9-fluorenylmethoxycarbonyl-N/sup ..cap alpha../-amino acids and completely avoided the use of acid. Since deblocking was done with piperidine and the peptide was removed from the resin by treatment with ethanolamine, this synthetic protocol prevented oxidation of the indole rings of this tryptophan-rich peptide and reduced truncations produced by acid hydrolysis. After formylation and purification by anion-exchange and high-pressure liquid chromatography, the peptide was obtained in an overall yield of 30%. Solid-state /sup 15/N nuclear magnetic resonance spectra of this peptide and uniformly labeled (/sup 15/N)gramicidin A' oriented in hydrated lipid bilayers have been obtained, allowing unambiguous assignment of the (/sup 15/N)Ala/sup 3/ resonance in the latter. The solid-state /sup 15/N nuclear magnetic resonance experiments provide evidence that (Val/sup 1/)gramicidin A is rotating about an axis that is perpendicular to the plane of the lipid bilayer and that the N-H axis is nearly parallel with the rotational axis. This study demonstrates that site-specifically labeled (/sup 15/N)gramicidin A analogs prepared by solid-phase peptide synthesis are valuable tools in the study of the solid-state nuclear magnetic resonance spectra of samples in oriented lipid bilayers.

  14. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  15. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy.

    PubMed

    Marthala, V R Reddy; Jiang, Yijiao; Huang, Jun; Wang, Wei; Gläser, Roger; Hunger, Michael

    2006-11-22

    By means of solid-state 15N NMR spectroscopy, evidence for the formation of nitrilium ions as intermediates of the Beckmann rearrangement of 15N-cyclohexanone oxime to epsilon-caprolactam on silicalite-1, H-ZSM-5, and H-[B]ZSM-5 is reported. The zeolites under study are characterized by different acid strengths (silicalite-1 < H-[B]ZSM-5 < H-ZSM-5). Depending on the nature of catalytically active surface OH groups, reactant and product molecules exist in the nonprotonated or protonated state. In addition, formation of byproducts such as 5-cyano-1-pentene and epsilon-aminocapric acid as a result of dehydration and hydrolysis of the reactant and product molecules, respectively, were observed.

  16. (15)N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases.

    PubMed

    Schwamm, Ryan J; Vianello, Robert; Maršavelski, Aleksandra; García, M Ángeles; Claramunt, Rosa M; Alkorta, Ibon; Saame, Jaan; Leito, Ivo; Fitchett, Christopher M; Edwards, Alison J; Coles, Martyn P

    2016-09-01

    Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution.

  17. (15)N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases.

    PubMed

    Schwamm, Ryan J; Vianello, Robert; Maršavelski, Aleksandra; García, M Ángeles; Claramunt, Rosa M; Alkorta, Ibon; Saame, Jaan; Leito, Ivo; Fitchett, Christopher M; Edwards, Alison J; Coles, Martyn P

    2016-09-01

    Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution. PMID:27494395

  18. Hydrogen doppler spectroscopy using 15N ions

    NASA Astrophysics Data System (ADS)

    Borucki, L.; Becker, H. W.; Gorris, F.; Kubsky, S.; Schulte, W. H.; Rolfs, C.

    The energy spread of atomic and molecular ion beams from the 4 MV Dynamitron tandem accelerator at the Ruhr-Universität Bochum has been studied and in part minimized. Using the ER= 6.40 MeV narrow resonance in 1H(15N,αγ)12C with an 15N energy spread of 4.55 keV, the Doppler broadening for several hydrogen-bearing gases was found to be in good agreement with expectation: e.g. for NH3 gas a rotational-vibrational Doppler width of 10.41 +/- 0.25 keV was observed (theory = 10.4 keV). Studies of the vibrational Doppler widths of H-bonds on a Si <100> surface were performed using a 4πγ-ray detection system together with UHV-chambers for sample preparation, transport, and analysis. The results showed that further improvements in the experimental set-ups are needed for such investigations.

  19. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  20. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  1. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  2. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  3. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  4. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  5. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. PMID:22002712

  6. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  7. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment.

    PubMed

    Tsika, Aikaterini C; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Spyroulias, Georgios A

    2016-10-01

    Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.

  8. Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy.

    PubMed

    Ladizhansky, Vladimir; Jaroniec, Christopher P; Diehl, Annette; Oschkinat, Hartmut; Griffin, Robert G

    2003-06-01

    We demonstrate the simultaneous measurement of several backbone torsion angles psi in the uniformly (13)C,(15)N-labeled alpha-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C'(i) and 13C(alphai) spin pairs is determined by the "correlated" dipolar field due to 15N(i)-13C(alphai) and 13C'(i)-15N(i+1) dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime |psi| > 140 degrees. However, the ability of this experiment to constrain multiple psi-torsion angles is limited by the resolution of the 13C(alpha)-(13)CO correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N(i+1)-13C(alphai) part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue alpha-spectrin SH3 domain, we determined 13 psi angle constraints with the INADEQUATE NCCN experiment and 22 psi constraints were measured in the NCOCA NCCN experiment.

  9. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta.

    PubMed

    Marion, D; Driscoll, P C; Kay, L E; Wingfield, P T; Bax, A; Gronenborn, A M; Clore, G M

    1989-07-25

    The application of three-dimensional (3D) heteronuclear NMR spectroscopy to the sequential assignment of the 1H NMR spectra of larger proteins is presented, using uniformly labeled (approximately 95%) [15N]interleukin 1 beta, a protein of 153 residues and molecular mass of 17.4 kDa, as an example. The two-dimensional (2D) 600-MHz spectra of interleukin 1 beta are too complex for complete analysis, owing to extensive cross-peak overlap and chemical shift degeneracy. We show that the combined use of 3D 1H-15N Hartmann-Hahn-multiple quantum coherence (HOHAHA-HMQC) and nuclear Overhauser-multiple quantum coherence (NOESY-HMQC) spectroscopy, designed to provide the necessary through-bond and through-space correlations for sequential assignment, provides a practical general-purpose method for resolving ambiguities which severely limit the analysis of conventional 2D NMR spectra. The absence of overlapping cross-peaks in these 3D spectra allows the unambiguous identification of C alpha H(i)-NH(i+1) and NH(i)-NH(i+1) through-space nuclear Overhauser connectivities necessary for connecting a particular C alpha H(i)-NH(i) through-bond correlation with its associated through-space sequential cross-peak The problem of amide NH chemical shift degeneracy in the 1H NMR spectrum is therefore effectively removed, and the assignment procedure simply involves inspecting a series of 2D 1H-1H slices edited by the chemical shift of the directly bonded 15N atom. Connections between residues can be identified almost without any knowledge of the spin system types involved, though this type of information is clearly required for the eventual placement of the connected residues within the primary sequence.

  10. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  11. An sup 15 N NMR method for the characterization of organic sulfur in coal and coal products via iminosulfurane formation

    SciTech Connect

    Franz, J.A.; Lamb, C.N.; Linehan, J.C.

    1991-09-01

    The indirect of organic sulfur by {sup 15}N NMR spectroscopy in the solid state is feasible by facile reactions providing the iminosulfurane structures. Unfortunately, nitrogen chemical shifts appear to be insufficiently sensitive to the nature of the sulfur substituent to be useful for structural studies. Further work is underway to determine the {sup 15}N chemical shifts of iminosulfuranes formed from dibenzothiophene, 4-4{prime}-dimethoxydiphenyl sulfide, and a sulfur-containing, methylated asphaltene to determine the sensitivity of {sup 15}N shifts to a broader variation of aromatic structure. Although double cross-polarization experiments or rotational echo experiments could make use of iminosulfurane formation for detection of carbon in proximity to sulfur, the difficulties in quantitation using these methods are not encouraging for coal product mixtures. 6 refs., 1 fig., 1 tab.

  12. Study of conformations and hydrogen bonds in the configurational isomers of pyrrole-2-carbaldehyde oxime by 1H, 13C and 15N NMR spectroscopy combined with MP2 and DFT calculations and NBO analysis.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Ivanov, Andrei V; Mikhaleva, Al'bina I

    2010-09-01

    The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer. PMID:20623827

  13. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  14. Three-Dimensional Solid-State NMR Spectroscopy Is Essential for Resolution of Resonances from In-Plane Residues in Uniformly 15N-Labeled Helical Membrane Proteins in Oriented Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Marassi, Francesca M.; Ma, Che; Gesell, Jennifer J.; Opella, Stanley J.

    2000-05-01

    Uniformly 15N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of 1H-15N dipolar coupling and 15N chemical shift frequencies. However, resolution is greatly improved in three-dimensional 1H chemical shift/1H-15N dipolar coupling/15N chemical shift correlation spectra. The 23-residue antibiotic peptide magainin and a 54-residue polypeptide corresponding to the cytoplasmic domain of the HIV-1 accessory protein Vpu are used as examples. Both polypeptides consist almost entirely of α-helices, with their axes aligned parallel to the membrane surface. The measurement of three orientationally dependent frequencies for Val17 of magainin enabled the three-dimensional orientation of this helical peptide to be determined in the lipid bilayer.

  15. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  16. In-cell NMR spectroscopy.

    PubMed

    Serber, Zach; Corsini, Lorenzo; Durst, Florian; Dötsch, Volker

    2005-01-01

    The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations. PMID:15808216

  17. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  18. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  19. Studies of nitrogen metabolism using /sup 13/C NMR spectroscopy. 3. Synthesis of DL-(3-/sup 13/C,2-/sup 15/N)Lysine and its incorporation into streptothricin F/sup 1/

    SciTech Connect

    Gould, S.J.; Thiruvengadam, T.K.

    1981-11-04

    A scheme for the synthesis of DL-(3-/sup 13/C, 2-/sup 15/N)Lysine, I, is presented. Data are also reported to show that the mutase reaction occurring in the biosynthesis of I occurs with an intramolecular migration of nitrogen from C-2 to C-3. (BLM)

  20. Solid-state /sup 15/N NMR of oriented lipid bilayer bound gramicidin A'

    SciTech Connect

    Nicholson, L.K.; Moll, F.; Mixon, T.E.; LoGrasso, P.V.; Lay, J.C.; Cross, T.A.

    1987-10-20

    Highly oriented samples of lipid and gramicidin A' (8:1 molar ratio) have been prepared with the samples extensively hydrated (approximately 70% water v/w). These preparations have been shown to be completely in a bilayer phase with a transition temperature of 28/sup 0/C, and evidence is presented indicating that the gramicidin is in the channel conformation. An estimate of the disorder in the alignment of the bilayers parallel with the glass plates used to align the bilayers can be made from the asymmetry of the nuclear magnetic resonances (NMR). Such an analysis indicates a maximal range of disorder of +-3/sup 0/. Uniformly /sup 15/N-labeled gramicidin has been biosynthesized by Bacillus brevis grown in a media containing /sup 15/N-labeled Escherichia coli cells as the only nitrogen source. When prepared with labeled gramicidin, the oriented samples result in high-resolution /sup 15/N NMR spectra showing 12 resonances for the 20 nitrogen sites of the polypeptide. The frequency of the three major multiple resonance peaks has been interpreted to yield the approximate orientation of the N-H bonds in the peptide linkages with respect to the magnetic field. The bond orientations are only partially consistent with the extant structural models of gramicidin.

  1. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGESBeta

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; Kispal, Brianna M.; Mireault, Christopher R.; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W.

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  2. Structural peculiarities of configurational isomers of 1-styrylpyrroles according to 1Н, 13С and 15N NMR spectroscopy and density functional theory calculations: electronic and steric hindrance for planar structure.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Schmidt, Elena Yu; Dvorko, Marina Yu

    2013-06-01

    Comparative analysis of the (1)Н and (13)С NMR data for a series of the E and Z-1-styrylpyrroles, E and Z-1-(1-propenyl)pyrroles, 1-vinylpyrroles and styrene suggests that the conjugation between the unsaturated fragments in the former compounds is reduced. This is the result of the mutual influence of the donor p-π and π-π conjugation having opposite directions. According to the NMR data combined with the density functional theory calculations, the Z isomer of 1-styrylpyrrole has essentially a nonplanar structure because of the steric hindrance. However, the E isomer of 1-styrylpyrrole is also an out-of-plane structure despite the absence of a sterical barrier for the planar one. Deviation of the E isomer from the planar structure seems to be caused by an electronic hindrance produced by a mutual influence of the p-π and π-π conjugation. The structure of the E isomer of the 2-substituted 1-styrylpyrroles is similar to that of the 2-substituted 1-vinylpyrroles. The steric effects in the Z isomer of the 2-substituted 1-styrylpyrroles result in the large increase of the dihedral angle between planes of the pyrrole ring and double bond. PMID:23558848

  3. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  4. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Helmus, Jonathan J.; Nadaud, Philippe S.; Höfer, Nicole; Jaroniec, Christopher P.

    2008-02-01

    We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range N15-Cmethyl13 dipolar couplings in uniformly C13, N15-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of C13 spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies (N15-Cmethyl13 dipolar coupling, N15 chemical shift, and Cmethyl13 chemical shift) within a single SCT evolution period of initial duration ˜1/JCC1 (where JCC1≈35Hz, is the one-bond Cmethyl13-C13 J-coupling) while concurrently suppressing the modulation of NMR coherences due to C13-C13 and N15-C13 J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak N15-Cmethyl13 dipolar couplings (corresponding to structurally interesting, ˜3.5Å or longer, distances) and typical Cmethyl13 transverse relaxation rates. Second, the entire SCT evolution period can be used for Cmethyl13 and/or N15 frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the N15-C13 cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of N15-Cmethyl13 distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly C13, N15-labeled peptide, N-acetyl-valine, and a 56

  5. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported. PMID:25451865

  6. Natural abundance (14)N and (15)N solid-state NMR of pharmaceuticals and their polymorphs.

    PubMed

    Veinberg, Stanislav L; Johnston, Karen E; Jaroszewicz, Michael J; Kispal, Brianna M; Mireault, Christopher R; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W

    2016-06-29

    (14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of

  7. Catalytic Roles of βLys87 in Tryptophan Synthase: 15N Solid State NMR Studies

    PubMed Central

    Caulkins, Bethany G.; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F.; Mueller, Leonard J.

    2015-01-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4′ for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-15N-lysine TS was prepared to access the protonation state of βLys87 using 15N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. PMID:25688830

  8. A solution NMR study of the selectively 13C, 15N-labeled peptaibol chrysospermin C in methanol.

    PubMed

    Anders, R; Wenschuh, H; Soskic, V; Fischer-Frühholz, S; Ohlenschläger, O; Dornberger, K; Brown, L R

    1998-07-01

    The conformation of the 19-residue peptaibol chrysospermin C in methanol has been investigated by NMR spectroscopy using selective 15N and 13C labeling of the alpha-aminoisobutyric acid (Aib) residues. Complete 1H and 13C sequential assignments, including stereospecific assignments for the heavily overlapped resonances from the two Cbeta methyl groups of the eight Aib residues, are reported for a peptaibol for the first time. An Aib residue followed by a Pro is an exception to previous suggestions regarding stereospecific assignment of the two Cbeta methyl groups of Aib residues. Local nuclear Overhauser effects and 3J(HNC') and 3J(HNCbeta) scalar couplings indicate that the phi angles of the Aib residues are restricted sterically to local conformations consistent with right-handed helices. Despite these constraints on the eight Aib residues, the NMR data for chrysospermin C in methanol are generally most consistent with an ensemble of transient conformations, including backbone conformations inconsistent with helical structures. Initial NMR measurements for chrysospermin C bound to micelles suggest structural and dynamic differences relative to alamethicin bound to micelles which may be related to differences in gating voltages for formation of ion channels.

  9. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  10. A spectral correlation function for efficient sequential NMR assignments of uniformly (15)N-labeled proteins.

    PubMed

    Bartels, C; Wüthrich, K

    1994-11-01

    A new computer-based approach is described for efficient sequence-specific assignment of uniformly (15)N-labeled proteins. For this purpose three-dimensional (15)N-correlated [(1)H, (1)H]-NOESY spectra are divided up into two-dimensional (1)H-(1)H strips which extend over the entire spectral width along one dimension and have a width of ca. 100 Hz, centered about the amide proton chemical shifts along the other dimension. A spectral correlation function enables sorting of these strips according to proximity of the corresponding residues in the amino acid sequence. Thereby, starting from a given strip in the spectrum, the probability of its corresponding to the C-terminal neighboring residue is calculated for all other strips from the similarity of their peak patterns with a pattern predicted for the sequentially adjoining residue, as manifested in the scalar product of the vectors representing the predicted and measured peak patterns. Tests with five different proteins containing both α-helices and β-sheets, and ranging in size from 58 to 165 amino acid residues show that the discrimination achieved between the sequentially neighboring residue and all other residues compares well with that obtained with an unguided interactive search of pairs of sequentially neighboring strips, with important savings in the time needed for complete analysis of 3D (15)N-correlated [(1)H, (1)H]-NOESY spectra. The integration of this routine into the program package XEASY ensures that remaining ambiguities can be resolved by visual inspection of the strips, combined with reference to the amino acid sequence and information on spin-system types obtained from additional NMR spectra.

  11. 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.

    PubMed

    Koder, Ronald L; Walsh, Joseph D; Pometun, Maxim S; Dutton, P Leslie; Wittebort, Richard J; Miller, Anne-Frances

    2006-11-29

    Flavins are central to the reactivity of a wide variety of enzymes and electron transport proteins. There is great interest in understanding the basis for the different reactivities displayed by flavins in different protein contexts. We propose solid-state nuclear magnetic resonance (SS-NMR) as a tool for directly observing reactive positions of the flavin ring and thereby obtaining information on their frontier orbitals. We now report the SS-NMR signals of the redox-active nitrogens N1 and N5, as well as that of N3. The chemical shift tensor of N5 is over 720 ppm wide, in accordance with the predictions of theory and our calculations. The signal of N3 can be distinguished on the basis of coupling to 1H absent for N1 and N5, as well as the shift tensor span of only 170 ppm, consistent with N3's lower aromaticity and lack of a nonbonding lone pair. The isotropic shifts and spans of N5 and N1 reflect two opposite extremes of the chemical shift range for "pyridine-type" N's, consistent with their electrophilic and nucleophilic chemical reactivities, respectively. Upon flavin reduction, N5's chemical shift tensor contracts dramatically to a span of less than 110 ppm, and the isotropic chemical shift changes by approximately 300 ppm. Both are consistent with loss of N5's nonbonding lone pair and decreased aromaticity, and illustrate the responsiveness of the 15N chemical shift principal values to electronic structure. Thus. 15N chemical shift principal values promise to be valuable tools for understanding electronic differences that underlie variations in flavin reactivity, as well as the reactivities of other heterocyclic cofactors. PMID:17117871

  12. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  13. Expression, purification, and mass spectrometric analysis of 15N, 13C-labeled RGD-hirudin, expressed in Pichia pastoris, for NMR studies.

    PubMed

    Huang, Yinong; Zhang, Yanling; Wu, Yi; Wang, Jue; Liu, Xingang; Dai, Linsen; Wang, Longsheng; Yu, Min; Mo, Wei

    2012-01-01

    A novel recombinant hirudin, RGD-hirudin, inhibits the activity of thrombin and the aggregation of platelets. Here, we successfully expressed (15)N, (13)C-labeled RGD-hirudin in Pichia pastoris in a fermenter. The protein was subsequently purified to yield sufficient quantities for structural and functional studies. The purified protein was characterized by HPLC and MALDI-TOF mass spectroscopy. Analysis revealed that the protein was pure and uniformly labeled with (15)N and (13)C. A bioassay showed that the anti-thrombin activity and the anti-platelet aggregation ability of the labeled protein were the same as those of unlabeled RGD-hirudin. Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone (15)N, (13)C and (1)H resonance assignments of the r-RGD-Hirudin. The (15)N-(1)H HSQC spectrum of uniformly (15)N, (13)C-labeled RGD-hirudin allowed successful assignment of the signals. Examples of the quality of the data are provided for the (15)N-(l)H correlation spectrum, and by selected planes of the CBCA(CO)NH, CBCANH, and HNCO experiments. These results provide a basis for further studies on the structure-function relationship of RGD-hirudin with thrombin and platelets. PMID:22879918

  14. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  15. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  16. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  17. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  18. Detection of organic sulfur by {sup 15}N and {sup 19}F NMR via formation of iminosulfuranes

    SciTech Connect

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of {sup 15}N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using {sup 15}N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique {sup 15}N- or, {sup 19}F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  19. Detection of organic sulfur by [sup 15]N and [sup 19]F NMR via formation of iminosulfuranes

    SciTech Connect

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of [sup 15]N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using [sup 15]N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique [sup 15]N- or, [sup 19]F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  20. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation

    NASA Astrophysics Data System (ADS)

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    15N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated 15N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that 15N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.

  1. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  2. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  3. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies.

    PubMed

    Le, My T; Brown, Rachel E; Simon, Anne E; Dayie, T Kwaku

    2015-01-01

    Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA. PMID:26577743

  4. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  5. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts. PMID:26590548

  6. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  7. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  8. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds.

  9. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR.

    PubMed Central

    North, C L; Barranger-Mathys, M; Cafiso, D S

    1995-01-01

    Alamethicin was synthesized with 15N incorporated into alanine at position 6 in the peptide sequence. In dispersions of hydrated dimyristoylphosphatidylcholine, solid-state 15N NMR yields an axially symmetric powder pattern indicating that the peptide is reorienting with a single axis of symmetry when associated with lamellar lipids. When incorporated into bilayers that are uniformly oriented with the bilayer normal parallel to the B(o) field, the position of the observed 15N chemical shift is 171 ppm. This is coincident with the sigma parallel to edge of the axially symmetric powder pattern for non-oriented hydrated samples. Thus the axis of motional averaging lies along the bilayer normal. Two-dimensional separated local field spectra were obtained that provide a measure of the N-H dipolar coupling in one dimension and the 15N chemical shift in the other. These data yield a dipolar coupling of 17 kHz corresponding to an average angle of 24 degrees for the N-H bond with respect to the B(o) field axis. An analysis of the possible structures and orientations that could produce the observed spectral parameters show that these values are consistent with an alpha-helical conformation inserted along the bilayer normal. Images FIGURE 1 FIGURE 6 PMID:8599645

  10. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.

  11. Backbone 1H, 13C, and 15N NMR assignments for the Cyanothece 51142 protein cce_0567: a protein associated with nitrogen fixation in the DUF683 family

    SciTech Connect

    Buchko, Garry W.; Sofia, Heidi J.

    2008-06-01

    The recently sequenced genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 (contig 83.1_1_243_746) contains the sequence for an hypothetical protein that falls into the DUF683 family. As observed for the other 54 DUF683 proteins currently listed in the GenBank database, this 78-residue (9.0 kDa) protein in Cyanothece is also found in a nitrogen fixation gene cluster suggesting that it is involved in the process. To date no structural information exists for any of the proteins in the DUF683 family. In an effort to elucidate the biochemical role DUF683 may play in nitrogen fixation and to obtain structural information for a member of the DUF683 protein family, a construct containing DUF683 from Cyanothece 51142 was generated, expressed, purified, and the solution properties characterized. A total rotational correlation time (tc) of 17.1 ns was estimated by nuclear magnetic resonance (NMR) spectroscopy suggesting a molecular weight of ~ 40 kDa, an observation dictating that DUF683 is a tetramer in solution. Using triple-labeled (2H, 13C, 15N) and residue-specific 15N-labeled amino acids (L, K, V, and E/Q) samples, most of the backbone and side chain resonances for DUF683 were assigned. The 13C alpha chemical shifts and NOESY NMR data indicate that the protein is helical from K18-E75.

  12. Triple resonance experiments for aligned sample solid-state NMR of 13C and 15N labeled proteins

    PubMed Central

    Sinha, Neeraj; Grant, Christopher V.; Park, Sang Ho; Brown, Jonathan Miles; Opella, Stanley J.

    2013-01-01

    Initial steps in the development of a suite of triple-resonance 1H/13C/15N solid-state NMR experiments applicable to aligned samples of 13C and 15N labeled proteins are described. The experiments take advantage of the opportunities for 13C detection without the need for homonuclear 13C/13C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are ~20% randomly labeled with 13C in all backbone and side chain carbon sites and ~100% uniformly 15N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are 13C labeled at only the α-carbon and 15N labeled at the amide nitrogen of a few residues. The requirement for homonuclear 13C/13C decoupling while detecting 13C signals is avoided in the first case because of the low probability of any two 13C nuclei being bonded to each other; in the second case, the labeled 13Cα sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the 13C chemical shift and 1H–13C and 15N–13C heteronuclear dipolar coupling frequencies associated with the 13Cα and 13C′ backbone sites, which provide orientation constraints complementary to those derived from the 15N labeled amide backbone sites. 13C/13C spin-exchange experiments identify proximate carbon sites. The ability to measure 13C–15N dipolar coupling frequencies and correlate 13C and 15N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the 13C chemical shift and 1H–13C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach. PMID:17293139

  13. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  14. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  15. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  16. Enzyme dynamics from NMR spectroscopy.

    PubMed

    Palmer, Arthur G

    2015-02-17

    CONSPECTUS: Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  17. Enzyme Dynamics from NMR Spectroscopy

    PubMed Central

    2016-01-01

    Conspectus Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond–nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond–millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  18. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    USGS Publications Warehouse

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  19. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    PubMed

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  20. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  1. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  2. Catalytic roles of βLys87 in tryptophan synthase: (15)N solid state NMR studies.

    PubMed

    Caulkins, Bethany G; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F; Mueller, Leonard J

    2015-09-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-¹⁵N-lysine TS was prepared to access the protonation state of βLys87 using ¹⁵N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni.

  3. Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

    PubMed

    Beecher, Consuelo N; Manighalam, Matthew S; Nwachuku, Adanma F; Larive, Cynthia K

    2016-02-01

    Heparin and heparan sulfate (HS) are important in mediating a variety of biological processes through binding to myriad different proteins. Specific structural elements along the polysaccharide chains are essential for high affinity protein binding, such as the 3-O-sulfated N-sulfoglucosamine (GlcNS3S) residue, a relatively rare modification essential for heparin's anticoagulant activity. The isolation of 3-O-sulfated oligosaccharides from complex mixtures is challenging because of their low abundance. Although methods such as affinity chromatography are useful in isolating oligosaccharides that bind specific proteins with high affinity, other important 3-O-sulfated oligosaccharides may easily be overlooked. Screening preparative-scale size-exclusion chromatography (SEC) fractions of heparin or HS digests using [(1)H,(15)N] HSQC NMR allows the identification of fractions containing 3-O-sulfated oligosaccharides through the unique (1)H and (15)N chemical shifts of the GlcNS3S residue. Those SEC fractions containing 3-O-sulfated oligosaccharides can then be isolated using strong anion-exchange (SAX)-HPLC. Compared with the results obtained by pooling the fractions comprising a given SEC peak, SAX-HPLC analysis of individual SEC fractions produces a less complicated chromatogram in which the 3-O-sulfated oligosaccharides are enriched relative to more abundant components. The utility of this approach is demonstrated for tetrasaccharide SEC fractions of the low molecular weight heparin drug enoxaparin facilitating the isolation and characterization of an unsaturated 3-O-sulfated tetrasaccharide containing a portion of the antithrombin-III binding sequence.

