Science.gov

Sample records for 15n nuclear magnetic

  1. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  2. In Vivo Fluxes in the Ammonium-Assimilatory Pathways in Corynebacterium glutamicum Studied by 15N Nuclear Magnetic Resonance

    PubMed Central

    Tesch, M.; de Graaf, A. A.; Sahm, H.

    1999-01-01

    Glutamate dehydrogenase (GDH) and glutamine synthetase (GS)–glutamine 2-oxoglutarate-aminotransferase (GOGAT) represent the two main pathways of ammonium assimilation in Corynebacterium glutamicum. In this study, the ammonium assimilating fluxes in vivo in the wild-type ATCC 13032 strain and its GDH mutant were quantitated in continuous cultures. To do this, the incorporation of 15N label from [15N]ammonium in glutamate and glutamine was monitored with a time resolution of about 10 min with in vivo 15N nuclear magnetic resonance (NMR) used in combination with a recently developed high-cell-density membrane-cyclone NMR bioreactor system. The data were used to tune a standard differential equation model of ammonium assimilation that comprised ammonia transmembrane diffusion, GDH, GS, GOGAT, and glutamine amidotransferases, as well as the anabolic incorporation of glutamate and glutamine into biomass. The results provided a detailed picture of the fluxes involved in ammonium assimilation in the two different C. glutamicum strains in vivo. In both strains, transmembrane equilibration of 100 mM [15N]ammonium took less than 2 min. In the wild type, an unexpectedly high fraction of 28% of the NH4+ was assimilated via the GS reaction in glutamine, while 72% were assimilated by the reversible GDH reaction via glutamate. GOGAT was inactive. The analysis identified glutamine as an important nitrogen donor in amidotransferase reactions. The experimentally determined amount of 28% of nitrogen assimilated via glutamine is close to a theoretical 21% calculated from the high peptidoglycan content of C. glutamicum. In the GDH mutant, glutamate was exclusively synthesized over the GS/GOGAT pathway. Its level was threefold reduced compared to the wild type. PMID:10049869

  3. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  4. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  5. sup 13 C and sup 15 N nuclear magnetic resonance evidence of the ionization state of substrates bound to bovine dihydrofolate reductase

    SciTech Connect

    Selinsky, B.S.; Perlman, M.E.; London, R.E. ); Unkefer, C.J. ); Mitchell, J. ); Blakley, R.L. Univ. of Tennessee, Memphis )

    1990-02-06

    The state of protonation of substrates bound to mammalian dihydrofolate reductase (DHFR) has significance for the mechanism of catalysis. To investigate this, dihydrofolate and dihydropteroylpentaglutamate have been synthesized with {sup 15}N enrichment at N-5. {sup 15}N NMR studies have been performed on the binary complexes formed by bovine DHFR with these compounds and with (5-{sup 15}N)dihydrobiopterin. The results indicate that there is no protonation at N-5 in the binary complexes, and this was confirmed by {sup 13}C NMR studies with folate and dihydrofolate synthesized with {sup 13}C enrichment at C-6. The chemical shift displacements produced by complex formation are in the same direction as those which result from deprotonation of the N-3/C-4-O amide group and are consistent with at least partial loss of the proton from N-3. This would be possible if, as crystallographic data indicate, there is interaction of N-3 and the 2-amino group of the bound ligands with the carboxylate of the active site glutamate residue (Glu{sup 30}).

  6. Structure and backbone dynamics of vanadate-bound PRL-3: comparison of 15N nuclear magnetic resonance relaxation profiles of free and vanadate-bound PRL-3.

    PubMed

    Jeong, Ki-Woong; Kang, Dong-Il; Lee, Eunjung; Shin, Areum; Jin, Bonghwan; Park, Young-Guen; Lee, Chung-Kyoung; Kim, Eun-Hee; Jeon, Young Ho; Kim, Eunice Eunkyeong; Kim, Yangmee

    2014-07-29

    Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential therapeutic target. The flexibility of the WPD loop as well as the P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes in the WPD loop, P-loop, helices α4-α6, and the polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by helices α4-α6 with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant k(close) of 7 s(-1). This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in substrate recognition.

  7. Determination of γ -ray widths in 15N using nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-07-01

    Background: The stable nucleus 15N is the mirror of 15O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler shift attenuation method in 15O. As a reference and for testing the method, level lifetimes in 15N have also been determined in the same experiment. Purpose: The latest compilation of 15N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement to enable a comparison to the AGATA demonstrator data. The widths of several 15N levels have been studied with the NRF method. Method: The solid nitrogen compounds enriched in 15N have been irradiated with bremsstrahlung. The γ rays following the deexcitation of the excited nuclear levels were detected with four high-purity germanium detectors. Results: Integrated photon-scattering cross sections of 10 levels below the proton emission threshold have been measured. Partial γ -ray widths of ground-state transitions were deduced and compared to the literature. The photon-scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Conclusions: Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.

  8. Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags

    PubMed Central

    Theis, Thomas; Ortiz, Gerardo X.; Logan, Angus W. J.; Claytor, Kevin E.; Feng, Yesu; Huhn, William P.; Blum, Volker; Malcolmson, Steven J.; Chekmenev, Eduard Y.; Wang, Qiu; Warren, Warren S.

    2016-01-01

    Conventional magnetic resonance (MR) faces serious sensitivity limitations which can be overcome by hyperpolarization methods, but the most common method (dynamic nuclear polarization) is complex and expensive, and applications are limited by short spin lifetimes (typically seconds) of biologically relevant molecules. We use a recently developed method, SABRE-SHEATH, to directly hyperpolarize 15N2 magnetization and long-lived 15N2 singlet spin order, with signal decay time constants of 5.8 and 23 minutes, respectively. We find >10,000-fold enhancements generating detectable nuclear MR signals that last for over an hour. 15N2-diazirines represent a class of particularly promising and versatile molecular tags, and can be incorporated into a wide range of biomolecules without significantly altering molecular function. PMID:27051867

  9. Oxygen determination in materials by 18O(p,αγ)15N nuclear reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Sunitha, Y.; Reddy, G. L. N.; Sukumar, A. A.; Ramana, J. V.; Sarkar, A.; Verma, Rakesh

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on 18O(p,αγ)15N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of 15N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0-4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is <8%. The reaction has a probing depth of several tens of microns. Interferences can arise from fluorine due to the occurrence of 19F(p,αγ)16O reaction that emits 6-7 MeV γ-rays. The analytical potential of the methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  10. Nuclear polarization of /sup 15/N via ion-beam-foil interaction

    SciTech Connect

    Deutch, B.I.; Liu, C.H. II; Lu, F.; Sun, C.; Tan, J.; Tang, G.; Xu, K.; Yang, F.; Ye, H.

    1981-10-01

    The ion beam surface interaction at grazing incidence (IBSIGI) generates highly oriented atomic states, and nuclear spin polarized ions are produced via hf-interactions. Both single and multiple IBSIGI were reported./sup 1/ By single reflection, nuclear polarizations of P/sub I/ = 14% in /sup 14/N(I = 1), and P/sub I/ = 6.8% in /sup 7/Li(I = 3/2) were produced. In this paper, the transmission rather than reflection technique is used. A 600 keV /sup 15/N/sup +/(I = 1/2) beam passed through a foil tilted 60 /sup 0/ with respect to the beam axis, and a perpendicular foil (both made of 20 ..mu..g/cm/sup 2/ thick carbon). After the first foil, highly oriented atomic states are produced, which result in large circular polarization fractions in the fluorescent radiation. By hf-interaction, the orientation can be transferred from the electronic shell to the nucleus, or vice versa. In the second foil, which is perpendicular, and therefore does not produce any polarization, the interaction does not affect the nuclear spin, but attaches a new unoriented electronic shell to the nucleus. Thus the circular polarization in the fluorescence after the second foil must stem from the transfer of orientation from the nucleus to the electronic shell and is therefore a direct measure of the nuclear spin orientation. To determine the degree of circular polarization, the Stokes parameter S/I is measured. For the multiplet exclamation/sup 5/N II 2s/sup 2/2p3s /sup 3/P--2s/sup 2/2p3p /sup 3/D after a tilted foil the S/I is equal to 8.5 +- 0.8%; after double foils (60 /sup 0/ tilted foil+perpendicular foil), S/I = 1.6 +- 0.4%. From the latter values, the nuclear polarization of /sup 15/N is calculated: P/sub I/ = 10.2%.

  11. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  12. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  13. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  14. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  15. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  16. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  17. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  18. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  19. Introduction to nuclear magnetic resonance.

    PubMed

    Mlynárik, Vladimír

    2016-05-19

    Nuclear magnetic resonance spectroscopy is a useful tool for studying normal and pathological biochemical processes in tissues. In this review, the principles of nuclear magnetic resonance and methods of obtaining nuclear magnetic resonance spectra are briefly outlined. The origin of the most important spectroscopic parameters-chemical shifts, coupling constants, longitudinal and transverse relaxation times, and spectroscopic line intensities-is explained, and the role of these parameters in interpretation of spectra is addressed. Basic methodological concepts of localized spectroscopy and spectroscopic imaging for the study of tissue metabolism in vivo are also described.

  20. Atomic and nuclear polarization of /sup 12/C, /sup 13/C, and /sup 15/N by beam-foil interaction at 300--400 keV

    SciTech Connect

    Lu, F.Q.; Tang, J.Y.; Deutch, B.I.

    1982-03-01

    Induced nuclear spin polarization P by hyperfine interaction following passage of 0.5 ..mu..A 300--keV beams of /sup 12/C/sup +/, /sup 13/C/sup +/, and /sup 15/N/sup +/ through single tilted carbon foils yields Vertical BarPVertical Bar = (0.4 +- 0.8)%, (3.2 +- 0.6)%, and (5.7 +- 0.9)%, respectively. The nuclear polarizations were enhanced by passage through two tilted foils, and the sign of the polarization flipped by a simple flip of the foil direction with respect to the beam direction. From quantum-beat measurements with circularly polarized light, experimental quantum beat frequencies ..omega.. = 6790 +- 570 and 747 +- 62 MHz for the unresolved 6578--6583 A doublet in CII, and ..omega..(5667 A) = 2860 +- 240, ..omega..(5680 A) = 4810 +- 40 MHz in NII are determined.

  1. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  2. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  3. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  4. Determination of inverse electric field strength of Ta 218O 5 film produced in biological electrolytes using 18O(p, α) 15N nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Wosu, Sylvanus N.

    2005-08-01

    A 18O(p, α) 15N nuclear reaction analysis (NRA) method was developed for the determination of inverse electric field strengths (also referred to as anodic constants) of Ta 2O 5 oxide films prepared in biological solutions (urine, blood plasma and serum). The results show that fresh biological electrolytes have inverse electric field strengths equal to 17.5 ± 1.2, 17.3 ± 1.2, 17.3 ± 0.8 Å/V for plasma, serum and urine, respectively compared to 16.2 ± 0.2 and 15.7 Å/V, for 3% ammonium citrate water and distilled water, respectively. The inverse electric field strength is shown to depend on the pH variation, the metal substrate and the electrolytic ionic concentration. Freezing or aging of the biological sample results in greater variation and reduction of solution pH. Particle-induced X-ray emission (PIXE) and energy dispersive X-ray (EDS) analyses show no incorporation of ions of Z > 11.

  5. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  6. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  7. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  8. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  9. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    PubMed

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-05

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  10. Storage of nuclear magnetization as long-lived singlet order in low magnetic field

    PubMed Central

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H.

    2010-01-01

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T1, which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T1 is less than 3 min under the same conditions. PMID:20855584

  11. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  12. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    PubMed Central

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin–lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C). PMID:28067292

  13. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    NASA Astrophysics Data System (ADS)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin–lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  14. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  15. Quantification of the separate matrix constituents of spheroidal graphite cast iron implanted with 15N by nuclear reaction analysis using an ion muprobe

    NASA Astrophysics Data System (ADS)

    Matthews, A. P.; Jeynes, C.; Reeson, K. J.; Thornton, J.; Spyrou, N. M.

    1992-02-01

    The retained dose of nitrogen in a spheroidal graphite (SG) cast iron (4% carbon) implanted with 2 × 10 1715{solN}/{cm 2} at 200 keV has been determined separately in the iron matrix and in the graphite inclusions of 30 μm average diameter randomly dispersed in the matrix, using the 15N(p, αγ) 12C resonance at 898 keV and a proton muprobe focussed to less than 20 μm spot diameter. In normalised and tempered SG cast iron the retained doses were 1.09 × 10 17 and 1.74 × 10 17{N}/{cm}2 in the pearlitic matrix and graphite nodules, respectively, and in induction hardened SG cast iron the retained doses were 1.18 × 10 15 and 0.97 × 10 17{N}/{cm 2} in the martensitic matrix and nodules, respectively. The profile shapes are also quite different in both types of samples, and in both matrix and nodule.

  16. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  17. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  18. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  19. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons.

    PubMed

    Live, D H; Cowburn, D; Breslow, E

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, 15N labeling being used to identify specific backbone 15N and 1H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence of hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neurophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of 15N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Magnetic fusion driventransmutation of nuclear waste (FTW)

    SciTech Connect

    Peng, Yueng Kay Martin; Cheng, E.T.

    1993-01-01

    The possibility of magnetic Fusion driven Transmutation of Waste (FTW) was revisted and discussed recently. Nuclear wastes include all transuranium elements: Pu isotopes, minor actinides separated from the spent fission fuel, and fissile products. Elimination of thse long-life nuclear wastes is necessary for the long-term viability of fission power. A Small Business Innovative Research program has been initiated under the leadership of TSI Research to examine the efficacy of fusion transmutation of waste utilizing small fusion drivers.

  1. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  2. Nuclear Magnetic Resonance Imaging. South Carolina Health Service Area 2

    SciTech Connect

    Not Available

    1984-12-01

    Contents include: Nuclear Magnetic Resonance Imaging (NMRI); (Clinical applications, Magnet types, Comparisons with other systems, Manpower, Manufacturers, Contraindications); Analysis of systems; (Availability, Accessibility, Cost, Quality, Continuity, Acceptability).

  3. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  4. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  5. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  6. Optically pumped nuclear magnetic resonance of semiconductors.

    PubMed

    Hayes, Sophia E; Mui, Stacy; Ramaswamy, Kannan

    2008-02-07

    Optically pumped NMR (OPNMR) of direct gap and indirect gap semiconductors has been an area of active research interest, motivated by both basic science and technological perspectives. Proposals to enhance and to spatially localize nuclear polarization have stimulated interest in this area. Recent progress in OPNMR has focused on exploring the experimental parameter space in order to elucidate details of the underlying photophysics of optical pumping phenomena. The focus of this review is on recent studies of bulk samples of GaAs and InP, namely, the photon energy dependence, the magnetic field dependence, and the phase dependence of OPNMR resonances. Models for the development of nuclear polarization are discussed.

  7. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  8. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  9. Magnetic-field cycling instrumentation for dynamic nuclear polarization-nuclear magnetic resonance using photoexcited triplets.

    PubMed

    Kagawa, Akinori; Negoro, Makoto; Takeda, Kazuyuki; Kitagawa, Masahiro

    2009-04-01

    To advance static solid-state NMR with hyperpolarized nuclear spins, a system has been developed enabling dynamic nuclear polarization (DNP) using electron spins in the photoexcited triplet state with X-band microwave apparatus, followed by static solid-state nuclear magnetic resonance (NMR) experiments using the polarized nuclear-spin system with a goniometer. In order to perform the DNP and NMR procedures in different magnetic fields, the DNP system and the NMR system are spatially separated, between which the sample can be shuttled while its orientation is controlled in a reproducible fashion. We demonstrate that the system developed in this work is operational for solid-state NMR with hyperpolarized nuclear-spin systems in static organic materials, and also discuss the application of our system.

  10. Nuclear magnetic moments and related sum rules

    SciTech Connect

    Bentz, Wolfgang; Arima, Akito

    2011-05-06

    We first review the history and our present understanding of nuclear magnetic moments and Gamow-Teller transitions, with emphasis on the roles of configuration mixing and meson exchange currents. Then we discuss the renormalization of the orbital g-factor in nuclei, and its relation to the E1 sum rule for photoabsorption and the M1 sum rule for the scissors mode of deformed nuclei.

  11. Hot magnetized nuclear matter: Thermodynamic and saturation properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bordbar, G. H.

    2017-03-01

    We have used a realistic nuclear potential, AV_{18}, and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

  12. High-resolution laser spectroscopy and magnetic effect of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical.

    PubMed

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit.

  13. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  14. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  15. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  16. QED theory of the nuclear magnetic shielding in hydrogenlike ions.

    PubMed

    Yerokhin, V A; Pachucki, K; Harman, Z; Keitel, C H

    2011-07-22

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  17. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  18. Amino acid-selective isotope labeling of proteins for nuclear magnetic resonance study: proteins secreted by Brevibacillus choshinensis.

    PubMed

    Tanio, Michikazu; Tanaka, Rikou; Tanaka, Takeshi; Kohno, Toshiyuki

    2009-03-15

    Here we report the first application of amino acid-type selective (AATS) isotope labeling of a recombinant protein secreted by Brevibacillus choshinensis for a nuclear magnetic resonance (NMR) study. To prepare the 15N-AATS-labeled protein, the transformed B. choshinensis was cultured in 15N-labeled amino acid-containing C.H.L. medium, which is commonly used in the Escherichia coli expression system. The analyses of the 1H-15N heteronuclear single quantum coherence (HSQC) spectra of the secreted proteins with a 15N-labeled amino acid demonstrated that alanine, arginine, asparagine, cysteine, glutamine, histidine, lysine, methionine, and valine are suitable for selective labeling, although acidic and aromatic amino acids are not suitable. The 15N labeling for glycine, isoleucine, leucine, serine, and threonine resulted in scrambling to specific amino acids. These results indicate that the B. choshinensis expression system is an alternative tool for AATS labeling of recombinant proteins, especially secretory proteins, for NMR analyses.

  19. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  20. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  1. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  2. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  3. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  4. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  5. EPIC- and CHANCE-HSQC: Two 15N Photo-CIDNP-Enhanced Pulse Sequences for the Sensitive Detection of Solvent-Exposed Tryptophan

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) of nuclei other than 1H offers a tremendous potential for sensitivity enhancement in liquid state NMR under mild, physiologically relevant conditions. Photo-CIDNP enhancements of 15N magnetization are much larger than those typically observed for 1H. However, the low gyromagnetic ratio of 15N prevents a full fruition of the potential signal-to-noise gains attainable via 15N photo-CIDNP. Here, we propose two novel pulse sequences, EPIC- and CHANCE-HSQC, tailored to overcome the above limitation. EPIC-HSQC exploits the strong 1H polarization and its subsequent transfer to non-equilibrium Nz magnetization prior to 15N photo-CIDNP laser irradiation. CHANCE-HSQC synergistically combines 1H and 15N photo-CIDNP. The above pulse sequences, tested on tryptophan (Trp) and the Trp-containing protein apoHmpH, were found to display up to two-fold higher sensitivity than the reference NPE-SE-HSQC pulse train (based on simple 15N photo-CIDNP followed by N-H polarization transfer), and up to a ca. 3-fold increase in sensitivity over the corresponding dark pulse schemes (lacking laser irradiation). The observed effects are consistent with the predictions from a theoretical model of photo-CIDNP and prove the potential of 15N and 1H photo-CIDNP in liquid state heteronuclear correlation NMR. PMID:19643649

  6. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  7. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  8. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  9. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  10. Nuclear magnetic resonance data of C9H20OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  11. Nuclear magnetic resonance data of C8H18OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  12. Nuclear magnetic resonance data of C10H15

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  13. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  14. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.

    PubMed

    Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

  15. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

    PubMed Central

    Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

  16. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  17. Electron transport through nuclear pasta in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2015-10-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  18. Need for remeasurements of nuclear magnetic dipole moments

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G.; Mårtensson-Pendrill, Ann-Marie

    1998-11-01

    The need for a reassessment of nuclear magnetic dipole moments is prompted by recent experiments on the ground-state hyperfine structure in highly charged hydrogenlike systems which are sufficiently sensitive to probe QED effects. This work gives an overview of the magnetic dipole moments for the nuclei of interest, i.e., 165Ho, 185,187Re, 203,205Tl, 207Pb, and 209Bi. It is found that the present uncertainties in the nuclear magnetic dipole moment limit the interpretation of the accurate experimental hyperfine structures for these systems.

  19. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1997-09-01

    The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translation diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei ({sup 14}N and {sup 15}N) in solution. Our results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 x 10{sup -3} M. Typical values measured for the diffusion coefficient of the ammonium ion are 2 x 10{sup -5} cm{sup 2/s} ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonium is less sensitive to the solution pH, extending the measurement range to pH of 9.5. Diffusion measurements were conducted with solutions of varying viscosity and porosity. The results show that the solution viscosity has a measureable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 mm PMMA resulted in a reduction of {approximately}30% in the diffusion coefficient as a result of hindered diffusion.

  20. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Gregory M; Balouch, Eaman; Goetz, David H; Lazic, Ana; McKerrow, James H; Craik, Charles S

    2012-12-18

    Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.

  1. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  2. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  3. Nuclear Magnetic Resonance and the BCS Theory

    NASA Astrophysics Data System (ADS)

    Slichter, Charles P.

    The author describes the inspiration for the experiment by Hebel and Slichter to measure the nuclear spin-lattice relaxation time in super-conductors, the design considerations for the experiment, the surprising experimental results, their theoretical treatment using the Bardeen-Cooper-Schrieffer theory, and how comparing the nuclear relaxation results with those for ultrasound absorption confirmed the central idea of the BCS theory, the BCS pair wave function.

  4. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    NASA Astrophysics Data System (ADS)

    Popov, E. N.; Barantsev, K. A.; Litvinov, A. N.

    2015-09-01

    Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  5. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  6. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  7. Magnet design considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  8. Magnet Design Considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Y.; Kessel, C.; El-Guebaly, L.; Titus, P.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  9. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  10. Single Nuclear Spin Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2010-05-02

    Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic

  11. 15N and 13C NMR Determination of Allantoin Metabolism in Developing Soybean Cotyledons 1

    PubMed Central

    Coker, George T.; Schaefer, Jacob

    1985-01-01

    The metabolism of allantoin by immature cotyledons of soybean (Glycine max L. cv Elf) grown in culture was investigated using solid state 13C and 15N nuclear magnetic resonance. All of the nitrogens of allantoin were incorporated into protein in a manner similar to that of each other and to the amide nitrogen of glutamine. The C-2 of allantoin was not incorporated into cellular material; presumably it was lost as CO2. About 50% of the C-5 of allantoin was incorporated into cellular material as a methylene carbon; the other 50% was presumably also lost as CO2. The 13C-15N bonds of [5-13C;1-15N] and [2-13C;1,3-15N]allantoin were broken prior to the incorporation of the nitrogens into protein. These data are consistent with allantoin's degradation to two molecules of urea and one two-carbon fragment. Cotyledons grown on allantoin as a source of nitrogen accumulated 21% of the nitrogen of cotyledons grown on glutamine. Only 50% of the nitrogen of the degraded allantoin was incorporated into the cotyledon as organic nitrogen; the other 50% was recovered as NH4+ in the media in which the cotyledons had been grown. The latter results suggests that the lower accumulation of nitrogen by cotyledons grown on allantoin was in part due to failure to assimilate NH4+ produced from allantoin. The seed coats had a higher activity of glutamine synthetase and a higher rate of allantoin degradation than cotyledons indicating that seed coats play an important role in the assimilation and degradation of allantoin. PMID:16663995

  12. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  13. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  14. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  15. Saturated symmetric nuclear matter in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2013-06-01

    Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric nuclear matter ρ0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of ρ0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also calculated. It is found that with an increasing magnetic field ρ0(B) increases, while the system becomes less bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing the dipole moment strength ρ0(B) is found to decrease, but the system becomes more tightly bound while the fluctuations in K and a4 persist.

  16. High Radiation Environment Nuclear Fragment Separator Magnet

    SciTech Connect

    Kahn, Stephen; Gupta, Ramesh

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  17. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  18. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  19. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    TonThat, Dinh M.

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  20. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  1. Real or imaginary? Human metabolism through nuclear magnetism.

    PubMed

    Ross, B D

    2000-09-01

    This account of the beginnings and later applications of the use of nuclear magnetic resonance for noninvasive medical diagnosis was presented at a Symposium held in Oxford, UK, during September 13-15, 2000 to mark the centenary of the birth of Hans Krebs, on August 25, 1900.

