Science.gov

Sample records for 15n tracer experiments

  1. Fate of nitrogen deposition and decomposed nitrogen from litter in a 15N-tracer mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Nair, R.; Perks, M.; Mencuccini, M.

    2013-12-01

    Atmospheric deposition of anthropogenic-derived nitrogen may be a major driver of the 0.6-0.7 Pg y-1 increase in the carbon sink in historically N-limited northern and boreal forests, but the magnitude of its effect is still uncertain. A strong effect depends on the allocation of N to trees, because of their high C:N ratio in woody tissues, and isotope tracer experiments have shown that the majority of 15N tracers applied directly to the soil are lost via leeching or retained in soil pools rather than being acquired by tree root systems. However, ambient anthropogenic inputs of N to these systems are transported in the atmosphere and intercepted by foliage before they reach the soil system, while labelled fertilization experiments also can only explicitly trace the fate of the 15N-tracer from deposition, as opposed to changes in the fate of N from litter, where decomposition rates may be enhanced at low ambient levels of deposition, affecting the availability of N from this pool for tree nutrition. We present initial results from a potted Sitka Spruce mesocosm 15N-tracer experiment where ambient nitrogen deposition was supplemented with a minor (0.4 kg ha-1 y-1) input of additional N, applied to either the soil or the foliage. Either this deposition, or litter in the pots, was enriched in 15N, allowing the fate of the isotope from two different methods of deposition to be compared with that of nitrogen released from the litter under the deposition treatment.

  2. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  3. Ammonium and nitrate uptake lengths in a small forested stream determined by {sup 15}N tracer and short-term nutrient enrichment experiments

    SciTech Connect

    Mulholland, P.J.; Tank, J.L.; Sanzone, D.M.; Webster, J.R.; Wollheim, W.; Peterson, B.J.; Meyer, J.L.

    1998-11-01

    Nutrient cycling is an important characteristic of all ecosystems, including streams. Nutrients often limit the growth rates of stream algae and heterotrophic microbes and the decomposition rate of allochthonous organic matter. Nutrient uptake (S{sub W}), defined as the mean distance traveled by a nutrient atom dissolved in stream water before uptake by biota is often used as an index of nutrient cycling in streams. It is often overlooked, however, that S{sub W} is not a measure of nutrient uptake rate per se, but rather a measure of the efficiency with which a stream utilizes the available nutrient supply. The ideal method for measuring S{sub W} involves short-term addition of a nutrient tracer. Regulatory constraints often preclude use of nutrient radiotracers in field studies and methodological difficulties and high analytical costs have previously hindered the use of stable isotope nutrient tracers (e.g., {sup 15}N). Short-term nutrient enrichments are an alternative to nutrient tracer additions for measuring S{sub W}.

  4. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils. PMID:26649387

  5. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen

  6. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    NASA Astrophysics Data System (ADS)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  7. Contrasting food web linkages for the grazing pathway in 3 temperate forested streams using {sup 15}N as a tracer

    SciTech Connect

    Tank, J.L.; Mulholland, P.J.; Meyer, J.L.; Bowden, W.B.; Webster, J.R.; Peterson, B.J.

    1998-11-01

    Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen. The authors are learning more about the fate of inorganic nitrogen entering streams through {sup 15}N tracer additions. The Lotic Intersite Nitrogen Experiment (LINX) is studying the uptake, cycling, and fate of {sup 15}N-NH{sub 4} in the stream food web of 10 streams draining different biomes. Using the {sup 15}N tracer method and data from 3 sites in the study, the authors can differentiate patterns in the cycling of nitrogen through the grazing pathway (N from the epilithon to grazing macroinvertebrates) for 3 temperate forested streams. Here, they quantify the relationship between the dominant grazer and its proposed food resource, the epilithon, by comparing {sup 15}N levels of grazers with those of the epilithon, as well as the biomass, nitrogen content, and chlorophyll a standing stocks of the epilithon in 3 streams.

  8. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S., III; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  9. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    NASA Astrophysics Data System (ADS)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  10. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  11. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present

  12. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Garabedian, S.P.; Revesz, K.M.; Yoshinari, T.

    2004-01-01

    Denitrification was measured within a nitrate-contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 ??M) and nitrous oxide (up to 143 ??M) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small-scale (15-24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down-gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one-dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036-0.047 ??mol N (L aquifer)-1 d -1) was faster than the subsequent denitrification steps (0.013-0.016 ??mol N (L aquifer)-1 d-1 for nitrous oxide and 0.013-0.020 ??mol N (L aquifer)-1 d-1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down-gradient before being completely consumed.

  13. Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coastal marine biota determined using a stable isotopic tracer, (15)N - [RDX].

    PubMed

    Ballentine, Mark L; Ariyarathna, Thivanka; Smith, Richard W; Cooper, Christopher; Vlahos, Penny; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2016-06-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is globally one of the most commonly used military explosives and environmental contaminant. (15)N labeled RDX was added into a mesocosm containing 9 different coastal marine species in a time series experiment to quantify the uptake of RDX and assess the RDX derived (15)N retention into biota tissue. The (15)N attributed to munitions compounds reached steady state concentrations ranging from 0.04 to 0.67 μg (15)N g dw(-1), the bulk (15)N tissue concentration for all species was 1-2 orders of magnitude higher suggesting a common mechanism or pathway of RDX biotransformation and retention of (15)N. A toxicokinetic model was created that described the (15)N uptake, elimination, and transformation rates. While modeled uptake rates were within previous published values, elimination rates were several orders of magnitude smaller than previous studies ranging from 0.05 to 0.7 days(-1). These small elimination rates were offset by high rates of retention of (15)N previously not measured. Bioconcentration factors and related aqueous:organism ratios of compounds and tracer calculated using different tracer and non-tracer methods yielded a broad range of values (0.35-101.6 mL g(-1)) that were largely method dependent. Despite the method-derived variability, all values were generally low and consistent with little bioaccumulation potential. The use of (15)N labeled RDX in this study indicates four possible explanations for the observed distribution of compounds and tracer; each with unique potential implications for possible toxicological impacts in the coastal marine environment. PMID:27010164

  14. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  15. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  16. Analysis of the coexisting pathways for NO and N2O formation in Chernozem using the (15)N-tracer SimKIM-Advanced model.

    PubMed

    Stange, Claus Florian; Spott, Oliver; Russow, Rolf

    2013-01-01

    The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from (15)N tracer experiments. Soil Biol Biochem. 2009;41:785-795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with (15)N ammonium, (15)N nitrate, and (15)N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the (15)N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50

  17. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2015-04-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in northern Germany. The 15N analysis of denitrification-derived 15N-labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed using isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS) in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated, and the initial and cumulative denitrification after 1 year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using MIMS satisfactorily coincided with laboratory analysis by conventional IRMS, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulfidic zone of both aquifers compared to the zone of non-sulfidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. However, the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone, a lag phase of denitrification after NO3- injections was observed, which confounded the

  18. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2014-12-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in Northern Germany. The 15N analysis of denitrification derived 15N labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed by isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS), in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated and the initial and cumulative denitrification after one year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using membrane-inlet mass spectrometry satisfactorily coincided with laboratory analysis by conventional isotope ratio mass spectrometry, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulphidic zone of both aquifers compared to the zone of non-sulphidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. But the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone a lag phase of denitrification after NO3

  19. Development of a method for in situ measurement of denitrification in aquifers using 15N tracer tests and membrane inlet mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Flessa, H.; Walther, W.; Duijnisveld, W. H. M.

    2009-04-01

    In NO3- contaminated aquifers containing reduced compounds like organic carbon or sulfides, denitrification is an intense process. Its characterization is of interest because NO3- consump-tion improves water quality and N2O production can cause emission of this greenhouse gas to the atmosphere. Spatial distribution of NO3- and N2 produced by denitrification in groundwa-ter (excess N2) reflects the NO3- input as well as cumulative denitrification during aquifer pas-sage. Reaction progress (RP) at a given location, i.e. the relative consumption by denitrifica-tion of the NO3- that had been leached to the aquifers, characterizes the stage of the denitrifi-cation process. RP can be derived from the ratio between accumulated gaseous denitrification products and initial NO3- concentrations. The amount and spatial distribution of reduced com-pounds within denitrifying aquifers is not well known. Recent findings from parallel investi-gations on in situ denitrification and reactive compounds suggests that single-well 15N tracer tests might be suitable to characterize the stock of reduced compounds in aquifers (Konrad 2007). The overall objective of our studies is measure the spatial dynamics of denitrification within two sandy aquifers in northern Germany. This includes measurement of the actually occurring denitrification process. Moreover we want to determine the long-term denitrification potential which is governed by the stock of reactive material. Here we present a new approach for in situ-measurement of denitrification at monitoring wells using a combination of 15N-tracer push-pull experiments with in situ analysis of 15N-labled N2 and N2O using membrane inlet mass spectrometry (MIMS). We will present first results from a laboratory test with aquifer mesocosms using the MIMS method. In this test we supplemented aquifer material of two depths (2 and 7 m below surface) of a drinking water catchment in Northwest Germany with K15NO3 solution. After tracer application we

  20. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  1. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean

    NASA Astrophysics Data System (ADS)

    McCarthy, Matthew D.; Lehman, Jennifer; Kudela, Raphael

    2013-02-01

    Stable nitrogen isotopic analysis of individual amino acids (δ15N-AA) has unique potential to elucidate the complexities of food webs, track heterotrophic transformations, and understand diagenesis of organic nitrogen (ON). While δ15N-AA patterns of autotrophs have been shown to be generally similar, prior work has also suggested that differences may exist between cyanobacteria and eukaryotic algae. However, δ15N-AA patterns in differing oceanic algal groups have never been closely examined. The overarching goals of this study were first to establish a more quantitative understanding of algal δ15N-AA patterns, and second to examine whether δ15N-AA patterns have potential as a new tracer for distinguishing prokaryotic vs. eukaryotic N sources. We measured δ15N-AA from prokaryotic and eukaryotic phytoplankton cultures and used a complementary set of statistical approaches (simple normalization, regression-derived fractionation factors, and multivariate analyses) to test for variations. A generally similar δ15N-AA pattern was confirmed for all algae, however significant AA-specific variation was also consistently identified between the two groups. The relative δ15N fractionation of Glx (glutamine + glutamic acid combined) vs. total proteinaceous N appeared substantially different, which we hypothesize could be related to differing enzymatic forms. In addition, the several other AA (most notably glycine and leucine) appeared to have strong biomarker potential. Finally, we observed that overall patterns of δ15N values in algae correspond well with the Trophic vs. Source-AA division now commonly used to describe variable AA δ15N changes with trophic transfer, suggesting a common mechanistic basis. Overall, these results show that autotrophic δ15N-AA patterns can differ between major algal evolutionary groupings for many AA. The statistically significant multivariate results represent a first approach for testing ideas about relative eukaryotic vs. prokaryotic

  2. The Five-Year Fate of a 15N Tracer in a Mixed Deciduous Forest: Retention, Redistribution, and Differences by Mycorrhizal Association

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2015-12-01

    The impact of nitrogen deposition on forest ecosystems depends in large part on its fate: uptake by trees can stimulate growth, while gaseous or leaching losses contribute to air and water pollution and represent the loss of a limiting nutrient. Past tracer studies have shown that soils dominate the short-term fate of added 15N, but its longer-term term fate remains uncertain. This study examined how much 15N tracer moved plant or soil pools or was lost over 5-6 years. In 2007, a 15N tracer (0.21 kg/ha as 99% enriched 15N-KNO3) was added to 0.25 ha mixed hardwood forest in central NY. All of the tracer was recovered in the days after its addition, but recovery fell to 78% by the end of this year (25% surface litter, 48% 0-10 cm soil, 5% roots). One year later, recovery in these pools fell (to 51%), with losses from surface litter (-11%) and the 0-10 cm soils (-15%), including losses from the "heavy" soil fraction. Additional tracer moved to other plant pools (+5%) and to deeper soil (+13%; up to 30 cm), for a total recovery of 69% of the added tracer. Between years 1 and 5-6, only total tracer recovery decreased by only 1.4%. Recovery decreased in foliage (-0.2%), all roots (-3.5%), and surface litter (-9.8%), while increasing in woody biomass (+0.9%), 0-10 cm soil (+8.9%), and deep soil (+2.3%; up to 50 cm). Tracer recovery in live and dead plant N pools (11%) did not change, as 3% moved from roots into aboveground plant tissues and 3% moved from live plant pools into leaf litter; these results imply no net transfer of 15N from soil to plants during this period. Over all 5-6 years, only 1.6% of the tracer moved into bark or wood, a small but important sink because of its high C:N ratio; however, roughly one-third of this total was in wood formed prior to the start of the tracer addition. Tree species differed in their recovery of 15N: the six species with ectomycorrhizal associations showed more enrichment than the four species with arbuscular mycorrhizae. It is

  3. Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores

    USGS Publications Warehouse

    Smith, L.K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.

    2006-01-01

    Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low

  4. Route of tracer administration does not affect ileal endogenous nitrogen recovery measured with the 15N-isotope dilution technique in pigs fed rapidly digestible diets.

    PubMed

    Steendam, C A Carina; Verstegen, Martin W A; Tamminga, Seerp; Boer, Huug; van 't End, Marianne; Verstappen, Berthe; Caine, William R; Visser, G Henk

    2004-11-01

    The (15)N-isotope dilution technique ((15)N-IDT), with either pulse-dose oral administration or continuous i.v. administration of [(15)N]-l-leucine (carotid artery), both at 5 mg/(kg body weight . d), was used to measure ileal (postvalve T-cecum cannula) endogenous nitrogen recovery (ENR) in pigs (9 +/- 0.6 kg). Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%) content of quebracho extract (Schinopsis spp.) rich in condensed tannins. Blood was sampled from a catheter in the external jugular vein. Mean plasma (15)N-enrichment at d 8-10 was higher (P = 0.0009) after i.v. than after oral administration [0.0356 vs. 0.0379 atom% excess (APE)]. Plasma (15)N-enrichment for i.v. infused pigs was 0.01117 APE higher (P < 0.0001) and for orally dosed pigs 0.0081 APE lower (P < 0.0001) at 11 h postprandial compared with 1 h postprandial. Apparent ileal N digestibility was higher (P < 0.0001) for the control (85.5%) than for the quebracho diet (69.5%). ENR was calculated from the ratio of (15)N-enrichment of plasma and digesta. The ENR for the quebracho diet was approximately 300% higher than for the control diet (6.03 vs. 1.94 g/kg dry matter intake, P < 0.001). The real N digestibility (92.2 +/- 0.4%) was equal for both diets (P = 0.1030) and both tracer methods (P = 0.9730). We concluded that oral administration of [(15)N]leucine provides reasonable estimates of ENR in pigs fed semipurified diets with high or low content of tannins; however, one must be careful in extrapolating this conclusion to studies with other protein sources or feeding frequencies. PMID:15514277

  5. CROSS-APPALACHIAN TRACER EXPERIMENT (CAPTEX '83)

    EPA Science Inventory

    Scientists in the United States and Canada have collaborated on the Cross-Appalachian Tracer Experiment (CAPTEX '83) using the perfluorocarbon tracer to simulate the long-range transport of pollutants in the atmosphere. The experiments, conducted in September and October of 1983 ...

  6. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins.

    PubMed

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2015-10-01

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620

  7. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  8. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  9. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    SciTech Connect

    Wilson, Jennifer E.; Sussman, Aviva Joy

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  10. Nitrate removal in stream ecosystems measured by 15N addition experiments: 2. Denitrification

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Sobota, Daniel; Dodds, Walter; Findlay, Stuart; Grimm, Nancy; Hamilton, Stephen; McDowell, William; O'Brien, Jon; Tank, Jennifer; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Gregory, Stanley; Johnson, Sherri; Meyer, Judy; Peterson, Bruce; Poole, Geoff; Valett, H. Maurice; Webster, Jackson; Arango, Clay; Beaulieu, Jake; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; Niederlehner, Bobbie; Potter, Jody; Sheibley, Rich; Thomas, Suzanne

    2009-01-01

    We measured denitrification rates using a field {sup 15}N-NO{sub 3}{sup -} tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S{sub Wden}) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N{sub 2} production rates far exceeded N{sub 2}O production rates in all streams. The fraction of total NO{sub 3}{sup -} removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH{sub 4}{sup +} concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling S{sub Wden} were specific discharge (discharge/width) and NO{sub 3}{sup -} concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (U{sub den}) and NO{sub 3}{sup -} concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although U{sub den} increased with increasing NO{sub 3}{sup -} concentration, the efficiency of NO{sub 3}{sup -} removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO{sub 3}{sup -} load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO{sub 3}{sup -} concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO{sub 3}{sup -} concentration.

  11. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    USGS Publications Warehouse

    Mulholland, P.J.; Hall, R.O., Jr.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  12. A novel 15N tracer approach for the quantification of N2 and N2O emissions from soil incubations in a completely automated laboratory set up

    NASA Astrophysics Data System (ADS)

    Scheer, Clemens; Dannenmann, Michael; Meier, Rudolf

    2015-04-01

    The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro-ecosystems to the atmosphere. Although denitrification has received great interest by biogeochemists in the last decades, the magnitude of N2lossesand related N2:N2O ratios from soils still are largely unknown due to methodical constraints. We present a novel 15N tracer approach, based on a previous developed tracer method to study denitrification in pure bacterial cultures which was modified for the use on soil incubations in a completely automated laboratory set up. The method uses a background air in the incubation vessels that is replaced with a helium-oxygen gas mixture with a 50-fold reduced N2 background (2 % v/v). This method allows for a direct and sensitive quantification of the N2 and N2O emissions from the soil with isotope-ratio mass spectrometry after 15N labelling of denitrification N substrates and minimises the sensitivity to the intrusion of atmospheric N2 at the same time. The incubation set up was used to determine the influence of different soil moisture levels on N2 and N2O emissions from a sub-tropical pasture soil in Queensland/Australia. The soil was labelled with an equivalent of 50 μg-N per gram dry soil by broadcast application of KNO3solution (4 at.% 15N) and incubated for 3 days at 80% and 100% water filled pore space (WFPS), respectively. The headspace of the incubation vessel was sampled automatically over 12hrs each day and 3 samples (0, 6, and 12 hrs after incubation start) of headspace gas analysed for N2 and N2O with an isotope-ratio mass spectrometer (DELTA V Plus, Thermo Fisher Scientific, Bremen, Germany(. In addition, the soil was analysed for 15N NO3- and NH4+ using the 15N diffusion method, which enabled us to obtain a complete N balance. The method proved to be highly sensitive for N2 and N2O emissions detecting N2O emissions ranging from 20 to 627 μN kg

  13. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  14. 15N tracer application to evaluate nitrogen dynamics of food webs in two subtropical small-scale aquaculture ponds under different managements.

    PubMed

    Pucher, Johannes; Mayrhofer, Richard; El-Matbouli, Mansour; Focken, Ulfert

    2014-01-01

    Small, semi-intensively managed aquaculture ponds contribute significantly to the food security of small-scale farmers around the world. However, little is known about nutrient flows within natural food webs in such ponds in which fish production depends on the productivity of natural food resources. (15)N was applied as ammonium at 1.1 and 0.4 % of total nitrogen in a traditionally managed flow-through pond and a semi-intensively managed stagnant pond belonging to small-scale farmers in Northern Vietnam and traced through the natural food resources over 7 days. Small-sized plankton (1-60 μ m) was the dominant pelagic biomass in both ponds with higher biomass in the stagnant pond. This plankton assimilated major portions of the applied tracer and showed a high sedimentation and turnover rate. High re-activation of settled nutrients into the pelagic food web was observed. The tracer was removed more quickly from the flow-through pond than from the stagnant pond. A steady nutrient supply could increase fish production. PMID:24995524

  15. Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities

    USGS Publications Warehouse

    Witwicki, Dana L.; Doescher, Paul S.; Pyke, David A.; DeCrappeo, Nicole M.; Perakis, Steven S.

    2012-01-01

    Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.

  16. Improving water use efficiency of wheat (triticum aestivum l. Giza 168) crop using 15N tracer technique under Egyptian environment

    NASA Astrophysics Data System (ADS)

    Refaie Emara, Eman Ibrahim; Hamed, Lamy Mamdoh Mohamed; Bocchi, Stefano; Galal, Yehia

    2015-04-01

    The Mediterranean environment is characterized by low and erratic rainfall amount which varies between (200-600 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency. In this context, two field experiments were carried out in northern Cairo-Egypt, during November and December 2012 and April 2013, with two different textured soils. The soil in the first location (30° 16' N latitude, 30° 56' E longitude) is clay soil, while in the second one (30° 24' N latitude, 31° 35' E longitude) is sandy soil. The interaction effect of soil types, soil water regimes, nitrogen fertilizer application rates and timing on nitrogen balance of soil were studied, in terms of nitrogen gained by plant portions, remained in soil and losses through different ways for the wheat crop (Triticum aestivum L. Giza 168). The aim of this research is to increase the water use efficiency of wheat crop, in addition to identify the most proper and effective combinations of above-studied variables that provide a satisfactory grain wheat yield and finally to minimize the use of chemical nitrogen fertilizers. Three water regimes (100%, 75% and 50% of crop water requirements) using drip irrigation system and the application methods of Nitrogen rates, 100%, 80% and 60% of recommended rates, which are 178 Kg of Nitrogen for the clay soil and 238 Kg of Nitrogen for sandy soil, were applied to the two experimental fields. Ineed, two modes of agricultural management, mode A and B, were applied. Each mode is different than the other in terms of seedling and tillering practices, where mode A performed with 25% at seedling, 25% at tillering and 50% at jointing while mode B performed with 35% at seedling and 65% at tillering. The greatest limitation to growth and Nitrogen use efficiency was the amount

  17. Relative Magnitude and Controls of in Situ N2 and N2O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using (15)N Tracers.

    PubMed

    Sgouridis, Fotis; Ullah, Sami

    2015-12-15

    Denitrification is the most uncertain component of the nitrogen (N) cycle, hampering our ability to assess its contribution to reactive N (Nr) removal. This uncertainty emanates from the difficulty in measuring in situ soil N2 production and from the high spatiotemporal variability of the process itself. In situ denitrification was measured monthly between April 2013 and October 2014 in natural (organic and forest) and seminatural ecosystems (semi-improved and improved grasslands) in two UK catchments. Using the (15)N-gas flux method with low additions of (15)NO3(-) tracer, a minimum detectable flux rate of 4 μg N m(-2) h(-1) and 0.2 ng N m(-2) h(-1) for N2 and N2O, respectively, was achieved. Denitrification rates were lower in organic and forest (8 and 10 kg N ha(-1) y(-1), respectively) than in semi-improved and improved grassland soils (13 and 25 kg N ha(-1) y(-1), respectively). The ratio of N2O/N2 + N2O was low and ranged from <1% to 7% across the sites. Variation in denitrification was driven by differences in soil respiration, nitrate, C:N ratio, bulk density, moisture, and pH across the sites. Overall, the contribution of denitrification to Nr removal in natural ecosystems was ~50% of the annual atmospheric Nr deposition, making these ecosystems vulnerable to chronic N saturation. PMID:26509488

  18. CityFlux perfluorocarbon tracer experiments

    NASA Astrophysics Data System (ADS)

    Petersson, F. K.; Martin, D.; White, I. R.; Henshaw, S. J.; Nickless, G.; Longley, I.; Percival, C. J.; Gallagher, M.; Shallcross, D. E.

    2010-01-01

    In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m. The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site. Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail. The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this. The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  19. CityFlux perfluorocarbon tracer experiments

    NASA Astrophysics Data System (ADS)

    Petersson, F. K.; Martin, D.; White, I. R.; Henshaw, S. J.; Nickless, G.; Longley, I.; Percival, C. J.; Gallagher, M.; Shallcross, D. E.

    2010-07-01

    In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m. The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site. Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail. The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this. The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  20. Metropolitan tracer experiment (METREX). Technical memo

    SciTech Connect

    Draxler, R.R.

    1985-10-01

    Several perfluorocarbon gas tracers were released at regular intervals for 1 year just outside of the metropolitan Washington, DC area. Continuous 8-h samples were collected at a central downtown site and two adjacent suburban locations. Monthly air samples were collected at 93 sites throughout the region at urban, suburban, and rural locations. Meteorological measurements were made on 5 towers instrumented for the experiment. The collected data can be used to quantify the errors from various dispersion-modeling techniques as well as study the influence of an urban area on the dispersion of pollutants.

  1. Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (δ15N) as Natural Tracers

    PubMed Central

    Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392

  2. Is pre-conditioning required for the measurement of in situ denitrification rates with push-pull 15N-tracer tests?

    NASA Astrophysics Data System (ADS)

    Eschenbach, Wolfram; Well, Reinhard

    2013-04-01

    Diffuse NO3 emissions derived from agricultural N surpluses are the main cause of NO3 pollution of aquifers and open water bodies. Denitrification is the key process for the attenuation of this anthropogenic NO3 in groundwater. Knowledge about the spatial variability denitrification rates in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. However, the spatial distribution and intensity of denitrification in aquifers is difficult to predict. But precisely this knowledge is important for an effective implementation of measures for the reduction of agricultural N-surpluses to gain a good chemical status of groundwater bodies. Push-pull tests have proven to be a relatively low-cost instrument to obtain quantitative information about aquifer properties and microbial activities in aquifers. These tests have been already successfully used for the measurement of in situ denitrification rates (Dr(in situ); Well and Myrold, 2002;Konrad, 2007). We conducted 28 push-pull tracer tests in the Großen Kneten (GKA) and the Furberger Feld aquifer (FFA), two Pleistocene sandy aquifers in Lower Saxony (Germany) to measure Dr(in situ) and to derive an estimate on the stock of reactive compounds. In the deeper NO3-free zone of the aquifer, Dr(in situ) was relatively low despite the high abundance of reductants. Our aim was to check whether pre-conditioning by repeated NO3-injections would stimulate indigenous denitrifiers and thus lead to increased reduction rates of NO3 corresponding to the stock of reductants. Pre-conditioning by the injection of the electron acceptor NO3 prior to subsequent push-pull tracer tests with 15N labelled NO3 was performed at 4 depths in the NO3-free groundwater zone in the Fuhrberger Feld aquifer. We compared unconditioned and pre-conditioned in situ denitrification rates with laboratory denitrification rates measured during one year laboratory incubations with corresponding aquifer material (Dr(365)). Our

  3. COMPARISON OF MODELLED AND MEASURED TRACER GAS CONCENTRATIONS DURING THE ACROSS NORTH AMERICA TRACER EXPERIMENT (ANATEX)

    EPA Science Inventory

    The 24-hour surface concentrations of several perfluorocarbon tracer gases measured during the 1987 Across North America Tracer Experiment (ANATEX) provided a unique continental-scale data set with which to evaluate long-range transport and diffusion models. One such model, a mul...

  4. Symbiotic N 2 -Fixation Estimated by the (15) N Tracer Technique and Growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium Strain in Field Conditions.