  4. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  5. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-( sup 15 M)-proline followed by sup 15 N NMR

    SciTech Connect

    Heyser, J.W.; Chacon, M.J. )

    1989-04-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-({sup 15}N)-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by {sup 15}N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of {sup 15}N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed.

  6. Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Griffith, D. W.; Dijkstra, F. A.; Lugg, G.; Lawrie, R.; Macdonald, B.

    2012-12-01

    Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m-2 s-1. Emissions of all N2O isotopologues were evident immediately following 15N addition. Emissions of 14N15NO, 15N14NO and 15N15NO isotopologues subsided within 10 d, but 14N14NO fluxes were evident over the entire experiment. The figure provides an overview of the emissions. Cumulative 15N-N2O fluxes (sum of the three 15N isotopologues) per chamber for the 14 days following 15N addition ranged from 1.5 to 10.3 mg 15N-N2O m-2. The chambers were destructively sampled after 2 weeks and 15N analyzed in soil and plant material using isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of

  7. Quantification of ammonia binding sites in Davison (Type 3A) zeolite desiccant : a solid-state Nitrogen-15 MAS NMR spectroscopy investigation.

    SciTech Connect

    Alam, Todd Michael; Holland, Gregory P.; Cherry, Brian Ray

    2004-01-01

    The quantitative analysis of ammonia binding sites in the Davison (Type 3A) zeolite desiccant using solid-state {sup 15}N MAS NMR spectroscopy is reported. By utilizing 15N enriched ammonia ({sup 15}NH{sub 3}) gas, the different adsorption/binding sites within the zeolite were investigated as a function of NH{sub 3} loading. Using {sup 15}N MAS NMR multiple sites were resolved that have distinct cross-polarization dynamics and chemical shift behavior. These differences in the {sup 15}N NMR were used to characterize the adsorption environments in both the pure 3A zeolite and the silicone-molded forms of the desiccant.

  8. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints.

    PubMed

    Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D

    2014-12-01

    Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise.

  9. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2

  10. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  11. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  12. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  13. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  14. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  15. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).

  16. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  17. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    PubMed

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  18. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    PubMed

    Pomin, Vitor H

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  19. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    PubMed Central

    Pomin, Vitor H.

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  20. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  1. Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.

    PubMed

    Nonaka, Daisuke; Wariishi, Hiroyuki; Welinder, Karen G; Fujii, Hiroshi

    2010-01-12

    Paramagnetic (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopy of heme-bound cyanide ((13)C(15)N) was applied to 11 cytochrome c peroxidase (CcP) and Coprinus cinereus peroxidase (CIP) mutants to investigate contributions to the push and pull effects of conserved amino acids around heme. The (13)C and (15)N NMR data for the distal His and Arg mutants indicated that distal His is the key amino acid residue creating the strong pull effect and that distal Arg assists. The mutation of distal Trp of CcP to Phe, the amino acid at this position in CIP, changed the push and pull effects so they resembled those of CIP, whereas the mutation of distal Phe of CIP to Trp changed this mutant to become CcP-like. The (13)C NMR shifts for the proximal Asp mutants clearly showed that the proximal Asp-His hydrogen bonding strengthens the push effect. However, even in the absence of a hydrogen bond, the push effect of proximal His in peroxidase is significantly stronger than in globins. Comparison of these NMR data with the compound I formation rate constants and crystal structures of these mutants showed that (1) the base catalysis of the distal His is more critical for rapid compound I formation than its acid catalysis, (2) the primary function of the distal Arg is to maintain the distal heme pocket in favor of rapid compound I formation via hydrogen bonding, and (3) the push effect is the major contributor to the differential rates of compound I formation in wild-type peroxidases.

  2. Tritiation methods and tritium NMR spectroscopy

    SciTech Connect

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

  3. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  4. A facile method for expression and purification of (15)N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis.

    PubMed

    Sharma, Sudhir C; Armand, Tara; Ball, K Aurelia; Chen, Anna; Pelton, Jeffrey G; Wemmer, David E; Head-Gordon, Teresa

    2015-12-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality (15)N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with (15)N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the (15)N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure (15)N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼ 6 mg/L culture for (15)N isotope-labeled Aβ42 peptide. Mass spectrometry and (1)H-(15)N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with (15)N and (13)C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants.

  5. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    PubMed

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-01

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer. PMID:25584993

  6. Monitoring the refinement of crystal structures with {sup 15}N solid-state NMR shift tensor data

    SciTech Connect

    Kalakewich, Keyton; Eloranta, Harriet; Harper, James K.; Iuliucci, Robbie; Mueller, Karl T.

    2015-11-21

    The {sup 15}N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated {sup 15}N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of {sup 15}N tensors at natural abundance is challenging and this limitation is overcome by improved {sup 1}H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental {sup 15}N tensors are at least 5 times more sensitive to crystal structure than {sup 13}C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts.

  7. The economical synthesis of [2'-(13)C, 1,3-(15)N2]uridine; preliminary conformational studies by solid state NMR.

    PubMed

    Patching, Simon G; Middleton, David A; Henderson, Peter J F; Herbert, Richard B

    2003-06-21

    The synthesis of [2'-(13)C, 1,3-(15)N2]uridine 11 was achieved as follows. An epimeric mixture of D-[1-(13)C]ribose 3 and D-[1-(13)C]arabinose 4 was obtained in excellent yield by condensation of K13CN with D-erythrose 2 using a modification of the Kiliani-Fischer synthesis. Efficient separation of the two aldose epimers was pivotally achieved by a novel ion-exchange (Sm3+) chromatography method. D-[2-(13)C]Ribose 5 was obtained from D-[1-(13)C]arabinose 4 using a Ni(II) diamine complex (nickel chloride plus TEMED). Combination of these procedures in a general cycling manner can lead to the very efficient preparation of specifically labelled 13C-monosaccharides of particular chirality. 15N-labelling was introduced in the preparation of [2'-(13)C, 1,3-(15)N2]uridine 11 via [15N2]urea. Cross polarisation magic angle spinning (CP-MAS) solid-state NMR experiments using rotational echo double resonance (REDOR) were carried out on crystals of the labelled uridine to show that the inter-atomic distance between C-2' and N-1 is closely similar to that calculated from X-ray crystallographic data. The REDOR method will be used now to determine the conformation of bound substrates in the bacterial nucleoside transporters NupC and NupG.

  8. Dynamic nuclear polarization surface enhanced NMR spectroscopy.

    PubMed

    Rossini, Aaron J; Zagdoun, Alexandre; Lelli, Moreno; Lesage, Anne; Copéret, Christophe; Emsley, Lyndon

    2013-09-17

    Many of the functions and applications of advanced materials result from their interfacial structures and properties. However, the difficulty in characterizing the surface structure of these materials at an atomic level can often slow their further development. Solid-state NMR can probe surface structure and complement established surface science techniques, but its low sensitivity often limits its application. Many materials have low surface areas and/or low concentrations of active/surface sites. Dynamic nuclear polarization (DNP) is one intriguing method to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude. In a DNP experiment, the large polarization of unpaired electrons is transferred to surrounding nuclei, which provides a maximum theoretical DNP enhancement of ∼658 for (1)H NMR. In this Account, we discuss the application of DNP to enhance surface NMR signals, an approach known as DNP surface enhanced NMR spectroscopy (DNP SENS). Enabling DNP for these systems requires bringing an exogeneous radical solution into contact with surfaces without diluting the sample. We proposed the incipient wetness impregnation technique (IWI), a well-known method in materials science, to impregnate porous and particulate materials with just enough radical containing solution to fill the porous volume. IWI offers several advantages: it is extremely simple, provides a uniform wetting of the surface, and does not increase the sample volume or substantially reduce the concentration of the sample. This Account describes the basic principles behind DNP SENS through results obtained for mesoporous and nanoparticulate samples impregnated with radical solutions. We also discuss the quantification of the overall sensitivity enhancements obtained with DNP SENS and compare that with ordinary room temperature NMR spectroscopy. We then review the development of radicals and solvents that give the best possible enhancements today. With the best

  9. 1H, 13C, and 15N NMR assignments of StnII-Y111N, a highly impaired mutant of the sea anemone actinoporin Sticholysin II.

    PubMed

    Pardo-Cea, Miguel A; Alegre-Cebollada, Jorge; Martínez-del-Pozo, Alvaro; Gavilanes, José G; Bruix, Marta

    2010-04-01

    Sticholysin II is an actinoporin of 175 amino acids produced by the sea anemone Stichodactyla helianthus. Several studies with different mutants have been performed to characterize its molecular properties and activity. As a first step towards a 3D structural characterization and its interaction with membrane models at a residue level, herein we report the nearly complete NMR (15)N, (13)C and (1)H chemical shifts assignments of the Y111N variant at pH 4.0 and 25 degrees C (BMRB No. 16630). The assignment is complete for the biologically relevant residues, specially for those implicated in membrane interactions.

  10. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  11. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  12. 1H- and 15N-NMR assignment and solution structure of the chemotactic Escherichia coli Che Y protein.

    PubMed

    Bruix, M; Pascual, J; Santoro, J; Prieto, J; Serrano, L; Rico, M

    1993-08-01

    Che Y is a 129-residue parallel alpha/beta protein involved in bacterial chemotaxis. We have used this protein as a model to study the folding reaction of parallel alpha/beta proteins. As a first step we carried out the complete assignment of the 1H and 15N spectra from Escherichia coli Che Y protein on the basis of two-dimensional 1H homonuclear and 1H-15N heteronuclear experiments by using sequence-specific methods. Our assignments differ from the preliminary assignments made by Kar et al. [Kar, L., Matsumura, P. & Johnson, M.E. (1992) Biochem. J. 287, 521-531] of aromatic residues obtained by comparison of NOEs with short proton-proton distances in the crystal structure of Che Y. The analysis of the extension of the secondary elements, as well as a preliminary calculation of the three-dimensional structure, indicate that the solution structure is closely coincident with the single crystal structure determined by X-ray diffraction.

  13. Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy.

    PubMed

    Sastry, Mallika; Xu, Ling; Georgiev, Ivelin S; Bewley, Carole A; Nabel, Gary J; Kwong, Peter D

    2011-07-01

    NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in (15)N, (13)C, or (2)H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched (15)N or (15)N/(13)C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the (15)N- and (15)N/(13)C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including (1)H-(15)N and (1)H-(13)C HSQCs, (15)N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy.

  14. Dependence of in vivo glutamine synthetase activity on ammonia concentration in rat brain studied by 1H - 15N heteronuclear multiple-quantum coherence-transfer NMR.

    PubMed Central

    Kanamori, K; Ross, B D; Kuo, E L

    1995-01-01

    The dependence of the in vivo rate of glutamine synthesis on the substrate ammonia concentration was studied in rat brain by 1H-15N heteronuclear multiple-quantum coherence-transfer NMR in combination with biochemical techniques. In vivo rates were measured at various steady-state blood and brain ammonia concentrations within the ranges 0.4-0.55 mumol/g and 0.86-0.98 mumol/g respectively, after low-rate intravenous 15NH4+ infusion (isotope chase). The rate of glutamine synthesis at steady state was determined from the change in brain [5-15N]glutamine levels during isotope chase, observed selectively through the amide proton by NMR, and 15N enrichments of brain glutamine and of blood and brain ammonia measured byN gas chromatography-MS. The in vivo rate (v) was 3.3-4.5 mumol/h per g of brain at blood ammonia concentrations (s) of 0.40-0.55 mumol/g. A linear increase of 1/v with 1/s permitted estimation of the in vivo glutamine synthetase (GS) activity at a physiological blood ammonia concentration to be 0.4-2.1 mumol/h per g. The observed ammonia-dependence strongly suggests that, under physiological conditions, in vivo GS activity is kinetically limited by sub-optimal in situ concentrations of ammonia as well as glutamate and ATP. Comparison of the observed in vivo GS activity with the reported in vivo rates of glutaminase and of gamma-aminobutyrate (GABA) synthesis suggests that, under mildly hyperammonaemic conditions, glutamine is synthesized at a sufficiently high rate to serve as a precursor of GABA, but glutaminase-catalysed hydrolysis of glutamine is too slow to be the sole provider of glutamate used for GABA synthesis. PMID:7487913

  15. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  16. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  17. Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form

    PubMed Central

    Neri, Dario; Wider, Gerhard; Wüthrich, Kurt

    1992-01-01

    The amino-terminal domain of the phage 434 repressor consisting of residues 1-69 forms a globular structure of five tightly packed helices, with nearly identical molecular architectures in crystals and in solution. Upon addition of urea to an aqueous solution of this protein, the NMR spectrum of a second form of the protein appears in addition to the native form, and at a urea concentration of 7 M, this urea-unfolded form is the only species observed. At intermediate urea concentrations, the two forms of the protein inter-convert at a rate that allows the observation of the exchange process by NMR. Starting from the previous assignments for the native protein, we obtained nearly complete sequence-specific 1H and 15N NMR assignments for the unfolded form of the protein. For most amino acid residues, the 1H chemical shifts of the urea-unfolded protein are very similar to the random coil values, but some discrete regions of the polypeptide chain were identified that are likely to retain residual nonrandom spatial structure as evidenced by deviations of 1H chemical shifts and amide proton exchange rates from the expected random coil values. PMID:1584772

  18. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  19. NMR studies on /sup 15/N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    SciTech Connect

    Kenyon, G.L.; Reddick, R.E.

    1986-05-01

    Recently, the authors have synthesized /sup 15/N-2-Cr, /sup 15/N-3-Crn, /sup 15/N-2-Crn, /sup 15/N-3-PCrn, /sup 15/N-3-PCr, and /sup 15/N-2-PCr. /sup 1/H, /sup 15/N, /sup 31/P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the /sup 31/P-/sup 15/N one-bond coupling constant in /sup 15/N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the /sup 14/N//sup 15/N positional isotope exchange of 3-/sup 15/N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity.

  20. Analysis of internal motions of interleukin-13 variant associated with severe bronchial asthma using {sup 15}N NMR relaxation measurements

    SciTech Connect

    Yoshida, Yuichiro; Ohkuri, Takatoshi; Takeda, Chika; Kuroki, Ryota; Izuhara, Kenji; Imoto, Taiji; Ueda, Tadashi . E-mail: ueda@phar.kyushu-u.ac.jp

    2007-06-22

    The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13R{alpha}2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13R{alpha}2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13R{alpha}2.

  1. The HSP90 binding mode of a radicicol-like E-oxime from docking, binding free energy estimations, and NMR 15N chemical shifts

    PubMed Central

    Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin

    2009-01-01

    We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409

  2. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR.

    PubMed

    Ghosh, Ujjayini; Xie, Li; Weliky, David P

    2013-02-01

    The influenza virus fusion peptide is the N-terminal ~20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone (13)CO-(15)N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct (13)C shifts.

  3. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  4. Carbon-13, sup 15 N, and sup 31 P NMR studies on 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans

    SciTech Connect

    Pust, S.; Vervoort, J.; Decker, K.; Bacher, A.; Mueller, F. )

    1989-01-24

    The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by {sup 13}C, {sup 15}N and {sup 31}P NMR techniques. The FAD prosthetic group was selectively enriched in {sup 13}C and {sup 15}N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atom strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. It can unambiguously be concluded from the chemical shift of the N(1) atom that the reduced flavin is anionic. The doublet character of the N(3) and N(5) resonances suggests that bulk water has no access to the active center. The strong downfield shift of the N(1) position indicates that this atom is embedded in a polar environment, but it does not indicate the presence of a positively charged residue. The {sup 31}P NMR spectra show that the resonances of the pyrophosphate group of the bound FAD differ slightly from those of free FAD. Besides the {sup 31}P resonances from FAD, four peaks around 0 ppm are observed that belongs to bound phosphorus residues. The residues are not located close to the isoalloxazine ring.

  5. Studies on metabolic regulation using NMR spectroscopy.

    PubMed

    Bachelard, H; Badar-Goffer, R; Ben-Yoseph, O; Morris, P; Thatcher, N

    1993-01-01

    The effects of hypoxia and hypoglycaemia on cerebral metabolism and calcium have been studied using multinuclear magnetic resonance spectroscopy. 13C MRS showed that severe hypoxia did not cause any further increase in metabolic flux into lactate seen in mild hypoxia, but there was a further increase in 13C labelling of alanine and glycerol 3-phosphate. These results are discussed in terms of the ability of lactate dehydrogenase to maintain normal levels of NADH in mild hypoxia, but not in severe hypoxia. We conclude that glycerol 3-phosphate and alanine may provide novel means of monitoring severe hypoxia whereas lactate is a reliable indicator only of mild hypoxia. 19F- and 31P NMR spectroscopy showed that neither hypoxia nor hypoglycaemia alone caused any significant change in [Ca2+]i. Combined sequential insults (hypoxia, followed by hypoxia plus hypoglycaemia), or vice versa, produced a 100% increase in [Ca2+]i, whereas immediate exposure to the combined insult (hypoxia plus hypoglycaemia) resulted in a large 5-fold increase in [Ca2+]i, with severe irreversible effects on the energy state. These results are discussed in terms of metabolic adaptation to the single type of insult, which renders the tissue less vulnerable to the combined insult. The effects of this combined insult are far more severe than those caused by glutamate or NMDA, which throws doubt on the current excitoxic hypothesis of cell damage.

  6. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.

    PubMed

    Samultsev, Dmitry O; Semenov, Valentin A; Krivdin, Leonid B

    2014-05-01

    The main factors affecting the accuracy and computational cost of the gauge-independent atomic orbital density functional theory (GIAO-DFT) calculation of (15)N NMR chemical shifts in the representative series of key nitrogen-containing heterocycles--azoles and azines--have been systematically analyzed. In the calculation of (15)N NMR chemical shifts, the best result has been achieved with the KT3 functional used in combination with Jensen's pcS-3 basis set (GIAO-DFT-KT3/pcS-3) resulting in the value of mean absolute error as small as 5 ppm for a range exceeding 270 ppm in a benchmark series of 23 compounds with an overall number of 41 different (15)N NMR chemical shifts. Another essential finding is that basically, the application of the locally dense basis set approach is justified in the calculation of (15)N NMR chemical shifts within the 3-4 ppm error that results in a dramatic decrease in computational cost. Based on the present data, we recommend GIAO-DFT-KT3/pcS-3//pc-2 as one of the most effective locally dense basis set schemes for the calculation of (15)N NMR chemical shifts.

  7. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  8. Selective observation of biologically important 15N-labeled metabolites in isolated rat brain and liver by 1H-detected multiple-quantum-coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.; Parivar, Farhad

    Four cerebral metabolites of importance in neurotransmission, serotonin, L-tryptophan, L-glutamine, and N-acetyl- L-aspartate, and two hepatic urea-cycle intermediates, citrulline and urea, were found to be observable by 1H- 15N heteronuclear multiple-quantum-coherence (HMQC) spectroscopy in aqueous solution at physiological pH and temperature, through the protons spin-coupled to their indole, amide, or ureido nitrogen. Their 1H chemical shifts were well dispersed over a 5-10 ppm region while the 1J 15N- 1H values were 87-99 Hz. For [γ- 15N]glutamine, a 50- to 100-fold increase in sensitivity over direct 15N detection was achieved, in contrast to a 2-fold increase by the polarization-transfer method. In the isolated brain of portacaval-shunted rats, the amide protons of biologically 15N-enriched [γ- 15N]glutamine were observed in 2 min of acquisition, with suppression of proton signals from all other cerebral metabolites. In isolated liver of 15N-enriched control rats, [ 15NIurea protons were observed in 16 min. The HMQC method is likely to be effective for the in vivo study of cerebral and hepatic nitrogen metabolism.

  9. The Doppler effect in NMR spectroscopy.

    PubMed

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  10. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    SciTech Connect

    Shi, Pan; Xi, Zhaoyong; Wang, Hu; Shi, Chaowei; Xiong, Ying; Tian, Changlin

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  11. Diode laser spectroscopy of the fundamental bands of 12C14N, 13C14N, 12C15N, 13C15N free radicals in the ground 2 Sigma+ electronic state.

    PubMed

    Hübner, M; Castillo, M; Davies, P B; Röpcke, J

    2005-01-01

    Rotationally resolved spectra of the fundamental band of the CN free radical in four isotopic forms have been measured using tunable diode laser absorption spectroscopy. The source of the radical was a microwave discharge in a mixture of isotopically selected methane and nitrogen diluted with argon. The lines were measured to an accuracy of 5 x 10(-4) cm(-1) and fitted to the formula for the vibration rotation spectrum of a diatomic molecule, including quartic distortion constants. The band origins of each of the isotopomers from the five parameter fits were found to be 12C14N: 2042.42115(38) cm(-1), 13C14N: 2000.08479(23) cm(-1), 12C15N: 2011.25594(25) cm(-1), 13C15N: 1968.22093(33) cm(-1) with one standard deviation from the fit given in parenthesis. Some of the lines showed a resolved splitting due to the spin rotation interaction. This was averaged for fitting purposes. The average equilibrium internuclear distance derived from the upsilon = 0 and 1 rotational constants of the four isotopomers is 1.171800(6) A which is in good agreement with the value determined from microwave spectroscopy.

  12. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  13. Spatially selective heteronuclear multiple-quantum coherence (HMQC) spectroscopy for bio-molecular NMR studies

    PubMed Central

    Sathyamoorthy, Bharathwaj; Parish, David M.; Montelione, Gaetano T.; Xiao, Rong; Szyperski, Thomas

    2014-01-01

    Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy was devised for solution studies of proteins. Due to ‘time-staggered’ acquisition of free induction decays (FIDs) in different slices, SS HMQC allows one to employ long delays for longitudinal nuclear spin relaxation at high repetition rates for the acquisition of the FIDs. To also achieve high intrinsic sensitivity, SS HMQC was implemented by combing a single spatially selective 1H excitation pulse with non-selective 1H 180° pulses. High-quality spectra could be obtained within 66 seconds for a 7.6 kDa uniformly 13C,15N-labeled protein, and within 45 and 90 seconds for, respectively, two uniformly 2H,13C,15N-labeled but isoleucine, leucine and valine methyl group protonated proteins with molecular weights of 7.5 and 43 kDa. PMID:24789578

  14. Fragment-Based Drug Discovery Using NMR Spectroscopy

    PubMed Central

    Harner, Mary J.; Frank, Andreas O.; Fesik, Stephen W.

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience. PMID:23686385

  15. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

    PubMed

    Ardenkjaer-Larsen, Jan-Henrik; Boebinger, Gregory S; Comment, Arnaud; Duckett, Simon; Edison, Arthur S; Engelke, Frank; Griesinger, Christian; Griffin, Robert G; Hilty, Christian; Maeda, Hidaeki; Parigi, Giacomo; Prisner, Thomas; Ravera, Enrico; van Bentum, Jan; Vega, Shimon; Webb, Andrew; Luchinat, Claudio; Schwalbe, Harald; Frydman, Lucio

    2015-08-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed. PMID:26136394

  16. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

    PubMed

    Ardenkjaer-Larsen, Jan-Henrik; Boebinger, Gregory S; Comment, Arnaud; Duckett, Simon; Edison, Arthur S; Engelke, Frank; Griesinger, Christian; Griffin, Robert G; Hilty, Christian; Maeda, Hidaeki; Parigi, Giacomo; Prisner, Thomas; Ravera, Enrico; van Bentum, Jan; Vega, Shimon; Webb, Andrew; Luchinat, Claudio; Schwalbe, Harald; Frydman, Lucio

    2015-08-01

    In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed.

  17. Localized in vivo13C NMR spectroscopy of the brain

    PubMed Central

    Gruetter, Rolf; Adriany, Gregor; Choi, In-Young; Henry, Pierre-Gilles; Lei, Hongxia; Öz, Gülin

    2006-01-01

    Localized 13C NMR spectroscopy provides a new investigative tool for studying cerebral metabolism. The application of 13C NMR spectroscopy to living intact humans and animals presents the investigator with a number of unique challenges. This review provides in the first part a tutorial insight into the ingredients required for achieving a successful implementation of localized 13C NMR spectroscopy. The difficulties in establishing 13C NMR are the need for decoupling of the one-bond 13C–1H heteronuclear J coupling, the large chemical shift range, the low sensitivity and the need for localization of the signals. The methodological consequences of these technical problems are discussed, particularly with respect to (a) RF front-end considerations, (b) localization methods, (c) the low sensitivity, and (d) quantification methods. Lastly, some achievements of in vivo localized 13C NMR spectroscopy of the brain are reviewed, such as: (a) the measurement of brain glutamine synthesis and the feasibility of quantifying glutamatergic action in the brain; (b) the demonstration of significant anaplerotic fluxes in the brain; (c) the demonstration of a highly regulated malate-aspartate shuttle in brain energy metabolism and isotope flux; (d) quantification of neuronal and glial energy metabolism; and (e) brain glycogen metabolism in hypoglycemia in rats and humans. We conclude that the unique and novel insights provided by 13C NMR spectroscopy have opened many new research areas that are likely to improve the understanding of brain carbohydrate metabolism in health and disease. PMID:14679498

  18. Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy.

    PubMed

    Sastry, Mallika; Xu, Ling; Georgiev, Ivelin S; Bewley, Carole A; Nabel, Gary J; Kwong, Peter D

    2011-07-01

    NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in (15)N, (13)C, or (2)H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched (15)N or (15)N/(13)C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the (15)N- and (15)N/(13)C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including (1)H-(15)N and (1)H-(13)C HSQCs, (15)N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy. PMID:21667299

  19. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  20. NMR studies of active-site properties of human carbonic anhydrase II by using (15) N-labeled 4-methylimidazole as a local probe and histidine hydrogen-bond correlations.