  2. Nuclear magnetic resonance imaging with 90-nm resolution.

    PubMed

    Mamin, H J; Poggio, M; Degen, C L; Rugar, D

    2007-05-01

    Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF(2) test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) T m(-1), and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

  3. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  4. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  5. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  6. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  7. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  8. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  9. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  10. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  11. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  12. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  13. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  14. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  15. Stochastic dipolar recoupling in nuclear magnetic resonance of solids

    PubMed Central

    Tycko, Robert

    2008-01-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems. PMID:17995438

  16. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  17. Flat RF coils in static field gradient nuclear magnetic resonance.

    PubMed

    Stork, H; Gädke, A; Nestle, N; Fujara, F

    2009-10-01

    The use of flat RF coils allows considerable gains in the sensitivity of static field gradient (SFG) nuclear magnetic resonance (NMR) experiments. In this article, this effect is studied theoretically as well as experimentally. Additionally, the flat coil geometry has been studied theoretically depending on magnetic field gradient, pulse sequence and amplifier power. Moreover, detecting the signal directly from the free induction decay (FID) turned out to be quite attractive for STRAFI-like microimaging experiments, especially when using flat coils. In addition to wound rectangular flat coils also spiral flat coils have been developed which can be manufactured by photolithography from printed circuit boards.

  18. Stochastic dipolar recoupling in nuclear magnetic resonance of solids.

    PubMed

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems.

  19. Stochastic Dipolar Recoupling in Nuclear Magnetic Resonance of Solids

    SciTech Connect

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body system000.

  20. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  1. Segmented contracted basis sets optimized for nuclear magnetic shielding.

    PubMed

    Jensen, Frank

    2015-01-13

    A family of segmented contracted basis sets is proposed, denoted pcSseg-n, which are optimized for calculating nuclear magnetic shielding constants. For the elements H-Ar, these are computationally more efficient than the previously proposed general contracted pcS-n basis sets, and the new basis sets are extended to also include the elements K-Kr. The pcSseg-n basis sets are optimized at the density functional level of theory, but it has been shown previously that these property-optimized basis sets are also suitable for calculating shielding constants with correlated wave function methods. The pcSseg-n basis sets are available in qualities ranging from (unpolarized) double-ζ to pentuple-ζ quality and should be suitable for both routine and benchmark calculations of nuclear magnetic shielding constants. The ability to rigorously separate basis set and method errors should aid in developing more accurate methods.

  2. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  3. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  4. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    NASA Astrophysics Data System (ADS)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  5. Nuclear magnetic resonance force microscopy of (NH_4)_2SO4 crystal and PMMA thin film

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hyuk; Miller, Casey W.; Guchhait, Samaresh; Chabot, Michelle D.; Markert, John T.

    2004-03-01

    In preparation for scanning dynamical studies, we performed room temperature 1-D and 2-D nuclear magnetic resonance force microscopy (NMRFM) measurements on a (NH_4)_2SO4 (ammonium sulfate) single crystal and on PMMA thin films using `magnet-on-oscillator' scanning mode. A cantilever-frequency modulation of the ˜ 350-MHz rf field induced cyclic adiabatic inversion of a resonant slice of ^1H nuclear spins. 1-D scans through the surface of the ammonium sulfate crystal with a resonant-slice thickness (z resolution) as small as 150 nm were achieved using a permalloy thin-film magnet, 4.0 μm in diameter and 0.18 μm thick. For the 2D scans, ˜1 μm-thick PMMA films were patterned to provide a 2-D array of 5.0 μm-diameter polymer islands. Oscillator-detected NMR-induced forces around 1× 10-15 N were typical. These NMRFM imaging studies employed mechanical oscillators with sping constants k ≈ 2× 10-4 N/m, resonant frequencies near 4 kHz, and quality factors in the range Q = 1--6× 10^3.

  6. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  7. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  8. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  9. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Reichhardt, Courtney; Ferreira, Jose A. G.; Joubert, Lydia-Marie; Clemons, Karl V.; Stevens, David A.

    2015-01-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The 13C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional 15N and 31P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. PMID:26163318

  10. Probing the folding intermediate of Bacillus subtilis RNase P protein by nuclear magnetic resonance.

    PubMed

    Chang, Yu-Chu; Franch, William R; Oas, Terrence G

    2010-11-09

    Protein folding intermediates are often imperative for overall folding processes and consequent biological functions. However, the low population and transient nature of the intermediate states often hinder their biochemical and biophysical characterization. Previous studies have demonstrated that Bacillus subtilis ribonuclease P protein (P protein) is conformationally heterogeneous and folds with multiphasic kinetics, indicating the presence of an equilibrium and kinetic intermediate in its folding mechanism. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to study the ensemble corresponding to this intermediate (I). The results indicate that the N-terminal and C-terminal helical regions are mostly unfolded in I. 1H−15N heteronuclear single-quantum coherence NMR spectra collected as a function of pH suggest that the protonation of His 22 may play a major role in the energetics of the equilibria among the unfolded, intermediate, and folded state ensembles of P protein. NMR paramagnetic relaxation enhancement experiments were also used to locate the small anion binding sites in both the intermediate and folded ensembles. The results for the folded protein are consistent with the previously modeled binding regions. These structural insights suggest a possible role for I in the RNase P holoenzyme assembly process.

  11. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette

    2015-11-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions.

  12. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  13. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  14. Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy.

    PubMed

    Peng, Haibao; Tang, Jing; Zheng, Rui; Guo, Guannan; Dong, Angang; Wang, Yajun; Yang, Wuli

    2017-01-27

    The pursuit of multifunctional, innovative, more efficient, and safer cancer treatment has gained increasing interest in the research of preclinical nanoparticle-mediated photothermal therapy (PTT). Cell nucleus is recognized as the ideal target for cancer treatment because it plays a central role in genetic information and the transcription machinery reside. In this work, an efficient nuclear-targeted PTT strategy is proposed using transferrin and TAT peptide (TAT: YGRKKRRQRRR) conjugated monodisperse magnetic nanoparticles, which can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. The monodisperse magnetic nanoparticles exhibit high photothermal conversion efficiency (≈37%) and considerable photothermal stability. They also show a high magnetization value and transverse relaxivity (207.1 mm(-1) s(-1) ), which could be applied for magnetic resonance imaging. The monodisperse magnetic nanoparticles conjugated with TAT peptides can efficiently target the nucleus and achieve the imaging-guided function, efficient cancer cells killing ability. Therefore, this work may present a practicable strategy to develop subcellular organelle targeted PTT agents for simultaneous cancer targeting, imaging, and therapy.

  15. Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles.

    PubMed

    Jeun, Minhong; Park, Sungwook; Lee, Hakho; Lee, Kwan Hyi

    Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability.

  16. Magnetism and nuclear magnetic resonance of hectorite and montmorillonite layered silicates

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Hou, S.-S.; Bud'ko, S. L.; Schmidt-Rohr, K.

    2004-11-01

    The temperature and magnetic-field (H) dependencies of the bulk dc magnetization (M) and the M /H ratio of montmorillonite (MMT), hectorite (HCT), and synthetic mica-montmorillonite (SMMT) clays have been measured and compared with the signal intensity of H1 and Si29 nuclear magnetic resonance (NMR) spectra. MMT exhibits Langevin paramagnetism with an effective magnetic moment of 5.5±0.1μB per Fe ion whereas SMMT has diamagnetic properties. At 300K, M /H of HCT measured in a magnetic field of H ⩽1kOe is larger than that of MMT, whereas in a field of 50kOe, the inverse situation is observed. The difference arises because the magnetization of HCT is dominated by a contribution from ferromagneticlike impurities. The H1 and Si29 NMR signals of MMT are broadened beyond detectability due to the paramagnetic effect. Although HCT contains ferromagneticlike components that result in a large M /H in low field, it yields H1 and Si29 NMR spectra with signal intensities similar to those of diamagnetic SMMT. Our data highlight that the quality of the NMR spectra is not related to the low-field magnetic susceptibility but to the bulk magnetization in the high magnetic field used for NMR.

  17. Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles

    PubMed Central

    Jeun, Minhong; Park, Sungwook; Lee, Hakho; Lee, Kwan Hyi

    2016-01-01

    Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability. PMID:27799772

  18. Mechanism of dynamic nuclear polarization in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Inati, S. J.; Griffin, R. G.

    2001-03-01

    Solid-state NMR signal enhancements of about two orders of magnitude (100-400) have been observed in dynamic nuclear polarization (DNP) experiments performed at high magnetic field (5 T) and low temperature (10 K) using the nitroxide radical 4-amino TEMPO as the source of electron polarization. Since the breadth of the 4-amino TEMPO EPR spectrum is large compared to the nuclear Larmor frequency, it has been assumed that thermal mixing (TM) is the dominate mechanism by which polarization is transferred from electron to nuclear spins. However, theoretical explanations of TM generally assume a homogeneously broadened EPR line and, since the 4-amino TEMPO line at 5 T is inhomogeneously broadened, they do not explain the observed DNP enhancements. Accordingly, we have developed a treatment of DNP that explicitly uses electron-electron cross-relaxation to mediate electron-nuclear polarization transfer. The process proceeds via spin flip-flops between pairs of electronic spin packets whose Zeeman temperatures differ from one another. To confirm the essential features of the model we have studied the field dependence of electron-electron double resonance (ELDOR) data and DNP enhancement data. Both are well simulated using a simple model of electron cross-relaxation in the inhomogeneously broadened 4-amino TEMPO EPR line.

  19. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  20. Magnetic Imaging: a New Tool for UK National Nuclear Security

    NASA Astrophysics Data System (ADS)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  1. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  2. Nuclear magnetic resonance measurement of ammonia diffusion in dense solid-liquid slurries. Revision 1

    SciTech Connect

    Bobroff, S.; Phillips, R.J.; Shekarriz, A.

    1998-01-01

    The flammability and toxicity of ammonia released from the nuclear waste tanks at Hanford have been the subject of several recent studies. These releases may occur episodically, such as the buoyant plume releases occurring in various double-shell tanks (DSTs); gradually through the surface of the waste; or from the partially saturated saltcakes in the single-shell tanks during salt-well pumping. The diffusion of ammonium ions in aqueous solutions was measured by nuclear magnetic resonance (NMR) using the pulsed field gradient (PFG) method. The ammonium ions were obtained from aqueous solutions of ammonium chloride, ammonium sulfate, ammonium bicarbonate, and ammonium hydroxide. The translational diffusion of the ammonium ions was determined by measuring the diffusion of nitrogen nuclei in solution. Results showed that the ammonium diffusion coefficient can be measured in aqueous solutions with concentrations as low as 20 {times} 10{sup {minus}3} {und M}. Typical values measured for the diffusion coefficient of the ammonium ion are 2 {times} 10{sup {minus}5} cm{sup 2}/s ({+-}10%), similar to the values found for pure water. Due to the effect of the solution pH upon the NMR relaxation parameters for {sup 14}N, measurements are constrained to pH values below 8.5. However, {sup 15}N labeled ammonia is less sensitive to the solution pH, extending the measurement range to pH of 9.5. The results show that the solution viscosity has a measurable impact on the diffusion coefficient. The diffusion coefficient is almost inversely proportional to the relative viscosity of the solution, irrespective of how the viscosity is increased. Further, a randomly-packed porous bed of 200 {micro}m PMMA resulted in a reduction of {approximately} 30% in the diffusion coefficient as a result of hindered diffusion.

  3. Nuclear magnetic resonance: principles of blood flow imaging

    SciTech Connect

    Mills, C.M.; Brant-Zawadzki, M.; Crooks, L.E.; Kaufman, L.; Sheldon, P.; Norman, D.; Bank, W.; Newton, T.H.

    1984-01-01

    Nuclear magnetic resonance (NMR) imaging with spin-echo techniques defines vascular structures with superb anatomic detail. Contrast agents are not necessary as there is intrinsic contrast between flowing blood and the vascular wall. The signal intensity from blood within the vessel lumen varies with the sequence of gradient and radiofrequency pulses used to generate the image as well as with the velocity of blood flow. Appropriate imaging techniques can optimize anatomic detail, distinguish slow from rapidly flowing blood, and serve to identify marked impairment or complete obstruction of flow in an artery or vein. Some examples of these principles in the intracranial circulation are illustrated.

  4. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  5. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    PubMed Central

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported. PMID:24755519

  6. Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Leu, G.

    2008-12-01

    Technical and economic projections strongly suggest that fossil fuels will continue to play a dominant role in the global energy market through at least the mid twenty-first century. However, low-cost conventional oil and gas will be depleted in that time frame. Therefore new sources of energy will be needed. We discuss two relatively untapped unconventional fossil fuels: heavy oil and gas hydrate. In both cases, nuclear magnetic resonance plays a key role in appraising the resource and providing information needed for designing production processes.

  7. Applications of nuclear magnetic resonance sensors to cultural heritage.

    PubMed

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-04-21

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  8. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  9. Nuclear magnetic resonance-based quantification of organic diphosphates.

    PubMed

    Lenevich, Stepan; Distefano, Mark D

    2011-01-15

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogs have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using (31)P nuclear magnetic resonance (NMR) spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking.

  10. High-resolution laser spectroscopy and magnetic effect of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical

    SciTech Connect

    Tada, Kohei; Teramoto, Kanon; Ishiwata, Takashi; Hirota, Eizi; Kasahara, Shunji

    2015-03-21

    Rotationally resolved high-resolution fluorescence excitation spectra of the 0–0 band of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080–15 103 cm{sup −1} region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm{sup −1} spacing were assigned to the transitions from the X{sup ~2}A{sub 2}{sup ′} (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the {sup 2}E{sub 3/2}{sup ′} (J′ = 1.5), {sup 2}E{sub 1/2}{sup ′} (J′ = 0.5), and {sup 2}E{sub 1/2}{sup ′} (J′ = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B{sup ~2}E{sup ′} (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X{sup ~2}A{sub 2}{sup ′} (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B{sup ~2}E{sub 1/2}{sup ′} (υ = 0) state were estimated by a deperturbed analysis to be T{sub 0} = 15 098.20(4) cm{sup −1}, B = 0.4282(7) cm{sup −1}, and D{sub J} = 4 × 10{sup −4} cm{sup −1}. In the observed region, both the {sup 2}E{sub 1/2}{sup ′} and {sup 2}E{sub 3/2}{sup ′} spin-orbit components were identified, and the spin-orbit interaction constant of the B{sup ~2}E{sup ′} (υ = 0) state was estimated to be −12 cm{sup −1} as the lower limit.

  11. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  12. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  13. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  14. The Design and Testing of Magnets for Nuclear Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. R.

    Available from UMI in association with The British Library. Recently, images of the inside of the human body have been produced non-invasively using nuclear magnetic resonance (nmr). The technique involves placing the patient in a strong, homogeneous magnetic field. The heart of any nmr imaging system is the magnet that produces this field and this thesis is concerned with the design and testing of such magnets. Various computer programs have been written that allow the designer to model a magnet either in terms of axisymmetric coils, or in terms of the discrete conductors that simulate the actual form of the winding. The axisymmetric program automatically optimises the design so as to produce a uniform field, and the data from this program may be used directly to generate an appropriate helical or spiral winding. These programs not only allow the designer to produce a suitable design, but also to put tolerances on the dimensions of the conductors and formers that support the winding. The problem of removing imhomogeneities produced by dimensional inaccuracies and surrounding ferromagnetic materials is also considered. A nmr probe system has been developed that allows the homogeneity of a magnet to be assessed independently of the stability of its power supply. The probe has been used for field measurements in a magnet designed using the above techniques, and the results are presented.

  15. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rümenapp, Christine; Gleich, Bernhard; Mannherz, Hans Georg; Haase, Axel

    2015-04-01

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5-7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T2 relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T2 relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 107 cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  16. Magnetism and nuclear magnetic resonance of smectite clays and their polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Rawal, A.; Hou, S. S.; Budko, S. L.; Schmidt-Rohr, K.

    2004-03-01

    In an effort to understand the magnetic properties of polymer-clay nanocomposites and improve their nuclear magnetic resonance (NMR) spectroscopy, we have measured the "bulk" magnetization and magnetic susceptibility of three smectite clays (2:1 layered silicates), namely natural montmorillonite (MMT), synthetic mica-montmorillonite (SMMT), and natural hectorite (HCT), and correlated these data with the ^1H and ^29Si NMR signal intensities. As observed before, HCT provides much better NMR spectra than does MMT, even though its low-field magnetic susceptibility is larger than that of MMT. The reason is that the magnetization of HCT at ambient temperature is dominated by a contribution from ferromagnetic-like impurities, while MMT exhibits Langevin paramagnetism. Based on this insight, we have improved the HCT purification procedure, introducing magnetic separation and also avoiding centrifugation which enriches the sample with carbonates. This has increased the NMR signal intensity of HCT 4-fold. The resulting improvement in the quality of ^1H-^29Si NMR spectra of HCT dispersed in a polymer matrix is demonstrated.

  17. Defect-induced magnetism in SiC probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Yutian; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-02-01

    We give evidence for intrinsic defect-induced bulk paramagnetism in SiC by means of 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows the Curie law and scales very well with the macroscopic dc susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.

  18. TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2006-08-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  19. Nuclear Magnetic Moment of the {sup 57}Cu Ground State

    SciTech Connect

    Minamisono, K.; Mertzimekis, T.J.; Pereira, J.; Mantica, P.F.; Pinter, J.S.; Stoker, J.B.; Tomlin, B.E.; Weerasiri, R.R.; Davies, A.D.; Hass, M.; Rogers, W.F.

    2006-03-17

    The nuclear magnetic moment of the ground state of {sup 57}Cu(I{sup {pi}}=3/2{sup -},T{sub 1/2}=196.3 ms) has been measured to be vertical bar {mu}({sup 57}Cu) vertical bar =(2.00{+-}0.05){mu}{sub N} using the {beta}-NMR technique. Together with the known magnetic moment of the mirror partner {sup 57}Ni, the spin expectation value was extracted as <{sigma}{sigma}{sub z}>=-0.78{+-}0.13. This is the heaviest isospin T=1/2 mirror pair above the {sup 40}Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full fp shell giving {mu}({sup 57}Cu){approx}2.4{mu}{sub N} and <{sigma}{sigma}{sub z}>{approx}0.5 implies significant shell breaking at {sup 56}Ni with the neutron number N=28.

  20. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy.

    PubMed

    Baek, Mi-Hwa; Kamiya, Masakatsu; Kushibiki, Takahiro; Nakazumi, Taichi; Tomisawa, Satoshi; Abe, Chiharu; Kumaki, Yasuhiro; Kikukawa, Takashi; Demura, Makoto; Kawano, Keiichi; Aizawa, Tomoyasu

    2016-04-01

    Antimicrobial peptides (AMPs) are components of the innate immune system and may be potential alternatives to conventional antibiotics because they exhibit broad-spectrum antimicrobial activity. The AMP cecropin P1 (CP1), isolated from nematodes found in the stomachs of pigs, is known to exhibit antimicrobial activity against Gram-negative bacteria. In this study, we investigated the interaction between CP1 and lipopolysaccharide (LPS), which is the main component of the outer membrane of Gram-negative bacteria, using circular dichroism (CD) and nuclear magnetic resonance (NMR). CD results showed that CP1 formed an α-helical structure in a solution containing LPS. For NMR experiments, we expressed (15) N-labeled and (13) C-labeled CP1 in bacterial cells and successfully assigned almost all backbone and side-chain proton resonance peaks of CP1 in water for transferred nuclear Overhauser effect (Tr-NOE) experiments in LPS. We performed (15) N-edited and (13) C-edited Tr-NOE spectroscopy for CP1 bound to LPS. Tr-NOE peaks were observed at the only C-terminal region of CP1 in LPS. The results of structure calculation indicated that the C-terminal region (Lys15-Gly29) formed the well-defined α-helical structure in LPS. Finally, the docking study revealed that Lys15/Lys16 interacted with phosphate at glucosamine I via an electrostatic interaction and that Ile22/Ile26 was in close proximity with the acyl chain of lipid A.

  1. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  2. Nuclear Magnetic Resonance Studies in Heavy Fermion Materials

    NASA Astrophysics Data System (ADS)

    Shirer, Kent Robert

    29Si, 31P, and 115In nuclear magnetic resonance studies of heavy fermion materials URu2Si 2, CeRhIn5, and URu2Si2- xPx were conducted as a function of temperature, pressure, and, in the case of URu2Si2- xPx, doping. Knight shift measurements in these systems probe the hybridization between conduction and local f-electrons which is described by the heavy fermion coherence temperature, T*, and can be captured by a two fluid model. This model takes the dual nature of the local moments and the heavy electron fluid into account. In URu2Si2 in a pressure range from 0-9.1 kbar, spin-lattice-relaxation data were taken and suggest a partial suppression of the density of states below 30 K. The data are analyzed in terms of a two component spin-fermion model. The spin-lattice-relaxation behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order. Nuclear magnetic resonance data in CeRhIn5 for both the In(1) and In(2) sites are also taken under hydrostatic pressure. The Knight shift data reveal a suppression of the hyperfine coupling to the In(1) site as a function of pressure, and the electric field gradient at the In(2) site exhibits a change of slope. These changes to these coupling constants reflect alterations to the electronic structure at the quantum critical point. Finally, we report 31P nuclear magnetic resonance measurements in single crystals of URu2Si2-xP x with x = 0.09, 0.33. In the case of the x = 0.09 doping, we find no evidence for a phase transition, though the material still exhibits heavy fermion coherence. In the x = 0.33 doping, we find that it undergoes an antiferromagnetic (AFM) phase transition. When we include the pure compound in our analysis, we find that the hyperfine couplings and coherence temperatures evolve with doping. We compare this evolution with the trends seen in other compounds.

  3. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  4. Proton-coupled 15N NMR spectra of neutral and protonated ethenoadenosine and ethenocytidine.

    PubMed Central

    Sierzputowska-Gracz, H; Wiewiórowski, M; Kozerski, L; von Philipsborn, W

    1984-01-01

    The 15N chemical shifts and 15N, 1H spin coupling constants were determined in the title compounds using the INEPT pulse sequence and assigned with the aid of selective proton decoupling. The delta/15N/ and J/N, H/ values are discussed in terms of involvement of the imidazole ring created by ethenobridging in the electronic structure of the whole molecule. Both spectral parameters indicate that the diligant nitrogen in this ring is the primary site of protonation in these modified nucleosides. It is concluded that 15N NMR of nucleoside bases can be largely a complementary method to 1H and 13C NMR studies and, in addition, can serve as a direct probe for studies of nitrogen environment in oligomeric fragments of nucleic acids even at moderately strong magnetic fields due to the higher spectral dispersion compared with 1H and 13C NMR spectra. PMID:6473107

  5. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  6. First principles nuclear magnetic resonance signatures of graphene oxide.

    PubMed

    Lu, Ning; Huang, Ying; Li, Hai-bei; Li, Zhenyu; Yang, Jinlong

    2010-07-21

    Nuclear magnetic resonance (NMR) has been widely used in graphene oxide (GO) structure studies. However, the detailed relationship between its spectroscopic features and the GO structural configuration remains elusive. Based on first principles (13)C chemical shift calculations using the gauge including projector augmented waves method, we provide a reliable spectrum-structure connection. The (13)C chemical shift in GO is found to be very sensitive to the atomic environment, even for the same type of oxidation groups. Factors determining the chemical shifts of epoxy and hydroxy groups have been discussed. GO structures previously reported in the literature have been checked from the NMR point of view. The energetically favorable hydroxy chain structure is not expected to be widely existed in real GO samples according to our NMR simulations. The epoxy pair species we proposed previously is also supported by chemical shift calculations.

  7. First principles nuclear magnetic resonance signatures of graphene oxide

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Huang, Ying; Li, Hai-bei; Li, Zhenyu; Yang, Jinlong

    2010-07-01

    Nuclear magnetic resonance (NMR) has been widely used in graphene oxide (GO) structure studies. However, the detailed relationship between its spectroscopic features and the GO structural configuration remains elusive. Based on first principles C13 chemical shift calculations using the gauge including projector augmented waves method, we provide a reliable spectrum-structure connection. The C13 chemical shift in GO is found to be very sensitive to the atomic environment, even for the same type of oxidation groups. Factors determining the chemical shifts of epoxy and hydroxy groups have been discussed. GO structures previously reported in the literature have been checked from the NMR point of view. The energetically favorable hydroxy chain structure is not expected to be widely existed in real GO samples according to our NMR simulations. The epoxy pair species we proposed previously is also supported by chemical shift calculations.