    PubMed

    Sarr, Papa Saliou; Okon, Judith Wase; Begoude, Didier Aime Boyogueno; Araki, Shigeru; Ambang, Zachée; Shibata, Makoto; Funakawa, Shinya

    2016-01-01

    This field experiment was established in Eastern Cameroon to examine the effect of selected rhizobial inoculation on N2-fixation and growth of Pueraria phaseoloides. Treatments consisted of noninoculated and Bradyrhizobium yuanmingense S3-4-inoculated Pueraria with three replications each. Ipomoea batatas as a non-N2-fixing reference was interspersed in each Pueraria plot. All the twelve plots received 2 gN/m(2) of (15)N ammonium sulfate 10% atom excess. At harvest, dry matter yields and the nitrogen derived from atmospheric N2-fixation (%Ndfa) of inoculated Pueraria were significantly (P < 0.05) higher (81% and 10.83%, resp.) than those of noninoculated Pueraria. The inoculation enhanced nodule dry weight 2.44-fold. Consequently, the harvested N significantly (P < 0.05) increased by 83% in inoculated Pueraria, resulting from the increase in N2-fixation and soil N uptake. A loss of 55 to 60% of the N fertilizer was reported, and 36 to 40% of it was immobilized in soil. Here, we demonstrated that both N2-fixing potential of P. phaseoloides and soil N uptake are improved through field inoculations using efficient bradyrhizobial species. In practice, the inoculation contributes to maximize N input in soils by the cover crop's biomass and represent a good strategy to improve soil fertility for subsequent cultivation. PMID:26904363

  5. Symbiotic N2-Fixation Estimated by the 15N Tracer Technique and Growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium Strain in Field Conditions

    PubMed Central

    Sarr, Papa Saliou; Okon, Judith Wase; Begoude, Didier Aime Boyogueno; Araki, Shigeru; Ambang, Zachée; Shibata, Makoto; Funakawa, Shinya

    2016-01-01

    This field experiment was established in Eastern Cameroon to examine the effect of selected rhizobial inoculation on N2-fixation and growth of Pueraria phaseoloides. Treatments consisted of noninoculated and Bradyrhizobium yuanmingense S3-4-inoculated Pueraria with three replications each. Ipomoea batatas as a non-N2-fixing reference was interspersed in each Pueraria plot. All the twelve plots received 2 gN/m2 of 15N ammonium sulfate 10% atom excess. At harvest, dry matter yields and the nitrogen derived from atmospheric N2-fixation (%Ndfa) of inoculated Pueraria were significantly (P < 0.05) higher (81% and 10.83%, resp.) than those of noninoculated Pueraria. The inoculation enhanced nodule dry weight 2.44-fold. Consequently, the harvested N significantly (P < 0.05) increased by 83% in inoculated Pueraria, resulting from the increase in N2-fixation and soil N uptake. A loss of 55 to 60% of the N fertilizer was reported, and 36 to 40% of it was immobilized in soil. Here, we demonstrated that both N2-fixing potential of P. phaseoloides and soil N uptake are improved through field inoculations using efficient bradyrhizobial species. In practice, the inoculation contributes to maximize N input in soils by the cover crop's biomass and represent a good strategy to improve soil fertility for subsequent cultivation. PMID:26904363

  6. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  7. Estimation of internal and external nitrogen for corals with a long-term 15N-labelling experiment and subsequent model calculations

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuaki; Grottoli, Andréa; Matsui, Yohei; Suzuki, Atsushi; Sakai, Kazuhiko

    2014-05-01

    Coral reef ecosystems maintain high primary productivity though the seawater is extremely oligotrophic. One of the hypotheses to explain this paradox is the recycling of nutrients in animal-algal symbiotic organisms such as corals. It is relatively easy to measure nutrient uptake rates by corals from seawater, but the proportion of internally circulating nutrients between the coral host and the endosymbiotic algae (zooxanthellae) is more challenging. Here, we performed a long-term and continuous 15N-labelling experiment to quantify the proportionate contribution of seawater (external N source) and the animal host (internal N source) to the total N influx in the endosymbiotic algae. Branches from the scleractinian corals Porites cylindrica and Montipora digitata from Okinawa, Japan, were cultured for 2 months in indoor, flow-through, filtered seawater tanks with the continuous supply of 15N-labelled nitrate. At the initial and after 2, 4, and 9 weeks of the study, coral branches were collected and the algal and animal fractions were separated for isotopic analyses. In both corals, the N isotope ratio of symbiotic algae exponentially increased and the values were much higher than those of the host tissue, suggesting that the algae had a faster turnover N time than the animal host. Algal and host N biomass normalized to the coral surface area slowly decreased in both coral species over the study period. To calculate the contribution of internal and external N, a simple mixing model of algal N metabolism was designed. Using differential equations of 15N balance and N biomass balance, F1 and F2 (external and internal N fluxes to symbiotic algae, respectively) were expressed as the functions of time. The model calculations showed that F2 was much higher than F1 in P. cylindrica and the percentage of internal N to the total influx N (PIN) was >70%. On the other hand, the contribution of F1 and F2 was comparable in M. digitata and the PIN was 40-70%. These results

  8. Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment

    SciTech Connect

    Allwine, K Jerry; Flaherty, Julia E.

    2007-08-01

    This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

  9. Comparison of modelled and measured tracer gas concentrations during the Across North America Tracer Experiment (ANATEX)

    SciTech Connect

    Clark, T.L.; Cohn, R.D.; Seilkop, S.K.; Draxler, R.R.; Heffter, J.L.

    1989-01-01

    The 24-hour surface concentrations of several perfluorocarbon tracer gases measured during the 1987 Across North America Tracer Experiment (ANATEX) provided a unique continental-scale data set with which to evaluate long-range transport and diffusion models. One such model, a multilayer Lagrangian model, was evaluated in the ANATEX Model Evaluation Study (AMES) by comparing distributions and time series of calculated and measured tracer concentrations at bands of sampling sites nearly equidistant from one of the two tracer release sites and by computing spatial differences in the concentration-weighted centroids of 20, 24-hour tracer footprints or composite plumes. The results for this model indicated that it overemphasized the effects of the stronger upper-level winds. In spite of the bias in transport speed, the distributions of the calculated and measured concentrations were quite similar.

  10. Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, (15)N-[TNT].

    PubMed

    Smith, Richard W; Vlahos, Penny; Böhlke, J K; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2015-10-20

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments. PMID:26375037

  11. Release of nitrous oxide and dinitrogen from a transition bog under drained and rewetted conditions due to denitrification: results from a [15N]nitrate-bromide double-tracer study.

    PubMed

    Tauchnitz, Nadine; Spott, Oliver; Russow, Rolf; Bernsdorf, Sabine; Glaser, Bruno; Meissner, Ralph

    2015-01-01

    Denitrification is well known being the most important nitrate-consuming process in water-logged peat soils, whereby the intermediate compound nitrous oxide (N(2)O) and the end product dinitrogen (N(2)) are ultimately released. The present study was aimed at evaluating the release of these gases (due to denitrification) from a nutrient-poor transition bog ecosystem under drained and three differently rewetted conditions at the field scale using a (15)N-tracer approach ([(15)N]nitrate application, 30 kg N ha(-1)) and a common closed-chamber technique. The drained site is characterized by a constant water table (WT) of -30 cm (here referred to as D30), while rewetted sites represent a constant WT of -15 cm, a constant WT of 0 cm (i.e. waterlogged), and an initial WT of 0 cm (which decreased slightly during the experiment), respectively, (here referred to as R15, R0, and R0(d), respectively). The highest N(2)O emissions were observed at D30 (291 µg N(2)O-N m(-2) h(-1)) as well as at R0d (665 µg N(2)O-N m(-2) h(-1)). At the rewetted peat sites with a constant WT (i.e. R15 and R0), considerably lower N2O emissions were observed (maximal 37 µg N(2)O-N m(-2) h(-1)). Concerning N(2) only at the initially water-logged peat site R0d considerable release rates (up to 3110 µg N(2)-N m(-2) h(-1)) were observed, while under drained conditions (D30) no N(2) emission and under rewetted conditions with a constant WT (R15 and R0) significantly lower N(2) release rates (maximal 668 µg N(2)-N m(-2) h(-1)) could be detected. In addition, it has been found that natural WT fluctuations at rewetted peat sites, in particular a rapid drop down of the WT, can induce high emission rates for both N(2)O and N(2). PMID:25692907

  12. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  13. A 15N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein.

  14. Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (δ 13C, δ 15N and δD) as environmental tracers

    NASA Astrophysics Data System (ADS)

    Ramírez, Francisco; Abdennadher, Aida; Sanpera, Carola; Jover, Lluís; Wassenaar, Leonard I.; Hobson, Keith A.

    2011-04-01

    Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ 13C, δ 15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp ( Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern ( Sternula albifrons) and Little Egret ( Egretta garzetta), was inferred trough a triple-isotope (δ 13C, δ 15N and δD) Bayesian mixing model. Isotopic trends for fish δ 15N and δD across the salinity gradient followed the equations: δ 15N = e (1.1 + 47.68/Salinity) and δD = -175.74 + Salinity + Salinity 2; whereas fish δ 13C increased as salinity rose (δ 13C = -10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ 13C for salinities <60 = -5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.

  15. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.

    PubMed

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein. PMID:26037134

  16. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Tank, Jennifer; Sobota, Daniel; O'Brien, Jon; Webster, Jackson; Valett, H. Maurice; Dodds, Walter; Poole, Geoff; Peterson, Chris G.; Meyer, Judy; McDowell, William; Johnson, Sherri; Hamilton, Stephen; Gregory, Stanley; Grimm, Nancy; Dahm, Cliff; Cooper, Lee W; Ashkenas, Linda; Thomas, Suzanne; Sheibley, Rich; Potter, Jody; Niederlehner, Bobbie; Johnson, Laura; Helton, Ashley; Crenshaw, Chelsea; Burgin, Amy; Bernot, Melody; Beaulieu, Jake; Arango, Clay

    2009-01-01

    We measured uptake length of {sup 15}NO{sub 3}{sup -} in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO{sub 3}{sup -} uptake length. As part of the Lotic Intersite Nitrogen Experiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO{sub 3}{sup -} concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO{sub 3}{sup -} uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S{sub Wtot}). Uptake length increased with specific discharge (Q/w) and increasing NO{sub 3}{sup -} concentrations, showing a loss in removal efficiency in streams with high NO{sub 3}{sup -} concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO{sub 3}{sup -} removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO{sub 3}{sup -} uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO{sub 3}{sup -} uptake lengths via directly increasing both gross primary production and NO{sub 3}{sup -} concentration. Gross primary production shortened S{sub Wtot}, while increasing NO{sub 3}{sup -} lengthened S{sub Wtot} resulting in no net effect of land use on NO{sub 3}{sup -} removal.

  17. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O., Jr.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  18. Diurnal variations in the isotopic composition of atmospheric nitrate in coastal California: δ15N and Δ17O as tracers of daytime and nighttime nitrogen oxide chemistry

    NASA Astrophysics Data System (ADS)

    Vicars, W. C.; Morin, S.; Wagner, N.; Savarino, J.; Erbland, J.; Brown, S. S.; Williams, E. J.

    2012-12-01

    The comprehensive isotopic composition of atmospheric nitrate (i.e., δ17O, δ18O, and δ15N) can convey valuable information regarding reactive nitrogen oxide (NOx = NO2 and NO) sources, cycling, and removal pathways; however, interpretations derived from nitrate isotope ratio measurements have thus far been useful primarily in the analysis of annual or seasonal atmospheric trends, while isotopic effects associated with faster atmospheric processes (e.g., diurnal variations) are presently not well constrained. In order to assess the impact of temporal variability in atmospheric chemistry on nitrate stable isotope ratios, we have measured the size-resolved concentration and isotopic composition of atmospheric nitrate at a diurnal/semidiurnal resolution onboard the R/V Atlantis during a cruise along the coast of California. This campaign was a major component of the CalNex 2010 field study and consisted of two distinct cruises in the South Coast and San Francisco Bay regions from 14 - 31 May and 1 - 7 June, respectively. Significant differences in air mass origin and atmospheric chemistry were observed for these two regions with corresponding differences in the concentration and isotopic composition of nitrate. Measurements of the 17O-excess (Δ17O = δ17O - 0.52 * δ18O) of nitrate suggest that nocturnal processes involving the nitrate radical play an important role in terms of NOx sinks in the South Coast region, where atmospheric nitrate concentrations were elevated due to the influence of continental outflow and the Δ17O of nitrate averaged 25.3 ± 1.6‰; conversely, Δ17O averaged 22.3 ± 1.8‰ in the San Francisco Bay region suggesting that the daytime OH + NO2 reaction is a relatively more significant NOx loss mechanism in the predominantly marine air masses sampled in this area. A strong diurnal signal was observed for both the δ15N and Δ17O of atmospheric nitrate. In the case of Δ17O, this diurnal pattern can be interpreted quantitatively as a result

  19. Estimating sewer leakage from continuous tracer experiments.

    PubMed

    Rieckermann, Jörg; Bares, Vojtech; Kracht, Oliver; Braun, Daniel; Gujer, Willi

    2007-05-01

    Direct measurements of sewer leakage with continuous dosing of tracers are often considered too imprecise for practical applications. However, no mathematical framework for data analysis is reported in literature. In this paper, we present an improved experimental design and data analysis procedure together with a comprehensive framework for uncertainty assessment. Test runs in a 700 m-long watertight sewer showed no significant bias and a very high precision of the methodology. The standard error in the results was assessed to 2.6% of the labeled flow with a simplified model. It could be reduced to 1.2% when a dynamic data analysis procedure was applied. The major error contribution was caused by transient transport phenomena, which suggests that careful choosing of the experimental time is more important than the choice of a very specific tracer substance. Although the method is not intended to replace traditional CCTV inspections, it can provide complementary information for rational rehabilitation planning. PMID:17363025

  20. Influence of roots and mycorrhiza on the internal nitrogen cycle in an organic forest soil ­revealed by a 15N tracing experiment

    NASA Astrophysics Data System (ADS)

    Holz, M.; Rutting, T.; Klemedtsson, L.; Kuzyakov, Y.

    2014-12-01

    The cycle of nitrogen in soil is complex, consisting of many simultaneous occurring transformation processes. So far, microorganisms have been thought to govern N cycling in soil. Nevertheless, plant roots and their associated mycorrhizal symbionts may exert control on N turnover for example by input of labile C to soil. However, studies investigating the effect of roots on gross N turnover rates are scarce. We conducted a 15N tracer study under field conditions to reveal the effect of plants on soil N cycle. The experiment includes three treatments: (a) control, (b) excluding roots and (c) excluding roots + mycorrhiza. On the study site, exclusion of roots + mycorrhiza has previously been shown to increase N2O emissions which indicate that plants affect internal N cycling. 15NH4NO3 and NH415NO3 were given to the soil and traced for a period of 10 days. Gross N turnover rates were determined applying a numerical 15N tracing model. Results on N turnover rates showed that roots and their fungal symbionts increased N cycling probably by input of labile C to soil which may results in an activation of the microbial biomass. While gross N mineralization increased by 270 and 313 % compared to the treatment excluding roots + mycorrhiza, NH4+ immobilization increased by 402 and 489 %. Differences in ammonium and nitrate immobilization further indicated that ammonium was the preferred N source for roots and microorganisms. While ammonium availability decreased with trenching (0.59 compared to -0.47 and -0.96 μg N g-1 d-1), the opposite was true for nitrate (0.50 compared to 2.08 and 2.18 μg N g-1 d-1), explaining the increased N2O emissions which were likely caused by denitrification. Further, plants increased dissimilarity nitrate reduction to ammonium (DNRA) and affected autotrophic nitrification probably by the release of nitrification inhibitors and by influencing ammonium availability. We conclude that plants and their mycorrhizal symbionts actively control N cycling

  1. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  2. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.

    PubMed

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed. PMID:20060344

  3. Solution NMR Experiment for Measurement of (15)N-(1)H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.

    PubMed

    Eletsky, Alexander; Pulavarti, Surya V S R K; Beaumont, Victor; Gollnick, Paul; Szyperski, Thomas

    2015-09-01

    NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to measure N-H RDCs for proteins and supramolecular complexes in excess of 200 kDa. This enables validation and refinement of their X-ray crystal and solution NMR structures and the characterization of structural and dynamic changes occurring upon complex formation. Accurate N-H RDCs were measured at 750 MHz (1)H resonance frequency for 11-mer 93 kDa (2)H,(15)N-labeled Trp RNA-binding attenuator protein tumbling with a correlation time τc of 120 ns. This is about twice as long as that for the most slowly tumbling system, for which N-H RDCs could be measured, so far, and corresponds to molecular weights of ∼200 kDa at 25 °C. Furthermore, due to the robustness of SE2 J-TROSY with respect to residual (1)H density from exchangeable protons, increased sensitivity at (1)H resonance frequencies around 1 GHz promises to enable N-H RDC measurement for even larger systems. PMID:26293598

  4. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments.

    PubMed

    Gardner, Jennifer B; Drinkwater, Laurie E

    2009-12-01

    Intensively managed grain farms are saturated with large inputs of nitrogen (N) fertilizer, leading to N losses and environmental degradation. Despite decades of research directed toward reducing N losses from agroecosystems, progress has been minimal, and the currently promoted best management practices are not necessarily the most effective. We investigated the fate of N additions to temperate grain agroecosystems using a meta-analysis of 217 field-scale studies that followed the stable isotope 15N in crops and soil. We compared management practices that alter inorganic fertilizer additions, such as application timing or reduced N fertilizer rates, to practices that re-couple the biogeochemical cycles of carbon (C) and N, such as organic N sources and diversified crop rotations, and analyzed the following response variables: 15N recovery in crops, total recovery of 15N in crops and soil, and crop yield. More of the literature (94%) emphasized crop recovery of 15N than total 15N recovery in crops and soil (58%), though total recovery is a more ecologically appropriate indicator for assessing N losses. Findings show wide differences in the ability of management practices to improve N use efficiency. Practices that aimed to increase crop uptake of commercial fertilizer had a lower impact on total 15N recovery (3-21% increase) than practices that re-coupled C and N cycling (30-42% increase). A majority of studies (66%) were only one growing season long, which poses a particular problem when organic N sources are used because crops recover N from these sources over several years. These short-term studies neglect significant ecological processes that occur over longer time scales. Field-scale mass balance calculations using the 15N data set show that, on average, 43 kg N x ha(-1) x yr(-1) was unaccounted for at the end of one growing season out of 114 kg N x ha(-1) x yr(-1), representing approximately 38% of the total 15N applied. This comprehensive assessment of

  5. Noninvasive Imaging of Tracer Experiments in a Soil Column

    NASA Astrophysics Data System (ADS)

    Jelinkova, V.; Pohlmeier, A.; van Dusschoten, D.; Vereecken, H.; Cislerova, M.

    2008-12-01

    A set of tracer-infiltration experiments on soil columns by means of magnetic resonance imaging (MRI) was performed. Computed tomography (CT) was applied in order to map the spatial distribution of porous media, namely the local densities and porosities, and their variation within the soil sample under test. The CT visualisation was done in order to trace disturbances in the structure as a possible source of preferential flow. By means of MRI the flow paths during the infiltration experiment were visualized using a tracer pulse containing Ni(NO3)2 in a concentration of 0.05 mol/litre. The pulse was added under hydraulic steady state conditions. The tracer motion was monitored through its effect on the signal relaxation of 1H using a 7 Tesla vertical magnet system equipped with a 40 mm RF probe. The boundary condition at the top of the soil columns was maintained using a dripping system connected to a HPLC pump with flow rate set to 0.5 ml/min. Free outflow was used as the bottom boundary condition. The vertical component of the local velocity value was calculated after the experiment. Small disturbances in the tracer front observed during the break-through could be related to the preferential flow phenomena in combination with the air bubble entrapment. This research has been supported by research project SP/2e7/229/07 and DBU - Deutsche Bundesstiftung Umwelt.

  6. HN(α/β-COCA-J) Experiment for Measurement of 1JC‧Cα Couplings from Two-Dimensional [15N, 1H] Correlation Spectrum

    NASA Astrophysics Data System (ADS)

    Permi, Perttu; Sorsa, Tia; Kilpeläinen, Ilkka; Annila, Arto

    1999-11-01

    Anew method for measurement of one-bond 13C‧-13Cα scalar and dipolar couplings from a two-dimensional [15N, 1H] correlation spectrum is presented. The experiment is based on multiple-quantum coherence, which is created between nitrogen and carbonyl carbon for simultaneous evolution of 15N chemical shift and coupling between 13C‧ and 13Cα. Optional subspectral editing is provided by the spin-state-selective filters. The residual dipolar dipolar contribution to the 13C‧-13Cα coupling can be measured from these simplified [15N, 1H]-HSQC-like spectra. In this way, without explicit knowledge of carbon assignments, conformational changes of proteins dissolved in dilute liquid crystals can be probed conveniently, e.g., in structure activity relationship by NMR studies. The method is demonstrated with human cardiac troponin C.

  7. Cross-Appalachian tracer experiment (CAPTEX '83). Final report

    SciTech Connect

    Ferber, G.J.; Heffter, J.L.; Draxler, R.R.; Legomarsino, R.J.; Dietz, R.N.

    1986-01-01

    The Cross-Appalachian Tracer Experiment (CAPTEX '83) was a major field study using a perfluorocarbon tracer to simulate the long-range transport and diffusion of pollutants in the atmosphere. The experiment consisted of 7 tracer releases, 5 from Dayton, Ohio, and 2 from Sudbury, Ontario, during mid-September through October 1983. Automatic, sequential ground-level samplers were operated at 80 sites in the northeastern United States and southeastern Canada at distances of 300 to 1100 km from the release sites. About 3000 3- and 6-hour-long samples were collected in the sampling network during CAPTEX. To determine the vertical distribution of tracer, seven aircraft collected over 1600 samples at various plume transects from 200 to 900 km from the releases. The regular rawinsonde observations in the CAPTEX sampling area were increased to 4 times daily following each release, and 10 additional rawinsonde stations were established to fill spacial gaps in the regular network while operating on a similar time schedule.

  8. Tracer experiment and model evidence for macrofaunal shaping of microbial nitrogen functions along rocky shores

    NASA Astrophysics Data System (ADS)

    Pfister, Catherine A.; Altabet, Mark A.; Pather, Santhiska; Dwyer, Greg

    2016-06-01

    Seawater microbes as well as those associated with macrobiota are increasingly recognized as a key feature affecting nutrient cycling. Tidepools are ideal natural mesocosms to test macrofauna and microbe interactions, and we quantified rates of microbial nitrogen processing using tracer enrichment of ammonium (15NNH4) or nitrate (15NNO3) when tidepools were isolated from the ocean during low intertidal periods. Experiments were conducted during both day and night as well as in control tidepools and those from which mussels had been removed, allowing us to determine the role of both mussels and daylight in microbial nitrogen processing. We paired time series observations of 15N enrichment in NH4+, NO2- and NO3- with a differential equation model to quantify multiple, simultaneous nitrogen transformations. Mussel presence and daylight increased remineralization and photosynthetic nitrogen uptake. When we compared ammonium gain or loss that was attributed to any tidepool microbes vs. photosynthetic uptake, microbes accounted for 32 % of this ammonium flux on average. Microbial transformations averaged 61 % of total nitrate use; thus, microbial activity was almost 3 times that of photosynthetic nitrate uptake. Because it accounted for processes that diluted our tracer, our differential equation model assigned higher rates of nitrogen processing compared to prior source-product models. Our in situ experiments showed that animals alone elevate microbial nitrogen transformations by 2 orders of magnitude, suggesting that coastal macrobiota are key players in complex microbial nitrogen transformations.

  9. Conceptual design of a massive aerometric tracer experiment (MATEX)

    SciTech Connect

    Hidy, G.M.

    1987-10-01

    A hypothetical field experiment is evaluated that relates, through tracer releases, reactive pollutant emissions to long range transport and deposition. The feasibility of such an approach is established provided certain requirements can be met. The experiment must: (a) trace emissions from several sources simultaneously and repetitively over an extended period to time, (b) link a tracer to the chemical behavior of emissions, and (c) apply a statistically sound method of guidance for deducing empirical source-receptor relationships (SRRs) while accounting for natural variability. One design approach would use perfluorocarbon tracers (PFTs), which are nonreactive in the atmosphere, to simulate the transport and dispersion of reactive species such as sulfur and nitrogen oxides. Conversion and loss factors would be calibrated using isotopic sulfur and nitrogen compounds with PFTs, in combination with aerometric and deposition observations. An experimental concept is described that determines SRRs for deposition from observations and their interpolation, synthesized by an empirical model. If implemented, the experiment would be very expensive and has high design risk for achieving its goals given present knowledge.

  10. Biogenic N2 and δ15 N-N2 As Proxies for N-Loss in the Eastern Tropical North Pacific: A Lagrangian Float Experiment.

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Altabet, M. A.; McNeil, C. L.; Larkum, J.; Reed, A. C.; D'Asaro, E. A.

    2014-12-01

    A large portion of the ocean's bioavailable N, a macronutrient limiting primary productivity, is lost in oxygen minimum zones (OMZs). Mesoscale processes (e.g. eddies, meandering currents), can transport highly productive waters from the coasts, increasing the downward flux of organic material, a substrate for N-loss, and thus can act as N-loss hotspots in OMZs. However, due to their transient nature, these mesoscale events are difficult to monitor using traditional shipboard observations. We deployed biogeochemical Lagrangian floats in the eastern tropical North Pacific during a research cruise in May/June 2014, where transport of high chlorophyll waters from the coast were inferred from satellite imagery. These Lagrangian floats are automonous platforms with the ability to follow isopycnals and were equipped with a suite of gas tension devices and other sensors to measure N2(g), O2, NO3- and NO2- concentrations. We concurrently collected discrete samples to calibrate and complement float measurements. We present here biogenic N2, i.e. N2 produced by local N-loss processes and derived from measured N2/Ar and δ15N-N2 anomaly, i.e. the difference between δ15N-N2 observed and at equilibrium for in-situ temperature and salinity, during a ~4 weeks Lagrangian experiment. During N-loss, the product (N2) is depleted in 15N because of kinetic isotope fractionation. While biogenic N2 only reached up to ~10 µmol/kg, the δ15N-N2 anomalies were relatively low (down to ~-0.4‰). The δ15N-N2 anomalies are low compared to values always >-0.1‰) for equivalent biogenic N2 in the OMZ of the eastern tropical South Pacific. We will discuss the implication of these results for the global oceanic N budget.