    PubMed

    Shenderovich, Ilya G; Lesnichin, Stepan B; Tu, Chingkuang; Silverman, David N; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2015-02-01

    By using a combination of liquid and solid-state NMR spectroscopy, (15) N-labeled 4-methylimidazole (4-MI) as a local probe of the environment has been studied: 1) in the polar, wet Freon CDF3 /CDF2 Cl down to 130 K, 2) in water at pH 12, and 3) in solid samples of the mutant H64A of human carbonic anhydrase II (HCA II). In the latter, the active-site His64 residue is replaced by alanine; the catalytic activity is, however, rescued by the presence of 4-MI. For the Freon solution, it is demonstrated that addition of water molecules not only catalyzes proton tautomerism but also lifts its quasidegeneracy. The possible hydrogen-bond clusters formed and the mechanism of the tautomerism are discussed. Information about the imidazole hydrogen-bond geometries is obtained by establishing a correlation between published (1) H and (15) N chemical shifts of the imidazole rings of histidines in proteins. This correlation is useful to distinguish histidines embedded in the interior of proteins and those at the surface, embedded in water. Moreover, evidence is obtained that the hydrogen-bond geometries of His64 in the active site of HCA II and of 4-MI in H64A HCA II are similar. Finally, the degeneracy of the rapid tautomerism of the neutral imidazole ring His64 reported by Shimahara et al. (J. Biol. Chem.- 2007, 282, 9646) can be explained with a wet, polar, nonaqueous active-site conformation in the inward conformation, similar to the properties of 4-MI in the Freon solution. The biological implications for the enzyme mechanism are discussed. PMID:25521423

  1. NMR studies of active-site properties of human carbonic anhydrase II by using (15) N-labeled 4-methylimidazole as a local probe and histidine hydrogen-bond correlations.

    PubMed

    Shenderovich, Ilya G; Lesnichin, Stepan B; Tu, Chingkuang; Silverman, David N; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2015-02-01

    By using a combination of liquid and solid-state NMR spectroscopy, (15) N-labeled 4-methylimidazole (4-MI) as a local probe of the environment has been studied: 1) in the polar, wet Freon CDF3 /CDF2 Cl down to 130 K, 2) in water at pH 12, and 3) in solid samples of the mutant H64A of human carbonic anhydrase II (HCA II). In the latter, the active-site His64 residue is replaced by alanine; the catalytic activity is, however, rescued by the presence of 4-MI. For the Freon solution, it is demonstrated that addition of water molecules not only catalyzes proton tautomerism but also lifts its quasidegeneracy. The possible hydrogen-bond clusters formed and the mechanism of the tautomerism are discussed. Information about the imidazole hydrogen-bond geometries is obtained by establishing a correlation between published (1) H and (15) N chemical shifts of the imidazole rings of histidines in proteins. This correlation is useful to distinguish histidines embedded in the interior of proteins and those at the surface, embedded in water. Moreover, evidence is obtained that the hydrogen-bond geometries of His64 in the active site of HCA II and of 4-MI in H64A HCA II are similar. Finally, the degeneracy of the rapid tautomerism of the neutral imidazole ring His64 reported by Shimahara et al. (J. Biol. Chem.- 2007, 282, 9646) can be explained with a wet, polar, nonaqueous active-site conformation in the inward conformation, similar to the properties of 4-MI in the Freon solution. The biological implications for the enzyme mechanism are discussed.

  2. Post-translational heterocyclic backbone modifications in the 43-peptide antibiotic microcin B17. Structure elucidation and NMR study of a 13C,15N-labelled gyrase inhibitor.

    PubMed

    Bayer, A; Freund, S; Jung, G

    1995-12-01

    Microcin B17 (McB17), the first known gyrase inhibitor of peptidic nature, is produced by ribosomal synthesis and post-translational modification of the 69-residue precursor protein by an Escherichia coli strain. To elucidate the chemical structure of the mature 43-residue peptide antibiotic, fermentation and purification protocols were established and optimized which allowed the isolation and purification of substantial amounts of highly pure McB17 (non-labelled, 15N-labelled and 13C/15N-labelled peptide. By ultraviolet-absorption spectroscopy. HPLC-electrospray mass spectrometry and GC-mass spectrometry, amino acid analysis, protein sequencing, and, in particular, multidimensional NMR, we could demonstrate and unequivocally prove that the enzymic modification of the precursor backbone at Gly-Cys and Gly-Ser segments leads to the formation of 2-aminomethylthiazole-4-carboxylic acid and 2-aminomethyloxazole-4-carboxylic acid, respectively. In addition, two bicyclic modifications 2-(2-aminomethyloxazolyl)thiazole-4-carboxylic acid and 2-(2-aminomethylthiazolyl)oxazole-4-carboxylic acid were found that consist of directly linked thiazole and oxazole rings derived from one Gly-Ser-Cys and one Gly-Cys-Ser segment. Analogous to the thiazole and oxazole rings found in antitumor peptides of microbial and marine origin, these heteroaromatic ring systems of McB17 presumably play an important role in its gyrase-inhibiting activity, e.g. interacting with the DNA to trap the covalent protein-DNA intermediate of the breakage-reunion reaction of the gyrase.

  3. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  4. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  5. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  6. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    PubMed

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  7. A review of blind source separation in NMR spectroscopy.

    PubMed

    Toumi, Ichrak; Caldarelli, Stefano; Torrésani, Bruno

    2014-08-01

    Fourier transform is the data processing naturally associated to most NMR experiments. Notable exceptions are Pulse Field Gradient and relaxation analysis, the structure of which is only partially suitable for FT. With the revamp of NMR of complex mixtures, fueled by analytical challenges such as metabolomics, alternative and more apt mathematical methods for data processing have been sought, with the aim of decomposing the NMR signal into simpler bits. Blind source separation is a very broad definition regrouping several classes of mathematical methods for complex signal decomposition that use no hypothesis on the form of the data. Developed outside NMR, these algorithms have been increasingly tested on spectra of mixtures. In this review, we shall provide an historical overview of the application of blind source separation methodologies to NMR, including methods specifically designed for the specificity of this spectroscopy. PMID:25142734

  8. Molecular conformational changes in articular cartilage using NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Barone, Justin; Schmidt, Walter

    2004-03-01

    NMR spectroscopy is used to study the conformational changes of the collagen and glycosaminoglycan molecules in bovine articular cartilage. Molecular conformation will change with the charge on each molecule. The charge on each molecule varies spatially throughout the cartilage. For a given point in space, the charge on each molecule can be screened by placing the cartilage in an increasingly ionic environment. The conformational changes are noted through changes in the chemical shifts in the NMR spectrum as a function of salt concentration.

  9. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  10. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  11. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities. PMID:25559712

  12. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  13. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  14. Protein folding on the ribosome studied using NMR spectroscopy.

    PubMed

    Waudby, Christopher A; Launay, Hélène; Cabrita, Lisa D; Christodoulou, John

    2013-10-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome-nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity.

  15. Membrane Interactions of Phylloseptin-1, -2, and -3 Peptides by Oriented Solid-State NMR Spectroscopy

    PubMed Central

    Resende, Jarbas M.; Verly, Rodrigo M.; Aisenbrey, Christopher; Cesar, Amary; Bertani, Philippe; Piló-Veloso, Dorila; Bechinger, Burkhard

    2014-01-01

    Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using 2H and 15N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent 2H quadrupolar splittings from methyl-deuterated alanines and one 15N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with 15N and 2H isotopes of only a few amino acid residues. PMID:25140425

  16. CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

  17. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  18. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    EPA Science Inventory

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  19. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy.

    PubMed

    Barchi, J J; Grasberger, B; Gronenborn, A M; Clore, G M

    1994-01-01

    The backbone dynamics of the immunoglobulin-binding domain (B1) of streptococcal protein G, uniformly labeled with 15N, have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and nuclear Overhauser enhancement data were obtained for all 55 backbone NH vectors of the B1 domain at both field strengths. The overall correlation time obtained from an analysis of the T1/T2 ratios was 3.3 ns at 26 degrees C. Overall, the B1 domain is a relatively rigid protein, consistent with the fact that over 95% of the residues participate in secondary structure, comprising a four-stranded sheet arranged in a -1, +3x, -1 topology, on top of which lies a single helix. Residues in the turns and loops connecting the elements of secondary structure tend to exhibit a higher degree of mobility on the picosecond time scale, as manifested by lower values of the overall order parameter. A number of residues at the ends of the secondary structure elements display two distinct internal motions that are faster than the overall rotational correlation time: one is fast (< 20 ps) and lies in the extreme narrowing limit, whereas the other is one to two orders of magnitude slower (1-3 ns) and lies outside the extreme narrowing limit. The slower motion can be explained by large-amplitude (20-40 degrees) jumps in the N-H vectors between states with well-defined orientations that are stabilized by hydrogen bonds.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Recovering Invisible Signals by Two-Field NMR Spectroscopy.

    PubMed

    Cousin, Samuel F; Kadeřávek, Pavel; Haddou, Baptiste; Charlier, Cyril; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Engelke, Frank; Maas, Werner; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-08-16

    Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two-field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low-field dimension. Two-field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.

  1. In-Cell Biochemistry Using NMR Spectroscopy

    PubMed Central

    Burz, David S.; Shekhtman, Alexander

    2008-01-01

    Biochemistry and structural biology are undergoing a dramatic revolution. Until now, mostly in vitro techniques have been used to study subtle and complex biological processes under conditions usually remote from those existing in the cell. We developed a novel in-cell methodology to post-translationally modify interactor proteins and identify the amino acids that comprise the interaction surface of a target protein when bound to the post-translationally modified interactors. Modifying the interactor proteins causes structural changes that manifest themselves on the interacting surface of the target protein and these changes are monitored using in-cell NMR. We show how Ubiquitin interacts with phosphorylated and non-phosphorylated components of the receptor tyrosine kinase (RTK) endocytic sorting machinery: STAM2 (Signal-transducing adaptor molecule), Hrs (Hepatocyte growth factor regulated substrate) and the STAM2-Hrs heterodimer. Ubiquitin binding mediates the processivity of a large network of interactions required for proper functioning of the RTK sorting machinery. The results are consistent with a weakening of the network of interactions when the interactor proteins are phosphorylated. The methodology can be applied to any stable target molecule and may be extended to include other post-translational modifications such as ubiquitination or sumoylation, thus providing a long-awaited leap to high resolution in cell biochemistry. PMID:18626516

  2. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  3. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  4. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    PubMed

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. PMID:21935954

  5. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    PubMed

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose.

  6. Coupled effect of salt and pH on proteins probed with NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kukic, Predrag; O'Meara, Fergal; Hewage, Chandralal; Erik Nielsen, Jens

    2013-07-01

    The coupled effect of ionic strength (50-400 mM) and pH (2-8) on ionization and conformation equilibria of lysozyme was studied using NMR spectroscopy. Observed changes in pKa values of the ionizable groups were found to originate from perturbations in the geometry of hydrogen bonds rather than screening of electric fields. Moreover, at the ionic strengths used here, salt-induced local conformational changes had a dominant effect on chemical shifts measured on 1HN and 15N amide nuclei. Accurate modeling of these localized perturbations in structure-based energy calculations is a necessary prerequisite on the way to complete understanding of any salt-induced processes in proteins.

  7. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy.

    PubMed

    Abdel-Farid, Ibrahim Bayoumi; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2007-09-19

    The Brassica has been intensively studied due to the nutritional and beneficial effects. However, many species, varieties, and cultivars of this genus and the resulting large metabolic variation have been obstacles for systematic research of the plant. In order to overcome the problems posed by the biological variation, the metabolomic analysis of various cultivars of Brassica rapa was performed by NMR spectroscopy combined with multivariate data analysis. Discriminating metabolites in different cultivars and development stages were elucidated by diverse 2D-NMR techniques after sorting out different significant signals using (1)H NMR measurements and principal component analysis. Among the elucidated metabolites, several organic and amino acids, carbohydrates, adenine, indole acetic acid (IAA), phenylpropanoids, flavonoids, and glucosinolates were found to be the metabolites contributing to the differentiation between cultivars and age of Brassica rapa. On the basis of these results, the distribution of plant metabolites among different cultivars and development stages of B. rapa is discussed.

  8. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines—independent of their ability to crystallize— and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  9. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  10. Combined ligand-observe 19F and protein-observe 15N,1H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase

    PubMed Central

    Richards, Kirsty L.; Rowe, Michelle L.; Hudson, Paul B.; Williamson, Richard A.; Howard, Mark J.

    2016-01-01

    Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity. PMID:26786784

  11. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    PubMed

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters.

  12. High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field

    PubMed Central

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. PMID:19953303

  13. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  14. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  15. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses. PMID:23745683

  16. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  17. NMR spectroscopy of proteins encapsulated in a positively charged surfactant.

    PubMed

    Lefebvre, Brian G; Liu, Weixia; Peterson, Ronald W; Valentine, Kathleen G; Wand, A Joshua

    2005-07-01

    Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular reorientation compromises many aspects of the more powerful solution NMR methods. Several approaches have emerged to deal with the various spectroscopic difficulties arising from slow molecular reorientation. One of these takes the approach of actively seeking to increase the effective rate of molecular reorientation by encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid. Since the encapsulation is largely driven by electrostatic interactions, the preparation of samples of acidic proteins suitable for NMR spectroscopy has been problematic owing to the paucity of suitable cationic surfactants. Here, it is shown that the cationic surfactant CTAB may be used to prepare samples of encapsulated anionic proteins dissolved in low viscosity solvents. In a more subtle application, it is further shown that this surfactant can be employed to encapsulate a highly basic protein, which is completely denatured upon encapsulation using an anionic surfactant. PMID:15949753

  18. Solid-State NMR Spectroscopy of Protein Complexes

    PubMed Central

    Sun, Shangjin; Han, Yun; Paramasivam, Sivakumar; Yan, Si; Siglin, Amanda E.; Williams, John C.; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2016-01-01

    Protein-protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR based methods to study several protein complexes. In this chapter, we discuss the general solid-state NMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection and data analysis. PMID:22167681

  19. Direct detection of N-H[...]O=C hydrogen bonds in biomolecules by NMR spectroscopy.

    PubMed

    Cordier, Florence; Nisius, Lydia; Dingley, Andrew J; Grzesiek, Stephan

    2008-01-01

    A nuclear magnetic resonance (NMR) experiment is described for the direct detection of N-H[...]O=C hydrogen bonds (H-bonds) in 15N and 13C isotope-labeled biomolecules. This quantitative 'long-range' HNCO-COSY (correlation spectroscopy) experiment detects and quantifies electron-mediated scalar couplings across the H-bond (H-bond scalar couplings), which connect the magnetically active (15)N and (13)C nuclei on both sides of the H-bond. Detectable H-bonds comprise the canonical backbone H-bonds in proteins as well as other H-bonds in proteins and nucleic acids with N-H donors and O=C (carbonylic or carboxylic) acceptors. Unlike other NMR observables, which provide only indirect evidence of the presence of H-bonds, the H-bond scalar couplings identify all partners of the H-bond, the donor, the donor proton and the acceptor, in a single experiment. The size of the scalar couplings can be related to H-bond geometries. The time required to detect the N-H[...]O=C H-bonds in small proteins (< or = approximately 10 kDa) is typically on the order of 1 d at millimolar concentrations, whereas H-bond detection for larger proteins (< or = approximately 30 kDa) may be possible within several days depending on concentration, isotope composition, magnetic field strength and molecular weight. The proteins ubiquitin (8.6 kDa), dimeric RANTES (2 x 8.5 kDa) and MAP30 (30 kDa) are used as examples to illustrate this procedure. PMID:18274525

  20. Perspectives on DNP-enhanced NMR spectroscopy in solutions

    NASA Astrophysics Data System (ADS)

    van Bentum, Jan; van Meerten, Bas; Sharma, Manvendra; Kentgens, Arno

    2016-03-01

    More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.

  1. Spatially resolved solid-state MAS-NMR-spectroscopy.

    PubMed

    Scheler, U; Schauss, G; Blümich, B; Spiess, H W

    1996-07-01

    A comprehensive account of spatially resolved solid-state MAS NMR of 13C is given. A device generating field gradients rotating synchronously with the magic angle spinner is described. Spatial resolution and sensitivity are compared for phase and frequency encoding of spatial information. The suppression of spinning sidebands is demonstrated for both cases. Prior knowledge about the involved materials can be used for the reduction of data from spatially resolved spectra to map chemical structure. Indirect detection via 13C NMR gives access to the information about mobility from proton-wideline spectra. Two-dimensional solid-state spectroscopy with spatial resolution is demonstrated for a rotor synchronized MAS experiment which resolves molecular order as a function of space. By comparison of different experiments the factors affecting the spatial resolution are investigated.

  2. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    PubMed

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR. PMID:26501900

  3. (15)N and (13)C group-selective techniques extend the scope of STD NMR detection of weak host-guest interactions and ligand screening.

    PubMed

    Kövér, Katalin E; Wéber, Edit; Martinek, Tamás A; Monostori, Eva; Batta, Gyula

    2010-10-18

    Saturation transfer difference (STD) is a valuable tool for studying the binding of small molecules to large biomolecules and for obtaining detailed information on the binding epitopes. Here, we demonstrate that the proposed (15)N/(13)C variants of group-selective, "GS-STD" experiments provide a powerful approach to mapping the binding epitope of a ligand even in the absence of efficient spin diffusion within the target protein. Therefore, these experimental variants broaden the scope of STD studies to smaller and/or more-dynamic targets. The STD spectra obtained in four different experimental setups (selective (1)H STD, (15)N GS-STD, (13)C(Ar) and (13)C(aliphatic) GS-STD approaches) revealed that the signal-intensity pattern of the difference spectra is affected by both the type and the spatial distribution of the excited "transmitter" atoms, as well as by the efficiency of the spin-diffusion-mediated magnetization transfer. The performance of the experiments is demonstrated on a system by using the lectin, galectin-1 and its carbohydrate ligand, lactose.

  4. 1H, 13C, 195Pt and 15N NMR structural correlations in Pd(II) and Pt(II) chloride complexes with various alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pawlak, Tomasz; Pazderski, Leszek; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2011-02-01

    (1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.

  5. 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium-binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high-resolution NMR.

    PubMed Central

    Feher, V. A.; Zapf, J. W.; Hoch, J. A.; Dahlquist, F. W.; Whiteley, J. M.; Cavanagh, J.

    1995-01-01

    Spo0F, sporulation stage 0 F protein, a 124-residue protein responsible, in part, for regulating the transition of Bacillus subtilis from a vegetative state to a dormant endospore, has been studied by high-resolution NMR. The 1H, 15N, and 13C chemical shift assignments for the backbone residues have been determined from analyses of 3D spectra, 15N TOCSY-HSQC, 15N NOESY-HSQC, HNCA, and HN(CO)CA. Assignments for many sidechain proton resonances are also reported. The secondary structure, inferred from short- and medium-range NOEs, 3JHN alpha coupling constants, and hydrogen exchange patterns, define a topology consistent with a doubly wound (alpha/beta)5 fold. Interestingly, comparison of the secondary structure of Spo0F to the structure of the Escherichia coli response regulator, chemotaxis Y protein (CheY) (Volz K, Matsumura P, 1991, J Biol Chem 266:15511-15519; Bruix M et al., 1993, Eur J Biochem 215:573-585), show differences in the relative length of secondary structure elements that map onto a single face of the tertiary structure of CheY. This surface may define a region of binding specificity for response regulators. Magnesium titration of Spo0F, followed by amide chemical shift changes, gives an equilibrium dissociation constant of 20 +/- 5 mM. Amide resonances most perturbed by magnesium binding are near the putative site of phosphorylation, Asp 54. PMID:8528078

  6. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  7. Coordination Environment of a Site-Bound Metal Ion in the Hammerhead Ribozyme Determined by 15N and 2H ESEEM Spectroscopy

    PubMed Central

    Vogt, Matthew; Lahiri, Simanti; Hoogstraten, Charles G.; Britt, R. David; DeRose, Victoria J.

    2010-01-01

    Although site-bound Mg2+ ions have been proposed to influence RNA structure and function, establishing the molecular properties of such sites has been challenging due largely to the unique electrostatic properties of the RNA biopolymer. We have previously determined that, in solution, the hammerhead ribozyme (a self-cleaving RNA) has a high-affinity metal ion binding site characterized by a Kd,app < 10 µM for Mn2+ in 1 M NaCl and speculated that this site has functional importance in the ribozyme cleavage reaction. Here we determine both the precise location and the hydration level of Mn2+ in this site using ESEEM (electron spin–echo envelope modulation) spectroscopy. Definitive assignment of the high-affinity site to the activity-sensitive A9/G10.1 region is achieved by site-specific labeling of G10.1 with 15N guanine. The coordinated metal ion retains four water ligands as measured by 2H ESEEM spectroscopy. The results presented here show that a functionally important, specific metal binding site is uniquely populated in the hammerhead ribozyme even in a background of high ionic strength. Although it has a relatively high thermodynamic affinity, this ion remains partially hydrated and is chelated to the RNA by just two ligands. PMID:17177426

  8. Stimulated Anti-Echo Selection in Spatially Localized NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Ming; Smith, Ian C. P.

    1999-01-01

    Spectral localization using the stimulated-echo acquisition mode (STEAM) is one of the most popular methods in volume-localizedin vivoNMR spectroscopy. The localized volume signal is generated via stimulated echoes from spins excited by three 90° RF pulses, and the conventional STEAM sequence detects the stimulated-echo signal. From an analysis of the STEAM pulse sequence using the coherence transfer pathway formalism, stimulated anti-echoes are also formed by the same pulse sequence, which constitute the other half of the localized signal in the STEAM experiment. A new scheme of pulsed field gradients for the selection of stimulated anti-echoes was proposed, and localized spectroscopy in the stimulated anti-echo selection mode was achieved on a phantom and fromin vivorat brain.

  9. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  10. NMR doesn't lie or how solid-state NMR spectroscopy contributed to a better understanding of the nature and function of soil organic matter (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.

  11. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  12. Image-selected in Vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy

    NASA Astrophysics Data System (ADS)

    Ordidge, R. J.; Connelly, A.; Lohman, J. A. B.

    A method of spatial localization is described which is particularly suitable for the in vivo spectroscopic investigation of biological and medical samples. The technique overcomes most of the technical problems associated with localized NMR spectroscopy and allows the spectrum to be investigated from a cube which can be positioned by reference to an NMR image. The cube can be reduced or enlarged, and can be rapidly moved in space to investigate further volumes of interest within the sample. The first experimental results from a phantom and the human leg are presented.

  13. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  14. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and γ- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  15. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  16. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  17. 'Shim pulses' for NMR spectroscopy in inhomogeneous magneticfields

    SciTech Connect

    Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos; Pines, Alexander

    2004-05-19

    NMR spectroscopy conveys information about chemical structure through ppm-scale shifts of the resonance frequency depending on the chemical environment. In order to observe these small shifts, magnets with highly homogeneous magnetic field B{sub 0} are used. The high cost and large size of these magnets are a consequence of the requirement for high homogeneity. In this contribution we introduce a new method for recording high-resolution NMR spectra from samples in inhomogeneous B{sub 0}, opening up the possibility of exploiting magnets of lower homogeneity and cost. Instead of using the traditional B{sub 0} ''shim coils'', adiabatic radiofrequency (RF) pulse sequences and modulated B{sub 0} gradients generated by coils in the probe are used to produce ''shim pulses''. A great deal of work has been devoted to finding methods for retrieving chemical shift information even when B{sub 0} is inhomogeneous. One class of methods relies on zero- or multiple quantum coherences which evolve independently of B{sub 0}. These methods are inherently two-dimensional and the high-resolution information is obtained indirectly. In order to minimize experimental time it is desirable to acquire a high-resolution spectrum directly just as for traditional NMR in homogeneous fields. A further advantage with direct acquisition is that modification of already existing multidimensional NMR techniques is facilitated. A fundamentally different approach utilizes inhomogeneity of the RF magnetic field to periodically refocus the phase dispersion from the inhomogeneous B{sub 0}. With this technique a high-resolution spectrum can indeed be acquired in a single shot. The main drawback is the requirement for spatial matching between the RF and B{sub 0} inhomogeneities. Based on this latter technique we propose the use of ''shim pulses'', i.e. modulated, spatially constant, B{sub 0} gradient pulses together with spatially homogeneous adiabatic frequency sweeps to induce non-linear phase shifts in

  18. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  19. Multiplicative or t1 Noise in NMR Spectroscopy

    SciTech Connect

    Granwehr, Josef

    2005-01-25

    The signal in an NMR experiment is highly sensitive to fluctuations of the environment of the sample. If, for example, the static magnetic field B{sub 0}, the amplitude and phase of radio frequency (rf) pulses, or the resonant frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the spins is altered and becomes a noisy quantity itself. This kind of noise not only depends on the presence of a signal, it is in fact proportional to it. Since all the spins at a particular location in a sample experience the same environment at any given time, this noise primarily affects the reproducibility of an experiment, which is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which are known to be problematic with regard to their reproducibility, like flow experiments or experiments with a mobile target, tend to be affected stronger by multiplicative noise. In this article it is demonstrated how multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown, and strategies for the optimization of experiments are summarized.

  20. Study of aqueous humour by 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkadlecová, Marcela; Havlíček, Jaroslav; Volka, Karel; Souček, Petr; Karel, Ivan

    1999-05-01

    The aim of this work was to study the composition of the samples of human aqueous humour including the protein content. Using 1H NMR spectroscopy many compounds (proteins, glucose, lactate, citrate and other metabolites) can be identified and their concentrations evaluated using the internal standard. While the concentrations of non-proteins in aqueous humour were relatively stable, the amount of proteins differed much more. In most of the spectra, the signals of proteins were hardly distinguishable from the baseline. For some samples a significantly higher protein content (more than 1 mg/ml) was found. The total protein concentration expressed in albumin equivalents can be determined by comparing the spectra measured by S2PUL (standard measurement) and CPMG (protein suppression) pulse sequentions. For comparison, the spectra of rabbit and bovine aqueous humour are also given.

  1. Saturation in Deuteron Hadamard NMR Spectroscopy of Solids

    NASA Astrophysics Data System (ADS)

    Greferath, M.; Blumich, B.; Griffith, W. M.; Hoatson, G. L.

    Hadamard NMR was investigated for wide-line solid-state deuteron spectroscopy by numerical simulations and experiments on hexamethylbenzene. Similar signal-to-noise ratios were obtained at large filter bandwidths (500 kHz) by both the quadrupolar echo and the Hadamard methods, although the excitation power differs by up to four orders in magnitude. Increasing the excitation power leads to systematic, noise-like features in Hadamard spectra. In contrast to phase modulation, simulations indicate that for amplitude modulation of the pseudorandom excitation, the pulse sequence burns a saturation hole into the lineshape at the carrier frequency. Violation of the cyclicity requirement by introduction of a recycle delay between successive Hadamard scans results in a high-frequency noise contribution. Finite pulse widths are shown not to cause significant spectral distortions.