  8. Scaling in biological nuclear magnetic resonance spectral distributions.

    PubMed Central

    Lacelle, S

    1986-01-01

    A statistical analysis of the distribution of the eigenvalues of the chemical shift interaction as detected by nuclear magnetic resonance (NMR) spectroscopy in large biological systems is presented in the light of random matrix theory. A power law dependence is experimentally observed for the distribution of the number of eigenvalues, N, of the shielding hamiltonian with epsilon i less than or equal to E as a function of the energy E. From this cumulative distribution of energy levels, N(E), we also obtain a density of states rho(E). The exponent of the energy variation of N(E) and rho(E) are correlated with the dimensionality of the molecular system. A crossover in the values of the exponents is found in passing from low to higher energy in the spectra. Our method classifies and reduces the chemical shift data base of proteins and also demonstrates a degree of regularity in seemingly irregular spectral patterns. PMID:3730504

  9. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  10. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  11. Blood species discrimination using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K; Monakhova, Yulia B

    2016-11-25

    Blood species identification is an important challenge in forensic science. Conventional methods used for blood species analysis are destructive and associated with time-consuming sample preparation steps. Nuclear magnetic resonance (NMR) spectroscopy is known for its nondestructive properties and fast results. This research study presents a proton ((1)H) NMR method to discriminate blood species including human, cat, dog, elephant, and bison. Characteristic signals acting as markers are observed for each species. Moreover, the data are evaluated by principle component analysis (PCA) and support vector machines (SVM). A 100% correct species recognition between human and nonhuman species is achieved using radial basis kernel function (RBF) and standardized data. The research study shows that (1)H NMR spectroscopy is a powerful tool for differentiating human and nonhuman blood showing a great significance to forensic science.

  12. Nuclear magnetic resonance of iron and copper disease states

    SciTech Connect

    Runge, V.M.; Clanton, J.A.; Smith, F.W.; Hutchison, J.; Mallard, J.; Partain, C.L.; James, A.E. Jr.

    1983-11-01

    The tissue levels of paramagnetic ions are an important factor in the determination of T/sub 1/ values as observed by nuclear magnetic resonance (NMR) imaging. The increased levels of iron present in human disease states such as hemochromatosis lead to decreased T/sub 1/ values. The mean liver T/sub 1/ of three patients with iron storage disease was determined to be 130 msec, significantly different from the value of 154 msec, the mean for 14 normal controls. Whether NMR will be able to detect the increased copper levels in liver and brain in Wilson disease remains for further clinical trials to evaluate. NMR imaging, however, does serve as a noninvasive method for the diagnosis of states of iron overload and as a technique to follow progression of disease or response to medical therapy.

  13. 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.

    PubMed

    Koder, Ronald L; Walsh, Joseph D; Pometun, Maxim S; Dutton, P Leslie; Wittebort, Richard J; Miller, Anne-Frances

    2006-11-29

    Flavins are central to the reactivity of a wide variety of enzymes and electron transport proteins. There is great interest in understanding the basis for the different reactivities displayed by flavins in different protein contexts. We propose solid-state nuclear magnetic resonance (SS-NMR) as a tool for directly observing reactive positions of the flavin ring and thereby obtaining information on their frontier orbitals. We now report the SS-NMR signals of the redox-active nitrogens N1 and N5, as well as that of N3. The chemical shift tensor of N5 is over 720 ppm wide, in accordance with the predictions of theory and our calculations. The signal of N3 can be distinguished on the basis of coupling to 1H absent for N1 and N5, as well as the shift tensor span of only 170 ppm, consistent with N3's lower aromaticity and lack of a nonbonding lone pair. The isotropic shifts and spans of N5 and N1 reflect two opposite extremes of the chemical shift range for "pyridine-type" N's, consistent with their electrophilic and nucleophilic chemical reactivities, respectively. Upon flavin reduction, N5's chemical shift tensor contracts dramatically to a span of less than 110 ppm, and the isotropic chemical shift changes by approximately 300 ppm. Both are consistent with loss of N5's nonbonding lone pair and decreased aromaticity, and illustrate the responsiveness of the 15N chemical shift principal values to electronic structure. Thus. 15N chemical shift principal values promise to be valuable tools for understanding electronic differences that underlie variations in flavin reactivity, as well as the reactivities of other heterocyclic cofactors.

  14. Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter

    SciTech Connect

    Sekerzhitskii, V.S.

    1995-01-01

    According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.

  15. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti.

    PubMed

    Sheftic, Sarah R; Garcia, Preston P; White, Emma; Robinson, Victoria L; Gage, Daniel J; Alexandrescu, Andrei T

    2012-09-04

    Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.

  16. Single crystal nuclear magnetic resonance in spinning powders.

    PubMed

    Pell, Andrew J; Pintacuda, Guido; Emsley, Lyndon

    2011-10-14

    We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180° pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1-(13)C]-alanine and the paramagnetic compound Sm(2)Sn(2)O(7).

  17. Single crystal nuclear magnetic resonance in spinning powders

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Pintacuda, Guido; Emsley, Lyndon

    2011-10-01

    We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180 ○ pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1 - 13C]-alanine and the paramagnetic compound Sm2Sn2O7.

  18. Nuclear magnetic resonance probes of membrane biophysics: Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Leftin, Avigdor

    The phospholipid membrane is a self-assembled, dynamic molecular system that may exist alone in association with only water, or in complex systems comprised of multiple lipid types and proteins. In this dissertation the intra- and inter-molecular forces responsible for the atomistic, molecular and collective equilibrium structure and dynamics are studied by nuclear magnetic resonance spectroscopy (NMR). The multinuclear NMR measurements and various experimental techniques are able to provide data that enable the characterization of the hierarchical spatio-temporal organization of the phospholipid membrane. The experimental and theoretical studies conducted target membrane interactions ranging from model systems composed of only water and lipids, to multiple component domain forming membranes that are in association with peripheral and trans-membrane proteins. These measurements consisit of frequency spectrum lineshapes and nuclear-spin relaxation rates obtained using 2H NMR, 13C NMR, 31P NMR and 1H NMR. The changes of these experimental observables are interpreted within a statistical thermodynamic framework that allows the membrane structure, activation energies, and correlation times of motion to be determined. The cases presented demonstrate how fundamental principles of NMR spectroscopy may be applied to a host of membranes, leading to the biophysical characterization of membrane structure and dynamics.

  19. Nuclear magnetic resonance study of the crystallization kinetics in soft magnetic nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Barbatti, C. F.; Sinnecker, E. H. C. P.; Sarthour, R. S.; Guimarães, A. P.

    2002-05-01

    We used the nuclear magnetic resonance technique to study the evolution of the structural and magnetic properties of Fe-based melt-spun ribbons of Fe73.5Cu1Nb3Si13.5B9, Fe73.5Cu1Nb3Si18.5B4, and Fe86Zr7Cu1B6, as-cast and annealed at 500, 540, and 430 °C, respectively. Experiments were carried out at 4.2 K and zero-applied magnetic field, and in a controlled radio-frequency (rf) field. This type of measurement allows us to observe B and Nb sites, and makes it possible to distinguish signals associated with regions of different magnetic hardnesses. The results exhibit a high dependence of the spectra on rf power. For Fe-Si-based alloys, we observe well-defined 93Nb resonance signals from three distinct sites according to the concentration of Fe atoms in their neighborhood. In the Fe73.5Cu1Nb3Si18.5B4 spectra we also observe a peak around 34 MHz, connected to the 11B resonance in different Fe-B compounds, which remains as the rf power decreases, suggesting that the signals come from atoms inside a soft magnetic region. As for the Fe-Zr alloy, we also observe a peak around 36 MHz, identified as the 11B resonance, and a broad line around 62 MHz.

  20. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    SciTech Connect

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi National Institute for Physiological Sciences, Okazaki )

    1988-04-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25{degree}C). {sup 31}P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P{sub i}) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P{sub i} increased. At that time, the P{sub i} resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 {mu}M acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly.

  1. Optically Pumped Nuclear Magnetic Resonance in the Quantum Hall Regimes

    NASA Astrophysics Data System (ADS)

    Barrett, S. E.; Khandelwal, P.; Kuzma, N. N.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. This talk will focus on our latest measurements of KS and T1 near Landau level filling ν=1, which extend our earlier results to higher magnetic fields (B=12 Tesla) and lower temperatures (T < 1 Kelvin). We will compare these results to the theoretical predictionsfootnote S. L. Sondhi et al., Phys. Rev. B 47, 16419 (1993); H. A. Fertig et al., Phys. Rev. B 50, 11018 (1994) that the charged excitations of the ν = 1 ground state are novel spin textures called skyrmions. The current status of this picture will be discussed.

  2. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew

    Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition to quantum computation and a number of other applications. The ion is confined in ultra-high vacuum, is laser cooled to mK temperatures, and kept well isolated from the environment which allows these experimental efforts. In this thesis, a few diagnostic techniques will be discussed, covering a method to measure the linewidth of a narrowband laser in the presence of magnetic field noise, as well as a procedure to measure the ion's temperature using such a narrowband laser. This work has led to two precision experiments to measure atomic structure in 138Ba+, and 137Ba+ discussed here. First, employing laser and radio frequency spectroscopy techniques in 138Ba+, we measured the Lande- gJ factor of the 5D5/2 level at the part-per-million level, the highest precision to date. Later, the development of apparatus to efficiently trap and laser cool 137Ba+ has enabled a measurement of the hyperfine splittings of the 5D3/2 manifold, culminating in the observation of the nuclear magnetic octupole moment of 137Ba+.

  3. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    PubMed

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-04-04

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  4. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  5. Nuclear Magnetic Resonance Study of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Mounce, Andrew M.

    The high temperature superconductors HgBa2CuO 4+delta (Hg1201) and Bi2SrCa2Cu2O 8+delta (Bi2212) have been treated with 17O for both nuclear magnetic resonance (NMR) sensitivity and various electronic properties. Subsequently, NMR experiments were performed on Hg1201 and Bi2212 to reveal the nature of the pseudogap, in the normal state, and vortex phases, in the superconducting state. NMR has been performed on 17O in an underdoped Hg1201 crystal with a superconducting transition transition temperature of 74 K to look for circulating orbital currents proposed theoretically and inferred from neutron scattering. The measurements reveal narrow spectra which preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating or the orbital current ordering is not the correct model for the neutron scattering observation. The fine detail of the NMR frequency shifts at the apical oxygen site are consistent with a dipolar field from the Cu+2 site and diamagnetism below the superconducting transition. It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high temperature superconductors. Here it is shown that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core for highly anisotropic superconductors. NMR measurements of the magnetic fields generated by vortices in Bi2212 single crystals provide evidence for an electro-statically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2x10-3e, depending on doping, in line with theoretical estimates. Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism spatially resolved NMR has been used, finding a strongly non

  6. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  7. Superconductivity and magnetic fluctuations in Cd(2))Re(2)O(7) via Cd nuclear magnetic resonance and re nuclear quadrupole resonance.

    PubMed

    Vyaselev, O; Arai, K; Kobayashi, K; Yamazaki, J; Kodama, K; Takigawa, M; Hanawa, M; Hiroi, Z

    2002-07-01

    We report Cd nuclear magnetic resonance (NMR) and Re nuclear quadrupole resonance (NQR) studies on Cd(2)Re(2)O(7), the first superconductor among pyrochlore oxides (T(c) approximately 1 K). The Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below T(c) exhibits a pronounced coherence peak and follows the weak-coupling BCS theory with nearly isotropic energy gap. The results of Cd NMR point to a moderate ferromagnetic enhancement at high temperatures followed by a rapid decrease of the density of states below the structural transition temperature of 200 K.

  8. Nuclear magnetic resonance dephasing effects in a spherical pore with a magnetic dipolar field

    NASA Astrophysics Data System (ADS)

    Valckenborg, R. M. E.; Huinink, H. P.; Kopinga, K.

    2003-02-01

    The NMR dephasing behavior of the nuclear spins of a fluid confined in a porous material can be investigated by Hahn spin echoes. Previous experimental results on water in a magnetically doped clay have shown a nonmonoexponentially decaying magnetization, which can be understood neither by the known dephasing rate of freely diffusing spins in a uniform gradient nor by spins diffusing in a restricted geometry. For a better understanding of NMR measurements on these systems, a systematic survey was performed of the various length scales that are involved. The standard length scales for the situation of a uniform gradient are diffusing length, structure length, and dephasing length. We show that for a nonuniform gradient, a new length scale has to be introduced: the magnetic-field curvature length. When a particle diffuses less than this length scale, it experiences a local uniform gradient. In that case the spin-echo decay can be described by the so-called local gradient approximation (LGA). When a particle diffuses over a longer distance than the structure length, the spin-echo decay can be described by the motional averaging regime. For both regimes, scaling laws are derived. In this paper, a random-walk model is used to simulate the dephasing effect of diffusing spins in a spherical pore in the presence of a magnetic dipole field. By varying the dipole magnitude, situations can be created in which the dephasing behavior scales according to the motional averaging regime or according to the LGA regime, for certain ranges of echo times. Two model systems are investigated: a spherical pore in the vicinity of a magnetic point dipole and a spherical pore adjacent to a magnetic dipolar grain of the same size as the pore. The simulated magnetization decay curves of both model systems confirm the scaling laws. The LGA, characterized by a nonmonoexponential magnetization decay, is also investigated by calculating the spatially resolved magnetization in the pore. For this

  9. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen

    PubMed Central

    2016-01-01

    Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-15N with an excellent isotopic purity (98%) and good yield (55%). 15N nuclear spin label in nicotinamide-1-15N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc.2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-15N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of 15N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies. PMID:26999571

  10. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields.

    PubMed

    Strohm, C; Van der Linden, P; Rüffer, R

    2010-02-26

    We report the demonstration of nuclear forward scattering of synchrotron radiation from 57Fe in ferromagnetic alpha iron in pulsed high magnetic fields up to 30 T. The observed magnetic hyperfine field follows the calculated high field bulk magnetization within 1%, establishing the technique as a precise tool for the study of magnetic solids in very high magnetic fields. To perform these experiments in pulsed fields, we have developed a detection scheme for fully time resolved nuclear forward scattering applicable to other pump probe experiments.

  11. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  12. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  13. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Takahashi, Masato; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Nakagome, Hideki; Kiyoshi, Tsukasa; Yamazaki, Toshio; Maeda, Hideaki

    2012-10-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb3Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  14. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mamone, Salvatore; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Lei, Xuegong; Li, Yongjun; Denning, Mark; Carravetta, Marina; Goh, Kelvin; Horsewill, Anthony J.; Whitby, Richard J.; Levitt, Malcolm H.

    2014-05-01

    The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages.

  15. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  16. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  17. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  18. Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ţifrea, Ionel; Flatté, Michael E.

    2011-10-01

    We investigate the dynamic nuclear polarization (DNP) caused by hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. We derive the time and position dependence of the resulting hyperfine and dipolar magnetic fields. In GaAs quantum wells the induced nuclear spin polarization greatly exceeds the polarization of the electronic system that causes the DNP. The induced magnetic fields vary between tens of tesla for the electronic hyperfine field acting on nuclei, to hundreds of gauss for the nuclear hyperfine field acting on electrons, to a few gauss for the induced nuclear dipolar fields that act on both nuclei and electrons. The field strengths should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for low-dimensional semiconductor nanostructures.

  19. Nuclear composition of magnetized gamma-ray burst jets

    NASA Astrophysics Data System (ADS)

    Shibata, Sanshiro; Tominaga, Nozomu

    2015-06-01

    We investigate the fraction of metal nuclei in the relativistic jets of gamma-ray bursts associated with core-collapse supernovae. We simulate the fallback in jet-induced explosions with two-dimensional relativistic hydrodynamics calculations and the jet acceleration with steady, radial, relativistic magnetohydrodynamics calculations, and derive the detailed nuclear composition of the jet by post-processing calculation. We found that if the temperature at the jet launch site is above 4.7 × 109 K, quasi-statistical equilibrium is established and heavy nuclei are dissociated into light particles such as 4He during the acceleration of the jets. The criterion for the survival of metal nuclei is written in terms of the isotropic jet luminosity as L_j^iso ≲ 3.9 × 10^{50} ( R_i/107 cm)^2(1 + σi) erg s-1, where Ri and σi are the initial radius of the jets and the initial magnetization parameter, respectively. If the jet is initially dominated by radiation field (i.e., σi ≪ 1) and the isotropic luminosity is relatively high (L_j^iso ≳ 4 × 10^{52} erg s-1), the metal nuclei cannot survive in the jet. On the other hand, if the jet is mainly accelerated by magnetic field (i.e., σi ≫ 1), metal nuclei initially contained in the jet can survive without serious dissociation even in the case of a high-luminosity jet. If the jet contains metal nuclei, the dominant nuclei are 28Si, 16O, and 32S and the mean mass number can be ˜ 25.

  20. Intramolecular N-Glycan/Polypeptide Interactions Observed at Multiple N-Glycan Remodeling Steps through [13C,15N]-N-Acetylglucosamine Labeling of Immunoglobulin G1

    PubMed Central

    2014-01-01

    Asparagine-linked (N) glycosylation is a common eukaryotic protein modification that affects protein folding, function, and stability through intramolecular interactions between N-glycan and polypeptide residues. Attempts to characterize the structure–activity relationship of each N-glycan are hindered by inherent properties of the glycoprotein, including glycan conformational and compositional heterogeneity. These limitations can be addressed by using a combination of nuclear magnetic resonance techniques following enzymatic glycan remodeling to simultaneously generate homogeneous glycoforms. However, widely applicable methods do not yet exist. To address this technological gap, immature glycoforms of the immunoglobulin G1 fragment crystallizable (Fc) were isolated in a homogeneous state and enzymatically remodeled with [13C,15N]-N-acetylglucosamine (GlcNAc). UDP-[13C,15N]GlcNAc was synthesized enzymatically in a one-pot reaction from [13C]glucose and [15N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases (Gnt1 and Gnt2) and UDP-[13C,15N]GlcNAc resulted in complete glycoform conversion as judged by mass spectrometry. Two-dimensional heteronuclear single-quantum coherence spectra of the Gnt1 product, containing a single [13C,15N]GlcNAc residue on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues. Similar spectra of homogeneous glycoforms, halted at different points along the N-glycan remodeling pathway, revealed the presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose trimming, as the N-glycan was converted to a complex-type, biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied to a broad range of glycoprotein

  1. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution.

    PubMed

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2016-12-02

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10(-12)). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  2. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  3. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  4. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  5. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  6. Nuclear magnetic resonance studies of bovine γB-crystallin

    NASA Astrophysics Data System (ADS)

    Thurston, George; Mills, Jeffrey; Michel, Lea; Mathews, Kaylee; Zanet, John; Payan, Angel; van Nostrand, Keith; Kotlarchyk, Michael; Ross, David; Wahle, Christopher; Hamilton, John

    Anisotropy of shape and/or interactions play an important role in determining the properties of concentrated solutions of the eye lens protein, γB-crystallin, including its liquid-liquid phase transition. We are studying γB anisotropic interactions with use of nuclear magnetic resonance (NMR) concentration- and temperature-dependent chemical shift perturbations (CSPs). We analyze two-dimensional heteronuclear spin quantum coherence (HSQC) spectra on backbone nitrogen and attached hydrogen nuclei for CSPs, up to 3 percent volume fraction. Cumulative distribution functions of the CSPs show a concentration and temperature-dependent spread. Many peaks that are highly shifted with either concentration or temperature are close (i) crystal intermolecular contacts (ii) locations of cataractogenic point mutations of a homologous human protein, human γD-crystallin, and (iii) charged amino-acid residues. We also discuss the concentration- and temperature-dependence of NMR and quasielastic light scattering measurements of rotational and translational diffusion of γB crystallin in solution, affected by interprotein attractions. Supported by NIH EY018249.

  7. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  8. Nuclear magnetic resonance imaging of water content in the subsurface

    SciTech Connect

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  9. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-14

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  10. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  11. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  12. Water Permeability of Chlorella Cell Membranes by Nuclear Magnetic Resonance

    PubMed Central

    Stout, Darryl G.; Steponkus, Peter L.; Bustard, Larry D.; Cotts, Robert M.

    1978-01-01

    Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1. PMID:16660456

  13. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  14. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy.

    PubMed Central

    Li, Li; Tang, Xiaoping; Taylor, K Grant; DuPré, Donald B; Yappert, M Cecilia

    2002-01-01

    Ceramide (Cer) has been identified as an active lipid second messenger in the regulation of cell growth, differentiation, and apoptosis. Its analog, dihydroceramide, without the 4 to 5 trans double bond in the sphingoid backbone lacks these biological effects. To establish the conformational features that distinguish ceramide from its analogs, nuclear magnetic resonance spectral data were acquired for diluted samples of ceramides (C2- and C18-Cer), dihydroceramide (C16-DHCer), and deoxydihydroceramide (C18-DODHCer). Our results suggest that in both C2- and C18-Cer, an H-bond network is formed in which the amide proton NH is donated to the OH groups on carbons C1 and C3 of the sphingosine backbone. Two tightly bound water molecules appear to stabilize this network by participating in flip-flop interactions with the hydroxyl groups. In DHCer, the lack of the trans double bond leads to a conformational distortion of this H-bonding motif. Without the critical double bond, the degree with which water molecules stabilize the H bonds between the two OH groups of the sphingolipid is reduced. This structural alteration might preclude the participation of DHCer in signaling-related interactions with cellular targets. PMID:11916863

  15. Monitoring iron mineralization processes using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keating, Kristina

    Proton nuclear magnetic resonance (NMR) measurements can be used to probe the molecular-scale physical and chemical environment of water in the pore space of geological materials. In geophysics, NMR relaxation measurements are used in to measure water content and estimate permeability in the top 100 m of Earth's surface. The goal of the research presented in this thesis is to determine if NMR can also be used in geophysical applications to monitor iron mineralization processes associated with contaminant remediation. The first part of the research presented in this thesis focuses on understanding the effect of iron mineral form and redox state on the NMR relaxation response of water in geologic material. Laboratory NMR measurements were made on Fe(III)-bearing minerals (ferrihydrite, lepidocrocite, goethite, and hematite), Fe(II)-bearing minerals (siderite, pyrite, and troilite), and a mixed valence iron-bearing mineral (magnetite). The results of these measurements show that the relaxation rate of water is strongly dependent on the mineral form of iron. Shown in the final section of this thesis are results from an experiment exploring temporal changes in the measured NMR relaxation rates during the reaction of ferrihydrite with aqueous Fe(II). These results show that NMR can be used to monitor temporal chemical changes in iron minerals. I conclude that this research shows that NMR indeed has the potential to be used as a tool for monitoring geochemical reactions associated with contaminant remediation.

  16. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  17. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  18. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    SciTech Connect

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-05-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function.

  19. Distinguishing Carbonate Reservoir Pore Facies with Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Genty, Coralie; Jensen, Jerry L. Ahr, Wayne M.

    2007-03-15

    Characterization of carbonate rocks may involve identifying the important pore types which are present. In the past, this task has required detailed petrographic analysis of many core samples. Here, we describe a method which uses nuclear magnetic resonance (NMR) measurements to reduce the amount of petrographic analysis needed for porosity typing of carbonate reservoir rocks.For a rock sample which has been measured with NMR, our method decomposes the log(T{sub 2}) spectrum into at most three Gaussian-shaped components and gives a set of nine parameters. Two characteristic quantities having geological significance are extracted from the nine parameters. Values of the two quantities are compared with a reference set, established from samples having both NMR and petrographic evaluations of porosity types. We use a Bayesian approach to the classification of the dominant porosity type.Tests of our method on 103 samples show a correct prediction in 60 to 90 percent of the samples. The lower success rate was obtained for samples with five porosity types from three fields; the higher success rate obtained with samples with three porosity types from one well. The use of geologically significant quantities extracted from the decomposition gives comparable success rate to those obtained using a standard, non-geological approach such as canonical variates.

  20. Advances in Nuclear Magnetic Resonance for Drug Discovery

    PubMed Central

    Powers, Robert

    2010-01-01

    Background Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. Objective/Method A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. Conclusion NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets. PMID:20333269

  1. Updated methodology for nuclear magnetic resonance characterization of shales.

    PubMed

    Washburn, Kathryn E; Birdwell, Justin E

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  2. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  3. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  4. Nuclear magnetic resonance data of C2H10OSi2

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  5. Nuclear magnetic resonance data of C8H24OSi4Te

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  6. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  7. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  8. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  9. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-06-09

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  10. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  11. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  12. Optically Pumped Nuclear Magnetic Resonance in the Quantum Hall Regimes

    NASA Astrophysics Data System (ADS)

    Barrett, Sean E.