  11. North beach (Nazaré) sand tracer experiment

    NASA Astrophysics Data System (ADS)

    Duarte, João; Taborda, Rui; Ribeiro, Mónica; Cascalho, João; Silva, Ana; Bosnic, Ivana

    2014-05-01

    The littoral in the vicinity of Nazaré (West Portuguese coast) is characterized by two distinct coastal stretches separated by Nazaré headland: a northern sector (Norte beach) characterized by a high energetic continuous sandy beach and a southern sector (Nazaré bay beach) that corresponds to an embayed beach, sheltered by the Nazaré headland. The bay is a geomorphological expression of the Nazaré canyon head, which acts as powerful sediment sink, capturing the large longshore net southward transport at Norte beach generated by the north Atlantic high energetic swell. The northern side of the canyon head is carved on highly resistant Cretaceous limestone sustaining an underwater vertical relief that emerges on the Nazaré headland, creating a unusual nearshore wave pattern. This wave pattern not only concentrates high energy levels at the Norte beach but also contributes to local complex longshore drift gradients capable of inducing beach seasonal cross-shore variations of more than 200 m. The main factors that influence local sediment budget are: (1) canyon head capturing and (2) headland sediment bypassing. To obtain a direct measure of the net longshore drift at Norte beach (upstream boundary of the system) a large scale fluorescent tracer experiment was performed. The data will be used to validate longshore transport formulas in a high energetic environment and to access Nazaré canyon head sediment loss. Considering the anticipation of high transport rates, approximately 10 tonnes of native sand where coated with orange fluorescent ink using a set of concrete mixers. The experiment took place on the 9th to 15th September 2013 period and followed the continuous injection method (CIM). The CIM approach was justified by the expected high energy levels that inhibits sediment sampling across the surf zone. During the tracer injection procedure (approx. 5 hours), sediment sampling was performed at 13 sites along a rectilinear coastal stretch extended through

  12. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  13. Experiments on Tracer Diffusion in Water and Aqueous Mixtures

    NASA Astrophysics Data System (ADS)

    Spiegel, Dan

    2015-03-01

    We have used forced Rayleigh scattering to measure tracer diffusion coefficients in water and other liquids. The tracer molecule is the azobenzene derivative methyl red (MR). In one set of experiments diffusion was measured at different temperatures to test the Cohen-Turnbull (CT) free volume diffusion theory. It was found that eight solvents were in reasonable agreement with CT, but the relevant energy in water was smaller by an order of magnitude. We believe this is due to the ``zero-point'' free volume that water would possess, due to its H-bonds, even at the glass transition temperature, and to the ability of MR to diffuse along its plane. In a second set of experiments we studied diffusion in aqueous and non-aqueous mixtures. The non-aqueous mixtures are in good agreement with free volume theory, but the aqueous mixtures show large disagreement. We suggest this is caused by the formation of two solvent shells in the aqueous mixtures, driven by the hydrophobicity of MR and water-amphiphile hydrogen bonding. NSF Research at Undergraduate Institutions.

  14. Across North America tracer experiment (ANATEX): Sampling and analysis

    NASA Astrophysics Data System (ADS)

    Draxler, R. R.; Dietz, R.; Lagomarsino, R. J.; Start, G.

    Between 5 January 1987 and 29 March 1987, there were 33 releases of different tracers from each of two sites: Glasgow, MT and St. Cloud, MN. The perfluorocarbon tracers were routinely released in a 3-h period every 2.5 days, alternating between daytime and night-time tracer releases. Ground-level air samples of 24-h duration were taken at 77 sites mostly located near rawinsonde stations east of 105°W and between 26°N and 55°N. Weekly air samples were taken at 12 remote sites between San Diego, CA and Pt. Barrow, AK and between Norway and the Canary Islands. Short-term 6-h samples were collected at ground level and 200 m AGL along an arc of five towers between Tulsa, OK and Green Bay, WI. Aircraft sampling within several hundred kilometers of both tracer release sites was used to establish the initial tracer path. Experimental design required improved sampler performance, new tracers with lower atmospheric backgrounds, and improvements in analytic precision. The advances to the perfluorocarbon tracer system are discussed in detail. Results from the tracer sampling showed that the average and peak concentrations measured over the daily ground-level sampling network were consistent with what would be calculated using mass conservative approaches. however, ground-level samples from individual tracer patterns showed considerable complexity due to vertical stability or the interaction of the tracer plumes with low pressure and frontal systems. These systems could pass right through the tracer plume without appreciable effect. Aircraft tracer measurements are used to confirm the initial tracer trajectory when the narrow plume may miss the coarser spaced ground-level sampling network. Tower tracer measurements showed a more complex temporal structure than evident from the longer duration ground-level sampling sites. Few above background plume measurements were evident in the more distant remote sampling network due to larger than expected uncertainties in the ambient

  15. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.

    PubMed

    Yao, Lishan; Ying, Jinfa; Bax, Ad

    2009-03-01

    The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of (1)J(NH) splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of (2)J(NHalpha), (3)J(NHbeta) and (3)J(HNHalpha). Insertion of band-selective (1)H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields (1)J(NH) splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the (1)H-(15)N RDCs extracted from the minute differences in (1)J(NH) splitting measured at 500 and 750 MHz (1)H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of (2)J(NHalpha) couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the (15)N-(1)H(alpha) or (15)N-(1)H(beta) dipolar interaction. As expected, we find that (2)J(NHalpha) < or = 2 Hz, with values in the alpha-helix (0.86 +/- 0.52 Hz) slightly larger than in beta-sheet (0.66 +/- 0.26 Hz). Results indicate that under isotropic conditions, N-H(N)/N-H(beta) cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve (3)J(HNHalpha) and J(NHalpha), but when weakly aligned any aliphatic proton proximate to both N and H(N) can contribute. PMID:19205898

  16. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  17. H/D exchange of a 15N labelled Tau fragment as measured by a simple Relax-EXSY experiment

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Ahuja, Puneet; Landrieu, Isabelle; Cantrelle, François-Xavier; Huvent, Isabelle; Lippens, Guy

    2014-12-01

    We present an equilibrium H/D exchange experiment to measure the exchange rates of labile amide protons in intrinsically unfolded proteins. By measuring the contribution of the H/D exchange to the apparent T1 relaxation rates in solvents of different D2O content, we can easily derive the rates of exchange for rapidly exchanging amide protons. The method does not require double isotope labelling, is sensitive, and requires limited fitting of the data. We demonstrate it on a functional fragment of Tau, and provide evidence for the hydrogen bond formation of the phosphate moiety of Ser214 with its own amide proton in the same fragment phosphorylated by the PKA kinase.

  18. Flow-through column experiments to determine the geochemical behavior of common hydrological tracers

    NASA Astrophysics Data System (ADS)

    Moola, P. S. N.; Sigfússon, B.; Stefansson, A.

    2015-12-01

    Tracer testing is one of the most effective methods used to study groundwater flow, reservoir characteristics and subsurface properties in geohydrology. Hydrological tracer tests were conducted with the basic assumption that the tracer is chemically inert and non-reactive. However, not all tracers behave non-reactive at different pH conditions, the particular tracer may interact with mineral surfaces in the reservoir. In order to study the geochemical behavior of some common hydrological tracers flow-through column experiments were conducted at 25°C. Six common hydrological tracers were investigated, amino G acid, fluorescein, napthionic acid, pyranine, rhodamine B and rhodamine G in porous rocks consisting of basaltic glass, quartz or rhyolite at pH 3, 6.5 and 9. Homogenous porous material of fixed grain size 45-125μm were dry packed in the column to conduct flow through column experiments. Tracers were pumped at fixed flow rates for 20 minutes and switched back to experimental blank solution and the tracer concentration monitored at the outlet. The measured break-through tracer curves were compared to theoretical 1-D reactive transport simulations calculated using the PHREEQC program (Parkhurst and Appelo, 1999). The data obtained from the breakthrough curves suggest that the tracers may be reactive, non-reactive and partially reactive depending on the rock type and solution pH. The tracers that were observed to be reactive showed the influence of adsorption and desorption. The results suggest that some tracers commonly used in ground water hydrology are not suitable under all conditions as they may react with the rocks of the groundwater system.

  19. Model experiments on measuring flow in microvessels using tracers.

    PubMed

    Federspiel, W J; Malai, K

    1993-11-01

    Most techniques for measuring plasma or red cell flow velocity within microvessels rely on determining the transit time of a tracer to transverse the distance between two monitoring sites within a vessel. In principle, proper transit time determinations require flow-weighted sampling of the tracer at monitoring sites. In practical application of the tracer technique, however, trace sampling at monitoring sites is not flow-weighted but is area-weighted, and hence elapsed transient time can only be estimated from tracer data. We previously showed theoretically (Microvasc. Res. 40, 394-411, 1990) that the flow velocity determined under these conditions can differ appreciably from the actual mean flow velocity of the carrier fluid within the microvessel. Nevertheless, trace mean flow velocity does approach that of the fluid when tracer velocity is measured past a finite distance from the microvessel entrance. In this study, we examined the tracer measurement of flow experimentally using a physical model. We perfused single glass microvessels and simple fabricated microvessel networks with distilled water at physiological flow rates. Mean tracer velocity (Vd) was determined at several axial locations within the microvessels using injected Evans blue dye. At each location Vd was determined in a manner consistent with usual application of the tracer flow measurement technique. Actual mean flow velocity (Va) was determined from the measured effluent flow rates discharged from each microvessel. Our experimental results confirm the existence of an appreciable velocity measurement error (VME) associated with the tracer technique. The VME behavior was consistent with our original theoretical analysis. Vd was significantly smaller than Va within a finite length of vessel near the entrance, but approached and became equal to Va past this length. Furthermore, even under conditions where the VME was negligible at the end of a parent microvessel, a new and appreciable VME arose

  20. The field campaigns of the European Tracer Experiment (ETEX). overview and results

    NASA Astrophysics Data System (ADS)

    Nodop, K.; Connolly, R.; Girardi, F.

    As part of the European Tracer Experiment (ETEX) two successful atmospheric experiments were carried out in October and November, 1994. Perfluorocarbon (PFC) tracers were released into the atmosphere in Monterfil, Brittany, and air samples were taken at 168 stations in 17 European countries for 72 h after the release. Upper air tracer measurements were made from three aircraft. During the first experiment a westerly air flow transported the tracer plume north-eastwards across Europe. During the second release the flow was eastwards. The results from the ground sampling network allowed the determination of the cloud evolution as far as Sweden, Poland and Bulgaria. This demonstrated that the PFT technique can be successfully applied in long-range tracer experiments up to 2000 km. Typical background concentrations of the tracer used are around 5-7 fl ℓ -1 in ambient air. Concentrations in the plume ranged from 10 to above 200 fl/ℓ -1. The tracer release characteristics, the tracer concentrations at the ground and in upper air, the routine and additional meteorological observations at the ground level and in upper air, trajectories derived from constant-level balloons and the meteorological input fields for long-range transport models are assembled in the ETEX database. The ETEX database is accessible via the Internet. Here, an overview is given of the design of the experiment, the methods used and the data obtained.

  1. Feasibility of perfluorocarbon tracers (PFTs) in atmospheric source-receptor experiments

    SciTech Connect

    Dietz, R.N.; Senum, G.I.

    1984-03-01

    A brief description of the perfluorocarbon tracer (PFT) system, which includes the tracers and the release equipment, the air samplers and the analyzers, is presented along with details on the research needs to provide a viable system for MATEX-scenario experiments. The present family of 2 viable PFTs needs to be increased to 5 to 6. Given the present precision of the analysis system, a one year long tracer experiment consisting of 4 hour releases every 60 hours from 5 different sites would require nearly 150 metric tons of PFTs at a cost of $15,000,000. Shortcomings in the programmable sampler include the pump, the sampling sequence control flexibility, data storage and retrieval, and the lack of remote communication capability; sampler adsorbent studies are also needed. The analytical system, including the catalyst processing bed, the chromatography column resolution, and the linearity of the detector, is in need of significant improvement. A higher resolution analysis system could significantly reduce analysis time but, more importantly, reduce tracer requirements more than 10-fold, for a cost savings potential of more than $13,000,000. A model is presented to demonstrate the feasibility of tracer material balances. Assessment of earlier long-range tracer experiments indicates the need for possibly 400 ground sampling sites requiring $8 to $14 million worth of samplers for a one-year tracer experiment. As many as six aircraft would be needed to conduct airborne model validation and material balance studies for each tracer plume.

  2. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  3. Active ion tracer experiments attempted in conjunction with the ion composition experiment on GEOS-2

    NASA Astrophysics Data System (ADS)

    Young, D. T.

    It is pointed out that to date six ion injection/tracer experiments have been attempted in conjunction with the GEOS-2 Ion Composition Experiment: three rocket borne Ba shaped-charge releases (Porcupine 3 and 4 and Ba-GEOS), one Li release, and two periods of operation of the Xe(+) accelerator on the SCATHA satellite. The characteristics of each of these six releases are outlined, and upper limits are placed on possible ion fluxes reaching GEOS-2. The order of magnitude of ion fluxes to be expected from each release is estimated, and it is shown that three of the experiments had no real chance of succeeding in the first place.

  4. ACROSS NORTH AMERICA TRACER EXPERIMENT (ANATEX) MODEL EVALUATION STUDY

    EPA Science Inventory

    Three perfluorocarbon tracer gases were released at 2.5-day or 5.0-day intervals from two sites in central North America and sampled for 24-h periods at 77 surface sites. he source-receptor distances ranged from less than 30 km to 3,000 km. he data were used to evaluate the long-...

  5. Study of stability zone influences and tracer patterns from the 1987 ANATEX (Across North America Tracer Experiment) experiment

    SciTech Connect

    Porch, W.M.; Gifford, F.A.; Hoard, D.E.

    1988-01-01

    In this paper, we will show preliminary results which appear to connect much of the hit and miss behavior of the surface tracer samples to large scale stability zones 100 to 1000 km wide. With these wintertime stability effects in mind, we have done the best we can to characterize the observed overall tracer patterns as well as individual tracer releases. This type of survey information is important to numerical model development. Diagnostic models often have difficulty reproducing surface plume concentrations where transport over stable layers have occurred. Prognostic models can, in theory, model effects of strong stable layers. However, these models would have great difficulty predicting large scale stable regions such as those observed during ANATEX. Also, though these models have ways of budging in synoptic wind fields, temperature observations are presently ignored. This is because if both wind and temperature observations are forced too strongly into the model, conflicting results may be produced. 12 refs., 5 figs.

  6. Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Nilsson, H.; Kuras, O.; Bai, L.

    2016-05-01

    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention.

  7. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    NASA Astrophysics Data System (ADS)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  8. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2015-01-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS), and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purposes (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS onboard the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber-gas chromatography-mass spectrometry (TD-GC-MS) system. Guided by forecasts calculated with the Lagrangian model Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecast position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecast. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental setup and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  9. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2014-07-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS) and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purpose (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS on board the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS) system. Guided by forecasts calculated with the Lagrangian model, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, respectively, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecasted position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecasted. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental set-up and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  10. Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment

    NASA Astrophysics Data System (ADS)

    Pekney, Natalie; Wells, Arthur; Rodney Diehl, J.; McNeil, Matthew; Lesko, Natalie; Armstrong, James; Ference, Robert

    2012-02-01

    Field experiments at Montana State University are conducted for the U.S. Department of Energy as part of the Zero Emissions Research and Technology Center (ZERT) to test and verify monitoring techniques for carbon capture and storage (CCS). A controlled release of CO 2 with an added perfluorocarbon tracer was conducted in July 2009 in a multi-laboratory study of atmospheric transport and detection technologies. Tracer plume dispersion was measured with various meteorological conditions using a tethered balloon system with Multi-Tube Remote Samplers (MTRS) at elevations of 10 m, 20 m, and 40 m above ground level (AGL), as well as a ground-based portable tower with monitors containing sorbent material to collect the tracer at 1 m, 2 m, 3 m, and 4 m AGL. Researchers designed a horizontal grid of sampling locations centered at the tracer plume source, with the tower positioned at 10 m and 30 m in both upwind and downwind directions, and the MTRS spaced at 50 m and 90 m downwind and 90 m upwind. Tracer was consistently detected at elevated concentrations at downwind sampling locations. With very few exceptions, higher tracer concentrations correlated with lower elevations. Researchers observed no statistical difference between sampling at 50 m and 90 m downwind at the same elevation. The US EPA AERMOD model applied using site-specific information predicted transport and dispersion of the tracer. Model results are compared to experimental data from the 2009 ZERT experiment. Successful characterization of the tracer plume simulated by the ZERT experiment is considered a step toward demonstrating the feasibility of remote sampling with unmanned aerial systems (UAS's) at future sequestration sites.

  11. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  12. Long-range mesoscale modeling of pollutant transport for the European Tracer EXperiment (ETEX)

    SciTech Connect

    Fast, J.D.; Griggs, D.P.; Addis, R.P.

    1994-04-15

    The European Tracer EXperiment (ETEX). The ETEX program involves two tracer experiments each comprising from distinct elements: (a) long-range atmospheric tracer release, sampling, and analysis; (b) real-time model operation and evaluation; and (c) post-release model operation and evaluation. The experiments consist of the release of a non-buoyant tracer from a location in western Europe and sampling of the atmospheric concentration by a network of about 200 stations located in 17 countries. Twenty-three institutions from 19 countries are expected to participate in the real-time modeling program including the Savannah River Technology Center (SRTC) of the US Department of Energy`s Savannah River Site (SRS). Notification of the release will occur only after the initiation of the release. Participants will be required to provide 60-h concentration predictions as quickly a possible (within 6 h of being notified) and updated predictions every 12 h after the notification. In 1993 two ``dry runs`` for the real-time modeling component of the program were conducted; the actual tracer release experiment is scheduled for the fall of 1994. This paper describes the modeling approach employed by SRTC and presents some of the results of the second ETEX real-time dry run.

  13. A Cross-Hole, Multi-Year Tracer Injection Experiment in the Volcanic Ocean Crust

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Neira, N. M.; Wheat, C. G.; Clark, J. F.; Becker, K.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    We present preliminary results from the first cross-hole tracer injection experiment in the volcanic ocean crust. The test site is on 3.5 to 3.6 M.y. old seafloor on the eastern flank of the Juan de Fuca Ridge. Six borehole subseafloor observatories (CORKs) were installed during three scientific ocean drilling expeditions, five arrayed along a 1 km profile aligned with the strike of underlying abyssal hills (Holes 1026B, 1301A/B, and 1362A/B), and one offset 2.4 km to the east (1027C). Before installing the sixth CORK in Hole 1362B, in 2010, we injected a mixture of tracers (dissolved gas, metal salts, particles) during 24 hours into the upper ocean crust. Seafloor samplers connected CORKs, sampling from different locations in the crust, were recovered during servicing expeditions in 2011 and 2013; downhole samplers that contain records from the full four years following tracer injection will be recovered in Summer 2014. Analyses of dissolved gas tracers collected with wellhead samplers through 2013 suggest that the dominant flow direction in upper basement is south to north, as inferred from regional thermal data and the chemistry of geochemical (pore fluid and borehole) samples. The apparent tracer flow rate in upper basement is on the order of meters/day, but calculations are complicated by an incomplete CORK seal in Hole 1301A, which resulted in discharge from this system that also "pulled" water and tracer to the south. Samples were collected from the tracer injection borehole, Hole 1362B, and a sampling site 200 m to the north, Hole 1362A, beginning one year after tracer injection, after opening a large-diameter ball valve on the wellhead of Hole 1362B to initiate a long-term free flow experiment. Analyses of these samples suggest that much of the tracer injected in 2010 remained close to Hole 1362B rather than being advected and dispersed into the formation. It also appears that much of the tracer transport to Hole 1362A occurred within one or more

  14. Gaussian Modeling of Tracer Concentrations during the Joint Urban 2003 Experiment

    SciTech Connect

    Gouveia, F J

    2004-06-18

    The Joint Urban 2003 Experiment (JU2003) was conducted in Oklahoma City, Oklahoma during the summer of 2003. This extensive field experiment included over a hundred scientists measuring airflow, tracer concentration, and other variables pertinent to urban dispersion. A description of JU2003 can be found at this website: http://ju2003.pnl.gov/.

  15. Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment

    NASA Astrophysics Data System (ADS)

    Smith, Murray J.; Ho, David T.; Law, Cliff S.; McGregor, John; Popinet, Stéphane; Schlosser, Peter

    2011-03-01

    A dual tracer experiment was carried out during the SAGE experiment using the inert tracers SF 6 and 3He, in order to determine the gas transfer velocity, k, at high wind speeds in the Southern Ocean. Wind speed/gas exchange parameterization is characterised by significant variability and we examine the major measurement uncertainties that contribute to that scatter. Correction for the airflow distortion over the research vessel, as determined by computational fluid dynamics (CFD) modelling, had the effect of increasing the calculated value of k by 30%. On the short time scales of such experiments, the spatial variability of the wind field resulted in differences between ship and satellite QuikSCAT winds, which produced significant differences in transfer velocity. With such variability between wind estimates, the comparison between gas exchange parameterizations from diverse experiments should clearly be made on the basis of the same wind product. Uncertainty in mixed layer depth of ˜10% arose from mixed layer deepening at high wind speed and limited resolution of vertical sampling. However the assumption of equal mixing of the two tracers is borne out by the experiment. Two dual tracer releases were carried out during SAGE, and showed no significant difference in transfer velocities using QuikSCAT winds, despite the differences in wind history. In the SAGE experiment, duration limitation on the development of waves was shown to be an important factor for Southern Ocean waves, despite the presence of long fetches.

  16. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (< 50 cm) with the bedrock partly visible at the surface. In G1 (irrigated area approximately 1000 m2), tracer experiments were conducted under a roof between 1993 and 2003 during steady state flow conditions. In contrast, in F4 (irrigated area approximately 500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day‑1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity

  17. Consistent Simulation of Pulse-Like Conservative and Reactive Stream-Tracer Experiments on Multiple Scales

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Gritsch, M.; Knapp, J.; Lemke, D.; Cirpka, O. A.

    2012-12-01

    The redox-sensitive compound resazurin (Raz) has recently been introduced as reactive tracer for streams undergoing hyporheic exchange. Resazurin is converted to resorufin (Rru) in viable cells so that the Raz-Rru system acts as a probe for the metabolic activity of a stream, which is believed to be concentrated in the hyporheic zone. The reactive tracers, however, can also be sorbed. Advective-dispersive transport in the stream, potentially non-conventional transient storage in the hyporheic zone, sorption at the riverbed material, and transformation of the compounds leads to a coupled system that needs to be considered when analyzing pulse-like tracer experiments with the Raz-Rru system and a conservative tracer. We present a consistent model formulation of the reactive-transport system and apply it in the interpretation of experiments on multiple scales. (1) Column experiments with a length of about 10cm indicate that Raz and Rru undergo two-site sorption and chemical transformation during the passage through riverbed material. (2) We have analyzed breakthrough curves of the conservative and reactive tracers in piezometers within gravel bars during stream-tracer experiments. The conservative-tracer breakthrough curves in the gravel bar and in the stream directly beside it were deconvoluted to obtain the stream-to-piezometer travel-time distribution. Fitting the reactive tracer breakthrough curves, while accounting for the conservative travel-time distribution and the input signal in the stream, confirmed the two-site-sorption plus decay model of the Raz-Rru system in the hyporheic zone. (3) On the scale of entire stream reaches, we have jointly analyzed the conservative and reactive tracer breakthrough curves using a shape-free approach for the hyporheic travel-time distribution, two-site sorption of Raz and Rru in the hyporheic zone, and the Raz-to-Rru transformation. By this, we could identify the stream velocity, in-stream dispersion coefficient, the

  18. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  19. Heat tracer test in an alluvial aquifer: field experiment and inverse modelling

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre; Orban, Philippe; Hermans, Thomas; Nguyen, Frederic; Brouyère, Serge; Dassargues, Alain

    2016-04-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells distributed throughout the field site (space-filling arrangement) were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneity of hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with the pilot point inverse approach, main preferential flow paths were delineated.

  20. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.

    PubMed

    Novakowski, K S; Bickerton, G; Lapcevic, P

    2004-09-01

    Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from

  1. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  2. Experiment 2043: EE-3 Fracture Exploration with Tracer

    SciTech Connect

    Brown, Donald W.; Grigsby, Charles O.; Hendron, Robert H.

    1984-06-19

    Early during Experiment 2042, flow communication was established between the high-pressure injection interval below the liner in EE-3, and the low-pressure fracture zone between the casing and the liner (the latter region being open to the annulus.) As Experiment 2042 progressed, it became apparent that this flow connection was not via a packer leak or a direct bypass around the cemented-in liner. This was inferred from the very slow pressure equilibration behavior of the flow connection under shut-in conditions, implying that the communication was through a relatively high impedance flow path more typical of a fracture connection or connections.

  3. Idaho Field Experiment 1981. Volume 3. Comparison of trajectories, tracer concentration patterns and MESODIF model calculations

    SciTech Connect

    Start, G E; Cate, J H; Sagendorf, J F; Ackermann, G R; Dickson, C R; Nukari, N H; Thorngren, L G

    1985-02-01

    The 1981 Idaho Field Experiment was conducted in southeast Idaho over the Upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46 m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24 km square. Also, a single total integrated sample, of about 30 hours duration, was collected at approximately 100 sites within an area 48 by 72 km (using 6 km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL mesonet. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High-altitude aerial photographs of daytime plumes were also collected. Volume III contains descriptions of the nine intensive measurement days. General meteorological conditions are described, trajectories and their relationships to analyses of gaseous tracer data are discussed, and overviews of test day cases are presented. Calculations using the ARLFRD MESODIF model are included and related to the gaseous tracer data. Finally, a summary and a list of recommendations are presented. 11 references, 39 figures, 4 tables.

  4. Tracer dilution measurements for two-phase geothermal production: Comparative testing and operating experience

    SciTech Connect

    Hirtz, P.; Lovekin, J.

    1995-12-31

    The tracer dilution technique for the measurement of steam and water mass flowrates and total enthalpy of two-phase geothermal fluids has been in routine use in the U.S.A. for almost three years. The tracer technique was first tested and adopted on a field-wide basis at the Coso geothermal field in California. Validation of the method was performed at the Roosevelt Hot Springs geothermal project in Utah and the Salton Sea and Heber geothermal projects in California by direct comparison to orifice-plate flowmeter measurements of the separated phases. Production well mass flowrates and total enthalpy are now regularly measured by this technique in the Coso, Salton Sea and Heber geothermal fields. Implementation of the tracer method is currently underway for the Tiwi and Bulalo geothermal fields in the Philippines. This paper presents the conceptual design of the measurement process, the results of field validations, and operating experience during field-wide testing in Coso.

  5. Potential soluble, reactive, adsorptive and particulate tracers for source-receptor experiments in MATEX

    SciTech Connect

    Senum, G.I.; Dietz, R.N.

    1985-07-01

    A survey of potential non-conservative tracers for use in source-receptor studies in acid deposition is presented. Classes of tracers considered were water soluble tracers, chemically reactive tracers, adsorptive tracers and particulate tracers. A criterion used for the selection of compounds for nonconservative tracers is that they be as reasonably compatible in the analytical detection system used for the conservative perfluorocarbon tracers. For each class of non-conservative tracers several example compounds are given and discussed, along with the research needed to develop these tracers. A reasonable development time for these tracers is as follows; adsorptive tracers, 2 years; particulate tracers, 2 1/2 years; soluble tracers, 3 years and reactive tracers, 3 1/2 years. By development, it is meant that 1 or 2 tracers have been developed and at least demonstrated in a small field test. 6 refs., 2 tabs.

  6. Modeling of solute transport in snow using conservative tracers and artificial rain-on-snow experiments

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghoon; Feng, Xiahong; Posmentier, Eric S.; Faiia, Anthony M.; Osterhuber, Randall; Kirchner, James W.