  2. NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases.

    PubMed

    Peti, Wolfgang; Page, Rebecca

    2016-01-01

    NMR spectroscopy and other solution methods are increasingly being used to obtain novel insights into the mechanisms by which MAPK regulatory proteins bind and direct the activity of MAPKs. Here, we describe how interactions between the MAPK p38α and its regulatory proteins are studied using NMR spectroscopy, isothermal titration calorimetry, and small angle X-ray scattering (SAXS). PMID:27514807

  3. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…

  4. Applications of high-resolution solid-state NMR spectroscopy in food science.

    PubMed

    Bertocchi, Fabio; Paci, Maurizio

    2008-10-22

    The principal applications of high-resolution solid-state NMR spectroscopy, in the field of food science, are reviewed, after a short general introduction, mainly focusing on the potential of these investigations, which are, today, routine tools for resolving technological problems. Selected examples of the applications in the field of food science of high-resolution solid-state NMR spectroscopy both in (13)C and in (1)H NMR particularly illustrative of the results obtainable are reported in some detail.

  5. Strategy for the study of paramagnetic proteins with slow electronic relaxation rates by nmr spectroscopy: application to oxidized human [2Fe-2S] ferredoxin.

    PubMed

    Machonkin, Timothy E; Westler, William M; Markley, John L

    2004-05-01

    NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for

  6. N,N-Di- n-octyl- N,N-dimethyl and N,N-di- n-nonyl- N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical characterization

    NASA Astrophysics Data System (ADS)

    Kolehmainen, Erkki; Lahtinen, Manu; Valkonen, Arto; Behera, Babita; Kauppinen, Reijo

    2009-07-01

    N,N-Di- n-octyl- N,N-dimethyl cholate ( 1) and N,N-di- n-nonyl- N,N-dimethyl ammonium cholate ( 2) have been prepared by crystallization from equimolar mixtures of sodium cholate and quaternary N,N-di- n-alkyl- N,N-dimethyl ( n-octyl or n-nonyl) ammonium bromides. The formed crystalline materials have been structurally characterized by 13C and 15N cross polarization magic angle spinning (CPMAS) NMR, powder X-ray diffraction (PXRD) and thermoanalytical (TGA/DTA and DSC) methods and compared with each other. Powder X-ray diffraction patterns of 1 and 2 reveal clear similarities. Combined with the thermoanalytical data of these structures an existence of two hydrated polymorphs (most probably mono- and dihydrates) can be proposed. This presumption is further supported by 13C CPMAS NMR showing clearly double resonances for the carboxylic and majority of other carbons in these quaternary ammonium cholates. Owing to the endogenous character of cholate anion these ionic structures possess great potential in many pharmaceutical applications such as controlled drug delivery.

  7. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.

    PubMed

    Peterson, F C; Gordon, N C; Gettins, P G

    2000-10-01

    A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no

  8. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.

    2004-01-01

    Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.

  9. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  10. Ion counting in supercapacitor electrodes using NMR spectroscopy.

    PubMed

    Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2014-01-01

    (19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.

  11. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. PMID:24347399

  12. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution.

  13. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring

    NASA Astrophysics Data System (ADS)

    Maiwald, Michael; Fischer, Holger H.; Kim, Young-Kyu; Albert, Klaus; Hasse, Hans

    2004-02-01

    On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring.

  14. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  15. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products.

    PubMed

    Kumar, Dinesh

    2016-09-01

    NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions.

  16. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  17. Communication: Phase incremented echo train acquisition in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Walder, Brennan J.; Keeler, Eric G.; Kaseman, Derrick C.; Sanders, Kevin J.; Grandinetti, Philip J.

    2012-06-01

    We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ϕP, is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ϕP, converts the ϕP dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

  18. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function. PMID:27552739

  19. beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine.

    PubMed

    Moolenaar, S H; Göhlich-Ratmann, G; Engelke, U F; Spraul, M; Humpfer, E; Dvortsak, P; Voit, T; Hoffmann, G F; Bräutigam, C; van Kuilenburg, A B; van Gennip, A; Vreken, P; Wevers, R A

    2001-11-01

    In this work, NMR investigations that led to the discovery of a new inborn error of metabolism, beta-ureidopropionase (UP) deficiency, are reported. 1D (1)H-NMR experiments were performed using a patient's urine. 3-Ureidopropionic acid was observed in elevated concentrations in the urine spectrum. A 1D (1)H-(1)H total correlation spectroscopy (TOCSY) and two heteronuclear 2D NMR techniques (heteronuclear multiple bond correlation (HMBC) and heteronuclear single-quantum correlation (HSQC)) were used to identify the molecular structure of the compound that caused an unknown doublet resonance at 1.13 ppm. Combining the information from the various NMR spectra, this resonance could be assigned to 3-ureidoisobutyric acid. These observations suggested a deficiency of UP. With 1D (1)H-NMR spectroscopy, UP deficiency can be easily diagnosed. The (1)H-NMR spectrum can also be used to diagnose patients suffering from other inborn errors of metabolism in the pyrimidine degradation pathway.

  20. Mobility and Diffusion-Ordered Two-Dimensional NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morris, Kevin Freeman

    Mobility and diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy experiments have been developed for the analysis of mixtures. In the mobility -ordered experiments, the full range of positive and negative electrophoretic mobilities is displayed in one dimension and chemical shifts are displayed in the other. A concentric cylindrical tube electrophoresis chamber was designed to reduce the effective pathlength for current and to provide unidirectional flow for ions of interest. Techniques based upon the reverse precession method were also implemented to recover the signs of the mobilities and improved resolution in the mobility dimension was obtained by replacing Fourier transformation of truncated data sets with a linear prediction analysis. In the diffusion-ordered two-dimensional NMR experiments, the conventional chemical shift spectrum is resolved in one dimension and spectra of diffusion rates or molecular radii are resolved in the other. Diffusion dependent pulsed field gradient NMR data sets were inverted by means of the computer programs SPLMOD or DISCRETE, when discrete diffusion coefficients were present, and CONTIN when continuous distributions were present. Since the inversion is ill -conditioned, it was necessary to introduce additional information to limit the range of the solutions. In addition to prior knowledge of the decay kernels and non-negativity of amplitudes and damping constants, a set of rejection criteria was constructed for the discrete analysis case that took into account physical limits on diffusion coefficients, experimentally accessible values, and variations in effective decay kernels resulting from instrumental non-linearities. Examples of analyses of simulated data and experimental data for mixtures are presented as well as two-dimensional spectra generated by CONTIN for polydisperse polymer samples. Also, resolution in the diffusion dimension was increased by performing experiments on hydrophobic molecules in

  1. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  2. Single-shot titrations and reaction monitoring by slice-selective NMR spectroscopy.

    PubMed

    Niklas, T; Stalke, D; John, M

    2015-01-25

    A new method, based on slice-selective NMR spectroscopy of inhomogeneous mixtures, is introduced to perform NMR titrations and reaction monitoring in a single experiment. The method was applied to the titration of a lithium salt with 12-crown-4, and to the reaction of nBuLi with N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDTA).

  3. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  4. Disentangling crystallographic inequivalence and crystallographic forms of L-arginine by one- and two-dimensional solid-state NMR spectroscopy.

    PubMed

    Herbert-Pucheta, Jose-Enrique; Colaux, Henri; Bodenhausen, Geoffrey; Tekely, Piotr

    2011-12-29

    Overlapping (13)C or (15)N solid-state NMR spectra from crystallographically different forms of L-arginine hydrochloride can be separated by exploiting differential proton T(1) relaxation in conjunction with cross-polarization. Dipolar (13)C-(13)C and (15)N-(15)N two-dimensional correlation experiments reveal resonances belonging to crystallographically and magnetically inequivalent molecules.

  5. Characterization of protein hydration by solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wand, Joshua

    A comprehensive understanding of the interactions between protein molecules and hydration water remains elusive. Solution nuclear magnetic resonance (NMR) spectroscopy has been proposed as a means to characterize these interactions but is plagued with artifacts when employed in bulk aqueous solution. Encapsulation of proteins in reverse micelles prepared in short chain alkane solvents can overcome these technical limitations. Application of this approach has revealed that the interaction of water with the surface of protein molecules is quite heterogeneous with some regions of the protein having long-lived interactions while other regions show relatively transient hydration. Results from several proteins will be presented including ubiquitin, staphylococcal nuclease, interleukin 1beta, hen egg white lysozyme (HEWL) and T4 lysozyme. Ubiquitin and interleukin 1beta are signaling proteins and interact with other proteins through formation of dry protein-protein interfaces. Interestingly, the protein surfaces of the free proteins show relatively slowed (restricted) motion at the surface, which is indicative of low residual entropy. Other regions of the protein surface have relatively high mobility water. These results are consistent with the idea that proteins have evolved to maximize the hydrophobic effect in optimization of binding with protein partners. As predicted by simulation and theory, we find that hydration of internal hydrophobic cavities of interleukin 1beta and T4 lysozyme is highly disfavored. In contrast, the hydrophilic polar cavity of HEWL is occupied by water. Initial structural correlations suggest that hydration of alpha helical structure is characterized by relatively mobile water while those of beta strands and loops are more ordered and slowed. These and other results from this set of proteins reveals that the dynamical and structural character of hydration of proteins is heterogeneous and complex. Supported by the National Science Foundation.

  6. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  7. (17)O NMR and Raman Spectroscopies of Green Tea Infusion with Nanomaterial to Investigate Their Properties.

    PubMed

    Zhou, Changyan; Zhang, Huiping; Yan, Ying; Zhang, Xinya

    2016-09-01

    (17)O NMR and Raman spectrograms of green tea infusions with nanomaterial were investigated. Different green tea infusions were prepared by steeping tea powder with different concentrations of nanomaterial aqueous solution. The tea infusions were tested with (17)O NMR and Raman spectroscopies. The (17)O NMR results showed that line width increased to 90 in the tea infusions after nanomaterial was added as a result of the effects of the self-association of Ca(2+) and tea polyphenol. The results of Raman spectroscopy showed that, in tea infusions, the enhancement of C─C and C─O stretching vibrations suggest an increase in the number of effective components in water.

  8. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    SciTech Connect

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  9. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  10. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    PubMed

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  11. Applications of high resolution /sup 3/H NMR spectroscopy

    SciTech Connect

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of ..beta..-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs. (DLC)

  12. Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Yan, Si; Sun, Shangjin; Han, Yun; Byeon, In-Ja L.; Ahn, Jinwoo; Concel, Jason; Samoson, Ago; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    We present a family of homonuclear 13C-13C magic angle spinning spin diffusion experiments, based on R2nv (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for 13C-13C correlation spectroscopy in biological and organic systems, and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R211, R221, and R222 sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2nv display different polarization transfer efficiency-dependencies on isotropic chemical shift differences: R221 recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R211 and R222 exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10–20 kHz), all R2nv sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-13C,15N]-alanine and the [U-13C,15N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-13C,15N CA protein, U-13C,15N enriched dynein light chain DLC8, and sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2nv symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy. PMID:21361320

  13. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  14. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    PubMed Central

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-01-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40–100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  15. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  16. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    SciTech Connect

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  17. Rapid screening for structural integrity of expressed proteins by heteronuclear NMR spectroscopy.

    PubMed Central

    Gronenborn, A. M.; Clore, G. M.

    1996-01-01

    A simple and rapid method based on 15N labeling and 1H-15N heteronuclear single quantum coherence spectroscopy is presented to directly assess the structural integrity of overexpressed proteins in crude Escherichia coli extracts without the need for any purification. The method is demonstrated using two different expression systems and two different proteins, the B1 immunoglobulin-binding domain of streptococcal protein G (56 residues) and human interleukin-1 beta (153 residues). It is shown that high quality 1H-15N correlation spectra, recorded in as little as 15 min and displaying only cross-peaks arising from the overexpressed protein of interest, can be obtained from crude E. coli extracts. PMID:8771212

  18. Measurement of longitudinal relaxation times in crowded 1H NMR spectra using one- and two-dimensional maximum quantum (MAXY) NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Ye, Chaohui; Farrant, R. Duncan; Nicholson, Jeremy K.; Lindon, John C.

    Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH31H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.

  19. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  20. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  1. Heteronuclear Cross-Relaxation Effects in the NMR Spectroscopy of Hyperpolarized Targets

    PubMed Central

    Donovan, Kevin J.; Lupulescu, Adonis; Frydman, Lucio

    2016-01-01

    Dissolution DNP enables high-sensitivity solution phase NMR experiments on long-lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution-state 1H NMR, upon polarizing low-γ nuclear species. Following solid state hyperpolarization of both 13C and 1H, solution-phase 1H NMR experiments on dissolved samples revealed transient effects whereby peaks arising from protons bonded to the naturally-occurring 13C nuclei, appeared larger than the typically dominant 12C-bonded 1H resonances. This enhancement of the satellite-peaks was examined in detail, with respect to a variety of mechanisms that could potentially originate it. Both two- and three-spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross-relaxation models were examined, and found to describe well the distinct patterns of growth and decay shown by the 13C-bound 1H NMR satellite resonances. The dynamics of these novel cross-relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced-sensitivity 1H NMR traces, is explored. PMID:24403222

  2. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    SciTech Connect

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  3. Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy

    PubMed Central

    Bartnik-Olson, Brenda L.; Harris, Neil G.; Shijo, Katsunori; Sutton, Richard L.

    2013-01-01

    The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of 13C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how 13C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. 13C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from 13C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle. PMID:24109452

  4. DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm

    SciTech Connect

    Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |

    1995-07-01

    This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.

  5. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  6. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    PubMed

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

  7. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  8. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  9. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  10. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes.

    PubMed

    Brauckmann, J Ole; Janssen, J W G Hans; Kentgens, Arno P M

    2016-02-14

    To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

  11. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  12. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  13. Water behavior in bacterial spores by deuterium NMR spectroscopy.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Johnson, Karen; Thomas, Kieth J; Middaugh, Amy N; Garimella, Ravindranath; Powell, Douglas R; Vaishampayan, Parag A; Rice, Charles V

    2014-07-31

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium-hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water.

  14. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  15. Citron and lemon under the lens of HR-MAS NMR spectroscopy.

    PubMed

    Mucci, Adele; Parenti, Francesca; Righi, Valeria; Schenetti, Luisa

    2013-12-01

    High Resolution Magic Angle Spinning (HR-MAS) is an NMR technique that can be applied to semi-solid samples. Flavedo, albedo, pulp, seeds, and oil gland content of lemon and citron were studied through HR-MAS NMR spectroscopy, which was used directly on intact tissue specimens without any physicochemical manipulation. HR-MAS NMR proved to be a very suitable technique for detecting terpenes, sugars, organic acids, aminoacids and osmolites. It is valuable in observing changes in sugars, principal organic acids (mainly citric and malic) and ethanol contents of pulp specimens and this strongly point to its use to follow fruit ripening, or commercial assessment of fruit maturity. HR-MAS NMR was also used to derive the molar percentage of fatty acid components of lipids in seeds, which can change depending on the Citrus species and varieties. Finally, this technique was employed to elucidate the metabolic profile of mold flavedo. PMID:23871074

  16. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    PubMed

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  17. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  18. Structure determination of helical filaments by solid-state NMR spectroscopy

    PubMed Central

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  19. Use of NMR saturation transfer difference spectroscopy to study ligand binding to membrane proteins.

    PubMed

    Venkitakrishnan, Rani Parvathy; Benard, Outhiriaradjou; Max, Marianna; Markley, John L; Assadi-Porter, Fariba M

    2012-01-01

    Detection of weak ligand binding to membrane-spanning proteins, such as receptor proteins at low physiological concentrations, poses serious experimental challenges. Saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy offers an excellent way to surmount these problems. As the name suggests, magnetization transferred from the receptor to its bound ligand is measured by directly observing NMR signals from the ligand itself. Low-power irradiation is applied to a (1)H NMR spectral region containing protein signals but no ligand signals. This irradiation spreads quickly throughout the membrane protein by the process of spin diffusion and saturates all protein (1)H NMR signals. (1)H NMR signals from a ligand bound transiently to the membrane protein become saturated and, upon dissociation, serve to decrease the intensity of the (1)H NMR signals measured from the pool of free ligand. The experiment is repeated with the irradiation pulse placed outside the spectral region of protein and ligand, a condition that does not lead to saturation transfer to the ligand. The two resulting spectra are subtracted to yield the difference spectrum. As an illustration of the methodology, we review here STD-NMR experiments designed to investigate binding of ligands to the human sweet taste receptor, a member of the large family of G-protein-coupled receptors. Sweetener molecules bind to the sweet receptor with low affinity but high specificity and lead to a variety of physiological responses.

  20. Structure determination of helical filaments by solid-state NMR spectroscopy.

    PubMed

    He, Lichun; Bardiaux, Benjamin; Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-19

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.

  1. Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy.

    PubMed

    Nagaraj, Madhu; Franks, Trent W; Saeidpour, Siavash; Schubeis, Tobias; Oschkinat, Hartmut; Ritter, Christiane; van Rossum, Barth-Jan

    2016-07-15

    Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT. PMID:27147408

  2. (17)O NMR and Raman Spectroscopies of Green Tea Infusion with Nanomaterial to Investigate Their Properties.

    PubMed

    Zhou, Changyan; Zhang, Huiping; Yan, Ying; Zhang, Xinya

    2016-09-01

    (17)O NMR and Raman spectrograms of green tea infusions with nanomaterial were investigated. Different green tea infusions were prepared by steeping tea powder with different concentrations of nanomaterial aqueous solution. The tea infusions were tested with (17)O NMR and Raman spectroscopies. The (17)O NMR results showed that line width increased to 90 in the tea infusions after nanomaterial was added as a result of the effects of the self-association of Ca(2+) and tea polyphenol. The results of Raman spectroscopy showed that, in tea infusions, the enhancement of C─C and C─O stretching vibrations suggest an increase in the number of effective components in water. PMID:27461881

  3. Investigation of the reaction of 1,3-dimethylurea with formaldehyde by quantitative on-line NMR spectroscopy: a model for the urea-formaldehyde system.

    PubMed

    Steinhof, Oliver; Scherr, Günter; Hasse, Hans

    2016-06-01

    Quantitative on-line NMR spectroscopy is applied to study equilibria and reaction kinetics of the reaction of formaldehyde with 1,3-dimethylurea. This reaction system serves as a model system for the much more complex but industrially relevant urea-formaldehyde system. The aim is to study individual reactions and intermediates. The 1,3-dimethylurea-formaldehyde system undergoes only four reactions and, unlike urea-formaldehyde, does not form polymers. The following reactions are studied in detail: (1) the hydroxymethylation, (2) the formation of hemiformals of the hydroxymethylated intermediate, and (3) two condensation reactions of which the first leads to methylene bridges, the other to ether bridges. NMR spectroscopic chemical shift data of the reacting species are provided for the (1) H, (13) C, and (15) N domains. Equilibrium data of reactions (1), (2), and (3) are determined by quantitative (1) H and (13) C NMR spectroscopy at molar ratios of formaldehyde to 1,3-dimethylurea between 1:2 and 16:1 at a pH value of 8.5. Reaction kinetic experiments using an NMR spectrometer coupled to a batch reactor led to a reaction kinetic model parametrized with true species concentrations. The model takes into account reactions (1), (2), and (3). It describes the reaction system well for molar ratios of 1:1, 2:1, and 4:1, temperatures of 303 to 333K, and pH values from 5.0 to 9.5. Dilution experiments with a micro mixer coupled to the NMR spectrometer are conducted to estimate the time to equilibrium of reaction (2) of which the time constant is significantly lower than those of reactions (1) and (3). Copyright © 2015 John Wiley & Sons, Ltd.

  4. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  5. In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy

    SciTech Connect

    Hong, Y.; Kaerger, J.; Hunger, B. ); Feoktistova, N.N.; Zhdanov, S.P. )

    1992-09-01

    Pulsed-field gradient (PFG) NMR spectroscopy is applied to study the intracrystalline diffusivity of the reactant and product molecules during the conversion of cyclopropane to propene in Zeolite X. The diffusivities are found to be large enough that any influence of intracrystalline diffusion on the overall reaction in flow reactors may be excluded.

  6. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  7. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  8. En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy.

    PubMed

    Hennig, Andreas; Dietrich, Paul M; Hemmann, Felix; Thiele, Thomas; Borcherding, Heike; Hoffmann, Angelika; Schedler, Uwe; Jäger, Christian; Resch-Genger, Ute; Unger, Wolfgang E S

    2015-03-21

    The fluorine content of polymer particles labelled with 2,2,2-trifluoroethylamine was reliably quantified with overlapping sensitivity ranges by XPS and solid-state NMR. This provides a first step towards reference materials for the metrological traceability of surface group quantifications. The extension of this concept to fluorescence spectroscopy is illustrated.

  9. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  10. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  11. NMR Spectroscopy of Aqueous Extracts of Fenugreek ( Trigonella foenum- graecum L.)

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Matveichuk, S. V.; Karankevich, E. G.; Agabalaeva, E. D.; Reshetnikov, V. N.

    2014-09-01

    The amino-acid and monosaccharide compositions of aqueous extracts of fenugreek herb were determined using PMR and 13C NMR spectroscopy. The content of identified extract constituents was >70 mol%, of which the dominant amino acid was 4-hydroxyisoleucine (26.5 mol%); the major carbohydrate, glucose (10.1 mol%).

  12. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  13. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  14. New insights into the structure and chemistry of Titan's tholins via 13C and 15N solid state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Derenne, S.; Coelho, C.; Anquetil, C.; Szopa, C.; Quirico, E.; Bonhomme, C.

    2012-09-01

    Titan, the largest moon of Saturn, is characterized by a dense atmosphere, mainly composed of N2 (ca. 97 %) and CH4 (ca. 2 %). In the upper atmosphere, methane and nitrogen molecules undergo dissociation under the influence of solar UV radiation and electron impacts, followed by recombination reactions leading to a large variety of organic molecules. Some of these compounds form a thick, orange-coloured haze composed of solid organic aerosols that subsequently fall to the surface or remain in suspension in the atmosphere. To gain insight into the chemical composition and structural nature of these complex organic compounds, analogous materials, termed Titan's tholins, are produced in the laboratory, in particular using plasma discharge in gaseous N2 - CH4 mixtures with similar proportions as in Titan's atmosphere. Titan's tholins have been analysed using a wide variety of techniques which provided a wealth of information about potential functional groups and structural building blocks present within the tholin samples. Taken together, the results converge on a structure based on a CxHyNz chemistry that can contain a variety of C-C, C-N, N-H etc single or multiple bonds. It is now necessary to build on that information to refine the chemical and structural models for the Titan's tholins. Here we used solid state NMR techniques to investigate the carbon and nitrogen bonding environments in a 13C- and 15Nenriched sample.

  15. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit. PMID:25796244

  16. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit.

  17. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-01

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  18. Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy.

    PubMed

    Fernandez, Ana Belen; Lezcano-Gonzalez, Ines; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2009-07-01

    The Beckmann rearrangement of acetophenone oxime using zeolite H-beta and silicalite-N as catalysts has been investigated by means of (15)N and (13)C solid state NMR spectroscopy in combination with theoretical calculations. The results obtained show that the oxime is N-protonated at room temperature on the acid sites of zeolite H-beta. At reaction temperatures of 423 K or above, the two isomeric amides, acetanilide and N-methyl benzamide (NMB) are formed, and interact with the Brønsted acid sites of zeolite H-beta through hydrogen bonds. The presence of residual water hydrolyzes the two amides, while larger amounts inhibit the formation of NMB and cause the total hydrolysis of the acetanilide. Over siliceous zeolite silicalite-N, containing silanol nests as active sites, the oxime is adsorbed through hydrogen bonds and only acetanilide is formed at reaction temperatures of 423 K or above. In the presence of water, the reaction starts at 473 K, still being very selective up to 573 K, and the amide is partially hydrolyzed only above this temperature . PMID:19562146

  19. Analyzing protein folding cooperativity by differential scanning calorimetry and NMR spectroscopy.

    PubMed

    Farber, Patrick; Darmawan, Hariyanto; Sprules, Tara; Mittermaier, Anthony

    2010-05-01

    Some marginally stable proteins undergo microsecond time scale folding reactions that involve significant populations of partly ordered forms, making it difficult to discern individual steps in their folding pathways. It has been suggested that many of these proteins fold non-cooperatively, with no significant barriers to separate the energy landscape into distinct thermodynamic states. Here we present an approach for studying the cooperativity of rapid protein folding with a combination of differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) relaxation dispersion experiments, and an analysis of the temperature dependence of amide (1)H and (15)N chemical shifts. We applied this method to the PBX homeodomain (PBX-HD), which folds on the microsecond time scale and produces a broad DSC thermogram with an elevated and steeply sloping native-state heat capacity baseline, making it a candidate for barrierless folding. However, by globally fitting the NMR thermal melt and DSC data, and by comparing these results to those obtained from the NMR relaxation dispersion experiments, we show that the native form of the protein undergoes two-state exchange with a small population of the thermally denatured form, well below the melting temperature. This result directly demonstrates the coexistence of distinct folded and unfolded forms and firmly establishes that folding of PBX-HD is cooperative. Further, we see evidence of large-scale structural and dynamical changes within the native state by NMR, which helps to explain the broad and shallow DSC profile. This study illustrates the potential of combining calorimetry with NMR dynamics experiments to dissect mechanisms of protein folding.

  20. Symmetrization of cationic hydrogen bridges of protonated sponges induced by solvent and counteranion interactions as revealed by NMR spectroscopy.