    1998-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) This OPNMR technique was previously used to measure the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) near Landau level filling ν=1, which provided the first experimental support for the theoretical predictionsfootnote S. L. Sondhi et al., Phys. Rev. B 47, 16419 (1993); H. A. Fertig et al., Phys. Rev. B 50, 11018 (1994) that the charged excitations of the ν = 1 ground state are novel spin textures called skyrmions. We have recently demonstrated that OPNMR is possible in fields up to B=12 Tesla, and temperatures down to T= 0.3 K, making it a viable new probe of the Fractional Quantum Hall Regime. In this talk we will present our latest OPNMR measurements near Landau level filling ν=1/3, which include the first direct measurement of the electron spin polarization at ν=1/3. The spin polarization drops as the filling factor is varied away from ν=1/3, indicating that the quasiparticles and quasiholes are not fully spin-polarized. We will also show how the NMR lineshape away from ν=1/3 changes dramatically at low temperatures, which is due to slowing of the electron dynamics, and a reduction in the motional narrowing of the NMR line. The current understanding of these results will be discussed.

  13. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    SciTech Connect

    Barrall, Geoffrey Alden

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  14. Advances in Theory of Solid-State Nuclear Magnetic Resonance

    PubMed Central

    Mananga, Eugene S.; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    2015-01-01

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence. PMID:26878063

  15. Studies in protein dynamics using heteronuclear nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya

    Dynamic processes in proteins are important for their biological function. Several issues in protein dynamics are addressed by applying existing NMR methodologies to investigate dynamics of several small proteins. Amide H/D exchange rates have been measured for the N-terminal domain of the ribosomal protein L9, residues 1--56. The results suggest that the structure of the domain is preserved in isolation and that the stability of the isolated domain is comparable to the stability of this domain in intact L9. Single domain proteins can fold in vitro at rates in excess of 1 x 104 s-1. Measurement of folding rates of this magnitude poses a considerable technical challenge. Off-resonance 15N R1rho measurements are shown to be capable of measuring such fast protein folding rates. The measurements were performed on a sample of the peripheral subunit-binding domain from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus 15N labeled at Ala 11. Fast intramolecular motions (on ps-ns time scale) can be studied by heteronuclear laboratory frame NMR relaxation. The temperature dependence of the backbone dynamics of the 36-resiude subdomain of the F-actin bundling protein villin has been investigated by studying the temperature dependence of order parameters obtained from 15N relaxation measurements. The results support the hypothesis that one of the possible mechanisms of thermostability is to lower the heat capacity difference between the folded and unfolded states by lowering the contribution from the backbone dynamics. A commonly used model-free approach for the interpretation of the relaxation data for macromolecules in solution is modified to correct for the decoupling approximation between the overall and internal motions.

  16. Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

    PubMed

    Meola, Annalisa; Deville, Célia; Jeffers, Scott A; Guardado-Calvo, Pablo; Vasiliauskaite, Ieva; Sizun, Christina; Girard-Blanc, Christine; Malosse, Christian; van Heijenoort, Carine; Chamot-Rooke, Julia; Krey, Thomas; Guittet, Eric; Pêtres, Stéphane; Rey, Félix A; Bontems, François

    2014-10-01

    Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in Escherichiacoli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.

  17. Density functional theory computation of Nuclear Magnetic Resonance parameters in light and heavy nuclei

    NASA Astrophysics Data System (ADS)

    Sutter, Kiplangat

    This thesis illustrates the utilization of Density functional theory (DFT) in calculations of gas and solution phase Nuclear Magnetic Resonance (NMR) properties of light and heavy nuclei. Computing NMR properties is still a challenge and there are many unknown factors that are still being explored. For instance, influence of hydrogen-bonding; thermal motion; vibration; rotation and solvent effects. In one of the theoretical studies of 195Pt NMR chemical shift in cisplatin and its derivatives illustrated in Chapter 2 and 3 of this thesis. The importance of representing explicit solvent molecules explicitly around the Pt center in cisplatin complexes was outlined. In the same complexes, solvent effect contributed about half of the J(Pt-N) coupling constant. Indicating the significance of considering the surrounding solvent molecules in elucidating the NMR measurements of cisplatin binding to DNA. In chapter 4, we explore the Spin-Orbit (SO) effects on the 29Si and 13C chemical shifts induced by surrounding metal and ligands. The unusual Ni, Pd, Pt trends in SO effects to the 29Si in metallasilatrane complexes X-Si-(mu-mt)4-M-Y was interpreted based on electronic and relativistic effects rather than by structural differences between the complexes. In addition, we develop a non-linear model for predicting NMR SO effects in a series of organics bonded to heavy nuclei halides. In chapter 5, we extend the idea of "Chemist's orbitals" LMO analysis to the quantum chemical proton NMR computation of systems with internal resonance-assisted hydrogen bonds. Consequently, we explicitly link the relationship between the NMR parameters related to H-bonded systems and intuitive picture of a chemical bond from quantum calculations. The analysis shows how NMR signatures characteristic of H-bond can be explained by local bonding and electron delocalization concepts. One shortcoming of some of the anti-cancer agents like cisplatin is that they are toxic and researchers are looking for

  18. Double-tuned single coil probe for nuclear magnetic resonance spectrometer

    SciTech Connect

    McKay, R.A.

    1984-05-01

    A double-tuned single coil probe for a nuclear magnetic resonance spectrometer having improved sensitivity is described comprising a double-tuned circuit means in which the low frequency irradiation is fed to a transmission line through an inductor means. The double-tuned circuit means of the invention may be remotely disposed from the magnetic field which results in greater sensitivity.

  19. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  20. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  1. Electronic and nuclear motion and their couplings in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Schmelcher, P.; Cederbaum, L. S.; Meyer, H.-D.

    1988-12-01

    The performance of an adiabatic separation of electronic and nuclear motion in the presence of a magnetic field is examined, and it is shown that the diagonal term of the nonadiabatic coupling elements must be added to the nuclear equation of motion in the Born-Oppenheimer (BO) approximation. The screened BO approximation is described which is particularly suited to describe the adiabatic separation of electronic and nuclear degrees of freedom in a magnetic field. A new interpretation of the well-known gauge-centering is presented. The results are of interest in connection with the studies of white dwarfs and neutron stars.

  2. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  3. Development and applications of NMR (nuclear magnetic resonance) in low fields and zero field

    SciTech Connect

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab.

  4. Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system

    SciTech Connect

    Wang, Z. S.; Liu, G. Q.; Ji, Y. H.

    2009-05-15

    A scheme is proposed to include both cyclic and noncyclic geometric quantum computations in nuclear-magnetic-resonance system by the invariant theory. By controlling magnetic field and arbitrary parameters in the invariant operator, the phases accumulated in the entangling quantum gates for single- and two-qubit systems are pure geometric phases. Thus, fault tolerance may occur in some critical magnetic field parameters for either cyclic or noncyclic evolution by differently choosing for gate time.

  5. Microstructure of Wet Cement Pastes: a Nuclear Magnetic Resonance Study

    NASA Astrophysics Data System (ADS)

    Jehng, Jyh-Yuar

    1995-01-01

    Nuclear magnetic resonance relaxation analysis has been applied to interpret the evolution of microstructure in a cement paste during hydration. The work in this thesis has yielded a better understanding of the geometric and physical characterization of porous materials, and specifically cement pastes. A basic understanding of the wet-dry and freeze-thaw processes of cement pastes has been developed. The pore structure evolution has been studied by the suppression of the freezing temperature of water and compared with relaxation analysis performed at room temperature. Both methods consistently show that hydrating cement pastes have two principal components in their size distribution. Firstly, in situ measurements have been made of the water consumption, the total specific surface area, and pore water size distribution as a function of hydration time. The amount of evaporable water in the pore space can be determined from the magnitude of the NMR signal, and the NMR relaxation times provide a measure of the characteristic pore sizes. Drying studies have been performed to determine the surface spin-spin relaxation time. The NMR results on evolution of cement pore structure with hydration clearly show five different stages. The water consumption was determined to be a linear function of the logarithm of hydration time over a wide range during which the total surface area of the wet gel remains constant. These experiments support a model of capillary and gel pores in the cement paste and provide strong evidence of a stable dense-gel structure. Secondly, supercooling and thawing point depression of confined water has been studied systematically. The depression of the freezing point of liquid water confined within a pore was found to be dependent on the pore size with capillary pore water freezing at 240 K and the remaining gel pore water freezing over a temperature range extending to as low as 160 K. Finally, an important application of NMR has been developed to monitor

  6. Optically rewritable patterns of nuclear magnetization in gallium arsenide.

    PubMed

    King, Jonathan P; Li, Yunpu; Meriles, Carlos A; Reimer, Jeffrey A

    2012-06-26

    The control of nuclear spin polarization is important to the design of materials and algorithms for spin-based quantum computing and spintronics. Towards that end, it would be convenient to control the sign and magnitude of nuclear polarization as a function of position within the host lattice. Here we show that, by exploiting different mechanisms for electron-nuclear interaction in the optical pumping process, we are able to control and image the sign of the nuclear polarization as a function of distance from an irradiated GaAs surface. This control is achieved using a crafted combination of light helicity, intensity and wavelength, and is further tuned via use of NMR pulse sequences. These results demonstrate all-optical creation of micron scale, rewritable patterns of positive and negative nuclear polarization in a bulk semiconductor without the need for ferromagnets, lithographic patterning techniques, or quantum-confined structures.

  7. 15N NMR of 1,4-dihydropyridine derivatives.

    PubMed

    Goba, Inguna; Liepinsh, Edvards

    2013-07-01

    In this article, we describe the characteristic (15)N and (1)HN NMR chemical shifts and (1)J((15)N-(1)H) coupling constants of various symmetrically and unsymmetrically substituted 1,4-dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N-alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects.

  8. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  9. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  10. Solid state nuclear magnetic resonance investigations of advanced energy materials

    NASA Astrophysics Data System (ADS)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  11. Radiofrequency Coil Designs For Nuclear Magnetic Resonance Zeuciviatographic Imaging

    NASA Astrophysics Data System (ADS)

    Bernardo, M. L.; Cohen, A. J.; Lauterbur, P. C.

    1982-11-01

    The requirements for spatial uniformity of the radio-frequency magnetic field used in three-dimensional MAR imaging are discussed and an improved winding distribution for a saddle-shaped single transmitter-receiver coil has been developed and tested by computer simulation of the rf mag-netic field pattern. The use of flat local or "surface" coils for NMR imaging is also proposed. A. method for correcting such images for the apparent spin density differences caused by the extreme rf magnetic field nonuniformity has been developed and tested with phantoms and images of the human back.

  12. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  13. Nuclear resonance reflection of synchrotron radiation from thin dysprosium films with different types of magnetic ordering

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Antropov, N. O.; Baulin, R. A.; Kravtsov, E. A.; Ryabukhina, M. V.; Yakunina, E. M.; Ustinov, V. V.

    2016-12-01

    Epitaxial thin films of dysprosium have been successfully synthesized by the method of high-vacuum magnetron sputtering and their structure and magnetic properties have been investigated. The opportunity of the nuclear resonance scattering for the investigation of nanostructures containing 161Dy has been considered; the specific features of the spectra of nuclear resonance reflectivity from the films have been analyzed on the energy and time scales at different orientations of the magnetic hyperfine field. The simulation of the angular dependences of nuclear resonance reflectivity for the case of spiral ordering in periodic structures containing 161Dy has been carried out. It has been shown that these dependences make it possible to uniquely determine the period of magnetic ordering.

  14. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  15. Method of using a nuclear magnetic resonance spectroscopy standard

    DOEpatents

    Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.

    1985-01-01

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either .sup.1 H, .sup.13 C, .sup.15 N, or .sup.29 Si may be used as a reference.

  16. Solvent effects on 15N NMR coordination shifts.

    PubMed

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  17. Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly.

    PubMed

    Mukherjee, Sujoy; Pondaven, Simon P; Jaroniec, Christopher P

    2011-07-05

    The conformational flexibility of a human immunoglobulin κIV light-chain variable domain, LEN, which can undergo conversion to amyloid under destabilizing conditions, was investigated at physiological and acidic pH on a residue-specific basis by multidimensional solution-state nuclear magnetic resonance (NMR) methods. Measurements of backbone chemical shifts and amide (15)N longitudinal and transverse spin relaxation rates and steady-state nuclear Overhauser enhancements indicate that, on the whole, LEN retains its native three-dimensional fold and dimeric state at pH 2 and that the protein backbone exhibits limited fast motions on the picosecond to nanosecond time scale. On the other hand, (15)N Carr--Purcell--Meiboom--Gill (CPMG) relaxation dispersion NMR data show that LEN experiences considerable slower, millisecond time scale dynamics, confined primarily to three contiguous segments of about 5-20 residues and encompassing the N-terminal β-strand and complementarity determining loop regions 2 and 3 in the vicinity of the dimer interface. Quantitative analysis of the CPMG relaxation dispersion data reveals that at physiological pH these slow backbone motions are associated with relatively low excited-state protein conformer populations, in the ~2-4% range. Upon acidification, the minor conformer populations increase significantly, to ~10-15%, with most residues involved in stabilizing interactions across the dimer interface displaying increased flexibility. These findings provide molecular-level insights about partial protein unfolding at low pH and point to the LEN dimer dissociation, initiated by increased conformational flexibility in several well-defined regions, as being one of the important early events leading to amyloid assembly.

  18. Anomalous hyperfine coupling and nuclear magnetic relaxation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Okvátovity, Zoltán; Simon, Ferenc; Dóra, Balázs

    2016-12-01

    The electron-nuclear hyperfine interaction shows up in a variety of phenomena including, e.g., NMR studies of correlated states and spin decoherence effects in quantum dots. Here we focus on the hyperfine coupling and the NMR spin relaxation time T1 in Weyl semimetals. Since the density of states in Weyl semimetals varies with the square of the energy around the Weyl point, a naive power counting predicts a 1 /T1T ˜E4 scaling, with E the maximum of temperature (T ) and chemical potential. By carefully investigating the hyperfine interaction between nuclear spins and Weyl fermions, we find that while its spin part behaves conventionally, its orbital part diverges unusually, with the inverse of the energy around the Weyl point. Consequently, the nuclear spin relaxation rate scales in a graphenelike manner as 1 /T1T ˜E2ln(E /ω0) , with ω0 the nuclear Larmor frequency. This allows us to identify an effective hyperfine coupling constant, which is tunable by gating or doping. This is relevant for the decoherence effect in spintronics devices and double quantum dots, where hyperfine coupling is the dominant source of spin-blockade lifting.

  19. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  20. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  1. Nuclear magnetic resonance in sedimentary rocks: Effect of proton desorption rate

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.

    1982-09-01

    In a discussion of nuclear magnetic resonance of protons in the pore fluid of sedimentary rocks, Cohen and Mendelson assumed that the desorption rate of protons from the rock surface is much faster than the relaxation rate of the magnetization for protons on the surface. In the present paper it is shown that this assumption is not necessary and conditions are established under which the analysis of Cohen and Mendelson is valid.

  2. Zero and Ultra-Low-Field Nuclear Magnetic Resonance Spectroscopy Via Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Blanchard, John Woodland

    Nuclear magnetic resonance (NMR) is among the most powerful analytical tools available to the chemical and biological sciences for chemical detection, characterization, and structure elucidation. NMR experiments are usually performed in large magnetic fields in order to maximize sensitivity and increase chemical shift resolution. However, the high magnetic fields required for conventional NMR necessitate large, immobile, and expensive superconducting magnets, limiting the use of the technique. New hyperpolarization and non-inductive detection methods have recently allowed for NMR measurements in the inverse regime of extremely low magnetic fields. Whereas a substantial body of research has been conducted in the high-field regime, taking advantage of the efficient coherent control afforded by a spectroscopy dominated by coupling to the spectrometer, the zero- and ultra-low-field (ZULF) regime has remained mostly unexplored. In this dissertation, we investigate the applicability of ZULF-NMR as a novel spectroscopic technique complimentary to high-field NMR. In particular, we consider various aspects of the ZULF-NMR experiment and the dynamics of nuclear spins under various local spin coupling Hamiltonians. We first survey zero-field NMR experiments on systems dominated by the electron-mediated indirect spin-spin coupling (J-coupling). The resulting J-spectra permit precision measurement of chemically relevant information due to the exquisite sensitivity of J-couplings to subtle changes in molecular geometry and electronic structure. We also consider the effects of weak magnetic fields and residual dipolar couplings in anisotropic media, which encode information about nuclear magnetic moments and geometry, and further resolve topological ambiguities by lifting degeneracies. By extending the understanding of the interactions that contribute to ZULF-NMR spectra, this work represents a significant advancement towards a complete description of zero- and ultra

  3. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  4. Nuclear magnetic resonance multiwindow analysis of proton local fields and magnetization distribution in natural and deuterated mouse muscle.

    PubMed Central

    Peemoeller, H; Pintar, M M

    1979-01-01

    The proton free-induction decays, spin-spin relaxation times, local fields in the rotating frame, and spin-lattice relaxation times in the laboratory and rotating frames, in natural and fully deuterated mouse muscle, are reported. Measurements were taken above and below freezing temperature and at two time windows on the free-induction decay. A comparative analysis show that the magnetization fractions deduced from the different experiments are in good agreement. The main conclusion is that the resolution of the (heterogeneous) muscle nuclear magnetic resonance (NMR) response is improved by the multiwindow analysis. PMID:262554

  5. Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)4(1) super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies.

    PubMed

    Shen, Ming; Hu, Bingwen; Lafon, Oliver; Trébosc, Julien; Chen, Qun; Amoureux, Jean-Paul

    2012-10-01

    We demonstrate that inter-residue (13)C-(13)C proximities (of about 380 pm) in uniformly (13)C-labeled proteins can be probed by applying robust first-order recoupling during several milliseconds in single-quantum single-quantum dipolar homo-nuclear correlation (SQ-SQ D-HOMCOR) 2D experiments. We show that the intensity of medium-range homo-nuclear correlations in these experiments is enhanced using broadband first-order finite-pulse radio-frequency-driven recoupling (fp-RFDR) NMR sequence with a nested (XY8)4(1) super-cycling. The robustness and the efficiency of the fp-RFDR-(XY8)4(1) method is demonstrated at high magnetic field (21.1T) and high Magic-Angle Spinning (MAS) speeds (up to 60 kHz). The introduced super-cycling, formed by combining phase inversion and a global four-quantum phase cycle, improves the robustness of fp-RFDR to (i) chemical shift anisotropy (CSA), (ii) spread in isotropic chemical shifts, (iii) rf-inhomogeneity and (iv) hetero-nuclear dipolar couplings for long recoupling times. We show that fp-RFDR-(XY8)4(1) is efficient sans (1)H decoupling, which is beneficial for temperature-sensitive biomolecules. The efficiency and the robustness of fp-RFDR-(XY8)4(1) is investigated by spin dynamics numerical simulations as well as solid-state NMR experiments on [U-(13)C]-L-histidine·HCl, a tetra-peptide (Fmoc-[U-(13)C,(15)N]-Val-[U-(13)C,(15)N]-Ala-[U-(13)C,(15)N]-Phe-Gly-t-Boc) and Al(PO(3))(3).

  6. Exact two-component relativistic theory for nuclear magnetic resonance parameters.

    PubMed

    Sun, Qiming; Liu, Wenjian; Xiao, Yunlong; Cheng, Lan

    2009-08-28

    An exact two-component (X2C) relativistic theory for nuclear magnetic resonance parameters is obtained by first a single block-diagonalization of the matrix representation of the Dirac operator in a magnetic-field-dependent basis and then a magnetic perturbation expansion of the resultant two-component Hamiltonian and transformation matrices. Such a matrix formulation is not only simple but also general in the sense that the various ways of incorporating the field dependence can be treated in a unified manner. The X2C dia- and paramagnetic terms agree individually with the corresponding four-component ones up to machine accuracy for any basis.

  7. The effects of nuclear magnetic resonance on patients with cardiac pacemakers

    SciTech Connect

    Pavlicek, W.; Geisinger, M.; Castle, L.; Borkowski, G.P.; Meaney, T.F.; Bream, B.L.; Gallagher, J.H.

    1983-04-01

    The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.

  8. Exploring Platelet Chemokine Antimicrobial Activity: Nuclear Magnetic Resonance Backbone Dynamics of NAP-2 and TC-1▿

    PubMed Central

    Nguyen, Leonard T.; Kwakman, Paulus H. S.; Chan, David I.; Liu, Zhihong; de Boer, Leonie; Zaat, Sebastian A. J.; Vogel, Hans J.

    2011-01-01

    The platelet chemokines neutrophil-activating peptide-2 (NAP-2) and thrombocidin-1 (TC-1) differ by only two amino acids at their carboxy-terminal ends. Nevertheless, they display a significant difference in their direct antimicrobial activities, with the longer NAP-2 being inactive and TC-1 being active. In an attempt to rationalize this difference in activity, we studied the structure and the dynamics of both proteins by nuclear magnetic resonance (NMR) spectroscopy. Using 15N isotope-labeled protein, we confirmed that the two monomeric proteins essentially have the same overall structure in aqueous solution. However, NMR relaxation measurements provided evidence that the negatively charged carboxy-terminal residues of NAP-2 experience a restricted motion, whereas the carboxy-terminal end of TC-1 moves in an unrestricted manner. The same behavior was also seen in molecular dynamic simulations of both proteins. Detailed analysis of the protein motions through model-free analysis, as well as a determination of their overall correlation times, provided evidence for the existence of a monomer-dimer equilibrium in solution, which seemed to be more prevalent for TC-1. This finding was supported by diffusion NMR experiments. Dimerization generates a larger cationic surface area that would increase the antimicrobial activities of these chemokines. Moreover, these data also show that the negatively charged carboxy-terminal end of NAP-2 (which is absent in TC-1) folds back over part of the positively charged helical region of the protein and, in doing so, interferes with the direct antimicrobial activity. PMID:21321145

  9. Conformation of the phosphate D-alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy.

    PubMed

    Garimella, Ravindranath; Halye, Jeffrey L; Harrison, William; Klebba, Phillip E; Rice, Charles V

    2009-10-06

    The conformation of d-alanine (d-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The d-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH(3)(+) group with the ability to form a contact ion pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the d-Ala cation; thus the ion pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing (15)N d-Ala and beta-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling, and the results demonstrate (1) the metal-free amine-to-phosphate distance is 4.4 A and (2) the amine-to-phosphate distance increases to 5.4 A in the presence of Mg(2+) ions. As a result, the zwitterion exists in a nitrogen-oxygen ion pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of d-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies.

  10. Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance.

    PubMed

    Bazzacco, Paola; Billon-Denis, Emmanuelle; Sharma, K Shivaji; Catoire, Laurent J; Mary, Sophie; Le Bon, Christel; Point, Elodie; Banères, Jean-Louis; Durand, Grégory; Zito, Francesca; Pucci, Bernard; Popot, Jean-Luc

    2012-02-21

    Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTPγS by the G(αq) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies.

  11. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  12. In vivo imaging of the rat anatomy with nuclear magnetic resonance.

    PubMed

    Hansen, G; Crooks, L E; Davis, P; De Groot, J; Herfkens, R; Margulis, A R; Gooding, C; Kaufman, L; Hoenninger, J; Arakawa, M; McRee, R; Watts, J

    1980-09-01

    Live rats were imaged by nuclear magnetic resonance (NMR). These images demonstrated fine detail and high object contrast. Motion artifacts are not apparent in 4-minute images, and major blood vessels are demonstrated as regions of low signal intensity because of blood flow. Selective contrast enhancement is possible by varying NMR imager accumulation parameters.

  13. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  14. Exploration of the Use of Nuclear Magnetic Resonance for the Study of Ricin Toxicity in Cells

    DTIC Science & Technology

    2009-04-01

    ricin. 15. SUBJECT TERMS 3T3 Cells Ricinus communis Cell Toxicity Nuclear Magnetic Resonance NMR Ricin 16. SECURITY CLASSIFICATION OF: a. REPORT u...Ricin Preparation. The Ricin communis agglutinin II (ricin) stock solution was prepared by dialyzing ricin (Vector Laboratories, Burlingame, CA

  15. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  16. MEMS-based force-detected nuclear magnetic resonance spectrometer for in situ planetary exploration

    NASA Technical Reports Server (NTRS)

    George, T.; Leskowitz, G.; Madsen, L.; Weitekamp, D.; Tang, W.

    2000-01-01

    Nuclear Magnetic resonance (NMR) is a well-known spectroscopic technique used by chemists and is especially powerful in detecting the presence of water and distinguishing between arbitrary physisorbed and chemisorbed states. This ability is of particular importance in the search for extra-terrestrial life on planets such as Mars.

  17. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  18. Quantitative nuclear magnetic resonance to measure body composition in infants and children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...