    2008-02-01

    We report a study of solute transport in snow, using artificial rain-on-snow experiments with conservative anions (F-, Br-, and SO42-). The tracers were mixed into tap water and sprayed onto the snow surface from two water supply tanks. The water flux out of the base of the snowpack was recorded, and discharge samples were collected and analyzed for the three tracers. The chemical concentration of tracers in the discharge was negatively associated with the water flux. The objectives of the experiment were to test whether the mobile-immobile model (MIM) with variable mobile-immobile water exchange coefficient can simulate both positive and negative concentration-discharge relationships in this and previous tracer experiments. By simulating our experimental data, we confirm that it is necessary for the exchange coefficient to increase with water velocity. In addition, we use the model to show that with a diurnal variation of clean water flux, a negative concentration-discharge relationship occurs when solutes are evenly distributed in the mobile and immobile fluids, while a positive relationship occurs when the solutes were present only in the immobile fluid near the surface. This result may help in explaining the complicated concentration-discharge relationships observed in catchments.

  7. Design and analysis of Cross-Appalachian Tracer Experiment (CAPTEX) field trials. Second annual progress report. [CAPTEX

    SciTech Connect

    Baer, F.; Holland, J.Z.

    1985-01-01

    Procedures for testing atmospheric transport and dispersion models for distances of several hundred to 1000 km from sources of pollutants are reviewed. The approach is to use both simulated tracer distributions and actual tracer measurements on the US-Canada multi-agency Cross-Appalachian Tracer Experiment CAPTEX '83 surface sampling domain to estimate the accuracy with which the parameters describing the location and distribution of the tracer cloud can be determined from experimental data. In CAPTEX '83, five perfluorocarbon tracer releases were made from Dayton, Ohio, and two releases from Sudbury, Ontario. Surface air samples were collected at 84 locations in northeastern United States and eastern Canada. Three simulation experiments have been conducted with a Gaussian plume model simulating time-integrated surface-layer concentration (i.e., dosage) distributions of tracer clouds from a surface source.

  8. Using radar tomography, tracer experiments and hydraulic data to characterize fractured rock flow systems

    NASA Astrophysics Data System (ADS)

    Day-Lewis, Frederick David

    Among the most pressing problems in hydrogeology is describing heterogeneity in fractured rock, where data are typically local and sparse, and permeability varies by orders of magnitude over short distances. This dissertation presents new approaches to characterize fractured rock groundwater flow systems using cross-well radar, tracer, and hydraulic experiments. The methods are demonstrated using data from the U.S. Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, New Hampshire. One underutilized source of information in characterization of fractured rock is hydraulic connection data. Wells connected by a high-permeability fracture zone tend to exhibit similar hydraulic responses during pumping or drilling. A simulated-annealing algorithm is presented to condition geostatistical simulations to inferred connections. The method is used to generate 3-D realizations of fracture-zone geometry at the Mirror Lake Site. Results indicate the likely extents of specific zones. Flow models based on realizations are calibrated to hydraulic data to estimate the hydraulic parameters of the fracture zones and surrounding bedrock. Another innovative source of information for characterization is time-lapse difference-attenuation radar tomography, which has been used to monitor the migration of electrically conductive saline tracers. A sequential-inversion methodology is presented and demonstrated for a synthetic example. The method uses space-time parameterization and regularization to account for changes in concentration that occur quickly relative to the collection of radar data. The time-lapse tomographic inversion method is applied to data from the Mirror Lake Site. Difference-attenuation tomography indicates the timing and spatial distribution of tracer transport in three planes that form a triangular prism. Tracer migration is focused along a preferential pathway. Comparison of the time-series of tomograms with the outlet tracer data suggests that much

  9. Trip Report for the 2005 Sino-American SF6 Tracer Experiment

    SciTech Connect

    Bradley, M M; Sullivan, T J; Keating II, G A; Leach, M J

    2005-09-07

    The Chinese Institute for Radiation Protection (CIRP) conducted an SF6 atmospheric tracer experiment in July 2005 in the vicinity of the Qinshan Nuclear Power Company complex on the coast of the East China Sea. The experiment was partially sponsored by the US Department of Energy National Nuclear Security Administration, under the NA-23 International Emergency Management and Cooperation Program. NA-23 sent a delegation of five scientists to observe the experiment; four of the observers were from Lawrence Livermore National Laboratory (LLNL) and one was from the Japan Atomic Energy Research Institute (JAERI). CIRP's cooperation with the US-Japanese delegation was excellent, and the project was very successful from the international cooperation perspective. Although the experiment was modest in scope, it may provide one or more data sets that can be used for international dispersion model validation and intercomparison projects. Several areas for procedural improvements were noted by the US and Japanese observers, and a more concise measure of the experiment's scientific value will be available after CIRP completes and delivers the database of the experiment results by the end of the fiscal year. The consensus recommendation of the observers is that CIRP and DOE/NNSA NA-23 build on the experience and personal contacts gained during the experiment to plan and conduct an even more effective experiment in the future, perhaps as early as next year (2006). If the decision is made to conduct a follow-on experiment, we strongly recommend that the LLNL and JAERI representatives work cooperatively with CIRP throughout the entire planning phase of the experiment. As discussed in Section V, a 2006 China tracer experiment could serve as a springboard to a 2007 long-range international tracer experiment involving South Korea.

  10. Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, midcontinent United States

    USGS Publications Warehouse

    Böhlke, J.K.; Harvey, J.W.; Voytek, M.A.

    2004-01-01

    We conducted an in-stream tracer experiment with Br and 15N-enriched NO3- to determine the rates of denitrification and related processes in a gaining NO3--rich stream in an agricultural watershed in the upper Mississippi basin in September 2001. We determined reach-averaged rates of N fluxes and reactions from isotopic analyses of NO3-, NO 2-, N2, and suspended particulate N in conjunction with other data in a 1.2-km reach by using a forward time-stepping numerical simulation that included groundwater discharge, denitrification, nitrification, assimilation, and air-water gas exchange with changing temperature. Denitrification was indicated by a systematic downstream increase in the ??15N values of dissolved N2. The reach-averaged rate of denitrification of surface-water NO3- indicated by the isotope tracer was approximately 120 ?? 20 ??mol m-2 h-1 (corresponding to zero- and first-order rate constants of 0.63 ??mol L-1 h-1 and 0.009 h -1, respectively). The overall rate of NO3- loss by processes other than denitrification (between O and about 200 ??mol m-2 h-1) probably was less than the denitrification rate but had a large relative uncertainty because the NO3- load was large and was increasing through the reach. The rates of denitrification and other losses would have been sufficient to reduce the stream NO 3- load substantially in the absence of NO 3- sources, but the losses were more than offset by nitrification and groundwater NO3- inputs at a combined rate of about 500-700 ??mol m-2 h-1. Despite the importance of denitrification, the overall mass fluxes of N2 were dominated by discharge of denitrified groundwater and air-water gas exchange in response to changing temperature, whereas the flux of N2 attributed to denitrification was relatively small. The in-stream isotope tracer experiment provided a sensitive direct reach-scale measurement of denitrification and related processes in a NO3--rich stream where other mass-balance methods were not suitable because

  11. Using Tracer Experiments To Study Phosphorus Transfer From Soil To Overland Flow

    NASA Astrophysics Data System (ADS)

    Vollmer, T.; Stamm, C.; Schaerer, M.; Sinaj, S.; Frossard, E.; Fluehler, H.

    Diffuse phosphorus (P) losses from agricultural land contribute to the eutrophication of surface water bodies in Switzerland. Grassland soils in areas of high animal stock densities are often prone to high P losses due to over-fertilization and a strong accumu- lation of P in the topsoil. In order to understand the effects of management practices and remediation measures on P transfer into runoff water at a small scale it is impor- tant to localize the sources of this phosphorus within the soil profile and to describe the water flows within the topsoil­overland flow system. We are studying the effects of remediation measures on P availability in the soil and on P concentrations in overland flow in a field experiment. We are using tracer exper- iments to examine the mixing behavior of water applied with a sprinkling device onto the soil surface with pre-event soil water and to trace the contribution of those two water sources to overland flow. Two plots were pre-irrigated with a solution of KBr in order to label the soil solu- tion. After a few days of equilibration, two fluorescent dyes were applied to different areas of the plots at a constant rate of 40 mm h-1. Surface runoff was analyzed for tracer concentrations. Small soil monoliths (0.35 * 0.25 *0.20 m3) were excavated and the tracer distribution within the blocks was mapped using a digital camera, optical filters, and tracer specific excitation light source. This tracing technique allowed for independent mapping of the distribution of two simultaneously applied tracers. The experiments demonstrated heterogenous infiltration of the dyes, negligible lat- eral translocation of the dyes within the soil, minimal transfer of the pre-applied Br- into overland flow, early breakthrough of the dye tracers in overland flow which was independent of the tracers sorption properties and a recovery of the dyes that corre- sponded to the runoff ratio. In all, the experiments indicate a very restricted interac- tion between

  12. Analysis of tracer responses in the BULLION Forced-Gradient Experiment at Pahute Mesa, Nevada

    SciTech Connect

    Paul W. Reimus; Marc J. Haga

    1999-10-01

    This report presents an analysis of the tracer data from the BULLION forced-gradient experiment (FGE) conducted on Pahute Mesa at the Nevada Test Site from June 2, 1997 through August 28, 1997, for the Underground Test Area (UGTA) Program. It also serves to document the polystyrene microsphere data from the FGE. The FGE involved the injection of solute and colloid tracers into wells ER-20-6 No. 1 and ER-20-6 No. 2 while ER-20-6 No. 3 was pumped at approximately 116 gallons per minute (gpm). The experimental configuration and test design are described briefly in this report; more details are provided elsewhere (IT, 1996, 1997, 1998). The tracer responses in the various wells yielded valuable information about transport processes such as longitudinal dispersion, matrix diffusion and colloid transport in the hydrogeologic system in the vicinity of the BULLION nuclear test cavity. Parameter values describing these processes are derived from the semi-analytical model interpretations presented in this report. A companion report (IT, 1998) presents more detailed numerical modeling interpretations of the solute tracer responses.

  13. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    PubMed

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems. PMID:27288672

  14. Development Of A Methodology For The Application Of Synthetic DNA In Stream Tracer Injection Experiments

    NASA Astrophysics Data System (ADS)

    Foppen, J.; Bogaard, T.

    2013-12-01

    Stream tracer injection experiments are useful for characterizing hydrological and biogeochemical processes in streams. We used non-conservative synthetic DNA and conservative NaCl in six instantaneous tracer injection experiments in streams in the Benelux. The main aim was to compare the performance of injected synthetic DNA tracer 'T23' with NaCl. In all experiments, the shapes of the T23 and NaCl breakthrough curves (BTCs) were similar. Recovered T23 mass ranged from 2.9-52.6%, while recovered NaCl tracer mass ranged from 66.7% to complete mass recovery. In batch experiments, T23 decay was not detected. However, in those batches, we observed an unexplained initial T23 mass loss of 40-97%. In batches with sediment, T23 attachment rate coefficients ranged from close to zero to 0.2 hr-1. Advective and dispersive transport parameters of both NaCl and T23 fitted with STAMMT-L were similar. However, compared to T23, fitted storage zone areas of NaCl were 2-5 times larger, while storage zone exchange coefficients were two times larger. Fitted mass dilution factors of T23 ranged from 1.6-34.8. Together, these results pointed towards the disappearance of a part of the T23 mass due to both initial losses and attachment or sorption of T23 mass in those storage zone(s), while decay was not important. Our research demonstrated that artificial DNA can be a valuable tool to determine advective and dispersive transport in brooks, but not to assess solute mass exchange processes related to surface transient storage or hyporheic exchange.

  15. Development of a methodology for the application of synthetic DNA in stream tracer injection experiments

    NASA Astrophysics Data System (ADS)

    Foppen, Jan Willem; Seopa, Judith; Bakobie, Noel; Bogaard, Thom

    2013-09-01

    Stream tracer injection experiments are useful for characterizing hydrological and biogeochemical processes in streams. We used nonconservative synthetic DNA and conservative NaCl in six instantaneous tracer injection experiments in streams in the Benelux. The main aim was to compare the performance of injected synthetic DNA tracer "T23" with NaCl. In all experiments, the shapes of the T23 and NaCl breakthrough curves (BTCs) were similar. Recovered T23 mass ranged from 2.9 to 52.6%, while recovered NaCl tracer mass ranged from 66.7% to complete mass recovery. In batch experiments, T23 decay was not detected. However, in those batches, we observed an unexplained initial T23 mass loss of 40-97%. In batches with sediment, T23 attachment rate coefficients ranged from close to zero to 0.2 hr-1. Advective and dispersive transport parameters of both NaCl and T23 fitted with STAMMT-L were similar. However, compared to T23, fitted storage zone areas of NaCl were 2-5 times larger, while storage zone exchange coefficients were two times larger. Fitted mass dilution factors of T23 ranged from 1.6 to 34.8. Together, these results pointed toward the disappearance of a part of the T23 mass due to both initial losses and attachment or sorption of T23 mass in those storage zone(s), while decay was not important. Our research demonstrated that artificial DNA can be a valuable tool to determine advective and dispersive transport in brooks, but not to assess solute mass exchange processes related to surface transient storage or hyporheic exchange.

  16. Tracer experiment and flow modelling applied to Ekeby treatment wetland, Sweden.

    NASA Astrophysics Data System (ADS)

    Kjellin, J. P.; Worman, A.

    2005-05-01

    The use of treatment wetlands have come to play an important role in reducing nutrient content in wastewater and in run-off water from agricultural areas. It is of interest to optimize the nutrient removal efficiency. In order to do so hydrological and geochemical processes, and the coupling between them, must be known in greater detail than is currently the case. One way of investigating this matter is to perform tracer experiments and evaluate the results using computer simulations. In November 2002 a simultaneous tracer experiment was performed in a treatment wetland, using tritiated water, P-32 and N-15. The wetland is situated 120 km west of Stockholm in Sweden, and the basin where the experiment was performed has an area of 2,6 ha. The simultaneous use of conservative tracer and reactive tracers enables a fair evaluation of both hydraulic processes and biochemical reactions. In this presentation evaluation of the hydraulic matters will be in focus, the geochemical issues will be described in companion presentations. In order to evaluate the hydraulic behaviour and the fate of tritium through the wetland, a two-dimensional flow model was developed in a MATLAB environment. The model is able to deal with variations in shape, bottom topography and friction factors. It was used to simulate flow of inert particles through the wetland. Breakthrough curves of tritium and simulation results were studied and compared for different setups of friction parameters. The simulations show that bottom topography and shape of basin alone are not enough to explain the spreading of water residence times in the wetland. Distribution and density of vegetation, simulated as friction factors, are shown to be crucial when it comes to reproducing the residence time distribution from the experiment.

  17. Trifluoromethyl Sulfur Pentafloride (SF5CF3), a Gas With Potential for Tracer Release Experiments

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Ledwell, J. R.; Ho, D. T.

    2004-12-01

    SF5CF3 is chemically similar to SF6, a gas which has been used extensively in tracer release experiments, with a CF3 group substituted for a F atom in the molecular structure. It is a gas at atmospheric pressure and is present in the atmosphere with a mixing ratio of 0.12 ppt in 1999 [Sturges et al., Science, 289, 2000]. Sturges et al. (2000) measured a vertical profile of SF5CF3 and SF6 in Antarctic firn ice, showing that it has existed in the atmosphere for the last 3 decades and has increased over time with a trend that nearly parallels the increase of SF6. This suggests that its source could be related to the production and use of SF6, but there are also industrial processes for which it is a by-product. However, the exact source is not understood at this time. SF5CF3 is chemically stable with an estimated atmospheric lifetime of about 800 years [Takahashi et al., Geophys. Res. Lett., 29, 2002]. Because of its very low mixing ratio in the atmosphere and its chemical stability, it has very high potential for use in tracer release experiments. We have carried out some preliminary experiments to evaluate this potential. SF5CF3 can be measured in water samples by the same purge and trap - gas chromatographic procedure used for CFCs, has an ECD sensitivity slightly greater than SF6, and has a linear ECD response up to at least 80 fmoles. A preliminary determination of its solubility in fresh water revealed an Ostwald coefficient of 0.031 at 25 deg C, which is about half that of SF6. Its Ostwald coefficient in 1-octonol was measured to be about 3, roughly 7 times greater than for SF6. This suggests that SF5CF3 will have a greater affinity for organic matter than SF6. In open ocean tracer release experiments, SF6 is slowly transported downward in addition to its vertical spreading by diapycnal mixing. This could be caused by adsorption and release from sinking particles with organic phases, but the solubility of SF6 and SF5CF3 in 1-octanol indicate this effect is too

  18. Use of 13C and 15N mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions.

    PubMed

    Ludwig, B; Heil, B; Flessa, H; Beese, F

    2000-01-01

    The dynamics of C and N in terrestrial ecosystems are not completely understood and the use of stable isotopes may be useful to gain further insight in the pathways of CO2 emissions and leaching of dissolved organic carbon (DOC) and nitrogen (DON) during decomposition of litter. Objectives were (i) to study the decomposition dynamics of Calamagrostis epigeios, a common grass species in forests, using 13C-depleted and 15N-enriched plants and (ii) to quantify the effect wood ash addition on the decomposition and leaching of DOC and DON. Decomposition was studied for 128 days under aerobic conditions at 8 degrees C and moisture close to field capacity in a spodic dystric Cambisol with mor-moder layer. Variants included control plots and additions of (i) Calamagrostis litter and (ii) Calamagrostis litter plus 4 kg ash m-2. (i) Decomposition of Calamagrostis resulted in a CO2 production of 76.2 g CO2-C m-2 (10% of added C) after 128 days and cumulative DOC production was 14.0 g C m-2 out of which 0.9 g C m-2 was Calamagrostis-derived (0.1% of added C). The specific CO2 formation and specific DOC production from Calamagrostis were 6 times higher (CO2) and 4 times smaller (DOC) than those from the organic layer. The amount of Calamagrostis-derived total N (NH4+, NO3-, DON) leached was 0.7 g N m-2 (4.8% of added N). Cumulative DON production was 0.8 g N m-2 which was slightly higher than for the control. During soil passage, much of the DOC and DON was removed due to sorption or decomposition. DOC and DON releases from the mineral soil (17 cm depth) were 6.3 g C m-2 and 0.5 g N m-2. (ii) Addition of ash resulted in a complete fixing of CO2 for 40 days due to carbonatisation. Afterwards, the CO2 production rates were similar to the variant without ash addition. Production of DOC (98.6 g C m-2) and DON (2.5 g N m-2) was marked, mainly owing to humus decay. However, Calamagrostis-derived DOC and Calamagrostis-derived total N were only 3.9 g C m-2 (0.5% of added C) and 0.5 g N

  19. Across North America Tracer Experiment (ANATEX). Volume 3. Sampling at tower and remote sites. Technical memo

    SciTech Connect

    Heffter, J.L.; Draxler, R.R.

    1989-10-01

    The Across North America Tracer Experiment (ANATEX) was designed to provide a comprehensive data base for assessing the performance of long-range transport and diffusion models. Three distinct perfluorocarbon tracers (PMCH, oPDCH, and PTCH) were released simultaneously for a 3-h duration every 2 1/2 days from 2 sites; PTCH from Glasgow, Montana, and oPDCH and PMCH (every fifth day) from St. Cloud, Minnesota for the 84-day period January 5, 1987 through March 29, 1987. The report describes the experimental design of the sampling programs at the tower and remote sites, discusses the measured data and how they were analyzed and quality assured, summarizes data characteristics, discusses data use, and presents complete data tables for both tower and remote sites. The report also describes the characteristics, format, and accessibility of data sets created from the data analysis.

  20. 13N,15N isotope and kinetic evidence against hyponitrite as an intermediate in dentrification.

    PubMed

    Hollocher, T C; Garber, E; Cooper, A J; Reiman, R E

    1980-06-10

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N,15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mM. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during dentrifucation, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in dentrification. In addition, the assimilation of inorganic nitrogen was studied in P. denitrificans using 13N as tracer. At low concentrations (less than 10(-8) M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mM [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction. PMID:7372623

  1. The influence of Mg(2+) coordination on (13) C and (15) N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations.

    PubMed

    Vícha, Jan; Babinský, Martin; Demo, Gabriel; Otrusinová, Olga; Jansen, Séverine; Pekárová, Blanka; Žídek, Lukáš; Munzarová, Markéta L

    2016-05-01

    Sequence dependence of (13) C and (15) N chemical shifts in the receiver domain of CKI1 protein from Arabidopsis thaliana, CKI1RD , and its complexed form, CKI1RD •Mg(2+) , was studied by means of MD/DFT calculations. MD simulations of a 20-ns production run length were performed. Nine explicitly hydrated structures of increasing complexity were explored, up to a 40-amino-acid structure. The size of the model necessary depended on the type of nucleus, the type of amino acid and its sequence neighbors, other spatially close amino acids, and the orientation of amino acid NH groups and their surface/interior position. Using models covering a 10 and a 15 Å environment of Mg(2+) , a semi-quantitative agreement has been obtained between experiment and theory for the V67-I73 sequence. The influence of Mg(2+) binding was described better by the 15 Å as compared to the 10 Å model. Thirteen chemical shifts were analyzed in terms of the effect of Mg(2+) insertion and geometry preparation. The effect of geometry was significant and opposite in sign to the effect of Mg(2+) binding. The strongest individual effects were found for (15) N of D70, S74, and V68, where the electrostatics dominated; for (13) Cβ of D69 and (15) N of K76, where the influences were equal, and for (13) Cα of F72 and (13) Cβ of K76, where the geometry adjustment dominated. A partial correlation between dominant geometry influence and torsion angle shifts upon the coordination has been observed. Proteins 2016; 84:686-699. © 2016 Wiley Periodicals, Inc. PMID:26879585

  2. Long-range (CAPTEX (Cross-APpalachian Tracer EXperiment)) and complex terrain (ASCOT (Atmospheric Studies of COmplex Terrain)) perfluorocarbon tracer studies

    SciTech Connect

    Jeffter, J.L.; Yamada, T.; Dietz, R.N.

    1986-01-01

    Perfluorocarbon tracer (PFT) technology, consisting of tracers, samplers, and analytical equipment, has been deployed in numerous meteorological experiments for the verification of long-range and complex terrain transport and dispersion models. The CAPTEX (Cross-APpalachain Tracer EXperiment) ''83 was conducted from mid-September through October 1983, in which seven 3-h tracer releases (5 from Dayton, Ohio, and 2 from Sudbury, Ontario) were made of a single PFT. Ground sampling occurred at 80 sites in the northeastern US and southeastern Canada at distances of 300 to 1100 km from the release sites, with a total of 3000 samples collected. Seven aircraft gathered 1600 crosswind and vertical spiral samples at distance of 200 to 900 km from the release sites. Peak ground concentrations of over 30 times background and peak aircraft values of over 150 times background were measured at the most distant sites; some typical results are shown. The branching atmospheric trajectory (BAT) long-range transport was described. The model-calculated maximum ground level PFT concentrations were compared with the measured concentration isopleths as well as through the use of scatter diagrams of concentrations, spatial errors, and frequency of space- and time-averaged concentrations. The average spatial error found for each of the 7 releases ranged from 1.3/sup 0/ to 1.7/sup 0/ lat. The crosswind standard deviations of aircraft traverses at 600 to 800 km downwind varied from 12 to 20 km which corresponded to 1.0/sup 0/ to 1.6/sup 0/ lat., indicating that the model was accurate to within one standard deviation of the real-time tracer profiles. On average, for the 7 runs, 50% of the model-calculated concentrations were within a factor of 20 of the observations, indicating that, in general, 1/sup 0/ lat. shifts can easily cause order-of-magnitude changes in observed concentrations.

  3. A perfluorocarbon tracer transport and dispersion experiment in the North Sea Ekofisk oil field

    SciTech Connect

    Senum, G.I.; Dietz, R.N.; D'Ottavio, T.W.; Goodrich, R.W.; Cote, E.A.; Spandau, D.J.

    1989-12-01

    A perfluorocarbon tracer (PFT) transport and dispersion experiment has been performed in the Ekofisk section of the North Sea oil fields. Fifty grams each of three PFTs were injected into a well and 28 surrounding wells were sampled for the presence of PFT. Sampling was accomplished by initially collecting bottles of reservoir hydrocarbon gas and subsequently transferring 5 liter (gas phase) aliquots onto Capillary Adsorbent Tracer (CAT) samplers. The resulting CATS samplers were analyzed for PFT in a specially configured laboratory gas chromatograph with electron capture detection. The limit of detection for PFT as determined by standard addition experiments was circa 1 to 10 femtoliters (10{sup {minus}15} L) per liter of sampled reservoir gas. Sampling was performed up to two years past the injection time; approximately two hundred samples were analyzed. PFT was performed only in four sampling wells at four different times, though the PFT analysis of earlier samples lack sufficient sensitivity to PFT detection due to a hydrocarbon interferent problem which was resolved during this experiment. The PFT concentrations observed in these four wells appeared to follow an exponential dilution law with a dilution half-life of approximately 70 days in the reservoir. Recommendations for future experiments of this nature are made based on the problems encountered in this initial study. 4 refs., 28 figs., 10 tabs.

  4. Characterization of reactive tracers for C-wells field experiments 1: Electrostatic sorption mechanism, lithium

    SciTech Connect

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.; Newman, B.D.

    1989-11-01

    Lithium (Li{sup +}) was introduced as lithium bromide (LiBr), as a retarded tracer for experiments in the C-wells complex at Yucca Mountain, Nevada Test Site, Nevada. The objective was to evaluate the potential of lithium to sorb predominately by physical forces. lithium was selected as a candidate tracer on the basis of high solubility, good chemical and biological stability, and relatively low sorptivity; lack of bioaccumulation and exclusion as a priority pollutant in pertinent federal environmental regulations; good analytical detectability and low natural background concentrations; and a low cost Laboratory experiments were performed with suspensions of Prow Pass cuttings from drill hole UE-25p{number_sign}1 at depths between 549 and 594 m in J-13 water at a pH of approximately 8 and in the temperature range of 25{degree}C to 45{degree}C. Batch equilibrium and kinetics experiments were performed; estimated thermodynamic constants, relative behavior between adsorption and desorption, and potentiometric studies provided information to infer the physical nature of lithium sorption.

  5. A perfluorocarbon tracer transport and dispersion experiment in the North Sea Ekofisk oil field

    SciTech Connect

    Senum, G.I.; Dietz, R.N.; D'Ottavio, T.W.; Goodrich, R.W.; Cote, E.A.; Spandau, D.J.

    1990-07-01

    A perfluorocarbon tracer (PFT) transport and dispersion experiment has been performed in the Ekofisk section of the North Sea Oil fields. Fifty grams each of three PFTs were injected into a well and 28 surrounding wells were sampled for the presence of PFT. Sampling was accomplished by initially collecting bottles of reservoir hydrocarbon gas and subsequently transferring 5 liter (gas phase) aliquots onto Capillary Adsorbent Tracer (CAT) samplers. The resulting CATS samplers were analyzed for PFT in a specially configured laboratory gas chromatograph with electron capture detection. The limit of detection for PFT as determined by standard addition experiments was circa 1 to 10 femtoliters (10{sup {minus}15} L) per liter of sampled reservoir gas. Sampling was performed up to two years past the injection time; approximately two hundred samples were analyzed. PFT was observed only in four sampling wells at four different times, though the PFT analysis of earlier samples lack sufficient sensitivity to PFT detection due to a hydrocarbon interferent problem which was resolved during this experiment. 5 refs., 28 figs.