    PubMed

    Pietrzak, Mariusz; Wehling, Jens P; Kong, Shushu; Tolstoy, Peter M; Shenderovich, Ilya G; López, Concepción; Claramunt, Rosa María; Elguero, José; Denisov, Gleb S; Limbach, Hans-Heinrich

    2010-02-01

    The properties of the intramolecular hydrogen bonds of doubly (15)N-labeled protonated sponges of the 1,8-bis(dimethylamino)naphthalene (DMANH(+)) type have been studied as a function of the solvent, counteranion, and temperature using low-temperature NMR spectroscopy. Information about the hydrogen-bond symmetries was obtained by the analysis of the chemical shifts delta(H) and delta(N) and the scalar coupling constants J(N,N), J(N,H), J(H,N) of the (15)NH(15)N hydrogen bonds. Whereas the individual couplings J(N,H) and J(H,N) were averaged by a fast intramolecular proton tautomerism between two forms, it is shown that the sum |J(N,H)+J(H,N)| generally represents a measure of the hydrogen-bond strength in a similar way to delta(H) and J(N,N). The NMR spectroscopic parameters of DMANH(+) and of 4-nitro-DMANH(+) are independent of the anion in the case of CD(3)CN, which indicates ion-pair dissociation in this solvent. By contrast, studies using CD(2)Cl(2), [D(8)]toluene as well as the freon mixture CDF(3)/CDF(2)Cl, which is liquid down to 100 K, revealed an influence of temperature and of the counteranions. Whereas a small counteranion such as trifluoroacetate perturbed the hydrogen bond, the large noncoordinating anion tetrakis[3,5-bis(trifluoromethyl)phenyl]borate B[{C(6)H(3)(CF(3))(2)}(4)](-) (BARF(-)), which exhibits a delocalized charge, made the hydrogen bond more symmetric. Lowering the temperature led to a similar symmetrization, an effect that is discussed in terms of solvent ordering at low temperature and differential solvent order/disorder at high temperatures. By contrast, toluene molecules that are ordered around the cation led to typical high-field shifts of the hydrogen-bonded proton as well as of those bound to carbon, an effect that is absent in the case of neutral NHN chelates. PMID:20024986

  1. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  2. Urinary metabolic fingerprint of acute intermittent porphyria analyzed by (1)H NMR spectroscopy.

    PubMed

    Carichon, Mickael; Pallet, Nicolas; Schmitt, Caroline; Lefebvre, Thibaud; Gouya, Laurent; Talbi, Neila; Deybach, Jean Charles; Beaune, Philippe; Vasos, Paul; Puy, Hervé; Bertho, Gildas

    2014-02-18

    (1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks. PMID:24437734

  3. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy

    PubMed Central

    Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.

    2016-01-01

    ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351

  4. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  5. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  6. Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy

    SciTech Connect

    Hu, Yan-Yan; Levin, E.M; Schmidt-Rohr, Klaus

    2009-06-02

    High-resolution magic-angle spinning NMR of high-Z spin- 1/2 nuclei such as {sup 125}Te, {sup 207}Pb, {sup 119}Sn, {sup 113}Cd, and {sup 195}Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90{sup o} pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for long pulses (comparable to the dwell time in t{sub 1}) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 {gamma}B{sub 1}, due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.

  7. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  8. Rapid assignment of solution 31P NMR spectra of large proteins by solid-state spectroscopy.

    PubMed

    Iuga, Adriana; Spoerner, Michael; Ader, Christian; Brunner, Eike; Kalbitzer, Hans Robert

    2006-07-21

    The application of the (31)P NMR spectroscopy to large proteins or protein complexes in solution is hampered by a relatively low intrinsic sensitivity coupled with large line widths. Therefore, the assignment of the phosphorus signals by two-dimensional NMR methods in solution is often extremely time consuming. In contrast, the quality of solid-state NMR spectra is not dependent on the molecular mass and the solubility of the protein. For the complex of Ras with the GTP-analogue GppCH(2)p we show solid-state (31)P NMR methods to be more sensitive by almost one order of magnitude than liquid-state NMR. Thus, solid-state NMR seems to be the method of choice for obtaining the resonance assignment of the phosphorus signals of protein complexes in solution. Experiments on Ras.GDP complexes show that the microcrystalline sample can be substituted by a precipitate of the sample and that unexpectedly the two structural states observed earlier in solution are present in crystals as well.

  9. Synthesis and proton NMR spectroscopy of intra-vesicular gamma-aminobutyric acid (GABA).

    PubMed

    Wang, Luke Y-J; Tong, Rong; Kohane, Daniel S

    2013-01-01

    We report the synthesis of vesicles containing gamma-aminobutyric acid (GABA), and their proton nuclear magnetic resonance ((1)H NMR) spectra. These vesicles were constructed to more closely mimic the intracellular environment wherein GABA exists. For this study, these GABA-containing vesicles were examined under (1)H NMR as a potential platform for future studies on the differences between aqueous phantoms, ex vivo brain extracts, and in vivo magnetic resonance spectroscopy results. We found that intra-vesicular GABA faithfully yielded the chemical shifts and J-coupling constants of free aqueous GABA, alongside the chemical shift signals of the vesicle wall.

  10. Bis(pentamethylcyclopentadienyl)ytterbium: An investigation of weak interactions in solution using multinuclear NMR spectroscopy

    SciTech Connect

    Schwartz, D.J.

    1995-07-01

    NMR spectroscopy is ideal for studying weak interactions (formation enthalpy {le}20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*{sub 2}Yb, is ideal for this purpose. cis-P{sub 2}PtH{sub 2}complexes (P = phosphine) were used to produce slow-exchange Cp*{sub 2}YbL adducts for NMR study. Reversible formation of (P{sub 2}PtH){sub 2} complexes from cis-P{sub 2}PtH{sub 2} complexes were also studied, followed by interactions of Cp*{sub 2}Yb with phosphines, R{sub 3}PX complexes. A NMR study was done on the interactions of Cp*{sub 2}Yb with H{sub 2}, CH{sub 4}, Xe, CO, silanes, stannanes, C{sub 6}H{sub 6}, and toluene.

  11. NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization.

    PubMed

    Chow, W Ying; Rajan, Rakesh; Muller, Karin H; Reid, David G; Skepper, Jeremy N; Wong, Wai Ching; Brooks, Roger A; Green, Maggie; Bihan, Dominique; Farndale, Richard W; Slatter, David A; Shanahan, Catherine M; Duer, Melinda J

    2014-05-16

    Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach. PMID:24833391

  12. (1)H and DOSY NMR spectroscopy analysis of Ligusticum porteri rhizome extracts.

    PubMed

    León, Alejandra; Chávez, María Isabel; Delgado, Guillermo

    2011-08-01

    The presence of dimeric phthalides and other constituents in extracts of the vegetal species Ligusticum porteri was established by NMR spectroscopy. In comparative qualitative (1)H NMR analyses of acetone extracts of rhizomes from fresh and dried L. porteri samples, we found that the dimeric phthalides tokinolide B (3), diligustilide (4) and riligustilide (5) were naturally produced by the plant and not post-harvest products. We also obtained DOSY (1)H NMR data that provided both virtual separation and structural information for the phthalides present in a dry acetone extract of L. porteri. In addition, we developed a protocol for the quantification of dimeric phthalides, which is performed by calculating the relative ratio of the peak area of selected proton signals for some compounds with respect to the known signal of the internal standard, 4-dimethylaminopyridine. The protocol allows the rapid and direct quantification of dimeric phthalides and others constituents in fresh L. porteri rhizomes. PMID:21761449

  13. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  14. Structures of larger proteins in solution: Three- and four-dimensional heteronuclear NMR spectroscopy

    SciTech Connect

    Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.

  15. In vivo dephosphorylation of WR-2721 monitored by 31P NMR spectroscopy

    SciTech Connect

    Knizner, S.A.; Jacobs, A.J.; Lyon, R.C.; Swenberg, C.E.

    1986-01-01

    The in vivo dephosphorylation of the radioprotective agent S-2-(3-(aminopropylamino))ethylphosphorothioic acid (WR-2721) in male CD2F1 mice was measured by 31P NMR spectroscopy after i.p. injection. The disappearance of the WR-2721 phosphate NMR signal with time was concurrent with an increase and splitting of the inorganic phosphate NMR signal. The more acidic inorganic phosphate resonance is shown to be attributed to phosphate (inorganic phosphate) in the urine. Using regression first-order kinetic analysis of data, after i.p. injection of 600 mg/kg, the half-life of WR-2721 was determined to be 40.9 +/- 5.9 (S.D.) min (n = 10).

  16. Chemical-shift-resolved ¹⁹F NMR spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-enhanced diagonal suppressed correlation spectroscopy.

    PubMed

    George, Christy; Chandrakumar, Narayanan

    2014-08-01

    Overhauser-DNP-enhanced homonuclear 2D (19)F correlation spectroscopy with diagonal suppression is presented for small molecules in the solution state at moderate fields. Multi-frequency, multi-radical studies demonstrate that these relatively low-field experiments may be operated with sensitivity rivalling that of standard 200-1000 MHz NMR spectroscopy. Structural information is accessible without a sensitivity penalty, and diagonal suppressed 2D NMR correlations emerge despite the general lack of multiplet resolution in the 1D ODNP spectra. This powerful general approach avoids the rather stiff excitation, detection, and other special requirements of high-field (19)F NMR spectroscopy.

  17. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  18. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.

    PubMed

    Ashbrook, Sharon E; Dawson, Daniel M

    2013-09-17

    Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide

  19. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  20. Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy.

    PubMed Central

    Fushman, D; Cahill, S; Lemmon, M A; Schlessinger, J; Cowburn, D

    1995-01-01

    The pleckstrin homology (PH) domain is a recognition motif thought to be involved in signal-transduction pathways controlled by a variety of cytoplasmic proteins. Assignments of nearly all 1H, 13C, and 15N resonances of the PH domain from dynamin have been obtained from homonuclear and heteronuclear NMR experiments. The secondary structure has been elucidated from the pattern of nuclear Overhauser enhancements, from 13C chemical shift deviations, and from observation of slowly exchanging amide hydrogens. The secondary structure contains one alpha-helix and eight beta-strands, seven of which are arranged in two contiguous, antiparallel beta-sheets. The structure is monomeric, in contrast to the well-defined intimate dimerization of the crystal structure of this molecule. Residues possibly involved in ligand binding are in apparently flexible loops. Steady-state 15N(1H) nuclear Overhauser effect measurements indicate unequivocally the boundaries of this PH domain, and the structured portion of the domain appears to be more extended to the C terminus than previously suggested for other PH domains. Images Fig. 3 PMID:7846058

  1. Structural characterization of selenosubtilisin by sup 77 Se-NMR spectroscopy

    SciTech Connect

    House, K.L.; Dunlap, R.B.; Odom, J.D.; Wu, Z.P.; Hilvert. D. Research Inst. of Scripps Clinic, La Jolla, CA )

    1991-03-15

    Selenosubtilisin is an artificial enzyme containing an active site selenocysteine residue. In this environment the selenium atom is a valuable probe of structure-function relationships and also confers novel redox and hydrolytic properties to the original protease template. The authors have used {sup 77}Se NMR spectroscopy to characterize different oxidation states of {sup 77}Se isotopically enriched selenosubtilisin. The oxidized form of the enzyme exhibits a {sup 77}Se resonance at 1,189 ppm. This is in good agreement with the {sup 77}Se chemical shifts for model seleninic acids, confirming that the prosthetic group is in the seleninic acid oxidation state. On treatment of the oxidized enzyme with three equivalents of 3-carboxy-4-nitrobenzenethiol at pH 5.0, they observe the enzyme bound selenenyl sulfide at 388.5 ppm. This work demonstrates the utility of {sup 77}Se NMR spectroscopy for examining structure-function relationships of selenium containing proteins.

  2. Biogenic phosphorus in oligotrophic mountain lake sediments: differences in composition measured with NMR spectroscopy.

    PubMed

    Ahlgren, Joakim; Reitzel, Kasper; Danielsson, Rolf; Gogoll, Adolf; Rydin, Emil

    2006-12-01

    Phosphorus (P) composition in alkaline sediment extracts from three Swedish oligotrophic mountain lakes was investigated using 31P-NMR spectroscopy. Surface sediments from one natural lake and two mature reservoirs, one of which has received nutrient additions over the last 3 years, were compared with respect to biogenic P composition. The results show significant differences in the occurrence of labile and biogenic P species in the sediments of the different systems. The P compound groups that varied most between these three systems were pyrophosphate and polyphosphates, compound groups known to play an important role in sediment P recycling. The content of these compound groups was lowest in the reservoirs and may indicate a coupling between anthropogenic disturbances (i.e., impoundment) to a water system and the availability of labile P species in the sediment. A statistical study was also conducted to determine the accuracy and reliability of using 31P-NMR spectroscopy for quantification of sediment P forms. PMID:17070896

  3. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  4. STRUCTURAL STUDIES OF BIOMATERIALS USING DOUBLE-QUANTUM SOLID-STATE NMR SPECTROSCOPY

    SciTech Connect

    Drobny, Gary P.; Long, J. R.; Karlsson, T.; Shaw, Wendy J.; Popham, Jennifer M.; Oyler, N.; Bower, Paula M.; Stringer, J.; Gregory, D.; Mehta, M.; Stayton, Patrick S.

    2004-10-31

    Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composites technologies. Here, we describe both the theory and practice of double-quantum solid-stateNMR(ssNMR) structure-determination techniques, as they are used to determine the secondary structures of surface-adsorbed peptides and proteins. In particular, we have used ssNMR dipolar techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Here, we also review NMR data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules using double-quantum ssNMR spectroscopy.

  5. In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics.

    PubMed

    Ippel, Johannes H; Pouvreau, Laurice; Kroef, Toos; Gruppen, Harry; Versteeg, Geurt; van den Putten, Peter; Struik, Paul C; van Mierlo, Carlo P M

    2004-01-01

    Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.

  6. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    2000-06-12

    The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

  7. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  8. Limiting Values of the 15N Chemical Shift of the Imidazole Ring of Histidine at High-pH§

    PubMed Central

    Vila, Jorge A.

    2012-01-01

    Tautomeric identification by direct observation of 15N chemical shifts of the imidazole ring of histidine (His) has become a common practice in NMR spectroscopy. However, such applications require knowledge of the “canonical” limiting values of the 15N chemical shift of the imidazole ring of His in which each form of His, namely the protonated (H+) and the tautomeric Nε2-H and Nδ1-H forms, respectively, is present to the extent of 100%. So far, the adopted canonical limiting values of the 15N chemical shift have been those available from model compounds. As to whether these canonical values reflect those of the individual pure forms of His is investigated here by carrying out an analysis of the second-order shielding differences, ΔΔ = |Δε − Δδ, with Δξ(ξ = ε or δ) being the DFT-computed average shielding differences between the two nitrogens of the imidazole ring of His in each pure tautomeric form. In the high-pH limit the results indicate that the (i) ΔΔ values from the DFT-computed shielding, but not from the commonly-used canonical limiting values, are in closer agreement with those obtained with experimental chemical shift data from model compounds in solution and solid-state NMR; and (ii) commonly-used canonical limiting values of the 15N chemical shifts lead to an average tautomeric equilibrium constant that differs by a factor of ~2.6 from the one computed by using DFT-based 15N limiting values, raising concern about the practice of using canonical limiting 15N values; this can be avoided by reporting tautomeric equilibrium constants computed by using only limiting 15N values for the Nε2-H tautomer. PMID:22376024

  9. Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Ying; Kijac, Aleksandra Z.; Sligar, Stephen G.; Rienstra, Chad M.

    2006-01-01

    Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly 13C,15N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS 13C-13C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their 13C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and 13C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. PMID:16905610

  10. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  11. Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yan, Si; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-01-01

    CONSPECTUS In living organisms, biological molecules often organize into multi-component complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic-resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past ten years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and non-uniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein

  12. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy.

    PubMed

    Uekusa, Yoshinori; Kamihira-Ishijima, Miya; Sugimoto, Osamu; Ishii, Takeshi; Kumazawa, Shigenori; Nakamura, Kozo; Tanji, Ken-ichi; Naito, Akira; Nakayama, Tsutomu

    2011-06-01

    Epicatechin gallate (ECg), a green tea polyphenol, has various physiological effects. Our previous nuclear Overhauser effect spectroscopy (NOESY) study using solution NMR spectroscopy demonstrated that ECg strongly interacts with the surface of phospholipid bilayers. However, the dynamic behavior of ECg in the phospholipid bilayers has not been clarified, especially the dynamics and molecular arrangement of the galloyl moiety, which supposedly has an important interactive role. In this study, we synthesized [13C]-ECg, in which the carbonyl carbon of the galloyl moiety was labeled by 13C isotope, and analyzed it by solid-state NMR spectroscopy. Solid-state 31P NMR analysis indicated that ECg changes the gel-to-liquid-crystalline phase transition temperature of DMPC bilayers as well as the dynamics and mobility of the phospholipids. In the solid-state 13C NMR analysis under static conditions, the carbonyl carbon signal of the [13C]-ECg exhibited an axially symmetric powder pattern. This indicates that the ECg molecules rotate about an axis tilting at a constant angle to the bilayer normal. The accurate intermolecular-interatomic distance between the labeled carbonyl carbon of [13C]-ECg and the phosphorus of the phospholipid was determined to be 5.3±0.1 Å by 13C-(31)P rotational echo double resonance (REDOR) measurements. These results suggest that the galloyl moiety contributes to increasing the hydrophobicity of catechin molecules, and consequently to high affinity of galloyl-type catechins for phospholipid membranes, as well as to stabilization of catechin molecules in the phospholipid membranes by cation-π interaction between the galloyl ring and quaternary amine of the phospholipid head-group. PMID:21352801

  13. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  14. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  15. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules.

  16. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  17. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-01

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

  18. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-01

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR.

  19. Ultrafast double-quantum NMR spectroscopy with optimized sensitivity for the analysis of mixtures.

    PubMed

    Rouger, Laetitia; Gouilleux, Boris; Pourchet-Gellez, Mariane; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2016-03-01

    Ultrafast (UF) 2D NMR enables the acquisition of 2D spectra within a single-scan. This methodology has become a powerful analytical tool, used in a large array of applications. However, UF NMR spectroscopy still suffers from the need to compromise between sensitivity, spectral width and resolution. With the commonly used UF-COSY pulse sequence, resolution issues are compounded by the presence of strong auto-correlation signals, particularly in the case of samples with high dynamic ranges. The recently proposed concept of UF Double Quantum Spectroscopy (DQS) allows a better peak separation as it provides a lower spectral peak density. This paper presents the detailed investigation of this new NMR tool in an analytical chemistry context. Theoretical calculations and numerical simulations are used to characterize the modulation of peak intensities as a function of pulse-sequence parameters, and thus enable a significant enhancement of the sensitivity. The analytical comparison of UF-COSY and UF-DQS shows similar performances, however the ultrafast implementation of the DQS approach is found to have some sensitivity advantages over its conventional counterpart. The analytical performance of the pulse sequence is illustrated by the quantification of taurine in complex mixtures (homemade and commercial energy drinks). The results demonstrate the high potential of this experiment, which forms a valuable alternative to UF-COSY spectra when the latter are characterized by strong overlaps and high dynamic ranges. PMID:26865359

  20. pKa determination by ¹H NMR spectroscopy - an old methodology revisited.

    PubMed

    Bezençon, Jacqueline; Wittwer, Matthias B; Cutting, Brian; Smieško, Martin; Wagner, Bjoern; Kansy, Manfred; Ernst, Beat

    2014-05-01

    pKa values of acids and protonated bases have an essential impact on organic synthesis, medicinal chemistry, and material and food sciences. In drug discovery and development, they are of utmost importance for the prediction of pharmacokinetic and pharmacodynamic properties. To date, various methods for the determination of pKa values are available, including UV-spectroscopic, potentiometric, and capillary electrophoretic techniques. An additional option is provided by nuclear magnetic resonance (NMR) spectroscopy. The underlying principle is the alteration of chemical shifts of NMR-active nuclei (e.g., (13)C and (1)H) depending on the protonation state of adjacent acidic or basic sites. When these chemical shifts are plotted against the pH, the inflection point of the resulting sigmoidal curve defines the pKa value. Although pKa determinations by (1)H NMR spectroscopy are reported for numerous cases, the potential of this approach is not yet fully evaluated. We therefore revisited this method with a diverse set of test compounds covering a broad range of pKa values (pKa 0.9-13.8) and made a comparison with four commonly used approaches. The methodology revealed excellent correlations (R(2)=0.99 and 0.97) with electropotentiometric and UV spectroscopic methods. Moreover, the comparison with in silico results (Epik and Marvin) also showed high correlations (R(2)=0.92 and 0.94), further confirming the reliability and utility of this approach. PMID:24462329

  1. Qualitative and quantitative control of carbonated cola beverages using ¹H NMR spectroscopy.

    PubMed

    Maes, Pauline; Monakhova, Yulia B; Kuballa, Thomas; Reusch, Helmut; Lachenmeier, Dirk W

    2012-03-21

    ¹H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D₂O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as "fingerprints" and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents.

  2. Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Yan, Si; Trébosc, Julien; Amoureux, Jean-Paul; Polenova, Tatyana

    2013-07-01

    We recently described a family of experiments for R2nv Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2nv sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2nv sequences, dubbed COmbined R2nv-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr = 40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-13C,15N-alanine and U-13C,15N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-13C,15N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities

  3. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  4. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for E73 from Sulfolobus spindle-shaped virus ragged hills, a hyperthermophilic crenarchaeal virus from Yellowstone National Park.

    PubMed

    Schlenker, Casey; Menon, Smita; Lawrence, C Martin; Copié, Valérie

    2009-12-01

    Crenarchaeal viruses are commonly found in hyperthermal acidic environments such as those of Yellowstone National Park. These remarkable viruses not only exhibit unusual morphologies, but also display extreme genetic diversity. However, little is known about crenarchaeal viral life cycles, virus-host interactions, and their adaptation to hyperthermophilic environments. In an effort to better understand the functions of crenarchaeal viruses and the proteins encoded by their genomes, we have undertaken detailed structural and functional studies of gene products encoded in the open reading frames of Sulfolobus spindle-shaped virus ragged hills. Herein, we report ((15)N, (13)C, (1)H) resonance assignments of backbone and side chain atoms of a 19.1 kDa homodimeric E73 protein of SSVRH.

  5. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimata, Naoki; Reeves, Philip J.; Smith, Steven O.

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.

  6. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at Geochemical Pressures.

    PubMed

    Ochoa, Gerardo; Pilgrim, Corey D; Martin, Michele N; Colla, Christopher A; Klavins, Peter; Augustine, Matthew P; Casey, William H

    2015-12-14

    Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust. PMID:26404025

  7. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy.

    PubMed

    Liang, Yun-Sa; Choi, Young Hae; Kim, Hye Kyong; Linthorst, Huub J M; Verpoorte, Robert

    2006-11-01

    The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after methyl jasmonate treatment, hydroxycinnamates and glucosinolate were highly increased. Methyl jasmonate treatment resulted in a long-term accumulation of indole glucosinolate and indole-3-acetic acid, lasting up to 14 days after treatment. Malate conjugated hydroxycinnamates also exhibited an increase until 14 days after methyl jasmonate treatment, these compounds might play an important role in plant defence responses mediated by methyl jasmonate.

  8. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action.

  9. Sample collection and preparation of biofluids and extracts for NMR spectroscopy.

    PubMed

    Le Gall, Gwénaëlle

    2015-01-01

    Metabonomics is a cross-disciplinary science that overlaps with analytical chemistry, biology, and statistical analysis. The techniques commonly used are proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS). Applying (1)H NMR on cell extracts provides a rapid and comprehensive screening of the most abundant metabolites allowing the quantitation of typically 20-70 compounds (depending on the type of sample) including amino and organic acids, sugars, amines, nucleosides, phenolic compounds, osmolytes, and lipids produced at sublevel millimolar concentrations. The sample preparation is usually kept minimal making the method particularly suited to high-throughput analysis (up to 100 samples/24 h with the use of a 60-holder autosampler). This chapter describes procedures for profiling liquids and solids of biological origin from plants, food, microbes, and mammalian systems. PMID:25677143

  10. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action. PMID:25597861

  11. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I. Z.; Galiullina, L. F.; Klochkova, E. A.; Latfullin, I. A.; Aganov, A. V.; Klochkov, V. V.

    2016-02-01

    Conformational features of pravastatin and simvastatin molecules in solution and in their complexes with sodium dodecyl sulfate micelles (SDS) were studied by 2D NOESY NMR spectroscopy. On the basis of the nuclear magnetic resonance experiments it was established that pravastatin and simvastatin can form molecular complex with SDS micelles which were considered as the model of cell membrane. In addition, interatomic distances for studied compounds were calculated based on 2D NOESY NMR experiments. It was shown that pravastatin interacts only with a surface of model membrane. However, in contrast to pravastatin, simvastatin penetrates into the inner part of SDS micelles. Observed distinctions in the mechanisms of interaction of pravastatin and simvastatin with models of cell membranes could explain the differences in their pharmacological properties.

  12. Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy.

    PubMed

    Jayalakshmi, Kamaiah; Sonkar, Kanchan; Behari, Anu; Kapoor, Vinay K; Sinha, Neeraj

    2011-05-01

    Qualitative and quantitative (1) H NMR analysis of lipid extracts of gallbladder tissue in chronic cholecystitis (CC, benign) (n = 14), xanthogranulomatous cholecystitis (XGC, intermediate) (n = 9) and gallbladder cancer (GBC, malignant) (n = 8) was carried out to understand the mechanisms involved in the transformation of benign gallbladder tissue to intermediate and malignant tissue. The results revealed alterations in various tissue lipid components in gallbladder in CC, XGC and GBC. The difference in the nature of lipid components in benign and malignant disease may aid in the identification of the biological pathways involved in the etiopathogenesis of GBC. This is the first study on lipid profiling of gallbladder tissue by (1) H NMR spectroscopy, and has possible implications for the development of future diagnostic approaches. PMID:22945290

  13. An instrument control and data analysis program for NMR imaging and spectroscopy

    SciTech Connect

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs.

  14. N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines

    NASA Technical Reports Server (NTRS)

    Johnson, J. Christopher; Kuczmarski, Maria A.