  19. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    SciTech Connect

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  20. An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin

    ERIC Educational Resources Information Center

    Rovnyak, David; Thompson, Laura E.

    2005-01-01

    Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

  1. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  2. The Complexation of the Na(super +) by 18-Crown-6 Studied via Nuclear Magnetic Resonance

    ERIC Educational Resources Information Center

    Peters, Steven J.; Stevenson, Cheryl D.

    2004-01-01

    A student friendly experiment that teaches several important concepts of modern nuclear magnetic resonance (NMR), like multinuclear capabilities, the NMR time scale, and time-averaged signals, is described along with some important concepts of thermo chemical equilibria. The mentioned experiment involves safe and inexpensive compounds, such as…

  3. Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers

    SciTech Connect

    Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

  4. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor.

    PubMed

    Verpillat, F; Ledbetter, M P; Xu, S; Michalak, D J; Hilty, C; Bouchard, L-S; Antonijevic, S; Budker, D; Pines, A

    2008-02-19

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mum. An estimate of the sensitivity for an optimized system indicates that approximately 6 x 10(13) protons in a volume of 1,000 mum(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers.

  5. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    NASA Astrophysics Data System (ADS)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  6. Damage dosimetry and embrittlement monitoring of nuclear pressure vessels in real time by magnetic properties measurement

    SciTech Connect

    Stubbins, J.F.; Ougouag, A.M.; Williams, J.G.

    1992-07-01

    The objective of this project is to develop a technique for real-time monitoring of neutron dose and of the onset and progression of embrittlement in operating nuclear pressure vessels. The technique relies on the measurement of magnetic properties of steel and other magnetic materials which are extremely sensitive to radiation-induced properties changes. The approach being developed here is innovative and unique. It promises to be readily applicable to all existing and planned reactor structures. The significance of this program is that it addresses a major concern in the operation of existing nuclear pressure vessels. The development of microscopic defect clusters during irradiation in the nuclear pressure vessel beltline region leads to an increase in material yield strength and a concomitant decrease in ductility, or ability to absorb energy in fracture (i.e. fracture toughness). This decrease in fracture toughness is alarming since it may impair the ability of the pressure vessel to resist fracture during unusual loading situations.

  7. Optically detected nuclear magnetic resonance in n-GaAs using an on-chip microcoil

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Huang, J.; Reuter, D.; Ludwig, A.; Wieck, A. D.; Bacher, G.

    2011-02-01

    Optically detected nuclear magnetic resonance (NMR) with micrometer resolution is demonstrated in n-GaAs using an on-chip microcoil. To trace the Overhauser field, the electron Larmor frequency is monitored via time-resolved magneto-optical Kerr rotation. Sweeping the frequency of the rf magnetic field induced by an on-chip microscale current loop, nuclear spin depolarization is achieved for each isotope species. The experimental data indicate an impact of a local quadrupole field, most likely caused by ionized donors, on the amplitude and linewidth of the NMR spectrum. By applying rf pulse sequences, the Rabi oscillation of A75s nuclear spins is obtained with an effective dephasing time of ˜200 μs.

  8. Relativistic effects on the nuclear magnetic shielding in the MF (M=Cu, Ag, Au) series

    SciTech Connect

    David, Jorge; Restrepo, Albeiro

    2007-11-15

    Relativistic effects on the nuclear magnetic shielding {sigma}(M) of the series of diatomics MF (M=Cu, Ag, Au) are calculated and analyzed using the Dirac-Hartree-Fock (DHF) method in the random phase approximation (RPA). Significant differences due to relativistic effects on the shielding constant {sigma}(M) are found in this series of atoms. The high electronegativity of the fluorine atom works in conjunction with the spin-orbit coupling to increase the calculated value for {sigma}(Au). An unusually large diamagnetic contribution to the shielding constant is observed. Nonrelativistic nuclear magnetic shielding [{sigma}{sup NR}(M)] shows very good linear correlation with the nuclear charge (Z) of the metal, while the relativistic shielding [{sigma}{sup rel}(M)] varies as Z{sup 2.26}.

  9. Kinetic 15N-isotope effects on algal growth

    PubMed Central

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-01-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies. PMID:28281640

  10. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  11. Structural analysis of strained quantum dots using nuclear magnetic resonance.

    PubMed

    Chekhovich, E A; Kavokin, K V; Puebla, J; Krysa, A B; Hopkinson, M; Andreev, A D; Sanchez, A M; Beanland, R; Skolnick, M S; Tartakovskii, A I

    2012-10-01

    Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.

  12. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  13. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  14. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.

    PubMed

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele

    2016-01-12

    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  15. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  16. Evaluation of radio frequency microcoils as nuclear magnetic resonance detectors in low-homogeneity high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wright, A. C.; Neideen, T. A.; Magin, R. L.; Norcross, J. A.

    1998-11-01

    We describe here experiments evaluating the performance of solenoidal radio frequency probes having submillimeter dimensions (microcoils) as detectors for liquid nuclear magnetic resonance (NMR) in very low-homogeneity (100 ppm/cm) magnetic fields. Performance is based on the measured H2O linewidth. A series of solenoidal microcoils having sample volumes 8, 53, and 593 nl were filled with distilled H2O and evaluated for smallest obtainable unshimmed NMR spectral linewidths in a vertical bore superconducting magnet, stabilized at 5.9 T (1H frequency=250 MHz). The smallest microcoil (472 μm diameter) gave a smallest H2O linewidth of 525 Hz, 25 times smaller than that from a standard 5.7 mm probe. Linewidth increased approximately as the square root of sample volume. For comparison, shimmed H2O linewidths using the same microcoils in a high-homogeneity (0.1 ppm/cm) NMR magnet were also measured. Shimmed linewidths in the high-homogeneity magnet were two orders of magnitude smaller and exhibited a similar dependence on volume. The results demonstrate that by using microcoils the volume over which the polarizing magnetic field must meet a specified homogeneity can be significantly reduced, which would be advantageous for smaller, less expensive NMR systems.

  17. [Nuclear magnetic resonance tomography of the temporomandibular joint].

    PubMed

    König, H; Spitzer, W J

    1986-05-01

    Because of its position, the temporomandibular joint is difficult to demonstrate by conventional radiological methods. Even the use of complex methods, such as arthro-tomography or CT, does not result in the satisfactory demonstration of the soft tissues and, in particular, of the articular disc. Magnetic resonance was carried out in 24 patients; it was possible to differentiate functional from morphological changes in the cartilage and these are discussed. Measurements were carried out during progressive opening of the mouth. This permits direct demonstration of reversible and irreversible cartilage displacement and of other changes in the joint and cartilages.

  18. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is

  19. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  20. Ferromagnetic ordering in NpAl2: Magnetic susceptibility and 27Al nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martel, L.; Griveau, J.-C.; Eloirdi, R.; Selfslag, C.; Colineau, E.; Caciuffo, R.

    2015-08-01

    We report on the magnetic properties of the neptunium based ferromagnetic compound NpAl2. We used magnetization measurements and 27Al NMR spectroscopy to access magnetic features related to the paramagnetic and ordered states (TC=56 K). While very precise DC SQUID magnetization measurements confirm ferromagnetic ordering, they show a relatively small hysteresis loop at 5 K reduced with a coercive field HCo~3000 Oe. The variable offset cumulative spectra (VOCS) acquired in the paramagnetic state show a high sensitivity of the 27Al nuclei spectral parameters (Knight shifts and line broadening) to the ferromagnetic ordering, even at room temperature.

  1. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  2. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants.

  3. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    PubMed

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds.

  4. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene:  Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Thorne, Philip G.; Cox, Larry G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  5. Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Pearson, Jason; Feng, GuanRu; Zheng, Chao; Long, GuiLu

    2016-12-01

    Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states. The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.

  6. Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Khanduri, H.; Chandra Dimri, M.; Kooskora, H.; Heinmaa, I.; Viola, G.; Ning, H.; Reece, M. J.; Krustok, J.; Stern, R.

    2012-10-01

    The effect of strontium substitution on structural, magnetic, and dielectric properties of a multiferroic Y-type hexaferrite (chemical formula Ba2-xSrxMg2Fe12O22 with 0 ≤ x ≤ 2) was investigated. Y-type hexaferrite phase formation was not affected by strontium substitution for barium, in the range 0 ≤ x ≤ 1.5, confirmed by x-ray diffraction and Raman spectroscopy measured at room temperature. Two intermediate magnetic spin phase transitions (at tempertures TI and TII) and a ferrimagnetic-paramagnetic transition (at Curie temperature TC) were identified from the temperature dependence of the magnetic susceptibility. Magnetic transition temperatures (TI, TII, and TC) increased with increasing strontium content. Magnetic hysteresis measurements indicated that by increasing strontium concentration, the coercivity increases, while the saturation magnetization decreases. The 57Fe NMR spectrum of the Y-type hexaferrite measured at 5 K and in zero magnetic field showed remarkable differences compared to that of other hexaferrites due to their different number of tetrahedral and octahedral iron sites. The temperature and frequency dependence of the dielectric permittivity evidenced broad peaks with frequency dispersion in correspondence of the Curie temperature.

  7. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    PubMed

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  8. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  9. Determination of the magnetic spin direction from the nuclear forward-scattering line intensities.

    PubMed

    Callens, R; L'abbé, C; Meersschaut, J; Serdons, I; Sturhahn, W; Toellner, T S

    2007-07-01

    An expression is derived for the line intensities in a nuclear forward-scattering energy spectrum that is obtained via a Fourier transformation of the time dependence of the wavefield. The calculation takes into account the coherent properties of the nuclear forward-scattering process and the experimental limitations on the observable time window. It is shown that, for magnetic samples, the spin direction can be determined from the ratios between the different lines in the energy spectrum. The theory is complemented with experimental results on alpha-iron.

  10. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  11. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed.

  12. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  13. Meso-Scale Magnetic Signatures for Nuclear Reactor Steel Irradiation Embrittlement Monitoring

    SciTech Connect

    Suter, Jonathan D.; Ramuhalli, Pradeep; McCloy, John S.; Xu, Ke; Hu, Shenyang Y.; Li, Yulan; Jiang, Weilin; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Johnson, Bradley R.

    2015-03-31

    Verifying the structural integrity of passive components in light-water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the ‘state of health’ of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of non-destructive evaluation (NDE) technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results to integrate advanced material characterization techniques with meso-scale computational models to provide an interpretive understanding of the state of degradation in a material. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. In future efforts, microstructural measurements and meso-scale magnetic measurements on thin films will be used to gain insights into the structural state of these materials to study the impact of irradiation on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  14. Four-component relativistic theory for nuclear magnetic shielding constants: critical assessments of different approaches.

    PubMed

    Xiao, Yunlong; Liu, Wenjian; Cheng, Lan; Peng, Daoling

    2007-06-07

    Both formal and numerical analyses have been carried out on various exact and approximate variants of the four-component relativistic theory for nuclear magnetic shielding constants. These include the standard linear response theory (LRT), the full or external field-dependent unitary transformations of the Dirac operator, as well as the orbital decomposition approach. In contrast with LRT, the latter schemes take explicitly into account both the kinetic and magnetic balances between the large and small components of the Dirac spinors, and are therefore much less demanding on the basis sets. In addition, the diamagnetic contributions, which are otherwise "missing" in LRT, appear naturally in the latter schemes. Nevertheless, the definitions of paramagnetic and diamagnetic terms are not the same in the different schemes, but the difference is only of O(c(-2)) and thus vanishes in the nonrelativistic limit. It is shown that, as an operator theory, the full field-dependent unitary transformation approach cannot be applied to singular magnetic fields such as that due to the magnetic point dipole moment of a nucleus. However, the inherent singularities can be avoided by the corresponding matrix formulation (with a partial closed summation). All the schemes are combined with the Dirac-Kohn-Sham ansatz for ground state calculations, and by using virtually complete basis sets a new and more accurate set of absolute nuclear magnetic resonance shielding scales for the rare gases He-Rn have been established.

  15. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  16. Permanently magnetized high gradient magnetic air filters for the nuclear industry

    SciTech Connect

    Watson, J.H.P.

    1995-11-01

    This paper describes the structure and testing of two novel permanently magnetized magnetic filters for fine radioactive material. In the first filter the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for composite particles which can be broken by mechanical forces. The second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted capture in which coarse particles aid the capture of the fine fragments. These filters have the following characteristics: (1) no external magnet is required, (2) no external power is required, (3) small in size and portable, (4) easily interchangeable, and (5) can be cleaned without demagnetizing by using a magnetic fluid which matches the susceptibility of the captured particles.

  17. Nuclear Magnetic Moment of {sup 210}Fr: A Combined Theoretical and Experimental Approach

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; Iskrenova-Tchoukova, E.; Safronova, M. S.

    2008-05-02

    We measure the hyperfine splitting of the 9S{sub 1/2} level of {sup 210}Fr, and find a magnetic dipole hyperfine constant A=622.25(36) MHz. The theoretical value, obtained using the relativistic all-order method from the electronic wave function at the nucleus, allows us to extract a nuclear magnetic moment of 4.38(5){mu}{sub N} for this isotope, which represents a factor of 2 improvement in precision over previous measurements. The same method can be applied to other rare isotopes and elements.

  18. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-01

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ˜ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to 3He in the gas phase at 4.2 K in a 30 mT magnetic field.

  19. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    SciTech Connect

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-15

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ∼ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to {sup 3}He in the gas phase at 4.2 K in a 30 mT magnetic field.

  20. Application of a portable nuclear magnetic resonance surface probe to porous media.

    PubMed

    Marko, Andriy; Wolter, Bernd; Arnold, Walter

    2007-03-01

    A portable nuclear magnetic resonance (NMR) surface probe was used to determine the time-dependent self-diffusion coefficient D(t) of water molecules in two fluid-filled porous media. The measuring equipment and the inhomogeneous magnetic fields in the sensitive volume of the probe are described. It is discussed how to evaluate D(t) using a surface probe from the primary and stimulated echoes generated in three-pulse experiments. Furthermore, the evaluation of D(t) allows one to determine the geometrical structure of porous materials.

  1. Mechanical Generation of Radio-Frequency Fields in Nuclear-Magnetic-Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. J. T.; den Haan, A. M. J.; Donkersloot, R. J.; Marsman, F.; de Wit, M.; Bossoni, L.; Oosterkamp, T. H.

    2017-02-01

    We present a method for magnetic-resonance force microscopy (MRFM) with ultralow dissipation, by using the higher modes of the mechanical detector as a radio-frequency (rf) source. This method allows MRFM on samples without the need to be close to a conventional electrically driven rf source. Furthermore, since conventional electrically driven rf sources require currents that give dissipation, our method enables nuclear-magnetic-resonance experiments at ultralow temperatures. Removing the need for an on-chip rf source is an important step towards an MRFM which can be widely used in condensed matter physics.

  2. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    SciTech Connect

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  3. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  4. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  5. Application of nuclear magnetic resonance spectroscopy for identification of ciprofloxacin crystalluria.

    PubMed

    Morell-Garcia, Daniel; Barceló, Bernardino; Rodriguez, Adrian; Liñeiro, Victor; Robles, Rosa; Vidal-Puigserver, Joan; Costa-Bauzá, Antonia; Grases, Felix

    2015-01-01

    This is a report describing a previously healthy young patient, who experienced crystalluria and non-cholestatic acute liver injury after a single intravenous dose of 400mg. The nuclear magnetic resonance spectra confirmed that the urinary sediment in our patient was formed by pure ciprofloxacin. The nuclear magnetic resonance spectra ((1)H NMR) of the urine sediment are a good test to confirm the composition of the crystals observed by electron microscopy and infrared spectrum. The findings indicate the importance of adequate hydration, urinalysis, measurement of pH and liver enzyme levels, prior to treatment with ciprofloxacin. Our findings also indicate that ciprofloxacin should not be administered to patients with renal tubular acidosis, due to their high urinary pH.

  6. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  7. Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Da Providencia, J.

    2009-08-15

    We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.

  8. Quantitative nuclear magnetic resonance spectroscopic determination of the oxyethylene group content of polysorbates.

    PubMed

    Sugimoto, Naoki; Koike, Ryo; Furusho, Noriko; Tanno, Makoto; Yomota, Chikako; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi

    2007-08-01

    Guidelines for the oxyethylene group (EO) content of polysorbates are set by the Food and Agriculture Organization/World Health Organization Joint Expert Committee on Food Additives. However, the classical titration method for EO determination is difficult and time-consuming. Here, we show that quantitative (1)H-nuclear magnetic resonance spectroscopy can determine the EO contents of polysorbates rapidly and simply. The EO signals were identified through comparisons with sorbitan monolaurate and poly(ethylene glycol) distearate. Potassium hydrogen phthalate was used as an internal standard. The EO contents were estimated from the ratio of the signal intensities of EO to the internal standard. Two nuclear magnetic resonance systems were used to validate the proposed method. The EO content of commercial polysorbates 20, 60, 65, and 80 was determined to be within the recommended limits using this technique. Our approach thus represents an additional or alternative method of determining the EO contents of polysorbates.

  9. Magnetic hysteresis properties of neutron-irradiated VVER440-type nuclear reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R.; Horváth, M.

    2012-11-01

    The development of non-destructive evaluation methods for irradiation embrittlement in nuclear reactor pressure vessel steels has a key role for safe and long-term operation of nuclear power plants. In this study, we have investigated the effect of neutron irradiation on base and weld metals of Russian VVER440-type reactor pressure vessel steels by measurements of magnetic minor hysteresis loops. A minor-loop coefficient, which is obtained from a scaling power-law relation of minor-loop parameters and is a sensitive indicator of internal stress, is found to change with neutron fluence for both metals. While the coefficient for base metal exhibits a local maximum at low fluence and a subsequent slow decrease, that for weld metal monotonically decreases with fluence. The observed results are explained by competing mechanisms of nanoscale defect formation and recovery, among which the latter process plays a dominant role for magnetic property changes in weld metal due to its ferritic microstructure.

  10. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  11. Nuclear Magnetic Resonance (NMR) analysis of a Kel-F resin and lacquer

    NASA Astrophysics Data System (ADS)

    Rutenberg, A. C.

    1985-08-01

    Proton, carbon, and fluorine nuclear magnetic resonance (NMR) spectroscopy has been used at the Oak Ridge Y-12 Plant to determine the concentration of various species present in Kel-F 800 resin and its lacquers. Nuclear magnetic resonance (NMR) spectroscopy has been used to characterize Kel-F 800 resin and to measure the various chemical species present in a lacquer based on this resin. Proton NMR spectroscopy was used to measure the ratio of ethyl acetate to xylenes and to estimate the vinylidene fluoride content of the resin. Fluorine NMR spectroscopy was used to determine the water and ethanol content of the lacquer as well as some of its components. Fluorine NMR spectroscopy was also used to estimate the amount of perfluorodecanoate emulsifier present in the Kel-F resin. Carbon-13 NMR spectroscopy was used to determine the isomeric composition of various batches of xylenes and as an alternate method for measuring the vinylidene fluoride content of the resin.

  12. Measurement of conductivity and permittivity on samples sealed in nuclear magnetic resonance tubes

    SciTech Connect

    Huang, W.; Angell, C. A.; Yarger, J. L.; Richert, R.

    2013-07-15

    We present a broadband impedance spectroscopy instrument designed to measure conductivity and/or permittivity for samples that are sealed in glass tubes, such as the standard 5 mm tubes used for nuclear magnetic resonance experiments. The calibrations and corrections required to extract the dielectric properties of the sample itself are outlined. It is demonstrated that good estimates of the value of dc-conductivity can be obtained even without correcting for the effects of glass or air on the overall impedance. The approach is validated by comparing data obtained from samples sealed in nuclear magnetic resonance tubes with those from standard dielectric cells, using glycerol and butylmethylimidazolium-hexafluorophosphate as respective examples of a molecular and an ionic liquid. This instrument and approach may prove useful for other studies of permittivity and conductivity where contact to the metal electrodes or to the ambient atmosphere needs to be avoided.

  13. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  14. Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

    PubMed Central

    Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John

    2016-01-01

    Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629

  15. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  16. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    EPA Pesticide Factsheets

    NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and exercised subjects.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance. American Journal of Physiology- Renal Physiology. American Physiological Society, Bethesda, MD, USA, 310(5): 426-31, (2016).

  17. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  18. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    SciTech Connect

    Heller, Jonathan

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  19. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  20. Fetal imaging by nuclear magnetic resonance: a study in goats: work in progress

    SciTech Connect

    Foster, M.A.; Knight, C.H.; Rimmington, J.E.; Mallard, J.R.

    1983-10-01

    Nuclear magnetic resonance proton imaging was used to obtain images of goat fetuses in utero. The long T1 relaxation time of amniotic fluid makes it appear black on proton density images when examined using the Aberdeen imager, and so allows very good discrimination of the position and structure of the fetus. Some fetal internal tissues can be seen on T1 images. These findings suggest that NMR imaging has great potential in pregnancy studies.

  1. Proton nuclear magnetic resonance of intact friend leukemia cells: phosphorylcholine increase during differentiation

    SciTech Connect

    Agris, P.F.; Campbell, I.D.

    1982-06-18

    Proton nuclear magnetic resonance of intact Friend leukemia cells was used to analyze their erythroid-like differentiation. The technique, which requires only 10/sup 8/ to 10/sup 9/ cells and approximately 2 minutes for acquisition of each spectrum, demonstrated the occurrence of many signal changes during differentiation. With cell extracts, 64 signals were assigned to 12 amino acids and 19 other intermediary metabolites, and a dramatic signal change was attributed to a fourfrease in cytoplasmic phosphorylcholines.

  2. Nuclear magnetic resonance monitoring of treatment and prediction of outcome in multiple sclerosis.

    PubMed Central

    Miller, D H; Thompson, A J

    1999-01-01

    Magnetic resonance (MR) techniques provide an objective, sensitive and quantitative assessment of the evolving pathology in multiple sclerosis. There is an increasing definition of the pathological specificity of newer techniques, and more robust correlations with clinical evolution are emerging. As the pathophysiological basis of in vivo nuclear MR signal abnormalities is further elucidated, it is likely that the importance of MR as a tool to monitor new therapies will increase. PMID:10603620

  3. Robert Vivian Pound and the Discovery of Nuclear Magnetic Resonance in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Pavlish, Ursula

    2010-06-01

    This paper is based upon five interviews I conducted with Robert Vivian Pound in 2006-2007 and covers his childhood interest in radios, his time at the Massachusetts Institute of Technology Radiation Laboratory during the Second World War, his work on the discovery of nuclear magnetic resonance in condensed matter, his travels as a professor at Harvard University, and his social interactions with other physicists.

  4. Application of electronic paramagnetic, nuclear magnetic, γ-nuclear magnetic resonance, and defibrillation in experimental biology and medecine

    NASA Astrophysics Data System (ADS)

    Piruzyan, L. A.

    2005-08-01

    Nowadays an attention is paid to pathbreaking approaches to the therapy of different pathologies with EPR, NMR and NGR dialysis and mechanisms of physical factors influence in prophylactics and therapy of a number of diseases. Any pathology is evidently begins its development in atomic-molecular levels earlier then any morphologic alterations in tissues can be detected. We have studied the alterations of FR content in liver, spleen and brain in hypoxia and hyperoxia conditions. Under hypoxia and hyperoxia the FR concentrations are equal in all organs and tissues. However this ratio is different for some forms of leucosis. For different leucosis types gas mixtures the most adequate for the current pathology should be developed. Then we represent the method of biologic objects treatment with the energy of super-high frequency field (SIT) and the instrument for its performance. The study of magnetic heterogeneity of biologic systems proposes the new approach and a set of methods for medical and scientific purpose. Application of combined with chemotherapy extraction of anionic and cationic radicals from bloodstream using EPRD, NMRD and NGRD influence and also the single ions separate extraction using NGRD are able to detect and perhaps to cure their appearance in a period before neoformation. These studies should be carried out experimentally and clinically.

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  6. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  7. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    PubMed

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  8. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    SciTech Connect

    Kaur, Maninder; Johnson, Andrew; Tian, Guoxin; Jiang, Weilin; Rao, Linfeng; Paszczynski, Andrzej; Qiang, You

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  9. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  10. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  11. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.

    PubMed

    Manninen, Pekka; Ruud, Kenneth; Lantto, Perttu; Vaara, Juha

    2005-03-15

    We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H(2)X (X = O,S,Se,Te,Po) and HX (X = F,Cl,Br,I,At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The (1)H and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme is striking for the isotropic part of the shielding tensor, for systems including elements up to Xe.

  12. Using magnetic moments to study the nuclear structure of I ≥ 2 states

    NASA Astrophysics Data System (ADS)

    Torres, D. A.