  6. Spatial variability in river-catchment interaction: Combining radon measurements and salt tracer experiments

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Tecklenburg, Christina; Blume, Theresa

    2013-04-01

    Hydrological modeling is commonly based on a discharge calibration. This approach, however, is often insufficient to properly reproduce conditions that exceed the range of calibrated conditions and is therefore inadequate for predicting reactions to a changing environment. Small headwater catchments are often characterized by manifold morphological attributes (e.g. changes in river course, variable depth to bedrock...) and complex topography, resulting in potentially high spatial variability of river-catchment interactions. Such systems are often poorly represented by simple rainfall runoff models. For that reason, increasing effort is taken to investigate the functional organization of river catchments. From a river's point of view, the first questions to be solved are: How variable is river-catchment interaction in space? Where along the river do we find exfiltrating or infiltrating conditions? Which pathway did the water take before entering the stream? To investigate these questions we used an approach that combined salt tracer experiments with Radon-222 (referred to as radon) measurements. Radon is a natural occurring radionuclide that is accumulated in water traveling through saturated bedrock and mineral material. In contact with air the inert noble gas degases quickly and is thus a reliable environmental tracer for groundwater-surface water interactions. Measurements were carried out at a 650 m long tributary of the Colpach, which is part of the Attert basin in Luxembourg. In the first phase of the experiment radon was sampled every 50 m along the tributary. At the same time, salt tracer experiments were conducted over 100 m sections, providing information on discharge at the up- and downstream end of each 100 m section, absolute gain and loss along the 100 m section and travel times between all radon sampling sites. In the second phase, three sections where investigated in more detail. The chosen sections were divided according to changes of morphological

  7. Surfzone Tracer Transport and Dispersion during the IB09 Field Experiment

    NASA Astrophysics Data System (ADS)

    Hally-Rosendahl, K.; Feddersen, F.; Clark, D. B.; Guza, R. T.

    2010-12-01

    Transport and dilution of pollutants discharged into the surfzone are not well understood, limiting water quality forecast accuracy and exposing beachgoers to health risks. Surfzone dispersion in an alongshore current has been characterized using observations of the downstream evolution of Rhodamine WT fluorescent dye tracer. Continuously released near the shoreline, dye was advected by alongshore mean currents while spreading cross-shore, forming shore-parallel plumes. Initial observations (HB06) with a single jetski sampling near-surface dye concentrations in relatively short (400 m) plumes have been used to estimate bulk eddy diffusivities within the surfzone [Clark et al., JGR, in press 2010]. However, questions about the seaward extent of surfzone mixing, exchange with offshore waters, vertical tracer structure, and mixing over longer distances and times were unresolved. Results from more comprehensive observations during the fall 2009 IB09 experiment at Imperial Beach, California will be discussed. The near-surface dye field was mapped with two GPS- and fluorometer-equipped jetskis. Vertical dye concentration profiles were measured with a boat-towed vertical fluorometer array as dye leaked offshore from the surfzone. Additionally, near-shoreline fluorometers were deployed at various downstream distances, and a cross-shore array of six bottom-mounted instrument packages (1-4 m depth) measured dye, waves, and currents. Aerial photographs of the dye field were also acquired. Continuous near-shoreline dye releases spanned a range of wave and current conditions. Dye was measured up to 3 km downstream of the source and over 500 m from shore. Fluorescent Rhodamine WT dye tracer plume during the IB09 experiment at Imperial Beach, California, fall 2009.

  8. Ultra-large-scale Cosmology in Next-generation Experiments with Single Tracers

    NASA Astrophysics Data System (ADS)

    Alonso, David; Bull, Philip; Ferreira, Pedro G.; Maartens, Roy; Santos, Mário G.

    2015-12-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for the most relevant future large-scale structure experiments: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and radio continuum surveys. Our forecasts show that next-generation experiments, reaching out to redshifts z≃ 4, will not be able to detect previously undetected general-relativistic effects by using individual tracers of the density field, although the contribution of weak lensing magnification on large scales should be clearly detectable. We also perform a rigorous joint forecast for the detection of primordial non-Gaussianity through the excess power it produces in the clustering of biased tracers on large scales, finding that uncertainties of σ ({f}{{NL}})∼ 1-2 should be achievable. We study the level of degeneracy of these large-scale effects with several tracer-dependent nuisance parameters, quantifying the minimal priors on the latter that are needed for an optimal measurement of the former. Finally, we discuss the systematic effects that must be mitigated to achieve this level of sensitivity, and some alternative approaches that should help to improve the constraints. The computational tools developed to carry out this study, which requires the full-sky computation of the theoretical angular power spectra for {O}(100) redshift bins, as well as realistic models of the luminosity function, are publicly available at http://intensitymapping.physics.ox.ac.uk/codes.html.

  9. Modelling of a Tracer experiment (Bromide) at the lysimeter Wagna/Austria with MIKE-SHE

    NASA Astrophysics Data System (ADS)

    Reszler, Christian; Fank, Johann

    2015-04-01

    Data of a tracer experiment with Bromide at one of the three lysimeters in Wagna/Austria are used to test the unsaturated zone solute transport model in MIKE-SHE. On April 4th, 2005 50 mg/l of Bromide were applied on the lysimeter operated with conventional farming. At this time the lysimeter was covered with bare soil until the start of the cultivation of pumpkin one month later. Concentrations at the lysimeter bottom (180 cm depth) were measured and, after break-through, plant uptake was measured to quantify mass recovery. The model using the Richards-Van Genuchten-Mualem approach is setup by comprehensive data of vegetation and soil hydraulic properties available at the lysimeter. Water movement simulation in the unsaturated zone is tested against measured seepage rates at the lysimeter bottom and soil water contents in different soil depths in a period of five years. A sensitivity study shows that, particularly in the quaternary gravel zone two different parameter sets are necessary to represent the different dynamics of water content and seepage. With both two sets the general dynamics of the tracer experiment are simulated well. However, the early rapid rise of the measured concentrations could not be represented by either parameter set, which indicates a complex pore system consisting of different flow paths in the gravel zone, e.g., a system of matrix flow and macro-pore flow.

  10. (15)N NMR studies of a nitrile-modified nucleoside.

    PubMed

    Gillies, Anne T; Gai, Xin Sonia; Buckwalter, Beth L; Fenlon, Edward E; Brewer, Scott H

    2010-12-30

    Nitrile-modified molecules have proven to be excellent probes of local environments in biomolecules via both vibrational and fluorescence spectroscopy. The utility of the nitrile group as a spectroscopic probe has been expanded here to (15)N NMR spectroscopy by selective (15)N incorporation. The (15)N NMR chemical shift (δ((15)N)) of the (15)N-labeled 5-cyano-2'-deoxyuridine (C(15)NdU, 1a) was found to change from 153.47 to 143.80 ppm in going from THF-d(8) to D(2)O. A 0.81 ppm downfield shift was measured upon formation of a hydrogen-bond-mediated heterodimer between 2,6-diheptanamidopyridine and a silyl ether analogue of 1a in chloroform, and the small intrinsic temperature dependence of δ((15)N) of C(15)NdU was measured as a 0.38 ppm downfield shift from 298 to 338 K. The experiments were complemented with density functional theory calculations exploring the effect of solvation on the (15)N NMR chemical shift. PMID:21126044

  11. Spreading of the Indonesian Throughflow in the Indian Ocean: Tracer Experiments

    NASA Astrophysics Data System (ADS)

    Song, Q.; Gordon, A. L.; Visbeck, M.

    2002-12-01

    The Indonesian Throughflow (ITF) spreading pathways and time scales are investigated in two numerical tracer experiments, one being a transit time probability density function (PDF) tracer experiment and the other Lagrangian trajectory experiment, in an ocean general circulation model. The model climatology is in agreement with observations and other model results except within the region of the Leeuwin Current. The thermocline ITF water eventually exits the Indian Ocean along the western boundary, that is, the Mozambique Channel and the east coast of Madagascar and, further south, the Agulhas Current region. Crossing the Indian Ocean within the South Equatorial Current (SEC), the ITF water is affected by the bifurcation at the western boundary, with about 40% flowing southward to join the Agulhas Current consequently exiting the Indian Ocean and the rest about 60% northward to the northern Indian Ocean. Most of the ITF water that turns to the north rejoins the SEC and subsequently is advected to the western boundary by undergoing vertical transfer from the thermocline to the surface layer through upwelling, mainly the summer coastal upwelling off the coast of Somalia and the year-round open ocean upwelling in a broad region between the Equator and about 13°S, and southward horizontal advection in the surface layer by Ekman transport. The fate of this branch of ITF water is determined, again, at the western boundary. The spreading time scales, represented by the elapsed time corresponding to the maximum of transit time PDF, show that in the thermocline the ITF crosses the Indian Ocean, from the Makassar Strait to the east coast of African continent, on a time scale of 9 years, reaches the Arabian Sea on a time scale of 20 years and returns to the eastern Indian Ocean in the southern subtropics on a time scale of 18 years.

  12. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  13. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    SciTech Connect

    Not Available

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  14. Feasibility of large scale deliberate tracer release experiments in or below the oceanic thermocline

    SciTech Connect

    Shepherd, J.G.; Broecker, W.S.

    1981-02-01

    The relative importance of lateral and vertical mixing in the interior of the oceans cannot be reliably determined from conventional oceanographic measurements, nor from observations of fallout radionuclides. It is suggested that the problem could be most effectively studied by an experiment in which a large quantity of a suitable tracer was deliberately released in deep water, and its subsequent dispersion was followed for at least one year. The feasibility of such an experiment is examined. It is concluded that it is indeed feasible, and that helium-3 would be the most suitable tracer, with tritium as a possible alternative. About 30 g f Helium-3 would be needed for each release. Such a quantity may be dissoled in about 1 m/sup 3/ of water at pressures greater than 500 dbar, is easily available, and would cost about $100K. Concentrations would have fallen to unmeasurable levels by the time the patch had spread sufficiently to interfere with measurements of natural or radiogenic helium-3. The patch would need to be marked with dusters of neutrally buoyant floats in order that its movement may be followed. It is estimated that it would be around 1000 km across after one year, and anything from a few meters to a few hundred meters thick. Vertically integrating samples would probably be most suitable, used in conjunction with ship-board helium-3 mass spectrometer. Methods of dissolving the helium in situ, and making the release with minimum disturbance are also proposed. The cost would be several million dollars, spread over several years.

  15. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Bourbonnais, Annie; Altabet, Mark A.; Charoenpong, Chawalit N.; Larkum, Jennifer; Hu, Haibei; Bange, Hermann W.; Stramma, Lothar

    2015-06-01

    Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent "natural tracer experiments" with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ɛ; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3-), nitrite (NO2-), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3- was nearly exhausted, we measured the highest δ15N values for both NO3- and NO2- (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L-1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2- reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ɛ for NO3- reduction (up to ~30‰ in the presence of NO2-). However, the overall ɛ for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3- + NO2-) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ɛ values for NO3- reduction to NO2- and NO2- reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2- oxidation could be removed. These results, together with the relationship between N and O of NO

  16. Development of X-ray tracer diagnostics for radiatively-driven ablator experiments [annual report FY1998

    SciTech Connect

    J.J. MacFarlane; D.H. Cohen; P. Wang; G.A. Moses; R.R. Peterson; P.A. Jaanimagi; O.L. Langen; R.E. Olson; T.J. Murphy; G.R. Magelssen; N.D. Delamater

    1999-05-01

    This report covers fiscal year 1998 of our ongoing project to develop tracer X-ray spectroscopic diagnostics for hohlraum environments. This effort focused on an experimental campaign carried out at OMEGA on 25--27 August 1998. This phase of the project heavily emphasized experimental design, diagnostic development, and target fabrication, as well as building up numerical models for the experiments. The spectral diagnostic under development involves using two thin (few 1000 {angstrom}) mid-Z tracers in two witness plates mounted on the side of a hohlraum with the tracers' K{sub a} absorption features seen against an X-ray backlighter. The absorption data are used to sample the time-dependent, localized properties of each witness plate as a radiation wave ablates it. The experiments represented the first application of this diagnostic, in this case to side-by-side doped and undoped plastic to investigate the effects of capsule ablator dopants.

  17. The effect of entrapped nonaqueous phase liquids on tracer transport in heterogeneous porous media: Laboratory experiments at the intermediate scale

    USGS Publications Warehouse

    Barth, G.R.; Illangasekare, T.H.; Rajaram, H.

    2003-01-01

    This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10??1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves. ?? 2003 Elsevier B.V. All rights reserved.

  18. A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting

    NASA Astrophysics Data System (ADS)

    cui, Huiling; Yao, Rentai; Xu, Xiangjun; Xin, Cuntian; Yang, jinming

    2011-12-01

    CALPUFF is an atmospheric source-receptor model recommended by the US Environmental Protection Agency (EPA) for use on a case-by-case basis in complex terrain and wind condition. As the bulk of validation of CALPUFF has focused on long-range or short-range but long-term dispersion, we can not gauge the reliability of the model for predicting the short-term emission in near-field especially complex terrain, and sometimes this situation is important for emergency emission. To validate the CALPUFF's application in such condition, we carried out a tracer experiment in a near-field complex terrain setting and used CALPUFF atmospheric dispersion model to simulate the tracer experiment in real condition. From the centroid trajectory comparison of predictions and measures, we can see that the model can correctly predict the centroid trajectory and shape of tracer cloud, and the results also indicate that sufficient observed weather data only can develop a good wind field for near-field. From the concentration comparison in each arc, we can see the model underestimate horizontal extent of tracer puff and can not reflect the irregular characters showed in measurements. The result of global analysis is FOEX of -25.91%, FA2 of 27.06%, FA5 of 61.41%. The simulations shows that the CALPUFF can simulate the position and direction of tracer cloud in near-field complex terrain but underestimate over measurements especially in peak concentrations.

  19. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  20. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    SciTech Connect

    Reimus, P.W.

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  1. Use of rare earth oxides and iron oxides as soil erosion tracers in water erosion experiments at hillslope scale

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Cañasveras, J. C.; Barrón, V.; Boulal, H.; Gómez, H.; Conde, E.; Fernández, M.; Gómez, J. A.

    2010-05-01

    The characteristics of the ideal soil erosion have been defined by several authors, for example by Zhang et al. (2001). Despite intensive research on erosion tracers in the last decades there is not a single tracer fulfilling all these characteristics. That is why research on different soil erosion tracers remains as an active field. Two desirable characteristics in erosion tracers are that they should be relatively inexpensive (to purchase and analyze) and that they should be determined with high accuracy in soil or sediment. The availability of multiple tracers is another of the key requirements. In this communication we present our preliminary results on the use of two different sets of erosion tracers. One set are iron oxides with different magnetic and optical properties (Fe3O4, α-Fe2O3 and FeOOH) analyzed by NIRS and magnetic susceptibility measurements. The other set consists of five rare earth oxides (La2O3, Pr6O11, Nd2O3, Sm2O3 and Gd2O3) analyzed using inductively coupled plasma mass spectrometry (ICP-MS). These two groups were studied under controlled and natural conditions, through several water erosion experiments, in field plots with different soil management, crops and scale. In one experiment these tracers were used to determine the source of sediment within sprinkle irrigated fields planted with cotton on shoulders. For this purpose, rainfall simulations were performed under controlled conditions at two scales, one with a portable rainfall simulator at small scale (0.81m2) and with the sprinkler irrigation system in the whole cotton field (2450 m2). Furrows were tagged with both groups of tracers, keeping shoulders untagged (where cotton was planted). Soil samples before and after the rainfall simulations were collected as well as sediment samples. In another experiment four olive orchard plots (330 m2) with different soil managements (cover crop and conventional tillage) were also tagged with the two groups of tracers. Soil samples were taken at

  2. Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry S.; Myers, Paul G.; Platov, Gennady; Timmermans, Mary-Louise; Curry, Beth; Proshutinsky, Andrey; Bamber, Jonathan L.; Chassignet, Eric; Hu, Xianmin; Lee, Craig M.; Somavilla, Raquel

    2016-01-01

    Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06-0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15-0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.

  3. Large-scale advection and dispersion in the tidal Hudson River derived from a deliberate tracer release experiment

    NASA Astrophysics Data System (ADS)

    Ho, D. T.; Schlosser, P.; Schlosser, P.; Schlosser, P.; Caplow, T.; Garrison, M. R.

    2001-12-01

    In recent years, deliberate tracer release experiments have been used in the ocean, rivers, lakes, and groundwater flow systems to study advection, mixing, air-water gas exchange, and exchanges between subsystems. Here we report results from a recent deliberate tracer release experiment conducted in the tidal Hudson River. On July 25, 2001, ca. 3.3 moles of the inert gas SF6 were injected into the Hudson River near Newburgh, NY at a depth of about 6 m. Subsequently, the SF6 was monitored from a boat (Riverkeeper) by pumping water (from 2 m depth) via a submersed pump mounted on the front of the boat, through a gas extraction unit, followed by measurement using an onboard gas chromatograph. The measurement interval was about 2 minutes and the maximum speed of the boat was about 15 km h-1. This allowed us to obtain detailed surveys of the temporal evolution of the tracer plume for 14 days. Initial results from the experiment show that during July/August 2001, there was virtually no net downward advection of the water body originally tagged with SF6. Instead, we observed rapid mixing of the tracer-tagged water up- and down-river. After one week, the tracer-tagged water could be detected over a stretch of 70 km along the axis of the river channel. At this time, the stretch of river labeled with concentrations >50% of the peak value was about 14 km. After two weeks, the tracer-tagged water had extended to over 90 km, while 28 km had SF6 concentrations >50% of the peak value. Vertical mixing into depressions on the bottom of the river reaching more than 175 feet seemed to be rapid. Dispersion coefficients and vertical turbulent exchange coefficients will be discussed.

  4. The Experience of Receiving and Then Losing a Scholarship: A Tracer Study of Secondary School Scholarship Recipients in Uganda

    ERIC Educational Resources Information Center

    Watson, Cathy; Chapman, David W.; Okurut, Charles Opolot

    2014-01-01

    This study reports findings of a tracer that investigated differences in the profile and subsequent experiences of scholarship recipients in Uganda who were able to complete the lower secondary school cycle (O level) without interruption (N = 174) and those that dropped out before completing their O-level cycle (N = 51), thereby losing their…

  5. Tracer-dilution experiments and solute-transport simulations for a mountain stream, Saint Kevin Gulch, Colorado. Water resources investigation

    SciTech Connect

    Broshears, R.E.; Bencala, K.E.; Kimball, B.A.; McKnight, D.M.

    1993-01-01

    In 1986, the U.S. Geological Survey began an investigation to characterize within-stream hydrologic, chemical, and biological processes that influence the distribution and transport of hazardous constituents in the headwaters of the Arkansas River. The report describes the results of tracer-dilution experiments and associated solute-transport simulations for a 1804-meter stretch of Saint Kevin Gulch, a stream affected by acid mine drainage in Lake County, Colorado. The report describes transient changes in tracer (lithium chloride) concentration at six instream sites.

  6. The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California

    USGS Publications Warehouse

    Kinsman, Nicole; Xu, J. P.

    2012-01-01

    After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.

  7. Cross-hole tracer experiment reveals rapid fluid flow and low effective porosity in the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Neira, N. M.; Clark, J. F.; Fisher, A. T.; Wheat, C. G.; Haymon, R. M.; Becker, K.

    2016-09-01

    Numerous field, laboratory, and modeling studies have explored the flows of fluid, heat, and solutes during seafloor hydrothermal circulation, but it has been challenging to determine transport rates and flow directions within natural systems. Here we present results from the first cross-hole tracer experiment in the upper oceanic crust, using four subseafloor borehole observatories equipped with autonomous samplers to track the transport of a dissolved tracer (sulfur hexafluoride, SF6) injected into a ridge-flank hydrothermal system. During the first three years after tracer injection, SF6 was transported both north and south through the basaltic aquifer. The observed tracer transport rate of ∼2-3 m/day is orders of magnitude greater than bulk rates of flow inferred from thermal and chemical observations and calculated with coupled fluid-heat flow simulations. Taken together, these results suggest that the effective porosity of the upper volcanic crust through which much tracer was transported is <1%, with fluid flowing rapidly along a few well-connected channels. This is consistent with the heterogeneous (layered, faulted, and/or fractured) nature of the volcanic upper oceanic crust.

  8. The use of some ion-exchange sorbing tracer cations in in-situ experiments in high saline groundwaters

    SciTech Connect

    Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1995-12-31

    The possibility to use alkali metals and alkaline earth metals as slightly sorbing tracers in in-situ sorption experiments in high saline groundwaters has been investigated. The cation exchange characteristics of granite and some fracture minerals (chlorite and calcite) have been studied using the proposed cations as tracers. The results show low Kd`s for Na, Ca and Sr ({approximately}0.1 ml/g), while the sorption is higher for the more electropositive cations (Rb, Cs and Ba). A higher contribution of irreversible sorption can also be observed for the latter group of cations. For calcite the sorption of all the tracers, except Ca, is lower compared to the corresponding sorption to granite and chlorite. Differences in selectivity coefficients and cation exchange capacity are obtained when using different size fractions of crushed granite. The difference is even more pronounced when comparing crushed granite to intact granite.

  9. Microorganisms as tracers in groundwater injection and recovery experiments: A review

    USGS Publications Warehouse

    Harvey, R.W.

    1997-01-01

    Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured- rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e g., 1013 phage ml-1) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g by stable isotope labeling or inserting genetic markers; such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course.

  10. Circulation and mixing at the New England shelfbreak front: Results of purposeful tracer experiments

    NASA Astrophysics Data System (ADS)

    Houghton, Robert W.; Hebert, Dave; Prater, Mark

    2006-08-01

    We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465-1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2-3 × 10 -2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m 2/s in the mixed bottom layer and 1 m 2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz ∼ 4 × 10 -6 m 2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.

  11. 4D ground-penetrating radar during a plot scale dye tracer experiment

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; van Schaik, N. Loes M. B.; Tronicke, Jens

    2015-07-01

    Flow phenomena in the unsaturated zone are highly variable in time and space. Thus, it is challenging to measure and monitor such processes under field conditions. Here, we present a new setup and interpretation approach for combining a dye tracer experiment with a 4D ground-penetrating radar (GPR) survey. Therefore, we designed a rainfall experiment during which we measured three surface-based 3D GPR surveys using a pair of 500 MHz antennas. Such a survey setup requires accurate acquisition and processing techniques to extract time-lapse information supporting the interpretation of selected cross-sections photographed after excavating the site. Our results reveal patterns of traveltime changes in the measured GPR data, which are associated with soil moisture changes. As distinct horizons are present at our site, such changes can be quantified and transferred into changes in total soil moisture content. Our soil moisture estimates are similar to the amount of infiltrated water, which confirms our experimental approach and makes us confident for further developing this strategy, especially, with respect to improving the temporal and spatial resolution.

  12. Effects from influent boundary conditions on tracer migration and spatial variability features in intermediate-scale experiments

    SciTech Connect

    Fuentes, H.R.; Polzer, W.L.; Springer, E.P.

    1987-04-01

    In previous unsaturated transport studies at Los Alamos dispersion coefficients were estimated to be higher close to the tracer source than at greater distances from the source. Injection of tracers through discrete influent outlets could have accounted for those higher dispersions. Also, a lack of conservation of mass of the tracers was observed and suspected to be due to spatial variability in transport. In the present study experiments were performed under uniform influent (ponded) conditions in which breakthrough of tracers was monitored at four locations at each of four depths. All other conditions were similar to those of the unsaturated transport experiments. A comparison of results from these two sets of experiments indicates differences in the parameter estimates. Estimates were made for the dispersion coefficient and the retardation factor by the one-dimensional steady flow computer code, CFITIM. Estimates were also made for mass and for velocity and the dispersion coefficient by the method of moments. The dispersion coefficient decreased with depth under discrete influent application and increased with depth under ponded influent application. Retardation was predicted better under the discrete influent application than under ponded influent application. Differences in breakthroughs and in estimated parameters among locations at the same depth were observed under ponded influent application. Those differences indicate that there is a lack of conservation of mass as well as significant spatial variability across the experimental domain. 14 refs., 9 figs., 8 tabs.

  13. Predicted fate of tritium residuum from groundwater tracer experiments in the Amargosa Desert, southern Nevada

    SciTech Connect

    Brikowski, T.

    1993-07-01

    Analytic solutions are used in this study to evaluate potential groundwater transport of tritium used in goundwater tracer tests southwest of the Nevada Test Site. Possible transport from this site is of interest because initial radionuclide concentrations were high and the site is close to goundwater discharge points (12 km). Anecdotal evidence indicates that 90 percent of these tracers were removed by pumping at the completion of the tests; this study examines the probable transport of the tracers with and without the removal. Classical dispersive transport analytic solutions are used, treating the tracer test as a point slug injection. Input parameters for the solutions were measured at the site, and consideration of parameter uncertainty is incorporated in the results. With removal of the tracer, the maximum expected region with above-Safe Drinking Water Act (40 CFR 121) concentrations of tritium extends 5 km from the injection point, and does not reach any sites of public access. Detectable tritium from the tests is likely to have reached the Ash Meadows fault zone, but flow along the fault probably diluted the tracer to below detection limits before arrival at springs along the fault. Arrival at the springs would have occurred 20 to 25 years after the tests. Without removal of the tracer, the solutions indicate that tritium concentrations just above Safe Drinking Water Act standards would have reached the Ash Meadows fault zone. In this case, detectable tritium might have been found in Devil`s Hole or Longstreet Spring, the nearest points of possible public exposure.

  14. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    PubMed Central

    Carlisle, Eli; Yarnes, Chris; Toney, Michael D.; Bloom, Arnold J.

    2014-01-01

    Stable 15N isotopes have been used to examine movement of nitrogen (N) through various pools of the global N cycle. A central reaction in the cycle involves the reduction of nitrate (NO−3) to nitrite (NO−2) catalyzed by nitrate reductase (NR). Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO−3. Observed NR isotope discrimination ranged from 22 to 32‰ (kinetic isotope effects of 1.022–1.032) among the different isozymes at natural abundance 15N (0.37%). As the fractional 15N content of substrate NO−3 increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO−3 and NO−2 in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of the experimental artifacts with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils. PMID:25071800

  15. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.

    PubMed

    Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y

    2015-10-30

    Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used. PMID:26026852

  16. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  17. The use of an available SO 2 tracer during the 1983 captex experiment

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Gallant, A. J.

    Considerable effort has been spent in recent years to develop sophisticated inert perfluorocarbon tracers for use in long-range transport of air pollution studies. During favourable transport situations, existing pollution plumes can still be utilized to give similar information regarding regional scale dispersion. Identification of a smelter plume from Sudbury, Canada, during the CAPTEX study shows that complementary techniques exist which should be considered for future major tracer releases.

  18. Biodegradation of the surfactant linear alkylbenzenesulfonate in sewage- contaminated groundwater: A comparison of column experiments and field tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.

    1998-01-01

    Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants

  19. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.

    PubMed Central

    Castillo, L; Beaumier, L; Ajami, A M; Young, V R

    1996-01-01

    The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered. Images Fig. 4 PMID:8876157

  20. Food Resources of Stream Macronivertebrates Determined by Natural-Abundance stable C and N Isotopes and a 15N Tracer Addition

    SciTech Connect

    Mulholland, P. J.