    2006-01-01

    The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

  15. Conformational problem of alkanes in liquid crystals by NMR spectroscopy: a mini-review.

    PubMed

    Weber, Adrian C J; Chen, Daniel H J

    2014-10-01

    Recent discoveries of the role of alkane flexibility in determining liquid-crystal behaviour are surveyed. With the impetus for understanding the alkane conformational problem established, recent model dependent (1)H NMR work on the topic will be reviewed where progress is made but the need to circumvent models eventually becomes evident. A closer look at the rigid basic units of alkanes will provide the way forward where it is shown that the orientational ordering and anisotropic potentials of these molecules dissolved in liquid crystals scale with each other. Once this relationship is established, a series of works using anisotropic and isotropic (1)H NMR spectroscopy to study alkane conformational statistics will be covered, wherein the influence of the gas, isotropic condensed and anisotropic condensed phases will be described. PMID:25142124

  16. Drug solubilization mechanism of α-glucosyl stevia by NMR spectroscopy.

    PubMed

    Zhang, Junying; Higashi, Kenjirou; Ueda, Keisuke; Kadota, Kazunori; Tozuka, Yuichi; Limwikrant, Waree; Yamamoto, Keiji; Moribe, Kunikazu

    2014-04-25

    We investigated the drug solubilization mechanism of α-glucosyl stevia (Stevia-G) which was synthesized from stevia (rebaudioside-A) by transglycosylation. (1)H and (13)C NMR peaks of Stevia-G in water were assigned by two-dimensional (2D) NMR experiments including (1)H-(1)H correlation, (1)H-(13)C heteronuclear multiple bond correlation, and (1)H-(13)C heteronuclear multiple quantum coherence spectroscopies. The (1)H and (13)C peaks clearly showed the incorporation of two glucose units into rebaudioside-A to produce Stevia-G, supported by steviol glycoside and glucosyl residue assays. The concentration-dependent chemical shifts of Stevia-G protons correlated well with a mass-action law model, indicating the self-association of Stevia-G molecules in water. The critical micelle concentration (CMC) was 12.0 mg/mL at 37°C. The aggregation number was 2 below the CMC and 12 above the CMC. Dynamic light scattering and 2D (1)H-(1)H nuclear Overhauser effect spectroscopy (NOESY) NMR experiments demonstrated that Stevia-G self-associated into micelles of a few nanometers in size with a core-shell structure, containing a kaurane diterpenoid-based hydrophobic core and a glucose-based shell. 2D (1)H-(1)H NOESY NMR measurements also revealed that a poorly water-soluble drug, naringenin, was incorporated into the hydrophobic core of the Stevia-G micelle. The Stevia-G self-assembly behavior and micellar drug inclusion capacity can achieve significant enhancement in drug solubility. PMID:24508331

  17. Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy

    PubMed Central

    Badilita, Vlad; Fassbender, Birgit; Kratt, Kai; Wong, Alan; Bonhomme, Christian; Sakellariou, Dimitris; Korvink, Jan G.; Wallrabe, Ulrike

    2012-01-01

    This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the “magic angle” of 54.74° with respect to the direction of the magnetic field (magic angle spinning – MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds. PMID:22936994

  18. Structure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants

    PubMed Central

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R.; Gokhale, Vijay; Brown, Mary E.; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M.; Wang, Ting; Garcia, Joe G. N.

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities. PMID:26111161

  19. Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.

    PubMed

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R; Gokhale, Vijay; Brown, Mary E; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M; Wang, Ting; Garcia, Joe G N

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities.

  20. Heteronuclear dipolar couplings, total spin coherence, and bilinear rotations in NMR spectroscopy

    SciTech Connect

    Garbow, J.R.

    1983-07-01

    In Chapter 1 a variety of different introductory topics are presented. The potential complexity of the nuclear magnetic resonsnace (NMR) spectra of molecules dissolved in liquid crystal solvents serves to motivate the development of multiple quantum (MQ) spectroscopy. The basics of MQ NMR are reviewed in Chapter 2. An experimental search procedure for the optimization of MQ pulse sequences is introduced. Chapter 3 discusses the application of MQ NMR techniques to the measurement of dipolar couplings in heteronuclear spin systems. The advantages of MQ methods in such systems are developed and experimental results for partially oriented (1-/sup 13/C) benzene are presented. Several pulse sequences are introduced which employ a two-step excitation of heteronuclear MQ coherence. A new multiple pulse method, involving the simultaneous irradiation of both rare and abundant spin species, is described. The problem of the broadening of MQ transitions due to magnetic field inhomogeneity is considered in Chapter 4. The method of total spin coherence transfer echo spectroscopy (TSCTES) is presented, with experimets on partially oriented acetaldehyde serving to demonstrate this new technique. TSCTES results in MQ spectra which are sensitive to all chemical shifts and spin-spin couplings and which are free of inhomogeneous broadening. In Chapter 5 the spectroscopy of spin systems of several protons and a /sup 13/C nucleus in the isotropic phase is discussed. The usefulness of the heteronuclear bilinear rotation as a calculational tool is illustrated. Compensated bilinear ..pi.. rotations, which are relatively insensitive to timing parameter missets, are presented. A new technique for homonuclear proton decoupling, Bilinear Rotation Decoupling, is described and its success in weakly coupled systems is demonstrated.

  1. (1)H NMR spectroscopy for the in vitro understanding of the glycaemic index.

    PubMed

    Dona, Anthony C; Landrey, Karola; Atkinson, Fiona S; Brand Miller, Jennie C; Kuchel, Philip W

    2013-06-01

    The glycaemic index (GI) characterises foods by using the incremental area under the glycaemic response curve relative to the same amount of oral glucose. Its ability to differentiate between curves of different shapes, the peak response and other aspects of the glycaemic response is contentious. The present pilot study aimed to explore the possibility of using 1H NMR spectroscopy to better understand in vivo digestion characteristics as reflected in the glycaemic response of carbohydrate-rich foods; such an approach might be an adjunct to the in vivo GI test. The glycaemic response of two types of raw wheat flour (2005 from Griffith NSW, Chara, Row 10, Plot 6:181 and store-bought Colese Plain Flour) and a cooked store-bought flour was tested and compared with results recorded during the in vitro enzymatic digestion of the wheat flour samples by glucoamylase from Aspergillus niger (EC 3.2.1.3) as monitored by 1H NMR spectroscopy. Comparing the digestion time courses of raw and cooked wheat starch recorded in vitro strongly suggests that the initial rate of glucose release in vitro correlates with the glycaemic spike in vivo. During the in vitro time courses, approximately four times as much glucose was released from cooked starch samples than from raw starch samples in 90 min. Monitoring enzymatic digestion of heterogeneous mixtures (food) by 1H NMR spectroscopy showcases the effectiveness of the technique in measuring glucose release and its potential use as the basis of an in vitro method for a better understanding of the GI.

  2. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  3. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Wu, Rui; Huang, Shaohua; Bai, Zhengwu

    2016-04-01

    Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures.

  4. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers.

    PubMed

    Yang, Ying; Wu, Rui; Huang, Shaohua; Bai, Zhengwu

    2016-04-01

    Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures. PMID:26942864

  5. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  6. Stereochemical investigations on the diketopiperazine derivatives of enalapril and lisinopril by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Demeter, Ádám; Fodor, Tamás; Fischer, János

    1998-11-01

    Stereochemical analysis of epimeric diketopiperazine (DKP) derivatives of enalapril and lisinopril has been performed by NMR spectroscopy. The present study focuses on the configurational assignment and conformational characteristics of the epimeric DKPs obtained from cyclization and subsequent base-catalyzed hydrolysis. We report full 1H and 13C assignments as obtained by a concerted use of 1D and 2D methods. The configuration of the respective stereogenic centres and the main conformational features were derived from the measured scalar and NOE connections. One conspicuous conformational feature of the sidechain is its tendency to bend over the piperazinedione ring.

  7. Utilizing the charge field effect on amide (15)N chemical shifts for protein structure validation.

    PubMed

    Bader, Reto

    2009-01-01

    Of all the nuclei in proteins, the nuclear magnetic resonance (NMR) chemical shifts of nitrogen are the theoretically least well understood. In this study, quantum chemical methods are used in combination with polarizable-continuum models in order to show that consideration of the effective electric field, including charge screening due to solvation, improves considerably the consistencies of statistical relationships between experimental and computed amide (15)N shifts between various sets of charged and uncharged oligopeptides and small organic molecules. A single conversion scheme between shielding parameters from first principles using density functional theory (DFT) and experimental shifts is derived that holds for all classes of compounds examined here. This relationship is then used to test the accuracy of such (15)N chemical shift predictions in the cyclic decapeptide antibiotic gramicidin S (GS). GS has previously been studied in great detail, both by NMR and X-ray crystallography. It adopts a well-defined backbone conformation, and hence, only a few discrete side chain conformational states need to be considered. Moreover, a charge-relay effect of the two cationic ornithine side chains to the protein backbone has been described earlier by NMR spectroscopy. Here, DFT-derived backbone amide nitrogen chemical shifts were calculated for multiple conformations of GS. Overall, the structural dynamics of GS is revisited in view of chemical shift behavior along with energetic considerations. Together, the study demonstrates proof of concept that (15)N chemical shift information is particularly useful in the analysis and validation of protein conformational states in a charged environment.

  8. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy.

    PubMed

    Fawzi, Nicolas L; Ying, Jinfa; Torchia, Dennis A; Clore, G Marius

    2012-07-19

    We present the protocol for the measurement and analysis of dark-state exchange saturation transfer (DEST), a novel solution NMR method for characterizing, at atomic resolution, the interaction between an NMR-'visible' free species and an NMR-'invisible' species transiently bound to a very high-molecular-weight (>1 MDa) macromolecular entity. The reduced rate of reorientational motion in the bound state that precludes characterization by traditional NMR methods permits the observation of DEST. (15)N-DEST profiles are measured on a sample comprising the dark state in exchange with an NMR-visible species; in addition, the difference (ΔR(2)) in (15)N transverse relaxation rates between this sample and a control sample comprising only the NMR-visible species is also obtained. The (15)N-DEST and ΔR(2) data for all residues are then fitted simultaneously to the McConnell equations for various exchange models describing the residue-specific dynamics in the bound state(s) and the interconversion rate constants. Although the length of the experiments depends strongly on sample conditions, approximately 1 week of NMR spectrometer time was sufficient for full characterization of samples of amyloid-β (Aβ) at concentrations of ~100 μM.

  9. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    SciTech Connect

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.; Cort, John R.; Ahring, Birgitte K.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmed with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.

  10. Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy

    SciTech Connect

    Tenforde, T.S.; Budinger, T.F.

    1985-08-01

    An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

  11. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    PubMed

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available.

  12. Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.

    PubMed

    Mazzei, Pierluigi; Piccolo, Alessandro

    2012-06-01

    Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

  13. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  14. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    PubMed

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  15. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  16. Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy

    PubMed Central

    Ben Sellem, D.; Elbayed, K.; Neuville, A.; Moussallieh, F.-M.; Lang-Averous, G.; Piotto, M.; Bellocq, J.-P.; Namer, I. J.

    2011-01-01

    Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models capable of classifying borderline tumors and (iii) establish a potential relationship with patient's survival or response to chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both patient's survival rates and the patient's response to chemotherapy. Conclusions. Despite the small number of samples used in this study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be applicable to the therapeutic management of patients. PMID:21577256

  17. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  18. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy.

    PubMed

    Dammers, Christina; Gremer, Lothar; Neudecker, Philipp; Demuth, Hans-Ulrich; Schwarten, Melanie; Willbold, Dieter

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the

  19. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy

    PubMed Central

    Dammers, Christina; Gremer, Lothar; Neudecker, Philipp; Demuth, Hans-Ulrich; Schwarten, Melanie; Willbold, Dieter

    2015-01-01

    Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the

  20. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein

    PubMed Central

    Tang, Ming; Comellas, Gemma; Mueller, Leonard J.

    2011-01-01

    High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13Cα T2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions. PMID:20803233

  1. Insoluble protein characterization by circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR).

    PubMed

    Goyal, Shaveta; Qin, Haina; Lim, Liangzhong; Song, Jianxing

    2015-01-01

    Besides misfolded proteins, which still retain the capacity to fold into uniquely defined structures but are misled to "off-pathway" aggregation, there exists a group of proteins which are unrefoldable and insoluble in buffers. Previously no general method was available to solubilize them and consequently their solution conformations could not be characterized. Recently, we discovered that these insoluble proteins could in fact be solubilized in pure water. Circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) characterization led to their classification into three groups, all of which lack the tight tertiary packing and consequently anticipated to unavoidably aggregate in vivo with ~150 mM ions, thus designated as "intrinsically insoluble proteins (IIPs)." It appears that eukaryotic genomes contain many "IIP," which also have a potential to interact with membranes to trigger neurodegenerative diseases. In this chapter, we provide a detailed procedure to express and purify these proteins, followed by CD and NMR spectroscopy characterization of their conformation and interaction with dodecylphosphocholine (DPC).

  2. Localized in Vivo Isotropic-Anisotropic Correlation 1H NMR Spectroscopy Using Ultraslow Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Majors, Paul D.

    2006-01-01

    Previous work has shown that it is possible to separate the susceptibility broadening in the 1H NMR metabolite spectrum obtained in a live mouse from the isotropic information, thus significantly increasing the spectral resolution. This was achieved using ultra-slow magic angle spinning of the animal combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. However, PHORMAT cannot be used for spatially selective spectroscopy. In this article a modified sequence called LOCMAT (localized magic angle turning) is introduced that makes this possible. Proton LOCMAT spectra are shown for the liver and heart of a live mouse, while spinning the animal at a speed of 4 Hz in a 2 Tesla field. It was found that even in this relatively low field LOCMAT provided isotropic line widths that are a factor 4-10 times smaller than the ones obtained in a stationary animal, and that the susceptibility broadening of the heart metabolites shows unusual features not observed for a dead animal. Finally, the limitations of LOCMAT and possible ways to improve the technique are discussed. It is concluded that in vivo LOCMAT can significantly enhance the utility of NMR spectroscopy for biomedical research.

  3. Phosphorus Speciation of Sequential Extracts of Organic Amendments using NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Akinremi, O.

    2009-04-01

    O.O. 1Akinremi Babasola Ajiboye and Donald N. Flaten 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2NT, Canada We carried out this study in order to determine the forms of phosphorus in various organic amendments using state-of-the art spectroscopic technique. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF) and poultry (POULTRY) manures were subjected to sequential extraction. The extracts were analyzed by solution 31P nuclear magnetic resonance (NMR) spectroscopy. Most of the total P analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) in the sequential extracts of organic amendments were orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate P from readily soluble calcium and some aluminum phosphates. In the poultry litter, however, Ca phytate was the main P species controlling P solubility. Such knowledge of the differences in the chemical forms of phosphorus in organic amendments are essential for proper management of these amendments for agro-environmental purposes Key words: organic amendments, solution NMR, sequential fractionation, labile phosphorus

  4. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Jurk, Marcel; Rösch, Paul; Knauer, Stefan H.

    2015-01-01

    In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic resonance (NMR) spectroscopy. Perdeuterated factors with [1H,13C]-labeled methyl groups of Val, Leu, and Ile residues were titrated with protonated RNAP. After verification of this approach with the N-terminal domain (NTD) of NusG and RNAP we determined the RNAP binding site of NusE. It overlaps with the NusE interaction surface for the NusG C-terminal domain, indicating that RNAP and NusG compete for NusE and suggesting possible roles for the NusE:RNAP interaction, e.g. in antitermination and direct transcription:translation coupling. We solved the solution structure of NusA-NTD by NMR spectroscopy, identified its RNAP binding site with the same approach we used for NusG-NTD, and here present a detailed model of the NusA-NTD:RNAP:RNA complex. PMID:26560741

  5. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  6. Identification and quantitative determination of lignans in Cedrus atlantica resins using 13C NMR spectroscopy.

    PubMed

    Nam, Anne-Marie; Paoli, Mathieu; Castola, Vincent; Casanova, Joseph; Bighelli, Ange

    2011-03-01

    Identification and quantitative determination of individual components of resin collected on the trunk of 28 Cedrus atlantica trees, grown in Corsica, has been carried out using 13C NMR spectroscopy. Eight resin acids bearing either the pimarane or abietane skeleton, two monoterpene hydrocarbons and four oxygenated neutral diterpenes have been identified, as well as three lignans, scarcely found in resins. Three groups could be distinguished within the 28 resin samples. The nine samples of Group I had their composition dominated by diterpene acids (33.7-45.8%), with abietic acid (6.2-18.7%) and isopimaric acid (5.1-12.6%) being the major components. The four samples of Group II contained resin acids (main components) and lignans in moderate amounts (up to 10.3%). Conversely, lignans (38.8-63.8%) were by far the major components of the 15 samples of Group III. Depending on the sample, the major component was pinoresinol (18.1-38.9%), lariciresinol (17.2-33.7%) or lariciresinol 9'-acetate (16.9-29.1%). Finally, due to the high biological interest in lignans, a rapid procedure, based on 1H NMR spectroscopy, was developed for quantification of lignans in resins of C. atlantica.

  7. Interactions of Polyvinylpyrrolidone with Chlorin e6-Based Photosensitizers Studied by NMR and Electronic Absorption Spectroscopy.

    PubMed

    Hädener, Marianne; Gjuroski, Ilche; Furrer, Julien; Vermathen, Martina

    2015-09-10

    Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by (1)H NMR spectroscopy. xCE-PVP complex formation was confirmed by (1)H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). (1)H(1)H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV-vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

  8. Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, K.; Hubesch, B.; Meyerhoff, D. J.; Naruse, S.; Gober, J. R.; Lawry, T. J.; Boska, M. D.; Matson, G. B.; Weiner, M. W.

    Quantitation of metabolite concentrations by NMR spectroscopy is complicated by the need to determine the volume from which signals are detected, and by the need to obtain the relative sensitivity of detection within this volume. The use of coils with inhomogeneous B1 fields further complicates these problems. In order to quantify metabolite concentrations using 31P NMR spectroscopy, an external reference of hexamethyl phosphoroustriamide was used. Studies were performed on phantoms, using either a surface coil or a Helmholtz head coil to confirm the accuracy of both the ISIS volume selection technique and the use of an external reference. The limitations of this method are related to contamination and signal loss inherent in the ISIS technique and difficulties with integration of broad overlapping peaks. The method was applied to seven normal human subjects. The integrals for metabolite signals in normal brain and calf muscle were determined by using NMRI software. The T1 values of the signals of all phosphorus metabolites in the selected volume were measured in order to correct for saturation effects. The concentrations for PCr, P i, and ATP were 4.9, 2.0, and 2.5 m M in brain and 36.5, 5.7, and 7.3 m M in muscle. These results are in good agreement with those reported for animals, demonstrating the validity of this quantitation technique.

  9. Determination of de novo synthesized amino acids in cellular proteins revisited by 13C NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1997-04-01

    13C nuclear magnetic resonance spectroscopy was used to determine the absolute amounts to de novo synthesized amino acids in both the perchloric acid extracts and the hydrolyzed protein fractions of F98 glioma cells incubated for 2 h with 5 mmol/l [U-13C]glucose. 13C NMR spectra of the hydrolyzed protein fraction revealed a marked incorporation of 13C-labelled alanine, aspartate and glutamate into the proteins of F98 cells within the incubation period. Additionally, small amounts of 13C-labelled glycine, proline and serine could unambiguously be identified in the protein fraction. Astonishingly, approximately equal amounts of 13C-labelled glutamate and aspartate were incorporated into the cellular proteins, although the cytosolic steady-state concentration of aspartate was below 13C NMR detectability. Hypertonic stress decreased the incorporation of 13C-labelled amino acids into the total protein, albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. On the other hand, hypotonic stress increased the amount of 13C-labelled proline incorporated into the cellular proteins even though the cytosolic concentration of 13C-labelled proline was largely decreased. Apparently, hypoosmotic conditions stimulate the synthesis of proteins or peptides with a high proline content. The results show that already after 2 h of incubation with [U-13C]glucose there is a pronounced flux of 13C label into the cellular proteins, which is usually disregarded if cytosolic fluids are examined only. This means that calculations of metabolic fluxes based on 13C NMR spectroscopic data obtained from perchloric acid extracts of cells or tissues and also from in vivo measurements consider only the labelled 'NMR visible' cytosolic metabolites, which may have to be corrected for fast label flowing off into other compartments.

  10. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-01

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

  11. High-Resolution Two-Dimensional J-Resolved NMR Spectroscopy for Biological Systems

    PubMed Central

    Huang, Yuqing; Cai, Shuhui; Zhang, Zhiyong; Chen, Zhong

    2014-01-01

    NMR spectroscopy is a principal tool in metabolomic studies and can, in theory, yield atom-level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues generally have to contend with field inhomogeneities originating from variations in macroscopic magnetic susceptibility; these field inhomogeneities broaden spectral lines and thereby obscure metabolite signals. The congestion in one-dimensional NMR spectra of biological tissues often leads to ambiguities in metabolite identification and quantification. We propose an NMR approach based on intermolecular double-quantum coherences to recover high-resolution two-dimensional (2D) J-resolved spectra from inhomogeneous magnetic fields, such as those created by susceptibility variations in intact biological tissues. The proposed method makes it possible to acquire high-resolution 2D J-resolved spectra on intact biological samples without recourse to time-consuming shimming procedures or the use of specialized hardware, such as magic-angle-spinning probes. Separation of chemical shifts and J couplings along two distinct dimensions is achieved, which reduces spectral crowding and increases metabolite specificity. Moreover, the apparent J coupling constants observed are magnified by a factor of 3, facilitating the accurate measurement of small J couplings, which is useful in metabolic analyses. Dramatically improved spectral resolution is demonstrated in our applications of the technique on pig brain tissues. The resulting spectra contain a wealth of chemical shift and J-coupling information that is invaluable for metabolite analyses. A spatially localized experiment applied on an intact fish (Crossocheilus siamensis) reveals the promise of the proposed method in in vivo metabolite studies. Moreover, the proposed method makes few demands on spectrometer hardware and therefore constitutes a convenient and effective manner for metabonomics study of biological systems

  12. Monitoring the on-line titration of enantiomeric omeprazole employing continuous-flow capillary microcoil 1H NMR spectroscopy.

    PubMed

    Hentschel, Petra; Holtin, Karsten; Steinhauser, Lisa; Albert, Klaus

    2012-12-01

    The titration of the (S)-enantiomer of omeprazole with the (R)-enantiomer in chloroform-d(1) is monitored by continuous-flow capillary microcoil (1)H NMR spectroscopy employing a microcoil with a detection volume of 1.5 µl. The observed changes of the (1)H NMR chemical shifts indicate the formation of a heterochiral (R,S) dimer of omeprazole via its sulfinyl group and the NH group of the benzimidazole ring.

  13. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  14. Single-Crystalline cooperite (PtS): Crystal-Chemical characterization, ESR spectroscopy, and {sup 195}Pt NMR spectroscopy

    SciTech Connect

    Rozhdestvina, V. I. Ivanov, A. V.; Zaremba, M. A.; Antsutkin, O. N.; Forsling, W.

    2008-05-15

    Single-crystalline cooperite (PtS) with a nearly stoichiometric composition was characterized in detail by X-ray diffraction, electron-probe X-ray microanalysis, and high-resolution scanning electron microscopy. For the first time it was demonstrated that {sup 195}Pt static and MAS NMR spectroscopy can be used for studying natural platinum minerals. The {sup 195}Pt chemical-shift tensor of cooperite was found to be consistent with the axial symmetry and is characterized by the following principal values: {delta}{sub xx} = -5920 ppm, {delta}{sub yy} = -3734 ppm, {delta}{sub zz} = +4023 ppm, and {delta}{sub iso} = -1850 ppm. According to the ESR data, the samples of cooperite contain copper(II), which is adsorbed on the surface during the layer-by-layer crystal growth and is not involved in the crystal lattice.

  15. Toward hyperpolarized molecular imaging of HIV: synthesis and longitudinal relaxation properties of 15N-Azidothymidine

    PubMed Central

    Shchepin, Roman V.; Chekmenev, Eduard Y.

    2015-01-01

    Previously unreported 15N labeled Azidothymidine (AZT) was prepared as an equimolar mixture of two isotopomers: 1-15N-AZT and 3-15N-AZT. Polarization decay of 15N NMR signal was studied in high (9.4 T) and low (~50 mT) magnetic fields. 15N T1 values were 45 ± 5 s (1-15N-AZT) and 37 ± 2 s (3-15N-AZT) at 9.4 T, and 140 ± 16 s (3-15N-AZT) at 50 mT. 15N-AZT can be potentially 15N hyperpolarized by several methods. These sufficiently long 15N-AZT T1 values potentially enable hyperpolarized in vivo imaging of 15N-AZT, because of the known favorable efficient (i.e., of the time scale shorter than the longest reported here 15N T1) kinetics of uptake of injected AZT. Therefore, 3-15N-AZT can be potentially used for HIV molecular imaging using hyperpolarized magnetic resonance imaging. PMID:25156931

  16. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  17. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  18. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  19. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy.

    PubMed Central

    Wittekind, M.; Rajagopal, P.; Branchini, B. R.; Reizer, J.; Saier, M. H.; Klevit, R. E.

    1992-01-01

    The solution structure of the phosphocarrier protein, HPr, from Bacillus subtilis has been determined by analysis of two-dimensional (2D) NMR spectra acquired for the unphosphorylated form of the protein. Inverse-detected 2D (1H-15N) heteronuclear multiple quantum correlation nuclear Overhauser effect (HMQC NOESY) and homonuclear Hartmann-Hahn (HOHAHA) spectra utilizing 15N assignments (reported here) as well as previously published 1H assignments were used to identify cross-peaks that are not resolved in 2D homonuclear 1H spectra. Distance constraints derived from NOESY cross-peaks, hydrogen-bonding patterns derived from 1H-2H exchange experiments, and dihedral angle constraints derived from analysis of coupling constants were used for structure calculations using the variable target function algorithm, DIANA. The calculated models were refined by dynamical simulated annealing using the program X-PLOR. The resulting family of structures has a mean backbone rmsd of 0.63 A (N, C alpha, C', O atoms), excluding the segments containing residues 45-59 and 84-88. The structure is comprised of a four-stranded antiparallel beta-sheet with two antiparallel alpha-helices on one side of the sheet. The active-site His 15 residue serves as the N-cap of alpha-helix A, with its N delta 1 atom pointed toward the solvent to accept the phosphoryl group during the phosphotransfer reaction with enzyme I. The existence of a hydrogen bond between the side-chain oxygen atom of Tyr 37 and the amide proton of Ala 56 is suggested, which may account for the observed stabilization of the region that includes the beta-turn comprised of residues 37-40. If the beta alpha beta beta alpha beta (alpha) folding topology of HPr is considered with the peptide chain polarity reversed, the protein fold is identical to that described for another group of beta alpha beta beta alpha beta proteins that include acylphosphatase and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins. PMID:1303754

  20. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus.

    PubMed

    Proietti, Noemi; Presciutti, Federica; Di Tullio, Valeria; Doherty, Brenda; Marinelli, Anna Maria; Provinciali, Barbara; Macchioni, Nicola; Capitani, Donatella; Miliani, Costanza

    2011-03-01

    A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

  1. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy.