    2013-05-01

    The experimental study of magnetic moments for nuclear states near the ground state, I ≥ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions have been utilized to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≥ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  13. Nuclear magnetic resonance of external protons using continuous dynamical decoupling with shallow NV centers

    NASA Astrophysics Data System (ADS)

    de Las Casas, Charles; Ohno, Kenichi; Awschalom, David D.

    2015-03-01

    The nitrogen vacancy (NV) center in diamond is a paramagnetic defect with excellent spin properties that can reside within a few nanometers of the diamond surface, enabling atomic-scale magnetic resonance sensing of external nuclear spins. Here we use rotating frame longitudinal spin relaxation (T1ρ) based sensing schemes, known as Continuous Dynamical Decoupling (CDD), to detect external nuclear spins with shallow NV centers (<5 nm from the surface). Distinguishing neighboring nuclear spins from each other requires the NV center be near enough to create differences in the hyperfine shifts and coupling strengths of the nuclei. However, spin coherence time and consequently the sensitivity of dynamical decoupling techniques degrade sharply as NVs become shallower. We use strong continuous driving to overcome this fast decoherence and detect an ensemble of external nuclear spins using a single shallow NV center with a short T2 (<2 μs) at magnetic fields as high as 0.5 Tesla. The increased sensitivity of this method relative to pulsed dynamical decoupling techniques demonstrates the benefits of CDD for sensing with very shallow NV centers. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  14. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  15. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

    PubMed

    Zhao, Yanzhao; Liang, Minmin; Li, Xiao; Fan, Kelong; Xiao, Jie; Li, Yanli; Shi, Hongcheng; Wang, Fei; Choi, Hak Soo; Cheng, Dengfeng; Yan, Xiyun

    2016-04-26

    Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.

  16. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  17. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    SciTech Connect

    Suter, J. D. Ramuhalli, P. Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.; McCloy, J. S. Xu, K.

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  18. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    NASA Astrophysics Data System (ADS)

    Suter, J. D.; Ramuhalli, P.; McCloy, J. S.; Xu, K.; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.

    2015-03-01

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the "state of health" of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  19. Low-field nuclear magnetic resonance for the in vivo study of water content in trees.

    PubMed

    Yoder, Jacob; Malone, Michael W; Espy, Michelle A; Sevanto, Sanna

    2014-09-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (~1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach--keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  20. Low-field nuclear magnetic resonance for the in vivo study of water content in trees

    SciTech Connect

    Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna

    2014-09-15

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (∼1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach – keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  1. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  2. Interface between heavy fermions and normal electrons investigated by spatially resolved nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takayoshi; Shimozawa, Masaaki; Endo, Ryota; Mizukami, Yuta; Shishido, Hiroaki; Terashima, Takahito; Shibauchi, Takasada; Matsuda, Yuji; Ishida, Kenji

    2015-12-01

    We have studied the superlattices with alternating block layers (BLs) of heavy-fermion superconductor CeCoIn5 and conventional-metal YbCoIn5 by site-selective nuclear magnetic resonance spectroscopy, which uniquely offers spatially resolved dynamical magnetic information. We find that the presence of antiferromagnetic fluctuations is confined to the Ce BLs, indicating that magnetic degrees of freedom of f electrons are quenched inside the Yb BLs. Contrary to simple expectations that the two dimensionalization enhances fluctuations, we observe that antiferromagnetic fluctuations are rapidly suppressed with decreasing Ce BL thickness. Moreover, the suppression is more prominent near the interfaces between the BLs. These results imply significant effects of local inversion symmetry breaking at the interfaces.

  3. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. 1H, 23Na, 27Al, 69Ga, and 71Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  4. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  5. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  6. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  7. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  8. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  9. High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2013-12-12

    spin nanowires in diamond, presented in a manuscript entitled ``The effect of spin transport on lifetime in nanoscale systems,’’ is currently under...The effect of spin transport on lifetime in nanoscale systems, Nature Nanotechnology (submitted), (11 2013): 0. doi: TOTAL: 2 Number of Papers...magnetic eld gradient, neighboring spin sites experience dierent Zeeman splitting which would cause ip-ops to violate energy conser- vation [21, 22

  10. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    SciTech Connect

    Gunasekara, Nirosha; Sykes, Brian; Hugh, Judith

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  11. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  12. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  13. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  14. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  15. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  16. Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Chang; Liao, Shu-Hsien; Horng, Herng-Er; Kuo, Shing-Ling; Chen, Hsin-Hsien; Yang, S. Y.

    2006-06-01

    We applied prepolarization field and high-Tc superconducting quantum interference device (SQUID) detector to enhance nuclear magnetic resonance signal in a microtesla magnetic field. The minimum measuring magnetic field is 8.9μT at which the proton resonance frequency is 380Hz. The specificity instrumentation and the difficulty of using a high-Tc SQUID with prepolarization field were investigated. We applied gradient field to perform one-dimensional proton imaging in a microtesla magnetic field. Additionally, low field high-Tc SQUID-based NMR systems are promising in biomagnetic research due to its use, for example, in imaging with hyperpolarized noble gas.

  17. Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; DeMille, D.; Kozlov, M. G.

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

  18. The potential of nuclear magnetic resonance to track lipids in planta.

    PubMed

    Munz, Eberhard; Jakob, Peter M; Borisjuk, Ljudmilla

    2016-11-01

    Nuclear Magnetic Resonance (NMR) provides a highly flexible platform for non invasive analysis and imaging biological samples, since the manipulation of nuclear spin allows the tailoring of experiments to maximize the informativeness of the data. MRI is capable of visualizing a holistic picture of the lipid storage in living plant/seed. This review has sought to explain how the technology can be used to acquire functional and physiological data from plant samples, and how to exploit it to characterize lipid deposition in vivo. At the same time, we have referred to the current limitations of NMR technology as applied to plants, and in particular of the difficulty of transferring methodologies optimized for animal/medical subjects to plant ones. A forward look into likely developments in the field is included, anticipating its key future role in the study of living plant.

  19. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  20. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites.

    PubMed

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-08-05

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.

  1. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    PubMed

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  2. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.

  3. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Wang, Chuan; Long, Gui Lu

    2010-06-01

    Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.

  4. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  5. Characterization of humic acid fractions by C-13 nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Wershaw, R. L.; Thorn, K.A.; Pinckney, D.J.

    1988-01-01

    Soil humic acids from different environments were fractionated by adsorption chromatography on Sephadex and characterized by C-13 nuclear magnetic resonance (NMR) spectroscopy. The C-13 NMR spectra of the fractions consist of some sharp, well-resolved lines and some broad bands in contrast to the spectra of the unfractionated humic acids, where the bands are broader and less well-resolved. The marked increase in resolution is apparently due to increased homogeneity of the fractions. These spectra are compared to the spectra of model compounds.

  6. A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1989-01-01

    It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.

  7. Chemical characterization of pigment gallstones using /sup 13/C nuclear magnetic resonance analysis

    SciTech Connect

    Woolfenden, W.R.; Grant, D.M.; Straight, R.C.; Englert, E. Jr.

    1982-07-30

    The unique ability of Carbon-13 nuclear magnetic resonance analysis with cross polarization/magic angle spinning techniques to investigate chemical structures of solids is used to probe the chemical characteristics of several gallstone types. New pulse program techniques are used to distinguish various carbon atoms in studying the polymeric nature of the black bilirubinoid pigment of pigment gallstones. Evidence for the involvement of the carboxyl group and noninvolvement of vinyl groups of bilirubinoids in the polymeric bond formation is presented. Conjugated bilirubin structures are found to be present in some solid residues from pigment stones extracted with acidic methanol/chloroform.

  8. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  9. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  10. New Approach to High-Pressure Nuclear Magnetic Resonance with Anvil Cells

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Goh, S. K.; Haase, J.; Meier, B.; Rybicki, D.; Alireza, P. L.

    2010-04-01

    A novel approach that uses radio-frequency microcoils in the high-pressure region of anvil cells with Nuclear Magnetic Resonance (NMR) experiments is described. High-sensitivity Al NMR data at 70 kbar for Al metal are presented for the first time. An expected decrease in the Al Knight shift at 70 kbar is observed, as well as an unexpected change in the local charge symmetry at the Al nucleus. The latter is not predicted by chemical structure analysis under high pressure.

  11. Design and testing of high sensitivity microreceiver coil apparatus for nuclear magnetic resonance and imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Cooper, R. L.; Ciobanu, L.; Pennington, C. H.

    2001-04-01

    We report the design and testing of a nuclear magnetic resonance (NMR) microcoil receiver apparatus, employing solenoidal microreceiver coils of dimensions of tens to hundreds of microns, using applied field of 9 T (proton resonance frequency 383 MHz). For the smallest receiver coils we attain sensitivity sufficient to observe proton NMR with signal to noise (S/N) one in a single scan applied to a ˜10 μm3 (10 fl) water sample, containing 7×1011 total proton spins. We also test the dependence of the S/N on important coil parameters, including coil composition and resistivity, turn spacing, and lead lengths.

  12. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  13. Determination of alkylbenzenesulfonate surfactants in groundwater using macroreticular resins and carbon-13 nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Willoughby, T.; Barber, L.B.; Thorn, K.A.

    1987-01-01

    Alkylbenzenesulfonate surfactants were determined in groundwater at concentrations as low as 0.3 mg/L. The method uses XAD-8 resin for concentration, followed by elution with methanol, separation of anionic and nonionic surfactants by anion exchange, quantitation by titration, and identification by 13C nuclear magnetic resonance spectrometry. Laboratory standards and field samples containing straight-chain and branched-chain alkylbenzenesulfonates, sodium dodecyl sulfate, and alkylbenzene ethoxylates were studied. The XAD-8 extraction of surfactants from groundwater was completed in the field, which simplified sample preservation and reduced the cost of transporting samples.

  14. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.

  15. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    SciTech Connect

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  16. Recent advances in computational methods for nuclear magnetic resonance data processing.

    PubMed

    Gao, Xin

    2013-02-01

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  17. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  18. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  19. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    SciTech Connect

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-04-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT.

  20. Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He.

    PubMed

    Rudziński, Adam; Puchalski, Mariusz; Pachucki, Krzysztof

    2009-06-28

    The magnetic shielding sigma of (3)He is studied. The complete relativistic corrections of order O(alpha(2)), leading QED corrections of order O(alpha(3) ln alpha), and finite nuclear mass effects of order O(m/m(N)) are calculated with high numerical precision. The resulting theoretical predictions for sigma = 59.967 43(10)x10(-6) are the most accurate to date among all elements and support the use of (3)He as a NMR standard.

  1. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-08-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg-1 (134Cs and 137Cs at 509 Bq kg-1 and 1,230 Bq kg-1, respectively) and 114,000 Bq kg-1 (134Cs and 137Cs at 38,700 Bq kg-1 and 75,300 Bq kg-1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

  2. Sub-nanoliter nuclear magnetic resonance coils fabricated with multilayer soft lithography

    NASA Astrophysics Data System (ADS)

    Lam, Matthew H. C.; Homenuke, Mark A.; Michal, Carl A.; Hansen, Carl L.

    2009-09-01

    We describe the fabrication and characterization of sub-nanoliter volume nuclear magnetic resonance (NMR) transceiver coils that are easily amenable to integration within PDMS-based microfluidics. NMR coils were constructed by the injection of liquid metal into solenoidal cavities created around a microchannel using consecutive replica molding and bonding of PDMS layers. This construction technique permits the integration of NMR coils with solenoidal, toroidal or other three-dimensional geometries within highly integrated microfluidic systems and are one step toward NMR-based chemical screening and analysis on chip. The current proof-of-principle implementation displays limited sensitivity and resolution due to the conductivity and magnetic susceptibilities of the construction materials. However, NMR measurements and finite-element simulations made with the current device geometry indicate that optimization of these materials will allow for the collection of spectra from sub-millimolar concentration samples in less than 1 nL of solution.

  3. Effects of Barrier-Induced Nuclear Spin Magnetization Inhomogeneities on Diffusion-Attenuated MR Signal

    PubMed Central

    Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.

    2007-01-01

    The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959

  4. Optically Pumped Nuclear Magnetic Resonance near Landau level filling ν = 1/3

    NASA Astrophysics Data System (ADS)

    Khandelwal, P.; Kuzma, N. N.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level filling ν = 1/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will compare these results to the data obtained near ν = 1 and ν = 2/3.

  5. Nuclear magnetic resonance in cancer, XII: Application of NMR malignancy index to human lung tumours.

    PubMed Central

    Goldsmith, M.; Koutcher, J. A.; Damadian, R.

    1977-01-01

    Sixty specimens of human lung tissue from 52 individuals were inspected at 22.5 MHz by proton magnetic resonance techniques. The purpose of the study was to evaluate the diagnostic capabilities of the nuclear magnetic resonance (NMR) technique for the diagnosis of malignancy. The combination of two NMR parameters (spin-lattice (T1) and spin-spin (T2) relaxation times) into a malignancy index yielded 3 cases of overlap between the two populations of tissue. The mean and standard deviations obtained were 1.966 +/- 0.262 for normal tissue, and 2.925 +/- 0.864 for malignant specimens. In addition, analysis of the electrolyte and water content of the tissues confirm that factors other than specimen water content influence the relaxation time. PMID:911662

  6. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    2015-03-01

    A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.

  7. First Experimental Measurement of the {sup 18}O(p,{alpha}){sup 15}N Reaction at Astrophysical Energies

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-11-24

    The {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O,{alpha}{sup 15}N)n and {sup 2}H({sup 17}O,{alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  8. The use and promise of nuclear magnetic resonance imaging in epilepsy.

    PubMed

    Oldendorf, W H

    1984-01-01

    The revolutionary influence of X-ray computerized tomography (CT) on neurodiagnosis will be considerably extended by a newer imaging probe using magnetic fields. This form of imaging uses nuclear magnetic resonance (NMR) as the probe-tissue interaction to make many regional measurements of tissue in a short time, thus allowing an image to be computer-reconstructed. The nuclei of about 100 nuclides have significant magnetic properties, behaving like small permanent bar magnets. The most interesting of these in brain tissue are ordinary hydrogen, sodium, and phosphorus. Placed in a strong magnetic field, they partially align themselves with the field. They can then absorb energy which will subsequently be reradiated. Since the resonant frequency of each nucleus is proportional to the magnetic field in which it finds itself, producing fields which change predictably in strength with position, it becomes possible to localize the activated nuclei. Images of hydrogen density and relaxation times can be made and offer considerable tissue characterization. Bone is nearly invisible and considerable gray-white matter contrast is seen. Factors altering water-binding in tissues affect the image. Malignant tissue usually is seen in contrast to adjacent healthy tissue. Movement of blood is visible. By measuring energy-rich phosphorus, energy stores can be determined. There is no tissue ionization, no injected contrast materials are needed, and there are no radioactive materials involved. NMR scanners probably will replace CT within the next decade for most brain scanning purposes and will offer considerably greater tissue characterization which surely will influence studies of human epilepsy.

  9. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  10. Two lanthanide-hydroxo clusters with different nuclearity: Synthesis, structures, luminescent and magnetic properties

    NASA Astrophysics Data System (ADS)

    Li, Xi-Li; Zhu, Cancan; Zhang, Xue-Li; Hu, Ming; Wang, Ai-Ling; Xiao, Hong-Ping

    2017-01-01

    Under the identical reaction conditions, two new TbIII and SmIII-hydroxo clusters with different nuclearity have been prepared and characterized by X-ray crystallography, spectroscopic methods and magnetic measurements. Solid-state structure analyses reveal that the TbIII cluster shows a pentanuclear square pyramidal shape of the composition [Tb5(μ3-OH)4(μ4-OH)(dbm)10]·2H2O (1, dbm- = dibenzoylmethanate) with the dbm ligands presenting two types of coordination modes [η2-and (μ-O)-η2-]. The SmIII species presents a tetranuclear parallelogram structure formulated as [Sm4(μ3-OH)2(dbm)10]·12H2O (2), and three types of coordination modes [η2-, (μ-O)-η2- and (μ-O)2-η2-] for dbm ligands are observed. The measurements of magnetic properties indicate that the direct-current (dc) magnetic behaviors of two clusters mainly result from the thermal depopulation of the Stark sublevels of the TbIII and SmIII ions, respectively. Meanwhile, alternating current (ac) magnetic susceptibility of 1 is also assessed. Investigations on luminescence properties show that 2 displays characteristic emission of the SmIII ion in visible range, while 1 does not exhibit any detectable emission. The interpretations of different emission behaviors for 1 and 2 are also presented in detail.

  11. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation

    NASA Astrophysics Data System (ADS)

    Tomáš, I.; Vértesy, G.; Gillemot, F.; Székely, R.

    2013-01-01

    Inspection of neutron-irradiation-generated degradation of nuclear reactor pressure vessel steel (RPVS) is a very important task. In ferromagnetic materials, such as RPVS, the structural degradation is connected with a change of their magnetic properties. In this work, applicability of a novel magnetic nondestructive method (Magnetic Adaptive Testing, MAT), based on systematic measurement and evaluation of minor magnetic hysteresis loops, is shown for inspection of neutron irradiation embrittlement in RPVS. Three series of samples, made of JRQ, 15CH2MFA and 10ChMFT type steels were measured by MAT. The samples were irradiated by E > 1 MeV energy neutrons with total neutron fluence of 1.58 × 1019-11.9 × 1019 n/cm2. Regular correlation was found between the optimally chosen MAT degradation functions and the neutron fluence in all three types of the materials. Shift of the ductile-brittle transition temperature, ΔDBTT, independently determined as a function of the neutron fluence for the 15CH2MFA material, was also evaluated. A sensitive, linear correlation was found between the ΔDBTT and values of the relevant MAT degradation function. Based on these results, MAT is shown to be a promising (at least) complimentary tool of the destructive tests within the surveillance programs, which are presently used for inspection of neutron-irradiation-generated embrittlement of RPVS.

  12. Contributed review: nuclear magnetic resonance core analysis at 0.3 T.

    PubMed

    Mitchell, Jonathan; Fordham, Edmund J

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  13. Homometallic Dy(III) Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism.

    PubMed

    Biswas, Sourav; Das, Sourav; Acharya, Joydev; Kumar, Vierandra; van Leusen, Jan; Kögerler, Paul; Herrera, Juan Manuel; Colacio, Enrique; Chandrasekhar, Vadapalli

    2017-04-11

    The synthesis, structure, and magnetic properties of four Dy(III) coordination compounds isolated as [Dy2 (LH2 )2 (μ2 -η(1) :η(1) -Piv)]Cl⋅2 MeOH⋅H2 O (1), [Dy4 (LH)2 (μ3 -OH)2 (Piv)4 (MeOH)2 ]⋅4 MeOH⋅2 H2 O (2), [Dy6 (LH2 )3 (tfa)3 (O3 PtBu)(Cl)3 ]Cl4 ⋅15.5 H2 O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21 (L)7 (LH)7 (tfa)7 ]Cl7 ⋅15 H2 O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3 PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Å and a rare pentagonal-bipyramidal Dy(3+) environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy(3+) ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).

  14. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    NASA Astrophysics Data System (ADS)

    Yeninas, Steven Lee

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials. The first technique is a tunnel-diode resonator (TDR) which detects bulk changes in the dynamic susceptibility, chi = dM/dH. The capability of TDR to operate at low temperatures (less than 100 mK) and high fields (up to 65 T in pulsed fields) was critical for investigations of the antiferromagnetically correlated magnetic molecules Cr12Cu2 and Cr12 Ln4 (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er, Yb), and the superconductor SrFe2(As1--xPx) 2 (x = 0.35). Investigations of Cr12Cu 2 and Cr12Ln4 demonstrates the first implementation of TDR to experimentally investigate the lowlying energy spectra of magnetic molecules in pulsed magnetic fields. Zeeman splitting of the quantum spin states results in transitions between field-dependent ground state energy levels observed as peaks in dM/dH at 600 mK, and demonstrate good agreement with theoretical calculations using a isotropic Heisenberg spin Hamiltonian. Increasing temperature to 2.5 K, TDR reveals a rich spectrum of frequency-dependent level crossings from thermally populated excited states which cannot be observed by conventional static magnetometry techniques. The last study presented uses TDR in pulsed fields to determine the temperature-dependent upper-critical field Hc2 to investigate the effects of columnar defects arising from heavy ion irradiation of SrFe2(As 1--xPx)2. Results suggest irradiation uniformly suppresses Tc and Hc2, and does not introduce additional features on H c2(T) and the shapes of the anisotropic Hc2 curves indicates a nodal superconducting gap. The second technique is nuclear magnetic resonance (NMR) which yields site specific magnetic and electronic information arising from hyperfine interactions for select magnetic nuclei. NMR spectra and nuclear spin-lattice relaxation measurements are reported

  15. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  16. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.

  17. Citrate and Sugar Cofermentation in Leuconostoc oenos, a (sup13)C Nuclear Magnetic Resonance Study

    PubMed Central

    Ramos, A.; Santos, H.

    1996-01-01

    (sup13)C nuclear magnetic resonance spectroscopy was used to investigate citrate-glucose cometabolism in nongrowing cell suspensions of the wine lactic acid bacterium Leuconostoc oenos. The use of isotopically enriched substrates allowed us to identify and quantify in the end products the carbon atoms derived from each of the substrates supplied; furthermore, it was possible to differentiate between products derived from the metabolism of endogenous carbon reserves and those derived from external substrates. Citrate-sugar cometabolism was also monitored in dilute cell suspensions for comparison with the nuclear magnetic resonance results. A clear metabolic shift of the end products from glucose metabolism was observed when citrate was provided along with glucose: ethanol was replaced by acetate, and 2,3-butanediol was produced. Reciprocally, the production of lactate and 2,3-butanediol from citrate was increased in the presence of glucose. When citrate was cometabolized with glucose, a 10-fold reduction in the intracellular concentration of glucose-6-phosphate was observed, a result in line with the observed citrate-induced stimulation of glucose consumption. The presence of citrate provided additional pathways for NADP(sup+) regeneration and allowed the diversion of sugar carbon to reactions in which ATP was synthesized. The increased growth rates and maximal biomass yields of L. oenos growing on citrate-glucose mixtures resulted from increased ATP synthesis both by substrate-level phosphorylation and by a chemiosmotic mechanism. PMID:16535363

  18. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots.

    PubMed

    Tycko, Robert

    2014-07-01

    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5K over a temperature range that extends from approximately 50K (-223°C) to well above 310K (37°C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance.

  19. Theory of Stochastic Dipolar Recoupling in Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2008-01-01

    Dipolar recoupling techniques in solid state nuclear magnetic resonance (NMR) consist of radio-frequency (rf) pulse sequences applied in synchrony with magic-angle spinning (MAS) that create non-zero average magnetic dipole-dipole couplings under MAS. Stochastic dipolar recoupling (SDR) is a variant in which randomly chosen rf carrier frequency offsets are introduced to cause random phase modulations of individual pairwise couplings in the dipolar spin Hamiltonian. Several aspects of SDR are investigated through analytical theory and numerical simulations: (1) An analytical expression for the evolution of nuclear spin polarization under SDR in a two-spin system is derived and verified through simulations, which show a continuous evolution from coherent, oscillatory polarization exchange to incoherent, exponential approach to equilibrium as the range of random carrier offsets (controlled by a parameter fmax) increases; (2) In a many-spin system, polarization transfers under SDR are shown to be described accurately by a rate matrix in the limit of large fmax, with pairwise transfer rates that are proportional to the inverse sixth power of pairwise internuclear distances; (3) Quantum mechanical interferences among non-commuting pairwise dipole-dipole couplings, which are a complicating factor in solid state NMR studies of molecular structures by traditional dipolar recoupling methods, are shown to be absent from SDR data in the limit of large fmax, provided that coupled nuclei have distinct NMR chemical shifts. PMID:18085769

  20. Nuclear Magnetic Resonance Project at the Medical University of South Carolina

    SciTech Connect

    Lacy, Eric R.

    2008-04-25

    Department of Energy funds were used to support the development of a Center for Marine Structural Biology at the Marine Resources Center at Ft. Johnson in Charleston, South Carolina. The Ft. Johnson site is home to five institutions in a unique state/federal/academic partnership whose member institutions include the National Ocean Service (NOS), the National Institute of Standards and Technology (NIST), the Medical University of South Carolina (MUSC), the SC Department of Natural Resources, and the College of Charleston. The Center for Marine Structural Biology sits adjacent to the newly completed Hollings Marine Laboratory and houses a 700 and 800 MHz nuclear magnetic resource instruments. The completed center is operational and meets it goal to provide state-of-the-art nuclear magnetic resonance capabilities to resolve the molecular structures of compounds that have direct relevance to human health, including marine-derived biotoxins that are tested against cancer cell lines through collaborative studies with researchers at the Hollings Cancer Center at MUSC. Funds from the DOE assisted, in part, with the purchase of NMR probes and ancillary equipment for the 800 MHz NMR instrument. In addition, developmental funds was used to support the visit of an Scientific Advisory Board and for the NMR Planning Team to visit currently operational high field NMR facilities to guide their choice of instrumentation and design of the building.