    2000-01-01

    Trophic relationships were examined using natural-abundance {sup 13}C and {sup 15}N analyses and a {sup 15}N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the {sup 15}N-tracer addition experiment, we added {sup 15}NH{sub 4} to stream water over a 6-wk period in early spring, and measured {sup 15}N:{sup 14}N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the {sup 15}N addition provided data on natural-abundance {sup 13}C:{sup 12}C and {sup 15}N:{sup 14}N ratios. The natural-abundance {sup 15}N analysis proved to be of limited value in identifying food resources of macroinvertebrates because {sup 15}N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the {sup 15}N tracer results were not definitive. The {sup 15}N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N-turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the

  1. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Rob

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  2. Tracer dispersion experiments carried out in London during 2003 and 2004 as part of the DAPPLE project

    NASA Astrophysics Data System (ADS)

    Martin, D.; Shallcross, D.; Nickless, G.; White, I.

    2005-12-01

    Transport, dispersion and ultimate fate of pollutants has very important implications for the environment at the urban, regional and global scales. Localised emissions of both man-made and naturally produced pollutants can both directly and indirectly impact the health of the inhabitants. The DAPPLE (Dispersion of Air Pollutants and their Penetration into the Local Environment) consortium consists of six universities, which comprises of a multidisciplinary approach to study relatively small-scale urban atmospheric dispersion. Wind tunnel modelling studies, computer fluid dynamical simulations, fieldwork studies using tracers and dispersion modelling were all carried out in an attempt to achieve this. In this paper we report on tracer dispersion experiments carried out in May 2003 and June 2004. These involve the release of various perfluorocarbon (PFC) tracers centred on Marylebone Road in London. These compounds are inert, non-reactive and have a very low atmospheric background concentration with little variability. These properties make them the ideal atmospheric tracer and this combined with an ultra sensitive analytical technique (sample pre-concentration on carbon based adsorbents followed with detection by Negative Ion Chemical Ionization Mass Spectrometry) makes very small release amounts feasible. The source-receptor relationship is studied for various source and receptor positions and distances. Source receptor relationships for both rooftop and indoor positions were evaluated as part of the project. Results of concurrent meteorological measurements are also presented as well as comparison with a number of simple dispersion models.

  3. Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Feigl, C.; Schlager, H.; Schröder, F.; Gerbig, C.; van Velthoven, P.; Flatøy, F.; Théry, C.; Petzold, A.; Höller, H.; Schumann, U.

    2002-06-01

    Airborne in situ measurements of NO, NO2, NOy, CO, CO2, O3, J(NO2), and CN were performed in European thunderstorms during the field experiment EULINOX in July 1998. The measurements in the upper troposphere show enhanced NOx (= NO + NO2) concentrations within thunderstorms and their outflow at horizontal scales from 300 m to several 100 km. The maximum NO mixing ratio measured inside a thundercloud close to lightning (the aircraft was also hit by a small lightning strike) was 25 ppbv. A regional NOx enhancement of 0.5 ppbv over central Europe could be traced back to a thunderstorm event starting ~24 hours earlier over Spain. The fractions of NOx in thunderclouds which are produced by lightning and convectively transported from the polluted boundary layer are determined by using CO2 and CO as tracers for boundary layer air. The analyses show that on average about 70% of the NOx increase measured in the anvil region was found to result from production by lightning and about 30% from NOx in the boundary layer. Thunderstorms are also strong sources of small particles. The peak CN concentrations measured within thunderstorm outflows (>30,000 particles STP cm-3) were distinctly higher than in the polluted boundary layer. The amount of NOx produced per thunderstorm and NO produced per lightning flash was estimated. The results imply that the annual mean NOx budget in the upper troposphere over Europe is dominated by aircraft emissions (0.1 TgN yr-1) in comparison to lightning production (~0.03 TgN yr-1). On the global scale, NOx produced by lightning (mean 3 TgN yr-1) prevails over aircraft-produced NOx (0.6 TgN yr-1).

  4. Tracer experiments in the Rhine Basin: evaluation of the skewness of observed concentration distributions

    NASA Astrophysics Data System (ADS)

    van Mazijk, A.; Veling, E. J. M.

    2005-06-01

    Field studies reporting on the propagation of a pollution wave travelling down a river mostly show persistence of the temporal skewness. As a result, in the Rhine Alarm-Model a constant skewness coefficient (equal to 1) has been applied. The appropriateness of this assumption has been proven by tracer experiments. This finding seems to be in conflict with the solution of the transient storage equations of the one-dimensional Fickian-type diffusion equations, the so-called dead-zone model, showing a continuous decrease of the skewness with the distance. On the other hand, based on these equations as an initial-boundary value problem for the transport of a spill in a river with dead zones Schmid [Schmid, B.H., 2002. Persistence of skewness in longitudinal dispersion data: can the dead zone model explain it after all?. Journal of Hydraulic Engineering 128 (9), 848-854, September 1, ASCE], showed that the skewness can locally increase, if there are river reaches with different values of the mass-transfer coefficient between the main stream and the dead zone, or due to changing topography. This paper shows that by applying Schmid's [Schmid, B.H., 2002. Persistence of skewness in longitudinal dispersion data: can the dead zone model explain it after all?. Journal of Hydraulic Engineering 128 (9), 848-854, September 1, ASCE] approach to the River Rhine and its tributaries Mosel (Germany) and Aare (Switzerland), the observed persistence of the skewness can be reproduced, taking into account the changes in the river topography. Moreover, it is demonstrated that irregularities of the riverbed and banks, and vegetation along the river borders, resulting in 'natural dead zones', contribute to the persistence of the skewness. In addition, the physical processes behind the observed mass-transfer coefficient have been analysed.

  5. Salt-tracer experiments to measure hyporheic transit time distributions in gravel-bed sediments

    NASA Astrophysics Data System (ADS)

    van der Perk, M.; Petticrew, E. L.; Owens, P. N.; Hulsman, R.; Wubben, L.

    2009-04-01

    We performed a series of tracer experiments in large outdoor flumes at the Quesnel River Research Centre, Likely, BC, Canada to quantify the hyporheic transit time distribution in gravel bed sediments. For this purpose, an 18.9 m x 2 m flume was filled with a 30 cm thick layer of well-sorted gravel with a d50 of 39.1 mm. The average longitudinal gradient of the gravel bed was 0.05% The flumes were filled with aerated local groundwater, so that a standing water layer of 20 cm depth over the gravel bed was established. Subsequently, dissolved common salt was added until the water reached an electrical conductivity (EC) between 450 and 550 µS/cm. The flumes were equilibrated overnight to ensure a uniform distribution of the salt concentration across the flume. At the start of each experiment local groundwater (EC = 150 µS/cm) was discharged at a rate of approximately 16 l/s at the upper end of the flume. At 10 m downstream from the inlet the EC was monitored in the water layer until the EC remained constant at a value close to the background value of about 150 µS/cm. The experiment was replicated three times. The measured breakthrough curves were used to calculate the overall transit time distributions of water in the 10 m stretch of the flume. The transit time distribution in the water layer was calculated using the longitudinal dispersion coefficient estimated using the empirical equation of Fischer et al. (1979). For the transit time distributions within the gravel layer we assumed a probability density function as proposed by Marion and Zaramella (2005). These hyporheic transit time distributions were estimated using least-squares deconvolution of the overall transit time distributions. The fitted overall transit time distributions corresponded fairly well to the ‘observed' distributions. The 10th percentile of the hyporheic transit time distributions in the 10 m stretch of the flume varied between 45 s and 65 s. The median transit time ranged between 200 s

  6. Determination of Transport Parameters in Unsaturated Zone by Tracer Experiment in the Porous Aquifer located at Ljubljana, Slovenia

    NASA Astrophysics Data System (ADS)

    Vidmar, S.; Cencur Curk, B.

    2009-04-01

    The gravel sandy aquifer of Ljubljansko polje is the source of drinking water for nearly 300.000 inhabitants of the Ljubljana city and vicinity. There are two main waterworks: Kleče and Hrastje. The plain area of Ljubljansko polje is a tectonic sink and consists of river sediments that can reach in thickness more than 100 m in the deepest part. The bedrock is the impermeable permocarbonic clayey shale, mudstones and sandstones. The hydraulic conductivity of Ljubljansko polje sediments is very good, from 10-2 m/s in the central part to 3.7•10-3 m/s on the borders of the plain. The average groundwater level is 20 m below surface. A numerical groundwater flow model was established for the wider area of the Ljubljansko polje aquifer. The fore mentioned model was not calibrated on solute transport parameters but only on water levels and this lead to unreliability in the transport model and its predictions of pollution scenarios. The transport model needs to calculate reliable scenarios of pollution dispersion, which can only be achieved with the application of real transport parameters. Human activities in the area of the Hrastje waterworks of Ljubljana threaten to degrade groundwater quality. For this reason several tracer experiments were carried out in the past. Despite a great risk, the experiments were performed on the catchment area of the Hrastje waterworks, inside the second water protection zone. During the experiments the water from Hrastje waterworks was still in use for drinking water supply. The tracer experiments were carried out in order to determine the solute transport parameters such as advection, dispersion and sorption. The research proved that the tracers could be used safely on sensitive area and that the researchers are capable and qualified to carry it out with a highest level of security. Since none of the past tracer experiments, carried out in the same area, gave us any detailed information on pollutant spreading in unsaturated zone a new

  7. Prognostic Prediction of Tracer Dispersion for the Diablo Canyon Experiments on August 31, September 2, and September 4, 1986

    SciTech Connect

    Molenkamp, C.R.

    1999-11-29

    COAMPS/LODI simulations of the tracer experiments at Diablo Canyon on August 31, September 2, and September 4, 1986 had mixed results. Simulated tracer concentrations on August 31 differed significantly from the measured concentrations. The model transported SF{sub 6} too far south and did not predict transport of SF{sub 6} north along highway 101 or into See Canyon. Early in the day the model rapidly transported SF{sub 6} away from the release point while observations suggested the tracer stayed close to Diablo Canyon for 1-2 hours. For September 2, simulations agreed very well with the measurements. The model accurately predicted the change of wind direction from north northwest to east northeast at the release point. It also predicted the advection of tracer over Mot-r-0 Bay and through the Los Osos Valley toward San Luis Obispo in excellent agreement with the observations. On September 4, the calculated transport of SF{sub 6} from Diablo Canyon had defects similar to those on August 31, a trajectory too far south and limited intrusion of tracer north along highway 101. Conversely, simulations of the Freon release from Los Osos Cemetery on September 4 corresponded well with observations. Since the simulations used only global meteorological data and no local winds for input, even the limited success of COAMPS/LODI is a favorable result. COAMPS's inability to generate southerly winds through the highway 101 corridor on August 31 and September 4 is a symptom of its underestimate of the sea breeze. The weak sea breeze correlates with a small diurnal range of air temperature possibly associated with underestimates of surface solar heating and/or overestimates of surface wetness. Improvement of COAMPS/LODI simulations requires development of new data assimilation techniques to use the local surface and low altitude wind and temperature measurements. Also, quantitative methods are needed to assess the accuracy of the models.

  8. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  9. HANFORD 1964 ATMOSPHERIC BOUNDARY LAYER EXPERIMENT: MICROMETEOROLOGICAL AND TRACER DATA ARCHIVE. SET 002 DOCUMENTATION REPORT

    EPA Science Inventory

    An archive for micrometeorological and tracer dispersion data has been developed by Battelle, Pacific Northwest Laboratories for the U.S. Environmental Protection Agency. The archive is designed to make the results of extensive field tests readily accessible to EPA for model test...

  10. Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

  11. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  12. The fate of 15N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate

    NASA Astrophysics Data System (ADS)

    Zając, K.; Blodau, C.

    2016-02-01

    Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH4 15NO3) at a rate of 2.3 g N m-2 yr-1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m-2 yr-1) up to 12.2 mg g-1 (Frölichshaier Sattelmoor, 4.7-6.0 g N m-2 yr-1). In peat from Degerö, nitrate and ammonium concentrations were below 3 mg L-1, whereas up to 30 (nitrate) and 11 mg L-1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2-0.35 mg g-1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids, and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.

  13. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    SciTech Connect

    Becker, Matthew W.

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant

  14. Determining concentration fields of tracer plumes for layered porous media in flow-tank experiments

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Schwartz, Franklin W.

    In the laboratory, computer-assisted image analysis provides an accurate and efficient way to monitor tracer experiments. This paper describes the determination of detailed temporal concentration distributions of tracers in a flow-tank experiment by analyzing photographs of plumes of Rhodamine dye through the glass wall of the tank. The methodology developed for this purpose consists of four steps: (1) digitally scanning black and white negatives obtained from photographs of the flow-tank experiment; (2) calibrating and normalizing each digitized image to a standard optical-density scale by determining the relation between the optical density and pixel value for each image; (3) constructing standard curves relating the concentration in an optical density from five experimental runs with predetermined concentrations (2-97mg/L) and (4) converting the optical density to concentration. The spatial distribution of concentration for two photographs was determined by applying these calibration and conversion procedures to all pixels of the digitized images. This approach provides an efficient way to study patterns of plume evolution and transport mechanisms. Résumé Au laboratoire, l'analyse d'images assistée par ordinateur est un moyen précis et efficace pour suivre certaines expériences de traçage. Ce papier présente comment sont déterminées dans le détail les distributions temporelles de la concentration en traceur au cours d'une expérience d'écoulement en réservoir au moyen de l'analyse de photographies de panaches de rhodamine à travers la paroi de verre du réservoir. La méthodologie développée dans cette expérience suit quatre étapes: (1) digitalisation par balayage des négatifs noir et blanc des prises de vue de l'expérience d'écoulement en réservoir (2) calibration et normalisation de chaque image digitalisée par rapport à une échelle étalon de densité optique en déterminant la relation entre la densité optique et la valeur des pixels

  15. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  16. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  17. Sediment routing through channel confluences: RFID tracer experiments from a gravel-bed river headwaters

    NASA Astrophysics Data System (ADS)

    Imhoff, K.; Wilcox, A. C.

    2014-12-01

    Tributary confluences may significantly impact large-scale patterns of sediment transport because of their role in connecting individual streams in a network. These unique locations feature complex flow structures and geomorphic features, and may represent ecological hotspots. Sediment transport across confluences is poorly understood, however. We present research on coarse sediment transport and dispersion through confluences using sediment tracers in the East Fork Bitterroot River, Montana, USA. We tagged a range of gravel (>40 mm) and cobble particles with Radio Frequency Identification (RFID) tags and painted smaller (10-40 mm) gravels, and then we traced them through confluences in a montane river's headwaters. We measured the effects of confluences on dispersion, path length, and depositional location and compare properties of sediment routing with a non-confluence control reach. We also measured topographic change through repeat bed surveys and combined topography, hydraulics, and tracer measurements to calculate basal shear and critical Shields stresses for different grain sizes. Field observations suggest that tagged particles in confluences routed along flanks of scour holes in confluences, with sediment depositing further downstream along bank-lateral bars than within the channel thalweg. Travel distances of RFID-tagged particles ranged up to 35 meters from original seeding points, with initial recovery rates of RFID-tagged tracers ranging between 84-89%. In both confluence and control reaches only partial mobility was observed within the entire tracer population, suggesting a hiding effect imposed by the roughness of the bed. Particles seeded in the channel thalweg experienced further travel distances than those seeded towards the banks and on bars. Differences in dispersion between confluence and control reaches are implied by field observation. This study quantified patterns of sediment routing within confluences and provided insight to the importance

  18. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  19. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  20. Complete fusion of 15N+27Al

    NASA Astrophysics Data System (ADS)

    Prosser, F. W., Jr.; Racca, R. A.; Daneshvar, K.; Geesaman, D. F.; Henning, W.; Kovar, D. G.; Rehm, K. E.; Tabor, S. L.

    1980-05-01

    The total fusion cross section for the system 15N + 27Al has been measured over an energy range 27 MeV<=Elab<=70 MeV by detection of the fusion-evaporation residues. In addition elastic scattering was measured at six energies and fitted by optical model calculations. The fusion cross section for the system saturates at 1150+/-50 mb. The data can be well described by the model of Glas and Mosel, using a reasonable set of parameters. The model of Horn and Ferguson also describes the data well if an appropriate charge radius is used. Comparison is made between these results and the fusion cross sections for 16O + 26Mg and 18O + 24Mg, which lead to the same compound nucleus. The results for 15N + 27Al are quite similar to those for 18O + 24Mg, and the differences between the fusion cross sections for these two systems and those for 16O + 26Mg may be evidence for an entrance channel effect. NUCLEAR REACTIONS 15N+27Al, Elab=27-70 MeV; measured σfusion(E) measured dσdΩ elastic scattering; data fitted with Glas and Mosel model, Horn and Ferguson model.

  1. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  2. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  3. Fungal functioning in a pine forest: evidence from a ¹⁵N-labeled global change experiment.

    PubMed

    Hobbie, Erik A; van Diepen, Linda T A; Lilleskov, Erik A; Ouimette, Andrew P; Finzi, Adrien C; Hofmockel, Kirsten S

    2014-03-01

    • We used natural and tracer nitrogen (N) isotopes in a Pinus taeda free air CO₂ enrichment (FACE) experiment to investigate functioning of ectomycorrhizal and saprotrophic fungi in N cycling. • Fungal sporocarps were sampled in 2004 (natural abundance and (15) N tracer) and 2010 (tracer) and δ(15)N patterns were compared against litter and soil pools. • Ectomycorrhizal fungi with hydrophobic ectomycorrhizas (e.g. Cortinarius and Tricholoma) acquired N from the Oea horizon or deeper. Taxa with hydrophilic ectomycorrhizas acquired N from the Oi horizon (Russula and Lactarius) or deeper (Laccaria, Inocybe, and Amanita). (15)N enrichment patterns for Cortinarius and Amanita in 2010 did not correspond to any measured bulk pool, suggesting that a persistent pool of active organic N supplied these two taxa. Saprotrophic fungi could be separated into those colonizing pine cones (Baeospora), wood, litter (Oi), and soil (Ramariopsis), with δ(15)N of taxa reflecting substrate differences. (15)N enrichment between sources and sporocarps varied across taxa and contributed to δ(15)N patterns. • Natural abundance and (15)N tracers proved useful for tracking N from different depths into fungal taxa, generally corresponded to literature estimates of fungal activity within soil profiles, and provided new insights into interpreting natural abundance δ(15)N patterns. PMID:24304469

  4. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-03-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.

  5. Across North America Tracer Experiment (ANATEX). Model evaluation study. Final report

    SciTech Connect

    Clark, T.L.; Cohn, R.D.

    1990-06-01

    Three perfluorocarbon tracer gases were released at 2.5-day or 5.0-day intervals from two sites in central North America and sampled for 24-hr periods at 77 surface sites. The source-receptor distances ranged from less than 30 km to 3,000 km. The data were used to evaluate the long-range transport and diffusion simulations of acid deposition models and to establish a range of uncertainty for various model genres. The performances of three single-layer Lagrangian, six multiple-layer Lagrangian, and two multiple-layer Eulerian models were assessed using quantifiable measures based on comparisons of ensemble mean concentrations and plume widths as well as trajectory errors expressed as a function of transport time. In general, the multiple-layer Lagrangian models performed best in simulating the transport of the tracers, while the Eulerian models performed best in simulating the ensemble concentration frequency distributions. After 0.5 day of transport, trajectory errors ranged from 100 km to 400 km; after 2.5 days, the errors ranged from 300 km to 800 km. Beyond 2.5 days, errors from four Lagrangian models plateaued, while errors for the other models continued to increase, peaking at nearly 1,100 km after 3.5 days.

  6. Preliminary results of the MLAM (Multi-Layer Air Mass) Lagrangian transport model simulation of ANATEX (Across North America Tracer Experiment)

    SciTech Connect

    Davis, W.E.; Olsen, A.R.; Erb, T.A.

    1989-01-01

    The 1987 Across North America Tracer Experiment (ANATEX), for the study of regional to continental-scale transport and diffusion, released perfluorocarbon tracers for three hours every 2.5 days in January, February and March (Draxler et. al. 1985, 1987). The experiment resulted in 33 days of releases at two sites; Glasgow, Montana and St. Cloud, Minnesota. Each release consisted of approximately 50 kg of perfluoro-ortho-dimenthoyl-cyclohexane (PDCH) at St. Cloud and 83 kg of perfluoro-trimethyl-cyclohexane (PTCH) at Glasgow. The experiment included the release of a third tracer, 50 kg of perfluoro-methyl-cyclohexane (PMCH), every five days from St. Cloud; designed to serve as a means to distinguish consecutive releases from St. Cloud. A surface sampling network of 77 sampling sites, located east of 105/degree/ longitude in the United States and Canada, measured 24-hour average tracer concentrations out to a distance of 3000 km from Glasgow. The network, organized in eight arcs east of Glasgow, collected daily concentrations of each tracer from January 5 through March 29, 1987. The network design provides average daily surface footprint information for the three tracers. 8 refs., 2 figs.

  7. Preliminary results of the MLAM (Multi-Layer Air Mass) Lagrangian transport model simulation of ANATEX (Across North America Tracer Experiment)

    NASA Astrophysics Data System (ADS)

    Davis, William E.; Olsen, Anthony R.; Erb, Trudy A.

    1989-01-01

    The 1987 Across North America Tracer Experiment (ANATEX), for the study of regional to continental-scale transport and diffusion, released perfluorocarbon tracers for three hours every 2.5 days in January, February and March (Draxler et. al. 1985, 1987). The experiment resulted in 33 days of releases at two sites; Glasgow, Montana and St. Cloud, Minnesota. Each release consisted of approximately 50 kg of perfluoro ortho-dimenthoyl cyclohexane (PDCH) at St. Cloud and 83 kg of perfluoro trimethyl cyclohexane (PTCH) at Glasgow. The experiment included the release of a third tracer, 50 kg of perfluoro methyl cyclohexane (PMCH), every five days from St. Cloud; designed to serve as a means to distinguish consecutive releases from St. Cloud. A surface sampling network of 77 sampling sites, located east of 105 degree longitude in the United States and Canada, measured 24-hour average tracer concentrations out to a distance of 3000 km from Glasgow. The network, organized in eight arcs east of Glasgow, collected daily concentrations of each tracer from January 5 through March 29, 1987. The network design provides average daily surface footprint information for the three tracers.

  8. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  9. Simulation of large particle transport near the surface under stable conditions: comparison with the Hanford tracer experiments

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Larson, Timothy

    A plume model is presented describing the downwind transport of large particles (1-100 μm) under stable conditions. The model includes both vertical variations in wind speed and turbulence intensity as well as an algorithm for particle deposition at the surface. Model predictions compare favorably with the Hanford single and dual tracer experiments of crosswind integrated concentration (for particles: relative bias=-0.02 and 0.16, normalized mean square error=0.61 and 0.14, for the single and dual tracer experiments, respectively), whereas the US EPA's fugitive dust model consistently overestimates the observed concentrations at downwind distances beyond several hundred meters (for particles: relative bias=0.31 and 2.26, mean square error=0.42 and 1.71, respectively). For either plume model, the measured ratio of particle to gas concentration is consistently overestimated when using the deposition velocity algorithm of Sehmel and Hodgson (1978. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA). In contrast, these same ratios are predicted with relatively little bias when using the algorithm of Kim et al. (2000. Atmospheric Environment 34 (15), 2387-2397).

  10. A bedload tracer experiment in a high-elevation mountain basin (Strimm basin, Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Dell'Agnese, Andrea; Brardinoni, Francesco; Mao, Luca; Comiti, Francesco

    2014-05-01

    In many applications in engineering, ecology and river management, rates and timing of bed load transport in mountain rivers are of primary importance, yet of difficult prediction. Field measurements of bedload transport rates are rare, especially in high-mountain basins, and factors controlling the sediment fluxes have not been completely understood yet. Results offered by semi-empiric transport capacity equations proposed so far are heavily dependent on the experimental setup of the flumes in which they were developed originally. Direct methods for assessing bedload transport are time-consuming and practically challenging at high flows. Therefore, indirect surrogate methods for estimating bedload transport, such as the use of tracers, represent a good alternative. This study presents results on bed sediment mobility and travel distances obtained in the Strimm Creek, a high-elevation watershed in the Eastern Italian Alps (8.5 km2). From July 2011 to June 2012 a total of 431 PIT-tagged clasts (b-axis ranging from 22.6 mm to 229.3 mm) were deployed in two contrasting channel reaches, an upstream one located within a gentle hanging valley floor and a downstream on flowing along a steep and narrow valley step. Tagged clasts were surveyed from August 2011 to October 2013 by means of a portable antenna after each main flow event, and immediately before and after the spring freshet. Motion thresholds for the different grain sizes, particle travel distances and differences in sediment mobility existing between the two reaches were hence identified. Unit stream power rather than shear stress was used to analyse particle displacement due to the extremely rough geometry of the channel which makes the estimation of water depth at different sections subject to great uncertainties. In the lower channel reach, results showed how most of the PIT-tagged clasts movement happened during snowmelt periods, with travel distances often exceeding 500 meters, and displacements during the

  11. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  12. Perfluorocarbon Tracer Experiments on a 2 km Scale in Manchester Showing Ingress of Pollutants into a Building

    NASA Astrophysics Data System (ADS)

    Matthews, James; Wright, Matthew; Bacak, Asan; Silva, Hugo; Priestley, Michael; Martin, Damien; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Cyclic perfluorocarbons (PFCs) have been used to measure the passage of air in urban and rural settings as they are chemically inert, non-toxic and have low background concentrations. The use of pre-concentrators and chemical ionisation gas chromatography enables concentrations of a few parts per quadrillion (ppq) to be measured in bag samples. Three PFC tracers were used in Manchester, UK in the summer of 2015 to map airflow in the city and ingress into buildings: perfluomethylcyclohexane (PMCH), perfluoro-2-4-dimethylcyclohexane (mPDMCH) and perfluoro-2-methyl-3-ethylpentene (PMEP). A known quantity of each PFC was released for 15 minutes from steel canisters using pre-prepared PFC mixtures. Release points were chosen to be upwind of the central sampling location (Simon Building, University of Manchester) and varied in distance up to 2.2 km. Six releases using one or three tracers in different configurations and under different conditions were undertaken in the summer. Three further experiments were conducted in the Autumn, to more closely investigate the rate of ingress and decay of tracer indoors. In each experiment, 10 litre samples were made over 30 minutes into Tedlar bags, starting at the same time the as PFC release. Samples were taken in 11 locations chosen from 15 identified areas including three in public parks, three outside within the University of Manchester area, seven inside and five outside of the Simon building and two outside a building nearby. For building measurements, receptors were placed inside the buildings on different floors; outside measurements were achieved through a sample line out of the window. Three of the sample positions inside the Simon building were paired with samplers outside to allow indoor-outdoor comparisons. PFC concentrations varied depending on location and height. The highest measured concentrations occurred when the tracer was released at sunrise; up to 330 ppq above background (11 ppq) of PMCH was measured at the 6

  13. ETEX. A European tracer experiment; observations, dispersion modelling and emergency response

    NASA Astrophysics Data System (ADS)

    Van dop, H.; Addis, R.; Fraser, G.; Girardi, F.; Graziani, G.; Inoue, Y.; Kelly, N.; Klug, W.; Kulmala, A.; Nodop, K.; Pretel, J.