    PubMed

    Asakura, Tetsuo; Horiguchi, Kumiko; Aoki, Akihiro; Tasei, Yugo; Naito, Akira

    2016-09-01

    The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations. PMID:27482868

  2. Elucidation of meso- and microporosity in soil components with 129-Xe NMR spectroscopy of adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Filimonova, Svetlana; Nossov, Andrey; Knicker, Heike; Kögel-Knabner, Ingrid

    2010-05-01

    Soil meso- and micropores (2-50 nm and <2 nm) are usually studied with the use of common adsorption methods. As a complementary technique, 129-Xe NMR spectroscopy of adsorbed xenon was only recently suggested for the use in soil science. In this present study, we applied both conventional, i.e. thermally polarised (TP), and hyperpolarised (HP) 129-Xe NMR for elucidating pore environments of a series of samples representing porous soil constituents. Aluminium (hydr)oxides, Al2O3 and AlOOH, both pure and subjected to the sorption of dissolved organic matter (DOM) were chosen as model mineral systems. Charcoals were used for understanding adsorption behaviour of xenon within organic polymeric structures formed by thermally altered bio-macromolecules. Natural soil particle size fractions were obtained from a non-allophanic Andosol and from Arenosol, i.e. soils containing charred residues and also characterised by a high content of Al oxides (case of the Andosol). DOM sorption on the studied Al oxides occurred inhomogeneously as it was inferred from the existence of the "empty" pores and the pores coated with OM. The latter were evidenced by the different Xe adsorption enthalpies estimated from the temperature dependences of the chemical shift. The increased sensitivity of the HP 129-Xe NMR allowed us detecting micropores in the charcoals, where the N2 adsorption method underestimated porosity due to the restricted diffusion of N2 at 77 K. The observed differences between the HP and TP 129-Xe patterns were explained by the slow diffusion of xenon within an interconnected but highly constricted pore system of the charcoals. The estimated width of those constricted pore openings was of the order of one or two diameters of the Xe atom. Similar "bottle neck" effects may also exist in the natural soil particle size fractions, as it was inferred from the increased pore access for Xe adsorption performed at elevated pressures (2-4 bar). The unusually large 129-Xe shifts (up to

  3. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  4. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed Central

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-01-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  5. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  6. Two-dimensional proton J-resolved NMR spectroscopy of neomycin B

    SciTech Connect

    Botto, R.E.; Coxon, B.

    1984-01-01

    The /sup 1/H NMR spectrum of a solution of neomycin B free base (Structure 1) in D/sub 2/O has been assigned completely by two-dimensional, homonuclear J-resolved NMR spectroscopy and spin decoupling at 400 MHz. Proton chemical shifts and proton-proton couplings are reported for all glycoside residues in neomycin B along with their computer simulated spectra. The /sup 4/C/sub 1/ chair conformation has been assigned to the 2,6-diamino-2,6-dideoxy-..beta..-L-idopyranosyl (ring D) portion of the antibiotic (1b) by analysis of the proton coupling constants and chemical shifts. The ..beta..-furanose form of the ribosyl portion (ring C) has been assigned. Vicinal proton couplings for the 2-deoxystreptaminyl group (ring B) are consistent with a chair conformation in which all ring substituents are equatorial, and proton chemical shift assignments are based on protonation studies. A computer simulated composite of the individual calculated spectra is presented for comparison with the experimental spectrum of neomycin B. 30 references, 5 figures, 3 tables.

  7. Microstructure determination of 2-hydroxy ethyl methacrylate and methyl acrylate copolymers by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brar, A. S.; Hooda, Sunita; Goyal, Ashok Kumar

    2007-02-01

    Copolymers of 2-Hydroxy ethyl methacrylate and methyl acrylate (H/M) of different compositions were synthesized by free radical bulk polymerization using azobisisobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The copolymers compositions were calculated from 1H NMR spectra. The reactivity ratios for H/M copolymers obtained from a linear Kelen-Tudos method (KT) and nonlinear error-in-variables method (EVM) are rH = 3.31 ± 0.08, rM = 0.23 ± 0.00 and rH = 3.32, rM = 0.23, respectively. The complete spectral assignment of methine, methylene, methyl and carbonyl carbon regions in terms of compositional and configurational sequences of H/M copolymers was done with the help of 13C{ 1H} NMR, distortionless enhancement by polarization transfer (DEPT), two-dimensional heteronuclear single quantum coherence (HSQC) along with total correlated spectroscopy (TOCSY). Further, the assignments of carbonyl region were made with the help of heteronuclear multiple bond coherence (HMBC) spectrum.

  8. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  9. The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy

    PubMed Central

    Brachet, Franck; Tisne, Carine

    2013-01-01

    The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription. PMID:23762248

  10. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  11. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.

    PubMed

    Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

    2014-08-01

    The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.

  12. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat.

  13. Chiral discrimination in NMR spectroscopy: computation of the relevant molecular pseudoscalars

    NASA Astrophysics Data System (ADS)

    Buckingham, A. David; Lazzeretti, Paolo; Pelloni, Stefano

    2015-07-01

    Nuclear magnetic resonance (NMR) is normally blind to chirality but it has been predicted that precessing nuclear spins in a strong magnetic field induce a rotating electric polarisation that is of opposite sign for enantiomers. The polarisation is determined by two pseudoscalars, ? and ?. The former arises from the distortion of the electronic structure by the nuclear magnetic moment in the presence of the strong magnetic field and is equivalent to the linear effect of an electric field on the nuclear shielding tensor. ? determines the temperature-dependent partial orientation of the permanent electric dipole moment of the molecule by the antisymmetric part of the nuclear shielding tensor. Computations of these two contributions are reported for the nuclei in the chiral molecules N-methyloxaziridine, 2-methyloxirane, 1,3-dimethylallene, 1-fluoroethanol, 2-fluoroazirine, 1,2-M-dioxin, 1,2-M-dithiin, 1,2-M-diselenin and 1,2-M-ditellurin. For strongly dipolar molecules, ? is typically two to three orders of magnitude greater than ?, raising hopes for the detection of chirality in NMR spectroscopy. This paper is dedicated to the memory of Prof. Nicholas Handy, F.R.S.

  14. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  15. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  16. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.

    PubMed

    Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

    2014-08-01

    The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process. PMID:24685428

  17. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    PubMed

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota.

  18. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.

    PubMed

    Zhao, Bo; Zhang, Qi

    2015-10-28

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.

  19. Direct measurement of brain glucose concentrations in humans by sup 13 C NMR spectroscopy

    SciTech Connect

    Gruetter, R.; Novotny, E.J.; Boulware, S.D.; Rothman, D.L.; Mason, G.F.; Shulman, G.I.; Shulan, R.G.; Tamborlane, W.V. )

    1992-02-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, the authors used {sup 13}C NMR spectroscopy after infusing enriched D-(1-{sup 13}C)glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia in six healthy children. Brain glucose concentrations averaged 1.0 {plus minus} 0.1 {mu}mol/ml at euglycemia and 1.8-2.7 {mu}mol/ml at hyperglycemia. Michaelis-Menten parameters of transport were calculated from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels >3 mM.

  20. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  1. Photo-CIDNP NMR spectroscopy of a heme-containing protein

    NASA Astrophysics Data System (ADS)

    Day, Iain J.; Wain, Rachel; Tozawa, Kaeko; Smith, Lorna J.; Hore, P. J.

    2005-08-01

    There are relatively few examples of the application of photo-CIDNP NMR spectroscopy to chromophore-containing proteins. The most likely reason for this is that simultaneous absorption of light by the photosensitiser molecule and the protein chromophore reduces the effectiveness of the photochemical reaction that produces the observed nuclear polarisation. We present details of experiments performed on the air-oxidised form of a small cytochrome, from the thermophilic bacterium Hydrogenobacter thermophilus, using both the wild-type protein and apo and holo forms of a double alanine b-type mutant. We show that, along with the apo state, it is possible to generate CIDNP in the air-oxidised form of the b-type mutant, but not in the corresponding c-type cytochrome. This finding is supported by control experiments using horse-heart cytochrome c.

  2. Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.

    PubMed

    Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

    2008-01-15

    The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

  3. Pulse design for broadband correlation NMR spectroscopy by multi-rotating frames

    PubMed Central

    Coote, Paul; Arthanari, Haribabu; Yu, Tsyr-Yan; Natarajan, Amarnath; Wagner, Gerhard; Khaneja, Navin

    2013-01-01

    We present a method for designing radio-frequency (RF) pulses for broadband or multi-band isotropic mixing at low power, suitable for protein NMR spectroscopy. These mixing pulses are designed analytically, rather than by numerical optimization, by repeatedly constructing new rotating frames of reference. We show how pulse parameters can be chosen frame-by-frame to systematically reduce the effective chemical shift bandwidth, but maintain most of the effective J-coupling strength. The effective Hartmann-Hahn mixing condition is then satisfied in a multi-rotating frame of reference. This design method yields multi-band and broadband mixing pulses at low RF power. In particular, the ratio of RF power to mixing bandwidth for these pulses is lower than for existing mixing pulses, such as DIPSI and FLOPSY. Carbon-carbon TOCSY experiments at low RF power support our theoretical analysis. PMID:23420125

  4. Low-field (1)H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees.

    PubMed

    Defernez, Marianne; Wren, Ella; Watson, Andrew D; Gunning, Yvonne; Colquhoun, Ian J; Le Gall, Gwénaëlle; Williamson, David; Kemsley, E Kate

    2017-02-01

    This work reports a new screening protocol for addressing issues of coffee authenticity using low-field (60MHz) bench-top (1)H NMR spectroscopy. Using a simple chloroform-based extraction, useful spectra were obtained from the lipophilic fraction of ground roast coffees. It was found that 16-O-methylcafestol (16-OMC, a recognized marker compound for robusta beans) gives rise to an isolated peak in the 60MHz spectrum, which can be used as an indicator of the presence of robusta beans in the sample. A total of 81 extracts from authenticated coffees and mixtures were analysed, from which the detection limit of robusta in arabica was estimated to be between 10% and 20% w/w. Using the established protocol, a surveillance exercise was conducted of 27 retail samples of ground roast coffees which were labelled as "100% arabica". None were found to contain undeclared robusta content above the estimated detection limit. PMID:27596398

  5. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-01

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components.

  6. Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy

    PubMed Central

    Kielec, Joseph M.; Valentine, Kathleen G.; Babu, Charles R.; Wand, A. Joshua

    2009-01-01

    SUMMARY Integral membrane proteins remain a significant challenge to structural studies by solution NMR spectroscopy. This is due not only to spectral complexity but also because the effects of slow molecular reorientation are exacerbated by the need to solublize the protein in aqueous detergent micelles. These assemblies can be quite large and require deuteration for use of the TROSY effect. In principle, another approach is to employ reverse micelle encapsulation to solublize the protein in a low viscosity solvent where the rapid tumbling of the resulting particle allows use of standard triple resonance methods. The preparation of such samples of membrane proteins is difficult. Using a 54 kDa construct of the homotetrameric potassium channel KcsA we demonstrate a strategy that employs a hybrid surfactant to transfer the protein to the reverse micelle system. PMID:19278649

  7. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    SciTech Connect

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  8. 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations.

    PubMed

    Heise, Henrike; Seidel, Karsten; Etzkorn, Manuel; Becker, Stefan; Baldus, Marc

    2005-03-01

    Two types of 3D MAS NMR experiments are introduced, which combine standard (NC,CC) transfer schemes with (1H,1H) mixing to simultaneously detect connectivities and structural constraints of uniformly 15N,13C-labeled proteins with high spectral resolution. The homonuclear CCHHC and CCC experiments are recorded with one double-quantum evolution dimension in order to avoid a cubic diagonal in the spectrum. Depending on the second transfer step, spin systems or proton-proton contacts can be determined with reduced spectral overlap. The heteronuclear NHHCC experiment encodes NH-HC proton-proton interactions, which are indicative for the backbone conformation of the protein. The third dimension facilitates the identification of the amino acid spin system. Experimental results on U-[15N,13C]valine and U-[15N,13C]ubiquitin demonstrate their usefulness for resonance assignments and for the determination of structural constraints. Furthermore, we give a detailed analysis of alternative multidimensional sampling schemes and their effect on sensitivity and resolution. PMID:15705514

  9. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  10. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  11. Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127.

    PubMed

    Bryce, David L; Sward, Gregory D

    2006-04-01

    A thorough review of 35/37Cl, 79/81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) data is presented. Isotropic chemical shifts (CS), quadrupolar coupling constants, and other available information on the magnitude and orientation of the CS and electric field gradient (EFG) tensors for chlorine, bromine, and iodine in diverse chemical compounds is tabulated on the basis of over 200 references. Our coverage is through July 2005. Special emphasis is placed on the information available from the study of powdered diamagnetic solids in high magnetic fields. Our survey indicates a recent notable increase in the number of applications of solid-state quadrupolar halogen NMR, particularly 35Cl NMR, as high magnetic fields have become more widely available to solid-state NMR spectroscopists. We conclude with an assessment of possible future directions for research involving 35/37Cl, 79/81Br, and 127I solid-state NMR spectroscopy.

  12. Reaction monitoring using online vs tube NMR spectroscopy: seriously different results.

    PubMed

    Foley, David A; Dunn, Anna L; Zell, Mark T

    2016-06-01

    We report findings from the qualitative evaluation of nuclear magnetic resonance (NMR) reaction monitoring techniques of how each relates to the kinetic profile of a reaction process. The study highlights key reaction rate differences observed between the various NMR reaction monitoring methods investigated: online NMR, static NMR tubes, and periodic inversion of NMR tubes. The analysis of three reaction processes reveals that rates derived from NMR analysis are highly dependent on monitoring method. These findings indicate that users must be aware of the effect of their monitoring method upon the kinetic rate data derived from NMR analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Rapid geographical differentiation of the European spread brown macroalga Sargassum muticum using HRMAS NMR and Fourier-Transform Infrared spectroscopy.

    PubMed

    Tanniou, Anaëlle; Vandanjon, Laurent; Gonçalves, Olivier; Kervarec, Nelly; Stiger-Pouvreau, Valérie

    2015-01-01

    Two recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga. Based on spectra analysis, results allowed us to successfully group the samples according to their geographical origin. HRMAS NMR and FTIR spectroscopy respectively point out the relation between the geographical localization and the chemical composition and demonstrated macromolecules variations regarding to environmental stress. Then, our results are discussed in regard of the powerful of these techniques together with the variability of the main molecules produced by Sargassum muticum along the Atlantic coasts. PMID:25476330

  14. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

    PubMed Central

    Yi, Ruiyang; Volden, Paul A.; Conzen, Suzanne D.

    2015-01-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  15. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  16. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  17. Consortium to develop the medical uses of NMR imaging, NMR spectroscopy, and positron emission tomography. Final technical report

    SciTech Connect

    Pohost, G.M.

    1998-06-01

    The goal of this work is to, perform clinically relevant studies using a new whole-body 4.1 T NMR imaging spectrometer. Initially we will develop and approach for the assessment of the severity of skeletal muscle involvement in ischemic peripheral vascular disease.

  18. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  19. Distinguishing polymorphs of the semiconducting pigment copper phthalocyanine by solid-state NMR and Raman spectroscopy.

    PubMed

    Shaibat, Medhat A; Casabianca, Leah B; Siberio-Pérez, Diana Y; Matzger, Adam J; Ishii, Yoshitaka

    2010-04-01

    Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of alpha- and beta-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. (13)C high-resolution SSNMR spectra of alpha- and beta-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. (13)C and (1)H SSNMR relaxation times of alpha- and beta-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.

  20. Distinguishing Polymorphs of the Semiconducting Pigment Copper Phthalocyanine by Solid-state NMR and Raman Spectroscopy

    PubMed Central

    Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Pérez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka

    2010-01-01

    Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of α- and β-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of α- and β-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of α- and β-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs. PMID:20225842

  1. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry.

    PubMed

    Mealman, Tiffany D; Bagai, Ireena; Singh, Pragya; Goodlett, David R; Rensing, Christopher; Zhou, Hongjun; Wysocki, Vicki H; McEvoy, Megan M

    2011-04-01

    The Escherichia coli periplasmic proteins CusF and CusB, as part of the CusCFBA efflux system, aid in the resistance of elevated levels of copper and silver by direct metal transfer between the metallochaperone CusF and the membrane fusion protein CusB before metal extrusion from the periplasm to the extracellular space. Although previous in vitro experiments have demonstrated highly specific interactions between CusF and CusB that are crucial for metal transfer to occur, the structural details of the interaction have not been determined. Here, the interactions between CusF and CusB are mapped through nuclear magnetic resonance (NMR) spectroscopy and chemical cross-linking coupled with high-resolution mass spectrometry to better understand how recognition and metal transfer occur between these proteins. The NMR (1)H-(15)N correlation spectra reveal that CusB interacts with the metal-binding face of CusF. In vitro chemical cross-linking with a 7.7 Å homobifunctional amine-reactive cross-linker, BS(2)G, was used to capture the CusF/CusB interaction site, and mass spectral data acquired on an LTQ-Orbitrap confirm the following two cross-links: CusF K31 to CusB K29 and CusF K58 to CusB K32, thus revealing that the N-terminal region of CusB interacts with the metal-binding face of CusF. The proteins transiently interact in a metal-dependent fashion, and contacts between CusF and CusB are localized to regions near their respective metal-binding sites. PMID:21323389

  2. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  3. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  4. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  5. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  6. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry

    PubMed Central

    Mealman, Tiffany D.; Bagai, Ireena; Singh, Pragya; Goodlett, David R.; Rensing, Christopher; Zhou, Hongjun; Wysocki, Vicki H.; McEvoy, Megan M.

    2011-01-01

    The E. coli periplasmic proteins CusF and CusB, as part of the CusCFBA efflux system, aid in the resistance of elevated levels of copper and silver by direct metal transfer between the metallochaperone CusF and the membrane fusion protein CusB, before metal extrusion from the periplasm to the extracellular space. Although previous in vitro experiments have demonstrated highly specific interactions between CusF and CusB that are crucial for metal transfer to occur, the structural details of the interaction have not been determined. Here, the interactions between CusF and CusB are mapped through nuclear magnetic resonance (NMR) spectroscopy and chemical cross-linking coupled with high-resolution mass spectrometry to better understand how recognition and metal transfer occur between these proteins. The NMR 1H-15N correlation spectra reveal that CusB interacts with the metal-binding face of CusF. In vitro chemical cross-linking with a 7.7 Å homobifunctional amine-reactive cross-linker, BS2G, was used to capture the CusF/CusB interaction site and mass spectral data acquired on an LTQ-Orbitrap confirm the following two cross-links: CusF K31 to CusB K29 and CusF K58 to CusB K32; thus, revealing that the N-terminal region of CusB interacts with the metal-binding face of CusF. The proteins transiently interact in a metal-dependent fashion and contacts between CusF and CusB are localized to regions near their respective metal binding sites. PMID:21323389

  7. Studies of metabolism and disposition of potent human immunodeficiency virus (HIV) integrase inhibitors using 19F-NMR spectroscopy.

    PubMed

    Monteagudo, E; Pesci, S; Taliani, M; Fiore, F; Petrocchi, A; Nizi, E; Rowley, M; Laufer, R; Summa, V

    2007-09-01

    (19)F-nuclear magnetic resonance (NMR) has been extensively used in a drug-discovery programme to support the selection of candidates for further development. Data on an early lead compound, N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-(4-methylmorpholin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamide (compound A (+)), and MK-0518 (N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-(1-methyl-1-{[(5-methyl-1,3,4-oxadiazol-2-yl)carbonyl]amino}ethyl)-6-oxo-1,6-dihydropyrimidine-4-carboxamide), a potent inhibitor of this series currently in phase III clinical trials, are described. The metabolic fate and excretion balance of compound A (+) and MK-0518 were investigated in rats and dogs following intravenous and oral dosing using a combination of (19)F-NMR-monitored enzyme hydrolysis and solid-phase extraction chromatography and NMR spectroscopy (SPEC-NMR). Dosing with the (3)H-labelled compound A (+) enabled the comparison of standard radiochemical analysis with (19)F-NMR spectroscopy to obtain quantitative metabolism and excretion data. Both compounds were eliminated mainly by metabolism. The major metabolite identified in rat urine and bile and in dog urine was the 5-O-glucuronide.

  8. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome. PMID:27466710

  9. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    PubMed

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-01-01

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery. PMID:27585291

  10. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution

    NASA Astrophysics Data System (ADS)

    Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hänicke, W.

    Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ⩾1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

  11. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy

    PubMed Central

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M.; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M.; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy. PMID:27158896

  12. "Pulse pair technique in high resolution NMR" a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy.

    PubMed

    Jeener, Jean; Alewaeters, Gerrit

    2016-05-01

    The review articles published in "Progress in NMR Spectroscopy" are usually invited treatments of topics of current interest, but occasionally the Editorial Board may take an initiative to publish important historical material that is not widely available. The present article represents just such a case. Jean Jeener gave a lecture in 1971 at a summer school in Basko Polje, in what was then called Yugoslavia. As is now widely known, Jean Jeener laid down the foundations in that lecture of two - and higher - dimensional NMR spectroscopy by proposing the homonuclear COSY experiment. Jeener realized that the new proposal would open the door towards protein NMR and molecular structure determinations, but he felt that useful versions of such experiments could not be achieved with the NMR, computer and electronics technology available at that time, so that copies of the lecture notes were circulated (the Basko Polje lecture notes by J. Jeener and G. Alewaeters), but no formal publication followed. Fortunately, Ernst, Freeman, Griffin, and many others were more far-sighted and optimistic. An early useful extension was Ernst's proposal to replace the original projection/reconstruction technique of MRI by the widely adopted Fourier transform method inspired by the Basko Polje lecture. Later, the pulse method spread over many fields of spectroscopy as soon as the required technology became available. Jean Jeener, Emeritus professor, Université Libre de Bruxelles. Geoffrey Bodenhausen, Ecole Normale Supérieure, Paris.

  13. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-06-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ, ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1-40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1-40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1-40 fibrils in 4 h or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples.

  14. NMR Spectroscopy and the Crystal-Field Interaction in Holmium Trifluoride

    NASA Astrophysics Data System (ADS)

    Warner, Simeon

    The work to be described falls into three parts: (1) The computer-controlled CW spectrometer was designed to supplement the Manchester pulsed microwave spectrometer in situations where rapid nuclear relaxation makes spin-echo spectroscopy difficult. Its operating range is 4-8 GHz. Resonator designs and modulation strategies will be discussed in the light of practical experience. (2) Both CW and pulsed NMR have been used to study the field dependence of the hyperfine splittings of ^{165}Ho in HoF_3 and, as a dilute substituent, in YF_3. The low site symmetry results in a singlet crystal-field ground state for the Ho^{3+} ion, giving Van Vleck paramagnetism and enhanced nuclear magnetism at low temperatures. The measurements were made at temperatures in the range 1.5 to 4.2 K and in fields of up to 8 T. This work has revealed, for the first time, distinct spectra from the two subtly inequivalent rare-earth sites in the orthorhombic unit cell. Because of the non-colinear spin structure of HoF_3, the NMR and magnetometry measurements give independent and complimentary information about the ionic moments. (3) The measured hyperfine splittings have been interpreted in terms of a 15-parameter crystal-field Hamiltonian appropriate to the C_{1h} site symmetry. This work has entailed a substantial effort to clarify the notational confusion that exists in the literature. A computer program has been developed to automate conversion between notational conventions prior to diagonalization of the 136-dimensional electronic-nuclear Hamiltonian comprising the Zeeman, crystal-field and hyperfine interactions. [abridged

  15. Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy.

    PubMed

    Smejkalová, Daniela; Spaccini, Riccardo; Fontaine, Barbara; Piccolo, Alessandro

    2009-07-15

    1H- and 19F-NMR measurements of spin-lattice (T1) and spin-spin (T2) relaxationtimes and diffusion ordered spectroscopy (DOSY) were applied to investigate the association of nonsubstituted (phenol (P)) and halogen-substituted (2,4-dichlorophenol (DCP); 2,4,6-trichlorophenol (TCP), and 2,4,6-trifluorophenol (TFP) phenols with a dissolved humic acid (HA). T1 and T2 values for both 1H and 19F in phenols decreased with enhancing HA concentration, indicating reduction in molecular mobility due to formation of noncovalent interactions. Moreover, correlation times (tau c) for different hydrogen and fluorine atoms in phenols showed that anisotropic mobility turned into isotropic motion with HA additions. Changes in relaxation times suggested that DCP and TCP were more extensively bound to HA than P and TFP. This was confirmed by diffusion measurements which showed full association of DCP and TCP to a less amount of HA than that required for entire complexation of P and TFP. Calculated values of binding constants (Ka) reflected the overall NMR behavior, being significantly larger for DCP- and TCP-HA (10.04 +/- 1.32 and 4.47 +/- 0.35 M(-1), respectively) than for P- and TFP-HA complexes (0.57 +/- 0.03 and 0.28 +/- 0.01 M(-1), respectively). Binding increased with decreasing solution pH, thus indicating a dependence on the fraction of protonated form (alpha) of phenols in solution. However, it was found that the hydrophobicity conferred to phenols by chlorine atoms on aromatic rings is a stronger drive than alpha for the phenols repartition within the HA hydrophobic domains.

  16. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; He, Zhongqi; Giesy, John P

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H2O, 0.1M NaOH and 1.0M HCl, combined with (13)C and (31)P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H2O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H2O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H2O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (Pi) was the primary form of P in H2O fractions, whereas organic P (Po) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H2O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes.

  17. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; He, Zhongqi; Giesy, John P

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H2O, 0.1M NaOH and 1.0M HCl, combined with (13)C and (31)P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H2O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H2O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H2O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (Pi) was the primary form of P in H2O fractions, whereas organic P (Po) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H2O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. PMID:27282495

  18. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  19. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  20. 31P-NMR SPECTROSCOPY OF RAT LIVER DURING SIMPLE STORAGE OR CONTINUOUS HYPOTHERMIC PERFUSION1

    PubMed Central

    Rossaro, Lorenzo; Murase, Noriko; Caldwell, Cary; Farghali, Hassan; Casavilla, Adrian; Starzl, Thomas E.; Ho, Chien; Van Thiel, David H.