  1. [Value of the nuclear magnetic cholangio resonance in the study of the patient with jaundice].

    PubMed

    Gramática, L; Struni, M; Carranza, D; Verasay, G; Taborda, B; Caballero, F; Gramática, L

    1999-01-01

    This report analyse the results about forty three (43) patients, thirty six (36) of which showed an extrahepatic obstructive biliary Syndrome was made evident by ultrasonography, five (5) with a cholecistolithiasis and doubtful history of jaundice were evaluated to carry out a video-surgery procedure and two (2) patients whom hepatic-yeyunostomy had been practiced, a control of anastomosis in postoperative period was required. Nuclear Magnetic Resonance and Operative Cholangiography findings were correlated and afterward with the anatomopathological studies when they arrived. In all cases the Nuclear Magnetic Cholangio Resonance (NMCR) let us prove the diagnosis of extrahepatic biliary obstruction determining with precision furthermore the topographical site of the lesion. Respecting the aetiology of obstruction, NMCR was accurate in 34 out of 36 cases (94.4%). In conclusion Cholangio-Resonance is an excellent diagnostic method to evaluate biliary ductal system including anatomic changes. However, there are some limitations yet in order to determine the aetiology of lesions about extrahepatic biliary via extremes. We emphasize its features such as non-invasive, little operating dependent, and without morbimortality that become it as a method of choice to study the biliary via from a diagnostic viewpoint.

  2. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators.

    PubMed

    Koumoulis, Dimitrios; Morris, Gerald D; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D; Wang, Kang L; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2015-07-14

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive (8)Li(+) ions that can provide "one-dimensional imaging" in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the (8)Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials.

  3. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots

    PubMed Central

    Tycko, Robert

    2014-01-01

    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5 K over a temperature range that extends from approximately 50 K (−223° C) to well above 310 K (37° C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance. PMID:24859817

  4. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  5. MAGNETICALLY CONFINED INTERSTELLAR HOT PLASMA IN THE NUCLEAR BULGE OF OUR GALAXY

    SciTech Connect

    Nishiyama, Shogo; Kwon, Jungmi; Tamura, Motohide; Yasui, Kazuki; Nagata, Tetsuya; Yoshikawa, Tatsuhito; Uchiyama, Hideki; Schödel, Rainer; Hatano, Hirofumi; Sato, Shuji; Sugitani, Koji; Suenaga, Takuya

    2013-06-01

    The origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. In particular, the interpretation of the hot (kT ≈ 7 keV) component of the GCDX, characterized by the strong Fe 6.7 keV line emission, has been contentious. If the hot component originates from a truly diffuse interstellar plasma, not a collection of unresolved point sources, such plasma cannot be gravitationally bound, and its regeneration would require a huge amount of energy. Here, we show that the spatial distribution of the GCDX does not correlate with the number density distribution of an old stellar population traced by near-infrared light, strongly suggesting a significant contribution of the diffuse interstellar plasma. Contributions of the old stellar population to the GCDX are implied to be ∼50% and ∼20% in the nuclear stellar disk (NSD) and nuclear star cluster, respectively. For the NSD, a scale height of 0.°32 ± 0.°02 is obtained for the first time from the stellar number density profiles. We also show the results of the extended near-infrared polarimetric observations in the central 3° × 2° region of our Galaxy, and confirm that the GCDX region is permeated by a large scale, toroidal magnetic field (MF) as previously claimed. Together with observed MF strengths close to energy equipartition, the hot plasma could be magnetically confined, reducing the amount of energy required to sustain it.

  6. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    NASA Astrophysics Data System (ADS)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  7. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation

    SciTech Connect

    Kutzelnigg, Werner; Liu Wenjian

    2009-07-28

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  8. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology.

    PubMed

    Pepe, Alessia; Pizzino, Fausto; Gargiulo, Paola; Perrone-Filardi, Pasquale; Cadeddu, Christian; Mele, Donato; Monte, Ines; Novo, Giuseppina; Zito, Concetta; Di Bella, Gianluca

    2016-05-01

    Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies.

  9. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems.

    PubMed

    Vähäkangas, Jarkko; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2013-04-07

    Nuclear magnetic resonance (NMR) data for graphenes are mainly lacking in the literature. We provide quantitative first-principles quantum-chemical calculations of NMR chemical shifts and shielding anisotropies as well as spin-spin couplings and anisotropies for increasingly large, hexagon-like fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Due to the rapid convergence of finite molecular model results, the parameter values in the innermost region of large flakes of these materials approach the bulk limit. For nuclear shieldings in the finite band-gap graphane and fluorographene systems, as well as deuterium quadrupole couplings in graphane, these limiting values are verified by periodic gauge-including projector augmented wave (PAW) calculations at corresponding theoretical levels. The periodic PAW wave method was used for all systems to obtain periodic structures. A quantum-chemical cluster approach was used with novel completeness-optimised basis sets to calculate both the shielding and coupling tensors for planar carbon nanoflakes of increasing size. The geometry of the innermost part of the nanoflakes as well as the nuclear shieldings converge toward the periodic counterparts. The cluster method allows the calculation of the spin-spin coupling tensors of all the graphenes and--in contrast to the periodic approach--all the NMR properties for the zero-band-gap graphene itself. The obtained parameters provide a plausible starting point for experimental NMR investigations of graphenes.

  10. Nuclear, optical, and magnetic resonance imaging in a mouse mammary window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Gmitro, Arthur F.

    2014-09-01

    An orthotopic mouse mammary window chamber (MWC) model has been developed for multimodal in-vivo functional and anatomical imaging of breast cancer xenografts. Capabilities to image numerous physiological aspects of the same tumor microenvironment over time has important applications such as in experiments studying the efficacies of therapeutic interventions, improvement of cancer detection and investigating basic cancer biology. The compatibility of this MWC model with optical, nuclear and magnetic resonance imaging (MRI) makes it possible to perform a multitude of studies ranging from cellular imaging to whole body imaging. Thus, the MWC represents a powerful tool for breast cancer research. Here, two imaging applications are highlighted, namely the nuclear imaging of glycolytic metabolism with 18FFDG and MRI of tissue perfusion. Nuclear imaging is performed with the use of a 3μm thin phosphor scintillator placed directly in contact with the tissue and visible light from the scintillation is directly detected in a low noise, light tight imaging system. Tissue perfusion is imaged either qualitatively with a dynamic contrast enhancement (DCE) MRI technique or quantitatively with an arterial spin labeling flow-sensitive alternating inversion recovery-rapid acquisition with relaxation enhancement (FAIR-RARE) technique.

  11. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  12. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  13. Nuclear magnetic resonance as a method of fluid mobility detection in porous media

    NASA Astrophysics Data System (ADS)

    Zhakov, Sergey; Loskutov, Valentin

    2016-04-01

    The nuclear magnetic resonance (NMR) method is widely used for studying the structure of porous media and processes taking place in such media. This method permits to determine porosity and pore-size distributions, which have direct practical application in various areas. The problem of porous media permeability determination is connected directly with extraction of hydrocarbons from pays and water from aquiferous layers. But it is impossible to measure directly amount of fluid past through the fixes cross section for determination of bed permeability. So various indirect approaches are used to find correlation of permeability value with porosity and pore size distribution which can be determined directly using NMR relaxometry. In contrast to porosity, permeability is dynamic characteristic of porous media so it may be measured correctly only in conditions of moving fluid. Natural porous medium has branched pore structure, so a chaotic component of fluid velocity will occur even for constant mean filtration fluid velocity. In the presence of magnetic field gradient this chaotic fluid velocity will produce additional spin dephasing and decrease of relaxation time [1]. Direct detecting of fluid movement in porous core samples through the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been demonstrated and theoretical model and analysis was given. Experiments were made on a set of sandstone samples (Berea, Bentheimer, Castle Gate, Leopard) and with synthetic high-perm samples made of abrasive material. The experiments show that the NMR spin echo measurements permit to fix mean fluid velocity mm/sec. The experiments and the theoretical model show that for low fluid velocities the mean relaxation rate is proportional to fluid velocity . The results may serve as the basis for determination of mobility of liquids in porous media and permeability. 1. P.T.Callaghan. Principles of Nuclear Magnetic Resonance Microscopy. 1991, Oxford University Press.

  14. Application of rate equations to ELDOR and saturation recovery experiments on 14N: 15N spin-label pairs

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Hyde, James S.

    Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.

  15. Measurements for spin inversion and noninversion in successive decays via nuclear magnetic resonance on oriented nuclei

    SciTech Connect

    Ohya, S.; Ohtsubo, T.; Komatsuzaki, K.; Cho, D.J.; Muto, S.

    1996-09-01

    Nuclear magnetic resonance on oriented nuclei (NMR-ON) measurements were performed on the successive decays of {sup 89}Zr-{sup 89}Y{sup {ital m}} and {sup 191}Os-{sup 191}Ir{sup {ital m}} in Fe. The NMR-ON spectra of {sup 89}Zr{ital Fe} and {sup 191}Os{ital Fe} were obtained by detecting {gamma} rays from the decay of the isomers, {sup 89}Y{sup m} and {sup 191}Ir{sup m}, respectively. For {sup 89}Zr{ital Fe}, the anisotropy of the {gamma} ray increased at the resonance. On the other hand, for {sup 191}Os{ital Fe} the anisotropy of the {gamma} ray decreased at the resonance. These phenomena were explained using the spin inversion and spin noninversion processes including the lifetimes of the isomers and spin lattice relaxation times. NMR-ON measurements for such spin inversion and noninversion processes were reported. The resonance spectra were also observed by detecting {beta} rays from {sup 89}Zr and {sup 191}Os. In these experiments the magnetic moments of {sup 89}Zr and {sup 191}Os were determined to be {minus}1.08 (2) {mu}{sub N} and 0.962 (28) {mu}{sub N}, respectively. The signs of the magnetic moments of {sup 89}Y{sup m} and {sup 191}Ir{sup m} were also determined to be positive. {copyright} {ital 1996 The American Physical Society.}

  16. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  17. Nuclear magnetic resonance signal dynamics of liquids in the presence of distant dipolar fields, revisited.

    PubMed

    Barros, Wilson; Gochberg, Daniel F; Gore, John C

    2009-05-07

    The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch-Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch-Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations.

  18. Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects

    SciTech Connect

    Budinger, T.F.

    1981-12-01

    Three sources of harmful health effects from nuclear magnetic resonance (NMR) in vivo techniques have been examined with the following conclusions: (a) Static magnetic fields. Harmful effects on humans and reproducible cellular, biochemical, or genetic effects have not yet been observed at fields less than 2 Tesla (20,000 gauss). (b) Changing magnetic fields. The threshold for effects of induced currents is above that produced from <1 to 100 Hz sinusoidal field changes with a maximum field of 5 mT (50 gauss). Waveform, repetition rate, maximum B field, and duration of exposure are parameters requiring further study, (c) Radiofrequency (RF) heating. A practical upper level for absorbed power is 4 W/kg in medically important studies of short duration (less than 10 min). For long-term studies, 1.5 W/kg is a reasonable level in low humidity environments. The power absorbed by the subject can be estimated by measuring the RF coil Q before and after the subject is placed in the NMR instrument. Large metal objects will absorb power in proportion to the conductivity of the device of prosthesis.

  19. High field nuclear magnetic resonance in transition metal substituted BaFe2As2

    NASA Astrophysics Data System (ADS)

    Garitezi, T. M.; Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Reyes, A. P.; Kuhns, P. L.; Pagliuso, P. G.; Urbano, R. R.

    2014-05-01

    We report high field 75As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe2As2 single crystals displaying same structural/magnetic transition T0≃128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency νQ≃2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe2As2 compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe-As tetrahedra, must be the most probable tuning parameter to determine T0 in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T0 suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe2As2 [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  20. Diamond nitrogen vacancy electronic and nuclear spin-state anti-crossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-05-01

    We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  1. Nuclear magnetic resonance with dc SQUID (Super-conducting QUantum Interference Device) preamplifiers

    SciTech Connect

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by /sup 35/Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10/sup 16/ nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing /sup 35/Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in /sup 119/Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10/sup 18/ nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in /sup 195/Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs.

  2. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  3. C++ OPPS, a new software for the interpretation of protein dynamics from nuclear magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Zerbetto, Mirco; Polimeno, Antonino; Meirovitch, Eva

    Nuclear magnetic resonance (NMR) is a powerful tool for elucidating protein dynamics because of the possibility to interpret nuclear spin relaxation properties in terms of microdynamic parameters. Magnetic relaxation times T1, T2, and NOE depend on dipolar and quadrupolar interactions, on chemical shift anisotropy and cross-correlation effects. Within the framework of given motional model, it is possible to express the NMR relaxation times as functions of spectral densities (Abragam, The Principles of Nuclear Magnetism; Oxford University Press: Clarendon, London, 1961), obtaining the connection between macroscopic observables and microscopic properties. In this context, recently Meirovitch et al. (Shapiro et al., Biochemistry 2002, 41, 6271, Meirovitch et al., J Phys Chem B 2006, 110, 20615, Meirovitch et al., J Phys Chem B 2007, 111, 12865) applied the dynamical model introduced by Polimeno and Freed (Polimeno and Freed, Adv Chem Phys 1993, 83, 89, Polimeno and Freed, J Phys Chem 1995, 99, 10995), known as the slowly relaxing local structure (SRLS) model, to the study of NMR data. The program C++OPPS (http://www.chimica.unipd.it/licc/), developed in our laboratory, implements the SRLS model in an user-friendly way with a graphical user interface (GUI), introduced to simplify the work to users who do not feel at ease with the complex mathematics of the model and the difficulties of command line based programs. The program is an evolution of the old FORTRAN 77 implementation COPPS (COupled Protein Probe Smoluchowski) and presents a number of new features: the presence of an easy to use GUI written in JAVA; high calculation performance thanks to features of C++ language, employment of BLAS (basic linear algebra subprograms) library (Blackford et al., Trans Math Soft 2002, 28, 135) in handling matrix-vector operations and parallelization of the code under the MPI (message passing interface) paradigm (Gropp et al., Parallel Comput 1996, 22, 789, Gropp and Lusk, User

  4. Nuclear magnetic resonance parameters of atomic xenon dissolved in Gay-Berne model liquid crystal.

    PubMed

    Lintuvuori, Juho; Straka, Michal; Vaara, Juha

    2007-03-01

    We present constant-pressure Monte Carlo simulations of nuclear magnetic resonance (NMR) spectral parameters, nuclear magnetic shielding relative to the free atom as well as nuclear quadrupole coupling, for atomic xenon dissolved in a model thermotropic liquid crystal. The solvent is described by Gay-Berne (GB) molecules with parametrization kappa=4.4, kappa{'}=20.0 , and mu=nu=1 . The reduced pressure of P{*}=2.0 is used. Previous simulations of a pure GB system with this parametrization have shown that upon lowering the temperature, the model exhibits isotropic, nematic, smectic- A , and smectic- B /molecular crystal phases. We introduce spherical xenon solutes and adjust the energy and length scales of the GB-Xe interaction to those of the GB-GB interaction. This is done through first principles quantum chemical calculations carried out for a dimer of model mesogens as well as the mesogen-xenon complex. We preparametrize quantum chemically the Xe nuclear shielding and quadrupole coupling tensors when interacting with the model mesogen, and use the parametrization in a pairwise additive fashion in the analysis of the simulation. We present the temperature evolution of {129/131}Xe shielding and 131Xe quadrupole coupling in the different phases of the GB model. From the simulations, separate isotropic and anisotropic contributions to the experimentally available total shielding can be obtained. At the experimentally relevant concentration, the presence of the xenon atoms does not significantly affect the phase behavior as compared to the pure GB model. The simulations reproduce many of the characteristic experimental features of Xe NMR in real thermotropic LCs: Discontinuity in the value or trends of the shielding and quadrupole coupling at the nematic-isotropic and smectic-A-nematic phase transitions, nonlinear shift evolution in the nematic phase reflecting the behavior of the orientational order parameter, and decreasing shift in the smectic-A phase. The last

  5. Distribution of 15N Among Plant Parts of Nodulating and Nonnodulating Isolines of Soybeans 1

    PubMed Central

    Shearer, Georgia; Kohl, Daniel H.; Harper, James E.

    1980-01-01

    Differences among plant parts in the natural abundance of 15N are of interest from the point of view of developing a sampling strategy for using 15N measurements to estimate the contribution of symbiotically fixed N to N2 fixing plants, and because they reflect isotopic fractionation associated with degradation, transport, and resynthesis of N-bearing molecules. This paper reports such differences in nodulating and nonnodulating isolines of soybeans (Glycine max [L] (Merrill, variety Harosoy)) grown under several different conditions. Nodules were strikingly enriched in 15N compared to other plant parts (by an average of 8.3‰ excess 15N), and the enrichment increased with time during the growing season. 15N was much more uniformly distributed among other plant parts. Although there were significant differences among other plant parts, the maximum deviation of the 15N abundance of any plant part from that of the entire plant was about 2‰ 15N excess. The 15N abundance of the seed N was most representative of the whole plant. There were significant differences between isolines in the distribution of 15N. The distribution of 15N within plants also varied with experimental conditions. The implications of these results for estimation of N2 fixation from measurements of the natural abundance of 15N are discussed. PMID:16661393

  6. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  7. Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging.

    PubMed

    Wagenaar, Douglas J; Kapusta, Maciej; Li, Junqiang; Patt, Bradley E

    2006-08-01

    Multi-modality combinations of SPECT/CT and PET/CT have proven to be highly successful in the clinic and small animal SPECT/CT and PET/CT are becoming the norm in the research and drug development setting. However, the use of ionizing radiation from a high-resolution CT scanner is undesirable in any setting and particularly in small animal imaging (SAI), in laboratory experiments where it can result in radiation doses of sufficient magnitude that the experimental results can be influenced by the organism's response to radiation. The alternative use of magnetic resonance (MR) would offer a high-resolution, non-ionizing method for anatomical imaging of laboratory animals. MR brings considerably more than its 3D anatomical capability, especially regarding the imaging of laboratory animals. Dynamic MR imaging techniques can facilitate studies of perfusion, oxygenation, and diffusion amongst others. Further, MR spectroscopy can provide images that can be related to the concentration of endogenous molecules in vivo. MR imaging of injected contrast agents extends MR into the domain of molecular imaging. In combination with nuclear medicine (NM) SPECT and PET modalities in small animal imaging, MR would facilitate studies of dynamic processes such as biodistribution, pharmacokinetics, and pharmacodynamics. However, the detectors for nearly all PET and SPECT systems are still based on vacuum tube technology, namely: photomultiplier tubes (PMT's) in which the signal is generated by transporting electrons over a substantial distance within an evacuated glass tube, making them inoperable in even small magnetic fields. Thus the combination of SPECT or PET with MR has not been practical until the recent availability of semiconductor detectors such as silicon avalanche photodiodes (APD's) for PET and CdZnTe (CZT) detectors for SPECT coupled with the availability of high-density low noise ASIC electronics to read out the semiconductor detectors. The strong advantage of these

  8. Search for d3/2 single particle strength in 15N in Unbound Levels

    NASA Astrophysics Data System (ADS)

    Mertin, C. E.; Caussyn, D. D.; Crisp, A. M.; Keeley, N.; Kemper, K. W.; Momotyuk, O.; Roeder, B. T.; Volya, A.

    2013-10-01

    The population of states in the nucleus 15N provides the opportunity to investigate both single particle and cluster structures in the 1p and 2s1d shells. Single, two, three and four particle transfer reactions selectively excite states in 15N thus providing a way to explore current nuclear structure models. Narrow structures are observed in the various transfer reactions up to at least 20 MeV in excitation well above the neutron (10.8 MeV) and proton (10.2 MeV) separation energies. In the present work new results for the reaction 14N(d,p) are presented that explore possible single particle strengths up to 18 MeV in excitation. The beam energies used in the present work were between 10.5 and 16 MeV. An early work with a beam energy of 8 MeV clearly populated strong sharp levels at 10.07 and 11.23 MeV and the present work confirms their existence. In addition, very weak broader levels are populated at 12.13 and 12.5 MeV but no other structures are found experimentally at higher excitation energies. The results of shell model calculations that include the 1p and 2s1d shells will be presented. The centroid energies for the 1d5/2 and 2s1/2 single particle strength have been obtained through comparison with FRESCO calculations. This work was supported by the NSF, DOE and Florida State University.

  9. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    PubMed

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  10. Nuclear magnetic resonance spectroscopic analysis of homoallylic and bis homoallylic substituted methyl fatty ester derivatives.

    PubMed

    Jie, M S; Cheng, K L

    1995-02-01

    Using a combination of selective irradiation 1H nuclear magnetic resonance experiments and two-dimensional 1H-13C correlation spectroscopy spectral analysis of homoallylic and bis homoallylic substituted (azido, acetoxy, chloro and oxo) fatty ester derivatives, the carbon shifts of the ethylenic carbon atoms were determined. In the case of methyl 12-azido-9Z-octadecenoate (homoallylic), the carbon chemical shifts of the ethylenic C-9 and C-10 carbon nuclei are 133.092 and 124.596 ppm, respectively. In methyl 9-azido-12Z-octadecenoate (bis homoallylic), the carbon chemical shift of the ethylenic C-12 and C-13 carbon nuclei are 128.118 and 131.243 ppm, respectively.

  11. Nuclear magnetic resonance studies of xenon clusters in zeolite NaA

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Jameson, A. Keith; Gerald, Rex, II; de Dios, Angel C.

    1992-02-01

    We have observed the equilibrium distribution of Xe atoms trapped in the alpha cages of zeolite NaA at 300 and at 360 K for low to high xenon loadings. The experimental distributions obtained by nuclear magnetic resonance (NMR) spectroscopy differ from two previously proposed statistical distributions. The experimental deviations from these statistical models can be explained by the attractive Xe-Xe interactions which favor clustering at low to medium loading, and the higher energies associated with the overcrowded cage disfavoring clusters of eight Xe atoms at high loadings. The temperature dependence of the 129Xe NMR chemical shift of each cluster has been measured in the range 188-421 K, except that for Xe8, which was determined only up to 300 K. The observed shifts and their temperature dependence are interpreted by using the results of ab initio calculations of the intermolecular shielding function in the 39Ar system as a model for the 129Xe system.

  12. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  13. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    SciTech Connect

    De Paul, Susan M.

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  14. Nuclear magnetic resonance studies of intracellular ions in perfused from heart

    SciTech Connect

    Burnstein, D.; Fossel, E.T.

    1987-06-01

    Intracellular sodium, potassium, and lithium were observed in a perfused frog heart by nuclear magnetic resonance (NMR) spectroscopy. A perfusate buffer containing the shift reagent, dysprosium tripolyphosphate, was used in combination with mathematical filtering or presaturation of the extracellular resonance to separate the intra- and extracellular sodium NMR signals. Addition of 10 ..mu..M ouabain to the perfusate, perfusion with a zero potassium, low-calcium buffer, and replacement of 66% of the perfusate sodium with lithium resulted in changes in the intracellular sodium levels. An increase of 45% in the intracellular sodium was observed when changing the pacing rate from 0 to 60 beats/min (with proportional changes for intermediate pacing rates). The ratio of intracellular potassium to sodium concentration was determined to be 2.3 by NMR, indicating that a substantial amount of the intracellular potassium is undetectable with these NMR method. In addition, intracellular lithium was observed during perfusion with a lithium-containing perfusate.

  15. Tracking thermal degradation on passion fruit juice through Nuclear Magnetic Resonance and chemometrics.

    PubMed

    Soares, Marcia Valeria L; Alves Filho, Elenilson G; Silva, Lorena Mara A; Novotny, Etelvino Henrique; Canuto, Kirley Marques; Wurlitzer, Nedio Jair; Narain, Narendra; de Brito, Edy Sousa

    2017-03-15

    Thermal food processing mainly aims to control microorganism in order to extend its shelf life. However, it may induce chemical and nutritional changes in foodstuff. The Nuclear Magnetic Resonance (NMR) coupled to multivariate analysis was used to evaluate the effect of different thermal processing conditions (85 and 140°C for 4; 15; 30; and 60s) on the passion fruit juice using an Armfield pasteurizer. Through this approach it was possible to identify the changes in the juice composition. The temperature and the time lead to a hydrolysis of the sucrose to glucose and fructose. Additionally, juice submitted to 140°C for 60s results in the degradation of the sucrose and the formation of 5-(hydroxymethyl)-2-furfural (HMF). Despite no novel chemical marker has been identified, the (1)H NMR chemometrics approach may contribute in the choice of the temperature and time to be employed in the juice processing.