    In Autumn, 1994, two releases of perfluorocarbon tracers from north-east France were tracked across northern Europe using a network of 168 ground stations with limited airborne sampling support. Simulating an emergency response situation, modellers from 20 countries reported their long-range dispersion predictions, initially within a few hours of the release and then over the coming days in line with the evolving meteorological data. Subsequent comparison of the predictions with the environmental results showed model performance varying from good, for the conditions of the first release in the majority of cases, to unsatisfactory for the second release in all cases. The experimental database now established represents a unique tool for investigating the effectiveness of future model developments. The papers in this special issue reflect the major scientific results

  14. Minnesota 1973 atmospheric boundary layer experiment: Micrometeorological and tracer data archive. Set 1 (revision 2) documentation report

    NASA Astrophysics Data System (ADS)

    Woodruff, R. K.; Droppo, J. G.; Glantz, C. S.

    1987-03-01

    An archive for micrometeorological and tracer dispersion data was developed by Battelle, Pacific Northwest Labs. for the U.S. Environmental Protection Agency. The archive was designed to make the results of extensive field tests readily accessible to EPA for model testing, development, and verification efforts. Documentation was provided for one of the archived data sets, The Minnesota 1973 Boundary Layer Experiment. The aim of the effort was to archive invaluable data sets in a timely fashion before the necessary supporting information about the data becomes lost forever. The entries are as follows: data set fact summary, a narrative description of experimental and data, special information, references, a description of archive data files, contacts (names, addresses, and phone numbers) and standard experiment summary table. Revision 2 includes previously unpublished rawinsonde profile data.

  15. Abundance of Biogenic and Anthropogenic SOA Tracers Compounds in Fine Particles during the Nucleation in Forests Experiment (NIFTy)

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Wallace, W.; Westberg, H.; Hamilton, H.; Pryor, S. C.; Barthelmie, R.

    2008-12-01

    The Nucleation in Forests field experiment was conducted in May 2008 at the Morgan-Monroe State forest in Indiana to observe the nature and occurrence of new particle formation. As part of this experiment filter samples were collected at mid-canopy height using a MOUDI-110. The MOUDI sampler collected 10 size fractions from 0.056 um to 5.6 um. The filter samples were collected for 24 hours and analyzed by gas chromatography ion trap mass spectrometry for several anthropogenic and biogenic secondary organic aerosol tracer compounds including 2-methyltetrols from isoprene oxidation. The objective of the size resolved PM sampling was to determine if the growth of small particles that occurs during nucleation events was driven by biogenic or anthropogenic VOC photooxidation products. Results from this analysis will be presented.

  16. Gas Chromatography-Mass Spectrometry of N- Heptafluorobutyryl Isobutyl Esters of Amino Acids in the Analysis of the Kinetics of [15N]H4+ Assimilation in Lemna minor L

    PubMed Central

    Rhodes, David; Myers, Ann C.; Jamieson, Gene

    1981-01-01

    Rapid, sensitive, and selective methods for the determination of the 15N abundance of amino acids in isotopic tracer experiments with plant tissues are described and discussed. Methodology has been directly tested in an analysis of the kinetics of [15N]H4+ assimilation in Lemna minor L. The techniques utilize gas chromatography-mass spectrometry selected ion monitoring of major fragments containing the N moiety of N-heptafluorobutyryl isobutyl esters of amino acids. The ratio of selected ion pairs at the characteristic retention time of each amino acid derivative can be used to calculate 15N abundance with an accuracy of ±1 atom% excess 15N using samples containing as little as 30 picomoles of individual amino acids. Up to 11 individual amino acid derivatives can be selectively monitored in a single chromatogram of 30 minutes. It is suggested that these techniques will be useful in situations where the small quantities of N available for analysis have hitherto hindered the use of 15N-labeled precursors. PMID:16662074

  17. Comparison of Hydraulic Methods and Tracer Experiments as Applied to the Development of Conceptual Models for Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Novakowski, K. S.

    2015-12-01

    The development of conceptual models for solute migration in discrete fracture networks has typically been based on a combination of core logs, borehole geophysics, and some form of single-well hydraulic test using discrete zones. More rarely, interwell hydraulic tests and interwell tracer experiments are utilised to directly explore potential transport pathways. The latter methods are less widely employed simply due to potentially significant increases in the cost and effort in site characterization. To date however there is a paucity of literature comparing the efficacy of the standard procedure with what should be more definitive identification of transport pathways using interwell methods. In the present study, a detailed comparison is conducted by developing conceptual models from three separate data sets, the first based on core logs, geology and single-well hydraulic tests, the second based on a large suite of pulse interference tests, and the third based on a series of radially-divergent and injection-withdrawal tracer experiments. The study was conducted in an array of five HQ-sized wells, 28-32 m in depth and arranged in a five star pattern, 10 m on a side. The wells penetrate the contact between a Cambrian-aged limestone, and underlying Precambrian gneiss. The core was logged for potentially open fractures using a ranking system, and 87 contiguous hydraulic tests were conducted using a 0.85-m packer spacing. A total of 57 pulse interference tests were conducted using two wells as injection points, and 11 tracer experiments were conducted using either sample collection or in-situ detection via a submersible fluorometer. The results showed very distinct conceptual models depending on the data set, with the model based on the single-well testing significantly over-predicting the number and connection of solute transport pathways. The results of the pulse interference tests also over predict the transport pathways, but to a lesser degree. Quantification of

  18. A Simple, High-Precision, High-Sensitivity Tracer Assay for N(inf2) Fixation

    PubMed Central

    Montoya, J. P.; Voss, M.; Kahler, P.; Capone, D. G.

    1996-01-01

    We describe a simple, precise, and sensitive experimental protocol for direct measurement of N(inf2) fixation using the conversion of (sup15)N(inf2) to organic N. Our protocol greatly reduces the limit of detection for N(inf2) fixation by taking advantage of the high sensitivity of a modern, multiple-collector isotope ratio mass spectrometer. This instrument allowed measurement of N(inf2) fixation by natural assemblages of plankton in incubations lasting several hours in the presence of relatively low-level (ca. 10 atom%) tracer additions of (sup15)N(inf2) to the ambient pool of N(inf2). The sensitivity and precision of this tracer method are comparable to or better than those associated with the C(inf2)H(inf2) reduction assay. Data obtained in a series of experiments in the Gotland Basin of the Baltic Sea showed excellent agreement between (sup15)N(inf2) tracer and C(inf2)H(inf2) reduction measurements, with the largest discrepancies between the methods occurring at very low fixation rates. The ratio of C(inf2)H(inf2) reduced to N(inf2) fixed was 4.68 (plusmn) 0.11 (mean (plusmn) standard error, n = 39). In these experiments, the rate of C(inf2)H(inf2) reduction was relatively insensitive to assay volume. Our results, the first for planktonic diazotroph populations of the Baltic, confirm the validity of the C(inf2)H(inf2) reduction method as a quantitative measure of N(inf2) fixation in this system. Our (sup15)N(inf2) protocols are comparable to standard C(inf2)H(inf2) reduction procedures, which should promote use of direct (sup15)N(inf2) fixation measurements in other systems. PMID:16535283

  19. Sewage derive [sup 15]N in the Baltic traced in fucus

    SciTech Connect

    Hobbie, J.E.; Fry, B. ); Larsson, U.; Elmgren, R. )

    1990-01-09

    Himmerfjarden, a fjord-like bay on the eastern shore of the Baltic, receives treated sewage from 250,000 inhabitants. Because the inorganic N in the effluent is enriched in [sup 15]N through denitrification, nitrification, and ammonia volatilization, an analysis of the distribution of [sup 15]N in the Bay tells how far from the source the sewage nitrogen moves. The attached macroalga Fucus vesiculosus was collected in early May from rocky shore at 0-0.5 m depth and the [sup 15]N content of the tips of the fronds analyzed. This N represents uptake and storage during the previous six months and growth during March and April. The [delta][sup 15]N was uniformly high (11-13[per thousand]) in the main body of the Bay within 15 km from the sewage source. Beyond 15 km values decreased with distance to a low of 4.6[per thousand] at 35 km, where the Bay ends and the coastal waters begin. Using the 11-13 and 4.6[per thousand] as endmembers, the percentage of sewage N making up the Fucus at any point may be calculated. The [delta][sub 15]N of particulate organic matter in the offshore Baltic waters was around 0[per thousand] and Fucus had an [delta][sup 15]N about 1.5[per thousand] higher than the POM. From this and other evidence we conclude that there is a belt of coastal water with an elevated [delta][sup 15]N lying along the east coast of the Baltic. This presumably derives from sewage and perhaps from agriculture and is potentially of use as a tracer of coastal zone/pelagic zone interactions.

  20. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part I: Datasets and Meteorological Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Pielke, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the

  1. Evaluation of a mesoscale atmospheric dispersion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part I: Datasets and meterological simulations

    SciTech Connect

    Moran, M.D.; Pielke, R.A.

    1996-03-01

    A mesoscale atmospheric dispersion (MAD) numerical modeling system, consisting of a mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, was used to simulate transport and diffusion of a perfluorocarbon tracer-gas cloud for a surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken downwind of the release site up to three days after the tracer release were available for comparison. Quantitative measures of significant dispersion characteristics obtained from analysis of the tracer cloud`s moving GLC {open_quotes}footprint{close_quotes} were used to evaluate the simulation of the MAD case. MAD is more dependent on the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the tracer experiment, the observations suggest that the nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. Ten two- and three-dimensional numerical meteorological experiments were devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the meteorological simulations are compared in this paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations. 76 refs., 13 figs., 6 tabs.

  2. The Santa Monica Basin Tracer Experiment - A study of diapycnal and isopycnal mixing

    NASA Technical Reports Server (NTRS)

    Ledwell, James R.; Watson, Andrew J.

    1991-01-01

    Cross isopycnal (diapycnal) and lateral mixing and stirring below the sill of Santa Monica Basin were studied by releasing two tracers, sulfur hexafluoride and perfluorodecalin, as close as possible to an isopycnal surface and measuring their subsequent dispersion. The target for the release was a potential temperature surface at about 790 m depth, roughly 100 m above the bottom and 50 m below the sill. Three surveys, performed immediately after, about 7 weeks after, and about 6 months after the release, showed that the time scales for lateral stirring and mixing in the basin were between 2 and 5 months. The diapycnal diffusivity for the whole period was found to be 0.29 + or - 0.06 sq cm/s near the injection surface, where the buoyancy frequency was about 1.1 cph. This estimate may include some mixing in the turbulent boundary layer near the walls of the basin. The best estimate for the diapycnal diffusivity in the basin interior is 0.25 + or - 0.08 sq cm/s.

  3. Tracer experiment and RTD analysis of DAF separator with bar-type baffles.

    PubMed

    Terashima, M; Iwasaki, M; Yasui, H; Goel, R; Suto, K; Inoue, C

    2013-01-01

    This paper describes the development of a new dissolved air flotation (DAF) separator with a flow streamlining baffle to improve solid separation efficiency. The analysis of the RTD (residence time distribution) curves indicated that the parameter θ(10) (dimensionless time at which 10% of tracer has discharged) increased from 0.38 for control reactor to 0.54 for the test reactor, suggesting significant reduction in short circuit flow. The RTD curves were also used to develop a compartment model for white water (rich in micro-bubbles and water flow is turbulent) and clear water (little or no air content and water flow is quiescent) zones in the reactor using a series of CSTR (continuous stirred tank reactors) and plug flow regime respectively. The proportion of the volume occupied by the white water zone was different in control and test configurations. In the test reactor, the fraction of the clear water zone was found to increase from 6 to 37%, resulting in improvement of the suspended solid (SS) removal efficiency from 97 to 99%. PMID:23416583

  4. USE OF TRACER DATA FROM THE MADISON SQUARE GARDEN 2005 FIELD EXPERIMENT TO TEST A SIMPLE URBAN DISPERSION MODEL

    SciTech Connect

    Hanna, Steven R.; Baja, Emmanuel; Flaherty, Julia E.; Allwine, K Jerry

    2008-01-30

    A simple urban dispersion model is tested that is based on the Gaussian plume model and the Briggs’ urban dispersion curves. A key aspect of the model is that an initial dispersion coefficient (sigma) of 40 m is assumed to apply in the x, y, and z directions in built-up downtown areas. This initial sigma accounts for mixing in the local street canyon and/or building wakes. At short distances (i.e., when the release is in the same street canyon as the receptor and there are no obstructions in between), the initial lateral sigma is assumed to be less, 10 m. Observations from tracer experiments during the Madison Square Garden 2005 (MSG05) field study are used for model testing. MSG05 took place in a 1 km by 1 km area in Manhattan surrounding Madison Square Garden. Six different perfluorocarbon tracer (PFT) gases were released concurrently from five different locations around MSG, and concentrations in the air were observed by 20 samplers near the surface and seven samplers on building tops. There were two separate continuous 60 minute tracer release periods on each day, beginning at 9 am and at 11:30 am. Releases took place on two separate days (March 10 and 14). The samplers provided 30 minute averaged PFT concentrations from 9 am through 2 pm. This analysis focuses on the maximum 60-minute averaged PFT gas concentration at each sampler location for each PFT for each release period. Stability was assumed to be nearly neutral, because of the moderate winds and the mechanical mixing generated by the buildings. Input wind direction was the average observed building-top wind direction (285° on March 10 and 315° on March 14). Input wind speed was the average street-level observed wind speed (1.5 m/s for both days). To be considered in the evaluation, both the observed and predicted concentration had to exceed the threshold. Concentrations normalized by source release rate, C/Q, were tested. For all PFTs, samplers, and release times, the median observed and predicted

  5. Development of a transportable incubator for autoradiographic experiments with positron emitter-labeled tracers in living brain tissues.

    PubMed

    Sasaki, T; Abe, K

    2001-12-01

    For autoradiography using positron emitter-labeled tracers in living human brain tissues, samples have to be transported to a positron emission tomography (PET) facility. We have developed a transportable apparatus in which slices are incubated in Krebs-Ringer medium with 95% O(2)/5% CO(2) at 34 degrees C. The incubator comprises a polystyrene foam container, inner chamber, heater, thermostat and battery. The container is sealed and oxygen gas is supplied through a filter (pore size 0.2 microm). The gas is evacuated from the container through the filter, to avoid bacterial contamination. Slices (330 microm) of rat brain were arranged on the nylon net of the inner chamber, and lightly fixed in place by covering them with a fine nylon net stretched over a stainless steel ring. The incubation was carried out at a temperature of 34 degrees C maintained by a heater and thermostat, and the medium was bubbled with 95% O(2)/5% CO(2) from a portable gas cylinder. The temperature of the medium in the container was well controlled (34.0+/-0.5 degrees C) for up to 200 min with no positional differences. In the dynamic autoradiographic experiment, the rate of uptake of [(18)F]2-fluoro-2-deoxy-D-glucose (FDG) in sections preincubated for 45 min in the transportable apparatus was no different from that in the sections kept in the usual incubating apparatus. This apparatus may enable autoradiography using positron emitter-labeled tracers in living human brain tissues. PMID:11733192

  6. A new tracer experiment to estimate the methane emissions from a dairy cow shed using sulfur hexafluoride (SF6)

    NASA Astrophysics Data System (ADS)

    Marik, Thomas; Levin, Ingeborg

    1996-09-01

    Methane emission from livestock and agricultural wastes contribute globally more than 30% to the anthropogenic atmospheric methane source. Estimates of this number have been derived from respiration chamber experiments. We determined methane emission rates from a tracer experiment in a modern cow shed hosting 43 dairy cows in their accustomed environment. During a 24-hour period the concentrations of CH4, CO2, and SF6, a trace gas which has been released at a constant rate into the stable air, have been measured. The ratio between SF6 release rate and measured SF6 concentration was then used to estimate the ventilation rate of the stable air during the course of the experiment. The respective ratio between CH4 or CO2 and SF6 concentration together with the known SF6 release rate allows us to calculate the CH4 (and CO2) emissions in the stable. From our experiment we derive a total daily mean CH4 emission of 441 LSTP per cow (9 cows nonlactating), which is about 15% higher than previous estimates for German cows with comparable milk production obtained during respiration chamber experiments. The higher emission in our stable experiment is attributed to the contribution of CH4 release from about 50 m3 of liquid manure present in the cow shed in underground channels. Also, considering measurements we made directly on a liquid manure tank, we obtained an estimate of the total CH4 production from manure: The normalized contribution of methane from manure amounts to 12-30% of the direct methane release of a dairy cow during rumination. The total CH4 release per dairy cow, including manure, is 521-530 LSTP CH4 per day.

  7. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  8. NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER. 2. SPATIAL MOMENTS AND THE ADVECTION AND DISPERSION OF NONREACTIVE TRACERS

    EPA Science Inventory

    The three-dimensional movement of a tracer plume containing bromide and chloride is investigated using the data base from a large-scale natural gradient field experiment on groundwater solute transport. The analysis focuses on the zeroth-, first-, and second-order spatial moments...

  9. Perfluorocarbon tracer technology

    SciTech Connect

    Dietz, R.N.

    1986-01-01

    Perfluorocarbon tracer technology developments at Brookhaven is described, including the latest identified as well as available PFTs and air sampling and analysis tools, to demonstrate their utility in a number of different atmospheric tracer experiments as well as in other applications, and to provide food-for-thought on new ways in which the PFTs can be applied in other research objectives. All of the important tools are described, but emphasis is given to the latest developments in the technology.

  10. Non-isothermal infiltration and tracer transport experiments on large soil columns

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav

    2016-04-01

    Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling

  11. Fate and metabolism of [15N]2,4,6-trinitrotoluene in soil.

    PubMed

    Weiss, Martin; Geyer, Roland; Russow, Rolf; Richnow, Hans H; Kästner, Matthias

    2004-08-01

    The fates of the labels from [14C] and [15N] trinitrotoluene were analyzed in bioreactors under aerobic conditions in soil treated by a fungal bioremediation process with Stropharia rugosoannulata and in control soil. Up to 17.5% of the 15N label had a different fate than the 14C label. Three N-mineralization processes were identified in detailed experiments with [15N]TNT. About 2% of the 15N label was found as NO3- and NH4+, showing simultaneous processes of direct TNT denitration (I) and reduction with cleavage of the amino groups (II). The enrichment of NO2-/NO3- (up to 7.5 atom% 15N abundance) indicates the formation of Meisenheimer complexes with a denitration of [15N]TNT. A 1.4% of the label was found distributed between N2O and N2. However, the 15N enrichment of the N2O (up to 38 atom%) demonstrated that both N atoms were generated from the labeled TNT and clearly indicates a novel formation process (III). We propose, as an explanation, the generation of N2O by cleavage from condensed azoxy metabolites. In addition, 1.7% of the 15N label was detected as biogenic amino acids in the wheat straw containing the fungus. Overall, 60 to 85% of the applied [15N]TNT was degraded and 52 to 64% was found as nonextractable residues in the soil matrix. Three percent was detected as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene. PMID:15352472

  12. Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Griffith, D. W.; Dijkstra, F. A.; Lugg, G.; Lawrie, R.; Macdonald, B.

    2012-12-01

    Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m-2 s-1. Emissions of all N2O isotopologues were evident immediately following 15N addition. Emissions of 14N15NO, 15N14NO and 15N15NO isotopologues subsided within 10 d, but 14N14NO fluxes were evident over the entire experiment. The figure provides an overview of the emissions. Cumulative 15N-N2O fluxes (sum of the three 15N isotopologues) per chamber for the 14 days following 15N addition ranged from 1.5 to 10.3 mg 15N-N2O m-2. The chambers were destructively sampled after 2 weeks and 15N analyzed in soil and plant material using isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of

  13. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples. PMID:26367322

  14. Implications of a Multi-well Tracer Test in the Transport of Pathogens at a Riverbank Filtration Experiment Site.

    NASA Astrophysics Data System (ADS)

    Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.

    2003-12-01

    This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in

  15. Increase of Natural 15N Enrichment of Soybean Nodules with Mean Nodule Mass 1

    PubMed Central

    Shearer, Georgia; Bryan, Barbara A.; Kohl, Daniel H.

    1984-01-01

    The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule. PMID:16663917

  16. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations

    PubMed Central

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K.; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15−15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15−15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15−15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the 15−15N2 gas addition to indirectly enhance the 15−15N2 concentration. This preparation of 15−15N2-enriched water can be done within 1 h using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15−15N2-enriched water. Notably, the addition of 15−15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15−15N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L−1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15−15N2. The 15−15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15−15N2 equilibration. This approach achieved a 15N-atom% excess of 6.6 ± 1.7% when adding 2 mL 15−15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  17. Simple approach for the preparation of (15-15)N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations.

    PubMed

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used (15)N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared (15-15)N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of (15-15)N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add (15-15)N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the (15-15)N2 gas addition to indirectly enhance the (15-15)N2 concentration. This preparation of (15-15)N2-enriched water can be done within 1 h using standard laboratory equipment. The final (15)N-atom% excess was 5% after replacing 2-5% of the incubation volume with (15-15)N2-enriched water. Notably, the addition of (15-15)N2-enriched water can alter levels of trace elements in the incubation water due to the contact of (15-15)N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L(-1) in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with (15-15)N2. The (15-15)N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the (15-15)N2 equilibration. This approach achieved a (15)N-atom% excess of 6.6 ± 1.7% when adding 2 mL (15-15)N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the (15)N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  18. Tracer Gas Transport under Mixed Convection Conditions in anExperimental Atrium: Comparison Between Experiments and CFDPredictions

    SciTech Connect

    Jayaraman, Buvaneswari; Finlayson, Elizabeth U.; Sohn, MichaelD.; Thatcher, Tracy L.; Price, Phillip N.; Wood, Emily E.; Sextro,Richard G.; Gadgil, Ashok J.

    2006-01-01

    We compare computational fluid dynamics (CFD) predictions using a steady-state Reynolds Averaged Navier-Stokes (RANS) model with experimental data on airflow and pollutant dispersion under mixed-convection conditions in a 7 x 9 x 11m high experimental facility. The Rayleigh number, based on height, was O(10{sup 11}) and the atrium was mechanically ventilated. We released tracer gas in the atrium and measured the spatial distribution of concentrations; we then modeled the experiment using four different levels of modeling detail. The four computational models differ in the choice of temperature boundary conditions and the choice of turbulence model. Predictions from a low-Reynolds-number k-{var_epsilon} model with detailed boundary conditions agreed well with the data using three different model-measurement comparison metrics. Results from the same model with a single temperature prescribed for each wall also agreed well with the data. Predictions of a standard k-{var_epsilon} model were about the same as those of an isothermal model; neither performed well. Implications of the results for practical applications are discussed.

  19. Calcium-ammonium exchange experiments on clay minerals using a (45)Ca tracer technique in marine pore water.

    PubMed

    Ockert, Charlotte; Wehrmann, Laura M; Kaufhold, Stephan; Ferdelman, Tim G; Teichert, Barbara M A; Gussone, Nikolaus

    2014-01-01

    Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite. PMID:24437731

  20. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    NASA Astrophysics Data System (ADS)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  1. Where is the water going: An irrigation experiment using a natural isotopic tracer in karst SE, Australia.

    NASA Astrophysics Data System (ADS)

    Markowska, Monika; Baker, Andy; Andersen, Martin S.; Cuthbert, Mark; Rau, Gabriel; Jex, Cath; Rutlidge, Helen; Marjo, Chris; Roshan, Hamid; Treble, Pauline

    2014-05-01

    The karst unsaturated zone is a fractured rock environment associated with very heterogeneous water movement; spatial variability in the subsurface water storage; and fast preferential flow through fractures and fissures. These factors dominate the way in which water moves within the unsaturated zone in these environments, giving rise to flow path complexities less common in homogenous media. Currently there is limited research regarding karst infiltration/storage processes and potential evaporation in the unsaturated zone. Such processes may have the potential to alter the stable isotopic composition of groundwater. Caves provide a unique environment within which to examine exfiltration variability and flow dynamics in situ. In semi-arid environments evaporative processes in the unsaturated zone have been shown to directly alter the isotopic δ18O composition of cave drip waters, fractionating them towards heavier ratios, by a magnitude of 1-3 per mil relative to mean annual rainfall (Bar Matthews et al., 1996; Cuthbert et al., 2014). Here we present a novel isotopic drip water study from an artificial infiltration experiment at Wellington Caves, SE Australia. A series of four artificial infiltration events were initiated directly over Cathedral Cave, Wellington over as many days. The first event was spiked with a deuterium tracer and the subsurface response was monitored during several sampling campaigns over the following year. The infiltration study revealed: (1) isotopic break-through curves suggest a front of older water from the unsaturated zone storage arrived ahead of the infiltration water, (2) water residence times in the unsaturated zone were found to be longer than 6 months and, (3) large spatial heterogeneities existed in the proportion of exfiltrated deuterium tracer at different drip sites in the cave suggesting unique pathways and sources of water in the unsaturated zone. Implications from this study include the interpretation of paleo

  2. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 2: Gas Tracer Dispersion

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2016-07-01

    The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.

  3. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their

  4. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    PubMed

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a

  5. Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment

    NASA Astrophysics Data System (ADS)

    Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.

    1989-08-01

    In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.

  6. Across North America Tracer Experiment (ANATEX). Volume 1. Description, ground-level sampling at primary sites, and meteorology. Technical memo

    SciTech Connect

    Draxler, R.R.; Heffter, J.L.

    1989-01-01

    Contents include: experimental design; the ground-level air-sampling system; description and design of perfluorocarbon tracer (PFT) analysis system; PFT sampler data management; PFT data quality assurance; meteorology.

  7. Degradation of algal lipids by deep-sea benthic foraminifera: An in situ tracer experiment

    NASA Astrophysics Data System (ADS)

    Nomaki, Hidetaka; Ohkouchi, Naohiko; Heinz, Petra; Suga, Hisami; Chikaraishi, Yoshito; Ogawa, Nanako O.; Matsumoto, Kouhei; Kitazato, Hiroshi

    2009-09-01

    We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C 15,anteiso-C 17, and C 17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4-6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.

  8. Nested heat tracer experiments for identifying heterogeneity of aquifer-river exchange at multiple scales

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Hannah, David; Blume, Theresa; Angermann, Lisa; Lewandowski, Joerg; Cassidy, Nigel

    2016-04-01

    This study presents the nested application of three heat tracing methods for identifying aquifer-river exchange fluxes at multiple scales ranging from centimeter to stream reach-scale. The investigations focus on a UK lowland river where hotspots of redox-reactivity were found to coincide with locations of increased streambed residence times underneath flow confining streambed peat and clay structures. In order to identify the spatial extend and patterns of reactivity hot spots associated with these streambed structures, reach-scale patterns of aquifer-river exchange fluxes have been analysed by Fibre-Optic Distributed Temperature Sensing (FO-DTS) along a cable buried in the streambed of a 250 m reach in combination with 2D thermocouple arrays in a 12 m long pool-riffle-pool sequence and small-scale heat pulse injections for tracing shallow hyporheic flow paths within the uppermost 20cm streambed sediments. FO-DTS observed streambed temperature anomalies caused by the mixing of different temperatures of GW and SW end-members were used to infer information on exchange fluxes at the aquifer-river interface. FO-DTS survey results indicate that patterns of up to 2C colder (Summer) and 3.5C warmer (Winter) temperatures in investigated streambed sediments can be attributed to fast GW up-welling in sandy and gravely sediments. Contrasting conditions were found at locations where streambed temperatures equal SW temperatures and GW-SW exchange was inhibited by the existence of peat or clay lenses within the streambed. FO-DTS observations of regional GW up-welling patterns were complemented by heat pulse injection experiments which provided essential information of the shallow aquifer- river exchange fluxes and confirmed increased SW infiltration and lateral flow in riffle crests and at locations with highly conductive streambed sediments above flow confining low conductivity structures. The propagation of diurnal temperature oscillations from the surface to streambed depths

  9. Nested heat tracer experiments for identifying heterogeneity of aquifer-river exchange at multiple scales

    NASA Astrophysics Data System (ADS)

    Krause, S.; Hannah, D. M.; Blume, T.; Angermann, L.; Lewandowski, J.; Cassidy, N. J.