    2010-01-01

    SUMMARY The ATP content and intracellular pH (pHi)3 of isolated rat liver before, during, and after cold preservation in either UW-lactobionate (UW, n=10) or Euro-Collins (EC, n=8) solutions were monitored using phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. The 31P-NMR spectra were obtained on a 4.7-Tesla system operating at 81 MHz. Fructose metabolism, liver enzyme release, O2 consumption, and rat survival after liver transplantation were also evaluated. During simple cold storage (SCS), the ATP level declined to undetectable levels with both preservation solutions while the pHi declined to approximately 7.0. In contrast, during continuous hypothermic perfusion (CHP), hepatic ATP levels remained measurable during the 24-hour EC preservation and actually increased significantly (p>0.01) during UW preservation. After reperfusion at 37°C with Krebs-lactate, the SCS livers treated with EC differed significantly from the UW livers in terms of their ATP and pHi as well as their response to a fructose challenge. In contrast, livers undergoing CHP demonstrated similar behaviors with both solutions. These results demonstrate an increase in the hepatic ATP content during CHP which occurs with UW but is not seen with EC. On the other hand, only livers that were simply stored with UW achieved significant survival after transplant, while CHP livers were affected by vascular damage as demonstrated by fatal thrombosis after transplant. These data suggest that ATP content is not the only determinant of good liver function although a system of hypothermic perfusion might further improve liver preservation efficacy should injury to vascular endothelium be avoided. PMID:1402332

  1. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  2. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy.

    PubMed

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2007-01-01

    Two neutral triterpenes and a triterpene acid were identified and quantified directly, in the absence of any purification steps, in a precipitate obtained during the industrial extraction of the leaves of Olea europaea L. using 13C-NMR spectroscopy (spectrometer operating at 4.7 T equipped with a 10 mm probe). The method was optimised in order to reduce the duration of analysis with a routine NMR spectrometer. Together with long-chain linear compounds, erythrodiol, uvaol and oleanolic acid accounted for 27.3, 18.3 and 12.5% of the precipitate, respectively.

  3. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  5. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  6. Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ting

    Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of

  7. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  8. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    PubMed

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  9. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  10. Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2010-11-01

    A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results.

  11. High resolution solid-state 29Si NMR spectroscopy of silicone gels used to fill breast prostheses.

    PubMed

    Dorne, L; Alikacem, N; Guidoin, R; Auger, M

    1995-10-01

    We have used 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to study the chemical structure of the silicone gels in virgin and explanted breast prostheses. Despite evidences of alteration in the morphological appearance of the silicone gel inside the breast prosthesis, our results do not reveal changes in the chemical nature and structure of the silicone gels after implantation. In addition to the main 29Si resonance peak at -22.26 ppm that corresponds to the resonance frequency of the D repeat unit of the polysiloxane chains, the high sensitivity of our NMR technique allows the detection of very low concentrations of silicone compounds. Within our experimental detection limit of 0.2%, no signal between -90 ppm and -150 ppm are observed. This indicates that no silica products are present inside the gel of the prostheses. Furthermore, our 29Si NMR spectra indicate differences in the chemical compositions of the silicone gels from different manufacturers.

  12. Lipid profiling of developing Jatropha curcas L. seeds using (1)H NMR spectroscopy.

    PubMed

    Annarao, Sanjay; Sidhu, O P; Roy, Raja; Tuli, Rakesh; Khetrapal, C L

    2008-12-01

    Seed development in Jatropha curcas L. was studied with respect to phenology, oil content, lipid profile and concentration of sterols. Seeds were collected at various stages of development starting from one week after fertilization and in an interval of five days thereafter till maturity. These were classified as stage I to stage VII. Moisture content of the seeds ranged from 8.8 to 90.3%; the lowest in mature seeds in stage VII and highest in stage I. The seed area increased as the seed grew from stage I to stage VI (0.2-10.2mm(2) per seed), however, the seed area shrunk at stage VII. Increase in seed area corresponded to increase in fresh weight of the seeds. (1)H NMR spectroscopy of hexane extracts made at different stages of seed development revealed the presence of free fatty acids (FFA), methyl esters of fatty acids (FAME) and triglycerol esters (TAG), along with small quantity of sterols. The young seeds synthesized predominantly polar lipids. Lipid synthesis was noticed nearly three weeks after fertilization. From the fourth week the seeds actively synthesized TAG. Stage III is a turning point in seed development since at this stage, the concentration of sterols decreased to negligible, there was very little FAME formation, accumulation of TAG increased substantially, and there was a sudden decrease in FFA concentration. The findings can be helpful in understanding the biosynthesis and in efforts to improve biosynthesis of TAG and reduce FFA content in the mature seeds. PMID:18534845

  13. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  14. Reconsidering the activation entropy for anomerization of glucose and mannose in water studied by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosaka, Ami; Aida, Misako; Katsumoto, Yukiteru

    2015-08-01

    The anomerization of monosaccharides is a very important process to understand how their stereoisomers are stabilized in aqueous solutions. For glucose and mannose, it has been known that α- and β-anomers of hexopyranose exist as the major components. In order to examine the anomerization pathway for glucose and mannose in aqueous solutions, it is indispensable to determine the thermodynamic parameters such as the activation energy, the activation Gibbs free energy (ΔG‡), enthalpy (ΔH‡), and entropy (ΔS‡). Although several research groups reported these quantities in aqueous solution, they have still been controversial especially for ΔS‡. In this paper, we employ 1H NMR spectroscopy for monitoring the population of both α- and β-anomers of glucose and mannose. The contribution of ΔS‡ to ΔG‡ for glucose in water is estimated to be ca. 30%, while that for mannose is 8.0%. The large difference in ΔS‡ suggests that the anomerization pathway is not the same for glucose and mannose.

  15. Toroid cavity detectors for high-resolution NMR spectroscopy and rotating frame imaging: capabilities and limitations.

    PubMed

    Momot, K I; Binesh, N; Kohlmann, O; Johnson, C S

    2000-02-01

    The capabilities of toroid cavity detectors for simultaneous rotating frame imaging and NMR spectroscopy have been investigated by means of experiments and computer simulations. The following problems are described: (a) magnetic field inhomogeneity and subsequent loss of chemical shift resolution resulting from bulk magnetic susceptibility effects, (b) image distortions resulting from off-resonance excitation and saturation effects, and (c) distortion of lineshapes and images resulting from radiation damping. Also, special features of signal analysis including truncation effects and the propagation of noise are discussed. B(0) inhomogeneity resulting from susceptibility mismatch is a serious problem for applications requiring high spectral resolution. Image distortions resulting from off-resonance excitation are not serious within the rather narrow spectral range permitted by the RF pulse lengths required to read out the image. Incomplete relaxation effects are easily recognized and can be avoided. Also, radiation damping produces unexpectedly small effects because of self-cancellation of magnetization and short free induction decay times. The results are encouraging, but with present designs only modest spectral resolution can be achieved. PMID:10648153

  16. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action.

  17. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  18. Detection of Anisotropy in Cartilage Using 2H Double-Quantum-Filtered NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharf, Y.; Eliav, U.; Shinar, H.; Navon, G.

    Double-quantum-filtered (DQF) NMR spectroscopy of I = 1 spin systems is a diagnostic tool for the detection of anisotropy in macroscopically disordered systems. For deuterium, this method reveals the presence of a residual quadrupolar interaction for D 2O in bovine nasal cartilage. This tissue is not macroscopically ordered and the quadrupolar splitting is not resolved. Fitting the calculated spectral lineshapes to the experimental results was possible only when a distribution of the residual quadrupolar interaction, omega(q), was assumed. The series of DQF lineshapes obtained for different creation times in the DQF experiment could be fitted using a single set of three parameters: the average residual quadrupolar interaction overlineω q/2π = 110 Hz, its standard deviation Δω q/2π = 73 Hz, and the transverse relaxation rate of 63 s -1. Separate deuterium DQF measurements for the constituents of the cartilage, collagen, and chondroitin sulfate indicated that the DQF spectra of cartilage are the result of anisotropic motion of D 2O due to binding to the fibrous collagen in the tissue.

  19. On the role of NMR spectroscopy for characterization of antimicrobial peptides

    PubMed Central

    Porcelli, Fernando; Ramamoorthy, Ayyalusamy; Barany, George; Veglia, Gianluigi

    2016-01-01

    Summary Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based soley on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs. PMID:23975777

  20. Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis.

    PubMed

    Xiao, Chaoni; Dai, Hui; Liu, Hongbing; Wang, Yulan; Tang, Huiru

    2008-11-12

    The molecular compositions of rosemary ( Rosmarinus officinalis L.) extracts and their dependence on extraction solvents, seasons, and drying processes were systematically characterized using NMR spectroscopy and multivariate data analysis. The results showed that the rosemary metabonome was dominated by 33 metabolites including sugars, amino acids, organic acids, polyphenolic acids, and diterpenes, among which quinate, cis-4-glucosyloxycinnamic acid, and 3,4,5-trimethoxyphenylmethanol were found in rosemary for the first time. Compared with water extracts, the 50% aqueous methanol extracts contained higher levels of sucrose, succinate, fumarate, malonate, shikimate, and phenolic acids, but lower levels of fructose, glucose, citrate, and quinate. Chloroform/methanol was an excellent solvent for selective extraction of diterpenes. From February to August, the levels of rosmarinate and quinate increased, whereas the sucrose level decreased. The sun-dried samples contained higher concentrations of rosmarinate, sucrose, and some amino acids but lower concentrations of glucose, fructose, malate, succinate, lactate, and quinate than freeze-dried ones. These findings will fill the gap in the understanding of rosemary composition and its variations.

  1. Quantification of Water-Soluble Metabolites in Medicinal Mushrooms Using Proton NMR Spectroscopy.

    PubMed

    Lo, Yu-Chang; Chien, Shih-Chang; Mishchuk, Darya O; Slupsky, Carolyn M; Mau, Jeng-Leun

    2016-01-01

    The water-soluble metabolites in 5 mushrooms were identified and quantified using proton nuclear magnetic resonance (NMR) spectroscopy and software for targeted metabolite detection and quantification. In total, 35 compounds were found in Agaricus brasiliensis, 25 in Taiwanofungus camphoratus, 23 in Ganoderma lucidum (Taiwan) and Lentinus edodes, and 16 in G. lucidum (China). Total amounts of all identified metabolites in A. brasiliensis, T. camphoratus, G. lucidum, G. lucidum (China), and L. edodes were 149,950.51, 12,834.18, 9,549.09, 2,788.41, and 111,726.51 mg/kg dry weight, respectively. These metabolites were categorized into 4 groups: free amino acids and derivatives, carbohydrates, carboxylic acids, and nucleosides. Carbohydrates were the most abundant metabolites among all 4 groups, with mannitol having the highest concentration among all analyzed metabolites (848-94,104 mg/kg dry weight). Principal components analysis (PCA) showed obvious distinction among the metabolites of the 5 different kinds of mushrooms analyzed in this study. Thus PCA could provide an optional analytical way of identifying and recognizing the compositions of flavor products. Furthermore, the results of this study demonstrate that NMRbased metabolomics is a powerful tool for differentiating between various medicinal mushrooms. PMID:27649603

  2. Evaluation of characteristic deuterium distributions of ephedrines and methamphetamines by NMR spectroscopy for drug profiling.

    PubMed

    Matsumoto, Teruki; Urano, Yasuteru; Makino, Yukiko; Kikura-Hanajiri, Ruri; Kawahara, Nobuo; Goda, Yukihiro; Nagano, Tetsuo

    2008-02-15

    We have established a method for quantitative analysis of the deuterium contents (D/H) at the phenyl, methine, benzyl, N-methyl and methyl groups of l-ephedrine/HCl, d-pseudoephedrine/HCl and methamphetamine/HCl by 2H NMR spectroscopy. Comparison of the 5 position-specific D/H values of l-ephedrine/HCl and d-pseudoephedrine/HCl prepared by three methods (chemical synthesis, semichemical synthesis, and biosynthesis) showed that chemically synthesized ephedrines and semisynthetic ephedrines have highly specific distributions of deuterium at the methine position and at the benzyl position, compared with the other positions. The classification of several methamphetamine samples seized in Japan in terms of the D/H values at these two positions clearly showed that the methamphetamine samples had been synthesized from ephedrines extracted from Ephedra plants or semisynthetic ephedrines but not from synthetic ephedrine. This isotope ratio analysis method should be useful to trace the origins of seized methamphetamine in Southeast Asia.

  3. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae.

    PubMed

    Jain, Dharamdeep; Stark, Alyssa Y; Niewiarowski, Peter H; Miyoshi, Toshikazu; Dhinojwala, Ali

    2015-04-22

    Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as 'setae' on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in 'pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were 'delipidized' to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems.

  4. Application of NMR Spectroscopy in the Assessment of Radiation Dose in Human Primary Cells.

    PubMed

    Kang, Chang-Mo; Seong Hyeon, Jin; Ra Kim, So; Kyeong Lee, Eun; Jin Yun, Hyun; Young Kim, Sun; Kee Chae, Young

    2015-11-01

    We employed the primary cell model system as a first step toward establishing a method to assess the influence of ionizing radiation by using a combination of common and abundant metabolites. We applied X-ray irradiation amounts of 0, 1, and 5 Gy to the cells that were harvested 24, 48, or 72 h later, and profiled metabolites by 2D-NMR spectroscopy to sort out candidate molecules that could be used to distinguish the samples under different irradiation conditions. We traced metabolites stemming from the input ¹³C-glucose, identified twelve of them from the cell extracts, and applied statistical analysis to find out that all the metabolites, including glycine, alanine, and gluatamic acid, increased upon irradiation. The combinatorial use of the selected metabolites showed promising results where the product of signal intensities of alanine and lactate could differentiate samples according to the dose of X-ray irradiation. We hope that this work can form a base for treating radiation-poisoned patients in the future. PMID:26567947

  5. NMR Spectroscopy of Macrophages Loaded with Native, Oxidized or Enzymatically Degraded Lipoproteins

    PubMed Central

    Ramm Sander, Paul; Peer, Markus; Grandl, Margot; Bogdahn, Ulrich; Schmitz, Gerd; Kalbitzer, Hans Robert

    2013-01-01

    Oxidized and enzymatically modified low-density lipoproteins (oxLDL and eLDL) play a key role in early stages of atherogenesis. Their uptake by recruited macrophages leads to endolysosomal phospholipidosis or foam cell formation, respectively, each of which is preceded by highly differential lipid restructuring processes. We applied 1H-NMR spectroscopy (NMRS) to elucidate these structural rearrangements both in consequence of lipoprotein modifications and following phagocytosis. Being specifically sensitive to the mobile lipid subset, NMRS of oxLDL and eLDL revealed a partial and total immobilization of lipids, respectively. NMRS of intact macrophages showed a sixfold increase in mobile lipids in case of loading with eLDL but no significant changes for oxLDL or native LDL. This finding reflected the disparate lipid storage in lipid droplets and in multilamellar endolysosomal clusters when loaded with either eLDL or oxLDL, respectively. Moreover, a significant shift of the degree of saturation towards mainly polyunsaturated fatty acid chains was found for the mobile lipid pool in eLDL-loaded macrophages. Additional analyses of lipid extracts by NMRS and mass spectrometry (MS) reflected these changes in lipid content and in fatty acid composition only partially. In summary, in-cell NMRS represents a unique lipidomics tool to investigate structural changes within the mobile lipid pool following atherogenic triggers that can be not detected by the analysis of lipid extracts by MS or NMRS. PMID:23457556

  6. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2014-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265

  7. Resolving Nitrogen-15 and Proton Chemical Shifts for Mobile Segments of Elastin with Two-dimensional NMR Spectroscopy*

    PubMed Central

    Ohgo, Kosuke; Niemczura, Walter P.; Seacat, Brian C.; Wise, Steven G.; Weiss, Anthony S.; Kumashiro, Kristin K.

    2012-01-01

    In this study, one- and two-dimensional NMR experiments are applied to uniformly 15N-enriched synthetic elastin, a recombinant human tropoelastin that has been cross-linked to form an elastic hydrogel. Hydrated elastin is characterized by large segments that undergo “liquid-like” motions that limit the efficiency of cross-polarization. The refocused insensitive nuclei enhanced by polarization transfer experiment is used to target these extensive, mobile regions of this protein. Numerous peaks are detected in the backbone amide region of the protein, and their chemical shifts indicate the completely unstructured, “random coil” model for elastin is unlikely. Instead, more evidence is gathered that supports a characteristic ensemble of conformations in this rubber-like protein. PMID:22474297

  8. Rapidly-frozen polypeptide samples for characterization of high definition dynamics by solid-state NMR spectroscopy.

    PubMed

    Lazo, N D; Hu, W; Lee, K C; Cross, T A

    1993-12-15

    A method is described for defining anisotropic local dynamics in polypeptides by solid-state NMR. To avoid conformational heterogeneity introduced by large hexagonal ice crystals in low temperature hydrated samples, a fast-freezing technique is used for sample preparation. For a demonstration of this approach, the backbone librational motions of the gramicidin A channel conformation are studied in hydrated DMPC bilayers. The static 15N chemical shift tensor is characterized at 123 K for the Ala3 site. The temperature dependence of this tensor yields a determination of the librational amplitude and anisotropy of the motionally sampled space. This amplitude represents the sum of nanosecond and picosecond time-frame motions, both of which have a significant amplitude.

  9. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners. PMID:25946616

  10. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners.

  11. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  12. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  13. Characterization of the biochemical effects of 1-nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition.

    PubMed

    Azmi, J; Connelly, J; Holmes, E; Nicholson, J K; Shore, R F; Griffin, J L

    2005-01-01

    Metabolic fingerprints, in the form of patterns of high-concentration endogenous metabolites, of 1-nitronaphthalene (NN)-induced lung toxicity have been elucidated in bronchoalveolar lavage fluid (BALF), urine, blood plasma, and intact lung and liver tissue using NMR spectroscopy-based metabolic profiling. A single dose of NN (75 mg kg(-1)) was administered orally to Sprague-Dawley rats. BALF and lung tissue were obtained 24 h after dosing from these animals and matched control rats post-mortem. High-resolution (1)H-NMR spectroscopy of BALF samples indicated that NN caused increases in concentrations of choline, amino acids (leucine, isoleucine and alanine) and lactate together with decreased concentrations of succinate, citrate, creatine, creatinine and glucose. In addition, the intact lung weights were higher in the NN-treated group (p<0.01), consistent with pulmonary oedema. The NMR-detected perturbations indicated that NN induces a perturbation in energy metabolism in both lung and liver tissue, as well as surfactant production and osmolyte levels in the lungs. As well as reporting the first NMR spectroscopic combined examination of BALF and intact lung, this study indicates that such holistic approaches to investigating mechanisms of lung toxicity may be of value in evaluating disease progression or the effects of therapeutic intervention in pulmonary conditions such as surfactant disorders or asthma. PMID:16308265

  14. Structure of the propeptide of prothrombin containing the. gamma. -carboxylation recognition site determined by two-dimensional NMR spectroscopy

    SciTech Connect

    Sanford, D.G.; Sudmeier, J.L.; Bachovchin, W.W.; Kanagy, C.; Furie, B.C.; Furie, B. )

    1991-10-15

    The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a {gamma}-carboxylation recognition site that directs precursor forms of these proteins for posttranslational {gamma}-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing {alpha}-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues {minus}13 to {minus}3 form an amphipathic {alpha}-helix. NMR spectra indicate that a similar structure is present at 5C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the {gamma}-carboxylation recognition site, four residues ({minus}18, {minus}17, {minus}16, and {minus}15) are adjacent to the helical region and one residue ({minus}10) is located within the helix. The potential role of the amphipathic {alpha}-helix in the {gamma}-carboxylation recognition site is discussed.

  15. Metabolic profiling for studying chemotype variations in Withania somnifera (L.) Dunal fruits using GC-MS and NMR spectroscopy.

    PubMed

    Bhatia, Anil; Bharti, Santosh K; Tewari, Shri K; Sidhu, Om P; Roy, Raja

    2013-09-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plant with several pharmaceutical and nutraceutical applications. Metabolic profiling was performed by GC-MS and NMR spectroscopy on the fruits obtained from four chemotypes of W. somnifera. A combination of (1)H NMR spectroscopy and GC-MS identified 82 chemically diverse metabolites consisting of organic acids, fatty acids, aliphatic and aromatic amino acids, polyols, sugars, sterols, tocopherols, phenolic acids and withanamides in the fruits of W. somnifera. The range of metabolites identified by GC-MS and NMR of W. somnifera fruits showed various known and unknown metabolites. The primary and secondary metabolites observed in this study represent MVA, DOXP, shikimic acid and phenylpropanoid biosynthetic metabolic pathways. Squalene and tocopherol have been rated as the most potent naturally occurring compounds with antioxidant properties. These compounds have been identified by us for the first time in the fruits of W. somnifera. Multivariate principal component analysis (PCA) on GC-MS and NMR data revealed clear distinctions in the primary and secondary metabolites among the chemotypes. The variation in the metabolite concentration among different chemotypes of the fruits of W. somnifera suggest that specific chemovars can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents.

  16. Estimation of atmospheric lifetimes of hydrofluorocarbons, hydrofluoroethers, and olefins by chlorine photolysis using gas-phase NMR spectroscopy.

    PubMed

    Marchione, Alexander A; Fagan, Paul J; Till, Eric J; Waterland, Robert L; LaMarca, Concetta

    2008-08-15

    An empirical correlation has been derived between accepted atmospheric lifetimes of a set of hydrofluorocarbons and hydrofluoroethers and relative rates of reaction with photolyzed chlorine in excess at ambient temperature. These kinetic systems were studied by nuclear magnetic resonance (NMR) spectroscopy in the gas phase, marking the first application of NMR spectroscopy to this field. The square of the Pearson coefficient R for the linear correlation between observed reaction rates and accepted atmospheric lifetimes was 0.87 for compounds of lifetime less than 20 years. The method was extended to the study of ethene and propene; the rate of reaction of propene was found to be 1.25 times that of ethene at 23 degrees C. The chief advantage of this method is its simplicity and reliance only on common tools and techniques of an industrial chemical laboratory.

  17. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Winfried; Kuballa, Thomas; Ilse, Maren; Winkelmann, Ole; Diehl, Bernd; Thomas, Freddy; Lachenmeier, Dirk W

    2015-09-01

    NMR spectroscopy was used to verify the presence of Arabica and Robusta species in coffee. Lipophilic extracts of authentic roasted and green coffees showed the presence of established markers for Robusta (16-O-methylcafestol (16-OMC)) and for Arabica (kahweol). The integration of the 16-OMC signal (δ 3.165 ppm) was used to estimate the amount of Robusta in coffee blends with an approximate limit of detection of 1-3%. The method was successfully applied for the analysis of 77 commercial coffee samples (coffee pods, coffee capsules, and coffee beans). Furthermore, principal component analysis (PCA) was applied to the spectra of lipophilic and aqueous extracts of 20 monovarietal authentic samples. Clusters of the two species were observed. NMR spectroscopy can be used as a rapid prescreening tool to discriminate Arabica and Robusta coffee species before the confirmation applying the official method.

  18. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Winfried; Kuballa, Thomas; Ilse, Maren; Winkelmann, Ole; Diehl, Bernd; Thomas, Freddy; Lachenmeier, Dirk W

    2015-09-01

    NMR spectroscopy was used to verify the presence of Arabica and Robusta species in coffee. Lipophilic extracts of authentic roasted and green coffees showed the presence of established markers for Robusta (16-O-methylcafestol (16-OMC)) and for Arabica (kahweol). The integration of the 16-OMC signal (δ 3.165 ppm) was used to estimate the amount of Robusta in coffee blends with an approximate limit of detection of 1-3%. The method was successfully applied for the analysis of 77 commercial coffee samples (coffee pods, coffee capsules, and coffee beans). Furthermore, principal component analysis (PCA) was applied to the spectra of lipophilic and aqueous extracts of 20 monovarietal authentic samples. Clusters of the two species were observed. NMR spectroscopy can be used as a rapid prescreening tool to discriminate Arabica and Robusta coffee species before the confirmation applying the official method. PMID:25842325

  19. Cherry tomatoes metabolic profile determined by ¹H-High Resolution-NMR spectroscopy as influenced by growing season.

    PubMed

    Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

    2014-11-01

    The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were α-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

  20. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization.

    PubMed

    Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon

    2011-02-23

    We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra. PMID:21280606

  1. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex. PMID:27265020

  2. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGESBeta

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; Bruchet, Anthony; Nitsche, Heino

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  3. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling. PMID:26978477

  4. Human in vivo cardiac phosphorus NMR spectroscopy at 3.0 Tesla

    NASA Astrophysics Data System (ADS)

    Bruner, Angela Properzio

    One of the newest methods with great potential for use in clinical diagnosis of heart disease is human, cardiac, phosphorus NMR spectroscopy (cardiac p 31 MRS). Cardiac p31 MRS is able to provide quantitative, non-invasive, functional information about the myocardial energy metabolites such as pH, phosphocreatine (PCr), and adenosinetriphosphate (ATP). In addition to the use of cardiac p3l MRS for other types of cardiac problems, studies have shown that the ratio of PCr/ATP and pH are sensitive and specific markers of ischemia at the myocardial level. In human studies, typically performed at 1.5 Tesla, PCr/ATP has been relatively easy to measure but often requires long scan times to provide adequate signal-to-noise (SNR). In addition, pH which relies on identification of inorganic phosphate (Pi), has rarely been obtained. Significant improvement in the quality of cardiac p31 MRS was achieved through the use of the General Electric SIGNATM 3.0 Tesla whole body magnet, improved coil designs and optimized pulse sequences. Phantom and human studies performed on many types of imaging and spectroscopy sequences, identified breathhold gradient-echo imaging and oblique DRESS p31 spectroscopy as the best compromises between SNR, flexibility and quality localization. Both single-turn and quadrature 10-cm diameter, p31 radiofrequency coils, were tested with the quadrature coil providing greater SNR, but at a greater depth to avoid skeletal muscle contamination. Cardiac p31 MRS obtained in just 6 to 8 minutes, gated, showed both improved SNR and discernment of Pi allowing for pH measurement. A handgrip, in-magnet exerciser was designed, created and tested at 1.5 and 3.0 Tesla on volunteers and patients. In ischemic patients, this exercise was adequate to cause a repeated drop in PCr/ATP and pH with approximately eight minutes of isometric exercise at 30% maximum effort. As expected from literature, this exercise did not cause a drop in PCr/ATP for reference volunteers.

  5. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  6. Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from NMR Spectroscopy and DFT Calculations.

    PubMed

    Dai, Weili; Wang, Chuanming; Yi, Xianfeng; Zheng, Anmin; Li, Landong; Wu, Guangjun; Guan, Naijia; Xie, Zaiku; Dyballa, Michael; Hunger, Michael

    2015-07-20

    Experimental evidence for the presence of tert-butyl cations, which are important intermediates in acid-catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with (1)H/(13)C magic-angle-spinning NMR spectroscopy, the tert-butyl cation was successfully identified on zeolite H-ZSM-5 upon conversion of isobutene by capturing this intermediate with ammonia. PMID:26096840

  7. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  8. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in

  9. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  10. The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.

    PubMed

    Gee, Becky A

    2004-01-01

    The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second mom