  16. Molecular Structure of Aggregated Amyloid-β: Insights from Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made on characterization of the molecular structures of Aβ aggregates. Full molecular structural models that are based primarily on data from solid state nuclear magnetic resonance measurements have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  17. Nuclear magnetic resonance (NMR) imaging of Arnold-Chiari type I malformation with hydromyelia

    SciTech Connect

    DeLaPaz, R.L.; Brady, T.J.; Buonanno, F.S.; New, P.F.; Kistler, J.P.; McGinnis, B.D.; Pykett, I.L.; Taveras, J.M.

    1983-02-01

    Saturation recovery nuclear magnetic resonance (NMR) images and metrizamide computed tomography (CT) scans were obtained in an adult patient with a clinical history suggestive of syringomyelia. Both NMR and CT studies showed low lying cerebellar tonsils. The CT study demonstrated central cavitation of the spinal cord from the midthoracic to midcervical levels but could not exclude an intramedullary soft tissue mass at the cervico-medullary junction. The NMR images in transverse, coronal, and sagittal planes demonstrated extension of an enlarged central spinal cord cerebrospinal fluid space to the cervico-medullary junction. This was felt to be strong evidence for exclusion of an intramedullary soft tissue mass and in favor of a diagnosis of Arnold-Chiari Type I malformation with hydromyelia. The noninvasive nature of spinal cord and cervico-medullary junction evaluation with NMR is emphasized.

  18. Nature versus nurture: Functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Richardson, C. J.; Gleason, Robert A.; Pellechia, Perry J.; Honomichl, Shawn

    2009-02-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts.

  19. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, P.; Buckingham, A. D.

    2016-11-01

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  20. The morphology of C–S–H: Lessons from {sup 1}H nuclear magnetic resonance relaxometry

    SciTech Connect

    Valori, A.; McDonald, P.J.; Scrivener, K.L.

    2013-07-15

    {sup 1}H nuclear magnetic resonance has been applied to cement pastes, and in particular calcium silicate hydrate (C–S–H), for the characterisation of porosity and pore water interactions for over three decades. However, there is now renewed interest in the method, given that it has been shown to be non-invasive, non-destructive and fully quantitative. It is possible to make measurements of pore size distribution, specific surface area, C–S–H density and water fraction and water dynamics over 6 orders of magnitude from nano- to milli-seconds. This information comes in easily applied experiments that are increasingly well understood, on widely available equipment. This contribution describes the basic experiments for a cement audience new to the field and reviews three decades of work. It concludes with a summary of the current state of understanding of cement pore morphology from the perspective of {sup 1}H NMR.

  1. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  2. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-01-01

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  3. Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling.

    PubMed

    Garbacz, P; Buckingham, A D

    2016-11-28

    It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.

  4. Nuclear magnetic resonance imaging of the adrenal gland: a preliminary report

    SciTech Connect

    Moon, K.L. Jr.; Hricak, H.; Crooks, L.E.; Gooding, C.A.; Moss, A.A.; Engelstad, B.L.; Kaufman, L.

    1983-04-01

    Nuclear magnetic resonance (NMR) imaging characteristics of the normal and abnormal adrenal gland were evaluated and compared with findings on computed tomography (CT). Forty-two patients were examined: 36 had normal adrenal glands and 6 had adrenal disease (3 metastatic lesions, 1 pheochromocytoma, and 2 cortical hyperplasia). NMR clearly showed all 42 left adrenals (100%) and 36 right adrenals (86%). In some patients, it appeared to differentiate the adrenal cortex from the medulla. The ability of NMR to detect adrenal disease was similar to that of CT in 6 cases examined. CT demonstrated superior spatial resolution in most cases, but NMR provided superior soft-tissue contrast. Since NMR does not involve ionizing radiation and provides excellent soft-tissue differentiation without contrast material, it has advantages over CT and appears to be a promising modality for imaging of the adrenal gland.

  5. Evaluation Of Automated Low-Field Nuclear Magnetic Resonance (NMR) Relaxometry For Analysis Of Silicone Polymers

    SciTech Connect

    M. H. Wilson

    2009-10-02

    Screening studies and Design of Experiments (DoE) were performed to evaluate measurement variation of a new, non-destructive Nuclear Magnetic Resonance (NMR) test system designed to assess age-induced degradation of Outer Pressure Pads (OPP). The test method and results from 54,275 measurements are described. A reduction in measurement error was obtained after metal support struts were replaced with plastic support struts adjacent to the front position of the test chamber. However, remaining interference and a lack of detecting any age-related degradation prevent the use of the NMR system as a non-destructive surveillance test for OPPs. A cursory evaluation of the system with cellular silicone samples obtained more uniform results with increased error as measurements approached the sample’s edge.

  6. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review.

    PubMed

    Chalbot, Marie-Cecile G; Kavouras, Ilias G

    2014-08-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.

  7. NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions

    NASA Technical Reports Server (NTRS)

    Addad, J. P. C.

    1983-01-01

    The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.

  8. Nuclear magnetic resonance measurements of velocity distributions in an ultrasonically vibrated granular bed.

    PubMed

    Huntley, J M; Tarvaz, T; Mantle, M D; Sederman, A J; Gladden, L F; Sheikh, N A; Wildman, R D

    2014-05-13

    We report the results of nuclear magnetic resonance imaging experiments on granular beds of mustard grains fluidized by vertical vibration at ultrasonic frequencies. The variation of both granular temperature and packing fraction with height was measured within the three-dimensional cell for a range of vibration frequencies, amplitudes and numbers of grains. Small increases in vibration frequency were found--contrary to the predictions of classical 'hard-sphere' expressions for the energy flux through a vibrating boundary--to result in dramatic reductions in granular temperature. Numerical simulations of the grain-wall interactions, using experimentally determined Hertzian contact stiffness coefficients, showed that energy flux drops significantly as the vibration period approaches the grain-wall contact time. The experiments thus demonstrate the need for new models for 'soft-sphere' boundary conditions at ultrasonic frequencies.

  9. Nuclear magnetic resonance studies of pseudospin fluctuations in URu2Si2

    DOE PAGES

    Shirer, K. R.; Haraldsen, J. T.; Dioguardi, A. P.; ...

    2013-09-26

    Here, we report 29Si nuclear magnetic resonance measurements in single crystals and aligned powders of URu2Si2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition THO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime abovemore » a ground state with long-range order.« less

  10. Positive-intrinsic-negative diode-based duplexer for microcoil nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Pennington, C. H.

    2000-07-01

    Microcoil nuclear magnetic resonance (NMR), using receiver coils of diameters of order 100 μm, is increasingly employed to observe very small (˜0.3 nl) samples with high sensitivity. However, many experimental aspects of microcoil NMR differ greatly from conventional NMR. In particular, the duplexer is a device used to switch between the transmit and receive phases of the experiment. The conventional duplexer is a passive device employing crossed diodes, that switch automatically to transmit mode when high rf power is present. In microcoil NMR, however, the transmitter power is necessarily quite low, with voltages that do not greatly exceed characteristic diode voltage drops. Here we present the complete design and construction methods for a duplexer well suited to the special demands of microcoil NMR.

  11. [Study of the algorithm for inversion of low field nuclear magnetic resonance relaxation distribution].

    PubMed

    Chen, Shanshan; Wang, Hongzhi; Yang, Peiqiang; Zhang, Xuelong

    2014-06-01

    It is difficult to reflect the properties of samples from the signal directly collected by the low field nuclear magnetic resonance (NMR) analyzer. People must obtain the relationship between the relaxation time and the original signal amplitude of every relaxation component by inversion algorithm. Consequently, the technology of T2 spectrum inversion is crucial to the application of NMR data. This study optimized the regularization factor selection method and presented the regularization algorithm for inversion of low field NMR relaxation distribution, which is based on the regularization theory of ill-posed inverse problem. The results of numerical simulation experiments by Matlab7.0 showed that this method could effectively analyze and process the NMR relaxation data.

  12. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  13. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  14. Nuclear magnetic resonance in contemporary art: the case of "Moon Surface" by Turcato

    NASA Astrophysics Data System (ADS)

    Proietti, Noemi; Di Tullio, Valeria; Capitani, Donatella; Tomassini, Roberta; Guiso, Marcella

    2013-12-01

    Nuclear Magnetic Resonance (NMR) methodologies were applied to characterize the constitutive materials and the state of degradation of a contemporary painting. The investigation was mandatory to plan a suitable restoration. Noninvasive, portable NMR allowed the detection of degraded regions of the painting based on the measurement of longitudinal relaxation time. A few samples were investigated by high resolution solid state NMR and NMR in solution, which allowed us to identify the polyurethane constituting the artefact, to investigate the microstructure in detail, and to assess that the degradation process mostly affected the ethylene units used to cap the polypropylene oxide polymeric chain. As a matter of fact, a shortening of longitudinal relaxation time was accompanied by a degradation of ethylene units. The degradation of the inorganic loading was investigated by 27Al MAS, which evidenced the absence of penta-coordinated aluminum in degraded samples.

  15. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Broccio, M.; Corsaro, C.; Faraone, A.; Wanderlingh, U.; Liu, L.; Mou, C.-Y.; Chen, S. H.

    2006-04-01

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature TL=223±2K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1/D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time ⟨τT⟩, as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  16. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results.

    PubMed

    Mallamace, F; Broccio, M; Corsaro, C; Faraone, A; Wanderlingh, U; Liu, L; Mou, C-Y; Chen, S H

    2006-04-28

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature T(L)=223+/-2 K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280 K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time tau(T), as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  17. 13C Nuclear magnetic resonance studies to the binding of isocyanides to various hemoglobins and myoglobins.

    PubMed

    Dill, K; Satterlee, J D; Richards, J H

    1978-10-03

    Interactions between ethyl and isopropyl isocyanides and various hemoglobins and myoglobins have been studied by 13C nuclear magnetic resonance. The results indicate that the chemical shift of the bound isocyanide depends on the structure of the hemoglobin subunit or myoglobin. The resonances exhibited by isocyanides bound to myoglobin are sensitive to pH in contrast to the situation with rabbit and human hemoglobins. beta subunits of opossum, rabbit, and human hemoglobins show a significantly greater preferential affinity for CO relative to EIC than do alpha subunits which have allowed the assignment of resonances. Rabbit, human, and opossum hemoglobin subunits bind ethyl isocyanide without observable preferences and an excess of DPG does not appear to affect this random order of ligation. In contrast, an excess of IHP seems to cause preferential ligation of the alpha subunits in these hemoglobins. The results have been used to gain insights into the differing characteristics of the ligand binding pockets of these various hemoglobins.

  18. Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator.

    PubMed

    Silva, Isabela A; Souza, Alexandre M; Bromley, Thomas R; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S; Oliveira, Ivan S; Lo Franco, Rosario; Glaser, Steffen J; deAzevedo, Eduardo R; Soares-Pinto, Diogo O; Adesso, Gerardo

    2016-10-14

    The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

  19. Nuclear magnetic resonance investigation of erythrocyte membranes in chronic myeloproliferative disorders.

    PubMed

    Morariu, V V; Petrov, L

    1986-07-01

    The temperature dependence of the apparent water diffusional exchange through erythrocyte membranes in cases of policitemia vera, chronic granulocytic leukemia and primary myelofibrosis was measured by using a nuclear magnetic resonance method in the presence of Mn2+. The thermal transition shifted to lower temperatures in all cases, regardless of the stage of the disease, suggesting a structural alteration of the membrane. The shift of transition indirectly suggests a lower penetration of the erythrocytes by Mn2+. The water exchange time at 37 degrees C also increased, mainly in the blast crisis; it seems to have a prognostic value of some clinical interest. No simple correlation of the water exchange and the following clinical investigations was observed: the white count, the percentage of promyelocites and myeloblasts, the sedimentation rate of blood, the osmotic fragility of erythrocytes, the total concentration of proteins, albumin and immunoglobulins, respectively, in plasma.

  20. Pore size distributions in polyelectrolyte multilayers determined by nuclear magnetic resonance cryoporometry

    NASA Astrophysics Data System (ADS)

    Vaca Chávez, Fabián; Schönhoff, Monika

    2007-03-01

    Polyelectrolyte multilayers (PEMs) are thin films, which are assembled one molecular layer at a time, by alternatingly adsorbing polycations and polyanions making use of their attractive electrostatic interaction. Since the porosity of PEMs is one of the properties of major interest, in the current work the first pore size distribution of PEMs in samples consisting of silica particles coated with poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) is presented. To this end, the nuclear magnetic resonance (NMR) cryoporometry technique was applied. The proton NMR signal of liquid water is analyzed assuming a log normal distribution of motional correlation times. From the results, it is possible to determine the size of water sites in the layers to around 1nm. In addition, a slight variation with the number of layers is found. The average pore size agrees with cutoff sizes found in permeation experiments.

  1. Is biomedical nuclear magnetic resonance limited by a revisitable paradigm in physics?

    PubMed

    de Certaines, J D

    2005-12-14

    The history of nuclear magnetic resonance (NMR) can be divided generally into two phases: before the Second World War, molecular beam methods made it possible to detect the whole set of spins. However, these methods were destructive for the sample and had a very low precision. The publications of F. Bloch and E. Purcell in 1946 opened up a second phase for NMR with the study of condensed matter, but at the expense of an enormous loss in theoretical sensitivity. During more than half a century, the method of Bloch and Purcell, based on inductive detection of the NMR signal, has allowed many developments in biomedicine. But, curiously, this severely constraining limitation on sensitivity has not been called into question during this half-century, as if the pioneers of the pre-war period had been forgotten.

  2. Selective-pulse-network compilation on a liquid-state nuclear-magnetic-resonance system

    NASA Astrophysics Data System (ADS)

    Li, Jun; Cui, Jiangyu; Laflamme, Raymond; Peng, Xinhua

    2016-09-01

    In creating a large-scale quantum information processor, the ability to construct control pulses for implementing an arbitrary quantum circuit in a scalable manner is an important requirement. For liquid-state nuclear-magnetic-resonance quantum computing, a circuit is generally realized through a sequence of selective soft pulses, in which various control imperfections exist and are to be corrected. In this work, we present a comprehensive analysis of the errors arisen in a selective pulse network by using the zeroth- and first-order average Hamiltonian theory. Effective correction rules are derived for adjusting important pulse parameters such as irradiation frequencies, rotational angles, and transmission phases of the selective pulses to increase the control fidelity. Simulations show that applying our compilation procedure for a given circuit is efficient and can greatly reduce the error accumulation.

  3. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.

    PubMed

    Volegov, Petr; Matlachov, Andrei N; Espy, Michelle A; George, John S; Kraus, Robert H

    2004-09-01

    A system that simultaneously measures magnetoencephalography (MEG) and nuclear magnetic resonance (NMR) signals from the human brain was designed and fabricated. A superconducting quantum interference device (SQUID) sensor coupled to a gradiometer pickup coil was used to measure the NMR and MEG signals. 1H NMR spectra with typical Larmor frequencies from 100-1000 Hz acquired simultaneously with the evoked MEG response from a stimulus to the median nerve are reported. The single SQUID gradiometer was placed approximately over the somatosensory cortex of a human subject to noninvasively record the signals. These measurements demonstrate, for the first time, the feasibility of simultaneous MRI and MEG. NMR in the microtesla regime provides narrow linewidths and the potential for high spatial resolution imaging, while SQUID sensors enable direct measurement of neuronal activity with high temporal resolution via MEG.

  4. Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortars

    SciTech Connect

    Patural, Laetitia; Korb, Jean-Pierre; Govin, Alexandre; Grosseau, Philippe; Ruot, Bertrand; Deves, Olivier

    2012-10-15

    We show how nuclear magnetic spin-lattice relaxation dispersion of proton-water (NMRD) can be used to elucidate the effect of cellulose ethers on water retention and hydration delay of freshly-mixed white cement pastes. NMRD is useful to determine the surface diffusion coefficient of water, the specific area and the hydration kinetics of the cement-based material. In spite of modifications of the solution's viscosity, we show that the cellulosic derivatives do not modify the surface diffusion coefficient of water. Thus, the mobility of water present inside the medium is not affected by the presence of polymer. However, these admixtures modify significantly the surface fraction of mobile water molecules transiently present at solid surfaces. This quantity measured, for the first time, for all admixed cement pastes is thus relevant to explain the water retention mechanism.

  5. Fluorine-19 nuclear magnetic resonance and biochemical characterization of fluorotyrosine-labeled-thymidylate-synthetase

    NASA Astrophysics Data System (ADS)

    Rosson, Dan; Lewis, Charles A.; Ellis, Paul D.; Dunlap, R. Bruce

    1994-03-01

    Fluorotyrosine has been incorporated into thymidylate synthetase from Lactobacillus casei by growth of the bacterium in media containing 3-fluorotyrosine. The enzyme exhibited a specific activity 70% of that of the normal enzyme and formed a covalent binary complex with pyrimidine nucleotides, as well as a covalent ternary complex with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate. 19F nuclear magnetic resonance spectroscopy has been used to follow the formation of these complexes. 5-Fluorodeoxyuridylate, dUMP, dTMP and dCMP produced identical conformational changes in the enzyme as monitored by the fluorotyrosyl resonances. Ternary complex formation of the fluorotyrosine-containing enzyme with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate resulted in further spectral changes.

  6. Spectral implementation of some quantum algorithms by one- and two-dimensional nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Das, Ranabir; Kumar, Anil

    2004-10-01

    Quantum information processing has been effectively demonstrated on a small number of qubits by nuclear magnetic resonance. An important subroutine in any computing is the readout of the output. "Spectral implementation" originally suggested by Z. L. Madi, R. Bruschweiler, and R. R. Ernst [J. Chem. Phys. 109, 10603 (1999)], provides an elegant method of readout with the use of an extra "observer" qubit. At the end of computation, detection of the observer qubit provides the output via the multiplet structure of its spectrum. In spectral implementation by two-dimensional experiment the observer qubit retains the memory of input state during computation, thereby providing correlated information on input and output, in the same spectrum. Spectral implementation of Grover's search algorithm, approximate quantum counting, a modified version of Berstein-Vazirani problem, and Hogg's algorithm are demonstrated here in three- and four-qubit systems.

  7. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    PubMed

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  8. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.

    PubMed

    Buchner, Lena; Güntert, Peter

    2015-02-03

    Nuclear magnetic resonance (NMR) structures are represented by bundles of conformers calculated from different randomized initial structures using identical experimental input data. The spread among these conformers indicates the precision of the atomic coordinates. However, there is as yet no reliable measure of structural accuracy, i.e., how close NMR conformers are to the "true" structure. Instead, the precision of structure bundles is widely (mis)interpreted as a measure of structural quality. Attempts to increase precision often overestimate accuracy by tight bundles of high precision but much lower accuracy. To overcome this problem, we introduce a protocol for NMR structure determination with the software package CYANA, which produces, like the traditional method, bundles of conformers in agreement with a common set of conformational restraints but with a realistic precision that is, throughout a variety of proteins and NMR data sets, a much better estimate of structural accuracy than the precision of conventional structure bundles.

  9. Nuclear magnetic resonance measurements of velocity distributions in an ultrasonically vibrated granular bed

    PubMed Central

    Huntley, J. M.; Tarvaz, T.; Mantle, M. D.; Sederman, A. J.; Gladden, L. F.; Sheikh, N. A.; Wildman, R. D.

    2014-01-01

    We report the results of nuclear magnetic resonance imaging experiments on granular beds of mustard grains fluidized by vertical vibration at ultrasonic frequencies. The variation of both granular temperature and packing fraction with height was measured within the three-dimensional cell for a range of vibration frequencies, amplitudes and numbers of grains. Small increases in vibration frequency were found—contrary to the predictions of classical ‘hard-sphere’ expressions for the energy flux through a vibrating boundary—to result in dramatic reductions in granular temperature. Numerical simulations of the grain–wall interactions, using experimentally determined Hertzian contact stiffness coefficients, showed that energy flux drops significantly as the vibration period approaches the grain–wall contact time. The experiments thus demonstrate the need for new models for ‘soft-sphere’ boundary conditions at ultrasonic frequencies. PMID:24711488

  10. Double tuned 23Na 1H nuclear magnetic resonance birdcage for application on mice in vivo

    NASA Astrophysics Data System (ADS)

    Lanz, Titus; Ruff, Jan; Weisser, Alexander; Haase, Axel

    2001-05-01

    The design and the characterization of a double tuned nuclear magnetic birdcage resonator is presented. It abandons quadrature drive and uses the two orthogonal modes of the birdcage for two different frequencies. In order to tune the birdcage to frequencies that are far apart, the number of legs is reduced to only four. This limits the homogeneity of the rf field, but enables the birdcage to be tuned to very different frequencies without further B1 field distortions. Following a brief explanation of the theory of the coil design, a 23Na 1H four leg birdcage for in vivo measurements on mice is presented. The performance of the coil is demonstrated in experiments on both a phantom and a mouse.

  11. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  12. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    USGS Publications Warehouse

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  13. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  14. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  15. Quantitative proton nuclear magnetic resonance for the structural and quantitative analysis of atropine sulfate.

    PubMed

    Shen, Shi; Yao, Jing; Shi, Yaqin

    2014-02-01

    This study assessed a general method of quantitative nuclear magnetic resonance (qNMR) for the calibration of atropine sulfate (Active Pharmaceutical Ingredient, API) as reference standard. The spectra were acquired in D2O using maleic acid as the internal standard. Conformational behaviors of tropane ring were observed and studied by means of NMR and ROESY experiments at different temperature, which showed that the azine methyl group was at equilibrium for axial and equatorial conformations at room temperature. Signal delay and monitor signals of qNMR experimentation were optimized for quantification. The study reported here validated the method's linearity, range, limit of quantification, stability and precision. The results were consistent with the results obtained from mass balance approach.

  16. Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator

    NASA Astrophysics Data System (ADS)

    Silva, Isabela A.; Souza, Alexandre M.; Bromley, Thomas R.; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S.; Oliveira, Ivan S.; Lo Franco, Rosario; Glaser, Steffen J.; deAzevedo, Eduardo R.; Soares-Pinto, Diogo O.; Adesso, Gerardo

    2016-10-01

    The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

  17. Ethanol determination in frozen fruit pulps: an application of quantitative nuclear magnetic resonance.

    PubMed

    da Silva Nunes, Wilian; de Oliveira, Caroline Silva; Alcantara, Glaucia Braz

    2016-04-01

    This study reports the chemical composition of five types of industrial frozen fruit pulps (acerola, cashew, grape, passion fruit and pineapple fruit pulps) and compares them with homemade pulps at two different stages of ripening. The fruit pulps were characterized by analyzing their metabolic profiles and determining their ethanol content using quantitative Nuclear Magnetic Resonance (qNMR). In addition, principal component analysis (PCA) was applied to extract more information from the NMR data. We detected ethanol in all industrial and homemade pulps; and acetic acid in cashew, grape and passion fruit industrial and homemade pulps. The ethanol content in some industrial pulps is above the level recommended by regulatory agencies and is near the levels of some post-ripened homemade pulps. This study demonstrates that qNMR can be used to rapidly detect ethanol content in frozen fruit pulps and food derivatives. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  19. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R.

    2015-10-01

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from -90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  20. Miniaturized Nuclear Magnetic Resonance Platform for Detection and Profiling of Circulating Tumor Cells

    PubMed Central

    Castro, Cesar M.; Ghazani, Arezou A.; Chung, Jaehoon; Shao, Huilin; Issadore, David; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho

    2013-01-01

    Accurate detection and profiling of circulating tumor cells (CTCs) is a highly sought after technology to improve cancer management. Such “liquid biopsies” could offer a non-invasive, repeatable window into each patient’s tumor, facilitating early cancer diagnosis and treatment monitoring. The rarity of CTCs, approximated at 1 CTC for every billion peripheral blood cells, however, poses significant challenges to sensitive and reliable detection. We have recently developed a new biosensor platform, namely a micro-nuclear magnetic resonance (µNMR). Through the synergistic integration of microfabrication, nanosensors, and novel chemistries, the µNMR platform offers high detection sensitivity and point-of-care operation, overcoming technical barriers in CTC research. We herein review the µNMR technology with emphasis on its application on CTC detection. Recent advances in the sensing technology will be summarized, followed by the description on the dynamic interplay between preclinical and clinical CTC studies. PMID:23835814