    2012-04-01

    This study presents the nested application of three heat tracing methods for identifying aquifer-river exchange fluxes at multiple scales ranging from centimeter to stream reach-scale. The investigations focus on a UK lowland river where hotspots of redox-reactivity were found to coincide with locations of increased streambed residence times underneath flow confining streambed peat and clay structures. In order to identify the spatial extend and patterns of reactivity hot spots associated with these streambed structures, reach-scale patterns of aquifer-river exchange fluxes have been analysed by Fibre-Optic Distributed Temperature Sensing (FO-DTS) along a cable buried in the streambed of a 250 m reach in combination with 2D thermocouple arrays in a 12 m long pool-riffle-pool sequence and small-scale heat pulse injections for tracing shallow hyporheic flow paths within the uppermost 20cm streambed sediments. FO-DTS observed streambed temperature anomalies caused by the mixing of different temperatures of GW and SW end-members were used to infer information on exchange fluxes at the aquifer-river interface. FO-DTS survey results indicate that patterns of up to 2C colder (Summer) and 3.5C warmer (Winter) temperatures in investigated streambed sediments can be attributed to fast GW up-welling in sandy and gravely sediments. Contrasting conditions were found at locations where streambed temperatures equal SW temperatures and GW-SW exchange was inhibited by the existence of peat or clay lenses within the streambed. FO-DTS observations of regional GW up-welling patterns were complemented by heat pulse injection experiments which provided essential information of the shallow aquifer- river exchange fluxes and confirmed increased SW infiltration and lateral flow in riffle crests and at locations with highly conductive streambed sediments above flow confining low conductivity structures. The propagation of diurnal temperature oscillations from the surface to streambed depths

  10. Nested heat tracer experiments for identifying heterogeneity of aquifer-river exchange at multiple scales

    NASA Astrophysics Data System (ADS)

    Krause, S.; Blume, T.; Angermann, L.; Hannah, D. M.; Weatherill, J.; Cassidy, N. J.

    2011-12-01

    injection experiments which provided essential information of the shallow aquifer- river exchange fluxes and confirmed increased SW infiltration and lateral flow in riffle crests and at locations with highly conductive streambed sediments above flow confining low conductivity structures. The propagation of diurnal temperature oscillations from the surface to streambed depths of up to 40cm was observed at thermocouple profiles along a pool-riffle-pool sequence in order to analyse the potential masking of FO-DTS observed temperature patterns by topography induced hyporheic exchange fluxes. The cross-correlation functions based analysis of the depth dampening and offset of diurnal temperature amplitudes revealed that streambed temperature variation due to topography induced hyporheic exchange flow was an order of magnitude lower than the FO-DTS signal strength. The investigations supported the development of a conceptual model of aquifer-river exchange and hyporheic reactivity in lowland rivers including temperature traceable hyporheic exchange fluxes at multiple scales.

  11. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  12. Cryptic or day-to-day parts of the riverbed N cycle - new challenges for 15N

    NASA Astrophysics Data System (ADS)

    Trimmer, Mark; Ouyang, Liao; Lansdown, Katrina

    2016-04-01

    The discovery of anaerobic ammonium oxidation (anammox) not only changed our understanding of the nitrogen cycle in aquatic ecosystems but it also undermined some of the key 15N techniques used to study it. Reformulations of principle equations and the development of new 15N2 and 15N2O techniques enabled the simultaneous quantification of N2 production by anammox and denitrification in mainly soft, cohesive sediments where redox gradients are clearly defined and solute exchanged governed by diffusion. At the heart of the application of 15N, for the quantification of natural 14N cycling, is the key assumption that the respective pools of 15N and 14N are evenly mixed and that both are cycled without bias towards each other. Recent evidence, however, from a variety of aquatic ecosystems, suggests that this may not be the case. For example, organic N may be oxidised directly to N2 gas without ever mixing with the inorganic pool or inorganic intermediates (e.g. nitrite) are 'shunted' internally and also fail to mix evenly with the applied tracer pool. Our most recent work in permeable, oxic gravel riverbeds presents some particular challenges to the application of 15N. In these systems, a tight coupling between aerobic nitrification and anaerobic N2 production - in the presence of 100

  13. Isotopologues of dense gas tracers in NGC 1068

    SciTech Connect

    Wang, Junzhi; Qiu, Jianjie; Zhang, Zhi-Yu; Shi, Yong; Zhang, Jiangshui; Fang, Min

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  14. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  15. TRACER: an ‘eye-opener’ to the patient experience across the transition of care in an internal medicine resident program

    PubMed Central

    Meade, Lauren B.; Hall, Susana L.; Kleppel, Reva W.; Hinchey, Kevin T.

    2015-01-01

    Background A safe patient transition requires a complex set of physician skills within the interprofessional practice. Objective To evaluate a rotation which applies self-reflection and workplace learning in a TRAnsition of CarE Rotation (TRACER) for internal medicine (IM) residents. TRACER is a 2-week required IM resident rotation where trainees join a ward team as a quality officer and follow patients into postacute care. Methods In 2010, residents participated in semistructured, one-on-one interviews as part of ongoing program evaluation. They were asked what they had learned on TRACER, the year prior, and how they used those skills in their practice. Using transcripts, the authors reviewed and coded each transcript to develop themes. Results Five themes emerged from a qualitative, grounded theory analysis: seeing things from the other side, the ‘ah ha’ moment of fragmented care, team collaboration including understanding nursing scope of practice in different settings, patient understanding, and passing the learning on. TRACER gives residents a moment to breathe and open their eyes to the interprofessional practice setting and the patient's experience of care in transition. Conclusions Residents learn about transitions of care through self-reflection. This learning is sustained over time and is valued enough to teach to their junior colleagues. PMID:25846349

  16. Box-modeling of 15N/14N in mammals.

    PubMed

    Balter, Vincent; Simon, Laurent; Fouillet, Hélène; Lécuyer, Christophe

    2006-03-01

    The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established approximately 4 per thousand 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet delta15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a delta15N increase of the proteins, in agreement with the observed increase of collagen delta15N of herbivorous animals with aridity. We further show that the low delta15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of delta15N collagen. PMID:16328553

  17. Tracers in rainfall simulation experiments to study the onset of the wet season in Eastern Mediterranean limestone environments

    NASA Astrophysics Data System (ADS)

    Lange, Jens

    2010-05-01

    The eastern Mediterranean rainfall regime is characterized by dry and hot summers and rainy cold winters. In this climate rocky limestone environments are regarded as major recharge zones due to (a) intensively enlarged fissures by solution weathering and (b) sparse vegetation and shallow soils which limit evapotranspiration losses. However, relatively little is known on hydrological processes during high magnitude rainstorms, which, at the beginning of the rainy season, may occur on both dry and wet soils. These conditions were investigated by a series of sprinkling experiments during two successive days. Rainfall was applied on large plots (143 and 180 m2) to include the variety of different terrain elements (rocky outcrops, bare soil, different vegetation). Sprinkling units were located at each corner of the plot and supplemented by additional ones to balance wind drift. This sprinkling set-up did not guarantee a uniform distribution of applied rainfall, as overlap of sprinkling areas could not be prevented. To assess the spatial rainfall distribution, a large number of totalizers was necessary. During two days of sprinkling these totalizers were regularly measured and spatially interpolated across the plot. The temporal rainfall distribution, a series of two high intensity storms on dry and wet soil, was observed by a tipping bucket raingauge. Tracers were added to the sprinkling water to obtain additional process insights. By end member mixing analysis the contribution of different water types (pre-sprinkling, first day, second day) could be quantified. The first plot was located on a steep rocky hillslope. Significantly different concentration of chloride, nitrate and sulfate in the sprinkling waters helped to identify first day's water in second day's runoff. Surface runoff was a combination of infiltration excess runoff from rocky portions of the plot and saturation excess runoff from areas covered by soil. Soil saturation was accelerated by lateral runoff

  18. Mammalian DNA δ15N exhibits 40‰ intramolecular variation and is unresponsive to dietary protein level

    PubMed Central

    Strable, Maggie S.; Tschanz, Carolyn L.; Varamini, Behzad; Chikaraishi, Yoshito; Ohkouchi, Naohiko; Brenna, J. Thomas

    2014-01-01

    We report the first high precision characterization of molecular and intramolecular δ15N of nucleosides derived from mammalian DNA. The influence of dietary protein level on brain amino acids and deoxyribonucleosides was determined to investigate whether high protein turnover would alter amino acid 15N or 13C. Pregnant guinea pig dams were fed control diets, or high or low levels of dietary protein throughout gestation, and all pups were fed control diets. Cerebellar DNA of offspring was extracted at 2 and 120 days of life, nucleosides isolated and δ15N and δ13C characterized. Mean diet δ15N = 0.45±0.33‰, compared to cerebellar whole tissue and DNA δ15N = +4.1±0.7‰ and −4.5±0.4‰, respectively. Cerebellar deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), and deoxyguanosine (dG) δ15N were +1.4±0.4, −2.1±0.9, −7.2±0.3, and −10.4±0.5‰, respectively. There were no changes in amino acid or deoxyribonucleoside δ15N due to dietary protein level. Using known metabolic relationships, we developed equations to calculate the intramolecular δ15N originating from aspartate (asp) in purines (pur) or pyrimidines (pyr), glutamine (glu), and glycine (gly) to be δ15NASP-PUR, δ15NASP-PYR, δ15NGLN, and δ15NGLY +11.9±2.3‰, +7.0±2.0‰, −9.1±2.4‰, and −31.8±8.9‰, respectively. A subset of twelve amino acids from food and brain had mean δ15N of 4.3±3.2‰ and 13.8±3.1‰, respectively, and δ15N for gly and asp were 12.6±2.2‰ and 15.2±0.8‰, respectively. A separate isotope tracer study detected no significant turnover of cerebellar DNA in the first six months of life. The large negative δ15N difference between gly and cerebellar purine N at the gly (7) position implies either that there is a major isotope effect during DNA synthesis, or that in utero gly has a different isotope ratio during rapid growth and metabolism than in adult life. Our data show that cerebellar nucleoside intramolecular δ15N vary over more than

  19. Tracer Technique

    NASA Astrophysics Data System (ADS)

    Haba, H.; Motomura, S.; Kamino, S.; Enomoto, S.

    In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.

  20. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    PubMed

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable. PMID:15984768

  1. Preliminary Results from Downhole Osmotic Samplers in a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.

    2015-12-01

    We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.

  2. Influence of distributed flow losses and gains on the estimation of transient storage parameters from stream tracer experiments

    NASA Astrophysics Data System (ADS)

    Szeftel, Pascal; (Dan) Moore, R. D.; Weiler, Markus

    2011-01-01

    unique determination was problematic. We also based our analysis on Fmed200, the fraction of median transport time due to transient storage. Differences across configurations in Fmed200 estimates were consistent but small when compared to the variability of Fmed200 among reaches. Optimized parameter values were influenced dominantly by the model structure (four versus five parameters) and then by the conceptualization of spatial arrangement of lateral fluxes along the reach for a set model structure. When boundary conditions are poorly defined, the information contained in the stream tracer breakthrough curve is insufficient to identify a single, unambiguous model structure representing solute transport simulations. Investigating lateral fluxes prior to conducting a study on transient storage processes is necessary, as assuming a certain spatial organization of these fluxes might set ill-defined bases for inter-reach comparisons. Given the difficulty in quantifying the spatial patterns and magnitudes of lateral inputs and outputs, we recommend small-scale laboratory tracer experiments with well-defined and variable boundary conditions as a complement to field studies to provide new insights into stream solute dynamics.

  3. A field experiment and numerical modeling of a tracer at a gravel beach in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Li, Hailong; Boufadel, Michel C.; Liu, Jin

    2014-08-01

    Oil from the 1989 Exxon Valdez oil spill persists in many gravel beaches in Prince William Sound (Alaska, USA), despite great remedial efforts. A tracer study using lithium at a gravel beach on Knight Island, Prince William Sound, during the summer of 2008 is reported. The tracer injection and transport along a transect were simulated using the two-dimensional numerical model MARUN. Model results successfully reproduced the tracer concentrations observed at wells along the transect. A sensitivity analysis revealed that the estimated parameters are well determined. The simulated spatial distribution of tracer indicated that nutrients applied along the transect for bioremediation purposes would be washed to the sea very quickly (within a semi-diurnal tidal cycle) by virtue of the combination of the two-layered beach structure, the tidal fluctuation and the freshwater flow from inland. Thus, pore-water samples in the transect were found to be clean due to factors other than bioremediation. This may explain why the oil did not persist within the transect.

  4. A field experiment and numerical modeling of a tracer at a gravel beach in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Li, Hailong; Boufadel, Michel C.; Liu, Jin

    2014-12-01

    Oil from the 1989 Exxon Valdez oil spill persists in many gravel beaches in Prince William Sound (Alaska, USA), despite great remedial efforts. A tracer study using lithium at a gravel beach on Knight Island, Prince William Sound, during the summer of 2008 is reported. The tracer injection and transport along a transect were simulated using the two-dimensional numerical model MARUN. Model results successfully reproduced the tracer concentrations observed at wells along the transect. A sensitivity analysis revealed that the estimated parameters are well determined. The simulated spatial distribution of tracer indicated that nutrients applied along the transect for bioremediation purposes would be washed to the sea very quickly (within a semi-diurnal tidal cycle) by virtue of the combination of the two-layered beach structure, the tidal fluctuation and the freshwater flow from inland. Thus, pore-water samples in the transect were found to be clean due to factors other than bioremediation. This may explain why the oil did not persist within the transect.

  5. MINNESOTA 1973 ATMOSPHERIC BOUNDARY LAYER EXPERIMENT: MICROMETEOROLOGICAL AND TRACER DATA ARCHIEVE. SET 1 (REVISION 2) DOCUMENTATION REPORT

    EPA Science Inventory

    An archive for micrometeorological and tracer dispersion data has been developed by Battelle, Pacific Northwest Laboratories for the U.S. Environmental Protection Agency. The archive is designed to make the results of extensive field tests readily accessible to EPA for model test...

  6. Ensemble-based simultaneous emission estimates and improved forecast of radioactive pollution from nuclear power plant accidents: application to ETEX tracer experiment.

    PubMed

    Zhang, X L; Li, Q B; Su, G F; Yuan, M Q

    2015-04-01

    The accidental release of radioactive materials from nuclear power plant leads to radioactive pollution. We apply an augmented ensemble Kalman filter (EnKF) with a chemical transport model to jointly estimate the emissions of Perfluoromethylcyclohexane (PMCH), a tracer substitute for radionuclides, from a point source during the European Tracer Experiment, and to improve the forecast of its dispersion downwind. We perturb wind fields to account for meteorological uncertainties. We expand the state vector of PMCH concentrations through continuously adding an a priori emission rate for each succeeding assimilation cycle. We adopt a time-correlated red noise to simulate the temporal emission fluctuation. The improved EnKF system rapidly updates (and reduces) the excessively large initial first-guess emissions, thereby significantly improves subsequent forecasts (r = 0.83, p < 0.001). It retrieves 94% of the total PMCH released and substantially reduces transport error (>80% average reduction of the normalized mean square error). PMID:25647500

  7. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.

    2011-12-01

    In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion

  8. Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.

    2014-12-01

    Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in

  9. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  10. Evaluation of a mesoscale atmospheric dispersion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part II: Dispersion simulations

    SciTech Connect

    Moran, M.D.; Pielke, R.A.

    1996-03-01

    A mesoscale atmospheric dispersion (MAD) numerical modeling system, consisting of a mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model (MLPDM), was used to simulate the emission, transport, and diffusion of a perfluorocarbon tracer-gas cloud for a surface release during a tracer field experiment. The MLPDM was run for a baseline simulation and seven sensitivity experiments. The baseline simulation showed considerable skill in predicting peak ground-level concentration (GLC), maximum cloud width, cloud arrival and transit times, and crosswind integrated exposure at downwind distances of 100 and 600 km. The baseline simulation also compared very well to simulations made by seven other MAD models for the same case in an earlier study. The sensitivity experiments explored the impact of various factors on MAD, especially the diurnal heating cycle and physiographic and atmospheric inhomogeneities, by including or excluding them in different combinations. The GLC footprints predicted in sensitivity experiments were sensitive to differences in simulated meteorological fields. The observations and numerical simulations suggest that the nocturnal low-level jet played an important role in transporting and deforming the tracer cloud during this MAD experiment: the mean transport speed was supergeostrophic and both crosswind and alongwind cloud spreads were larger than can be explained by turbulent diffusion alone. The contributions of differential horizontal advection and mesoscale deformation to MAD dominate those of small-scale turbulent diffusion for this case, and Pasquill`s delayed-shear enhancement mechanism for horizontal diffusion appears to have played a significant role during nighttime transport. These results demonstrate the need in some flow regimes for better temporal resolution of boundary layer vertical shear in MAD models than is available from the conventional twice-daily rawinsonde network. 34 refs., 14 figs., 4 tabs.

  11. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part II: Dispersion Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Piekle, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model (MLPDM), has been used to simulate the emission, transport, and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. The MLPDM was run for a baseline simulation and seven sensitivity experiments. The baseline simulation showed considerable skill in predicting such quantitative whole-could characteristics as peak ground-level concentration (GLC), maximum cloud width, cloud arrival and transit times, and crosswind integrated exposure at downwind distances of both 100 and 60 km. The baseline simulation also compared very favorably to simulations made by seven other MAD models for this same case in an earlier study. The sensitivity experiments explored the impact of various factors on MAD, especially the diurnal heating cycle and physiographic and atmospheric inhomogeneities, by including or excluding them in different combinations. The GLC `footprints' predicted in the sensitivity experiments were sensitive to differences in the simulated meteorological fields.The observations and the numerical simulations both suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the perfluorocarbon tracer cloud during this MAD experiment: the mean transport speed was supergeostrophic and both crosswind and alongwind cloud spreads were larger than can be explained by turbulent diffusion alone. The contributions of differential horizontal advection and mesoscale deformation to MAD dominate those of small-scale turbulent diffusion for this case, and Pasquill's delayed-shear enhancement mechanism for horizontal diffusion appears to have played a significant role during nighttime transport. These results demonstrate the

  12. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    PubMed

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours. PMID:7328697

  13. Attempting to link hydro-morphology, transient storage and metabolism in streams: Insights from reactive tracer experiments

    NASA Astrophysics Data System (ADS)

    Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan

    2016-04-01

    In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub

  14. New flaxseed orbitides: Detection, sequencing, and (15)N incorporation.

    PubMed

    Okinyo-Owiti, Denis P; Young, Lester; Burnett, Peta-Gaye G; Reaney, Martin J T

    2014-03-01

    Three new orbitides (cyclolinopeptides 17, 18, and 19) were identified in flaxseed (Linum usitatissimum L.) extracts without any form of purification. Their structures were elucidated by a combination of (15) N-labeling experiments and extensive tandem mass spectrometry (MS/MS) with electrospray ionization (ESI). Putative linear peptide sequences of the new orbitides were used as the query in the Basic Local Alignment Search Tool (BLAST) searches of flax genome database. These searches returned linear sequences for the putative precursors of cyclolinopeptides 17 and 19 among others. Cyclolinopeptide 18 contains MetO (O) and is not directly encoded, but is a product of post-translation modification of the Met present in 17. The identification of precursor proteins in flax mRNA transcripts and DNA sequences confirmed the occurrence and amino acid sequences of these orbitides as [1-9-NαC]-MLKPFFFWI, [1-9-NαC]-OLKPFFFWI, and [1-9-NαC]-GIPPFWLTL for cyclolinopeptides 17, 18, and 19, respectively. PMID:24408479

  15. Identification of novel hydrazine metabolites by 15N-NMR.

    PubMed

    Preece, N E; Nicholson, J K; Timbrell, J A

    1991-05-01

    15N-NMR has been used to study the metabolism of hydrazine in rats in vivo. Single doses of [15N2]hydrazine (2.0 mmol/kg: 98.6% g atom) were administered to rats and urine collected for 24 hr over ice. A number of metabolites were detected by 15N-NMR analysis of lyophilized urine. Ammonia was detected as a singlet at 0 ppm and unchanged [15N2]hydrazine was present in the urine detectable as a singlet at 32 ppm. Peaks were observed at 107 and 110 ppm which were identified as being due to the hydrazido nitrogen of acetylhydrazine and diacetylhydrazine, respectively. A resonance at 85 ppm was ascribed to carbazic acid, resulting from reaction of hydrazine with carbon dioxide. A singlet detected at 316 ppm was thought to be due to the hydrazono nitrogen of the pyruvate hydrazone. The resonance at 56 ppm was assigned to 15N-enriched urea, this together with the presence of ammonia indicates that the N-N bond of hydrazine is cleaved in vivo, possibly by N-oxidation, and the resultant ammonia is incorporated into urea. A doublet centred at 150 ppm and a singlet at 294 ppm were assigned to a metabolite which results from cyclization of the 2-oxoglutarate hydrazone. Therefore 15N-NMR spectroscopic analysis of urine has yielded significant new information on the metabolism of hydrazine. PMID:2018564

  16. Insights and questions raised from a multi-tracer plot-scale sprinkler experiment with time-lapse 3D GPR in a structured forested soil.

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Sprenger, Matthias; Allroggen, Niklas; van Schaik, Loes; Weiler, Markus; Zehe, Erwin

    2014-05-01

    Stable isotopes appear as ideal tracer commonly applied in preferential flow analyses. At the same time, central assumptions about signature mixing and propagation are founded on effective parameters merging advective and diffusive flow domains. However, in structured soils conditions are often far from well-mixed and some established assumptions may need to be reconsidered. We conducted a multi-tracer sprinkler experiment at a forested hillslope in the Attert Basin in Luxembourg with prevailing geogenic and biogenic preferential flow structures. At plot scale of 1x1 m2 we sprinkled two plots with 50 mm and one plot with 30 mm Brilliant Blue and Bromide enriched water for 1 hour. The experiments were accompanied by a high resolution 3D time-lapse GPR (Ground-Penetrating Radar) survey scanning 3x3 m2 before, directly after sprinkling and before excavation one day after sprinkling. Soil moisture was monitored with a TDR tube probe. Soil profiles were excavated and recorded for dye flow paths and for one medium resolution Bromide profile. In addition one core for pore water stable isotope analysis was taken before the sprinkling as reference and at each plot after sprinkling. We present the results with focus on the found evidence of preferential flow and the signals of the different tracers - especially the stable isotopes. While all other methods clearly show that only minor proportions of the soil took part in the infiltration process and that the sprinkler water has largely advectively propagated to the saprolite layer at about 80-100 cm depth, the stable isotopes signals from the cores indicate more intense interaction between the soil matrix and macropores, especially in the top 50 cm. This leads to the question of how the isotope signal could mix well, when most of the pore-water did not directly interact with the infiltration-water. Further questions arise to the use of tracers in general, due to the known limitations of excavation itself and rather coarse

  17. Evaluation of hydraulic characteristics in a pilot-scale constructed wetland using a multi-tracer experiment

    NASA Astrophysics Data System (ADS)

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Richnow, Hans H.; Nijenhuis, Ivonne

    2013-04-01

    In recent years, constructed wetland systems have become into focus as means for organic contaminant removal. The use of constructed wetlands as part of water treatment offers great opportunities to realize significant savings in future wastewater treatment costs for small communities and the adaptation of large wastewater treatment plants. Wetland systems provide a highly reactive environment in which several elimination pathways of organic chemicals may be present at the same time; however, these elimination processes and hydraulic conditions are usually poorly understood. Previously, in our study site monochlorobenzene removal was observed in a pilot-scale wetland system which treats contaminated groundwater from the regional aquifer in Bitterfeld. The degradation was linked to either aerobic or anaerobic, iron- or sulfate- reduction or multiple processes, in parallel. However, it was unclear how the groundwater flows through this system, precluding a more founded understanding of the flow and transport processes. Therefore, we investigated the flow system in this three dimensional pilot-scale constructed wetland applying a multi tracer test combined with a mathematical model to evaluate the hydraulic characteristics. The pilot system consisted of a 6 m length x 1 m wide x 0.5 m depth gravel filter with a triple inflow distributed evenly approx. 5 cm from the bottom at the inflow. Three conservative tracers (uranine, bromide and deuterium) were injected as a pulse at the inflow and analyzed at 4 meters distance from the inflow at three different depths to obtain residence time distributions of groundwater flow in the gravel bed of the wetland. A mathematical multi-flow dispersion model was used to model the tracer breakthrough curves of the different sampling levels, which assumes parallel combinations of the one-dimensional advection-dispersion equation. The model was successfully applied to fit the experimental tracer breakthrough curves by assuming three flow

  18. Carbon dioxide induced ocean climatic change and tracer experiment with an atmosphere-ocean general circulation model

    SciTech Connect

    Jiang, Xingjian.

    1991-01-01

    The principal objective of this study is to determine whether or not the penetration of a passive tracer is analogous to the penetration of a greenhouse-gas-induced heating. The Atmosphere Ocean General Circulation Model (A-O GCM) has been used to study CO2-induced climate change and the penetration of passive tracers into the world ocean. The present climate and a 2 x CO2 climate have been simulated. The passive tracers tritium, CFC-11, CFC-12 and a 'passive CO2- induced heating' are simulated. The CO2-induced active and passive warmings are larger in the subtropics and high latitudes than in the tropics. The largest difference between the active and passive CO2-induced heatings occur in the North Atlantic deep ocean, with maximum cooling about -1.5C for the active case in layer four of the ocean (1150m). There is no hemispherically asymmetric warming as that found by Manabe et al. (1990) and Stouffer et al. (1990). The convective overturning and large-scale sinking motion are responsible for the large penetration of CO2-induced warming in high latitudes. The CO2-induced circulation changes show that the North Atlantic thermohaline circulation is significantly weakened due to the penetration of CO2-induced heating. Associated with this change, the strength of North Atlantic conveyor belt is reduced, which results in a large warming in the upper ocean and cooling in the deep layers. The characteristic response time ranges from 40-50 years for the active CO2-induced climate change, and 70-160 years for passive CO2-induced climate change. The physical processes controlling the geochemical tracer penetration are very similar to those for the CO2-induced heating. There is not a single tracer which penetrates into the ocean exactly like the active CO2-induced heating in terms of distribution, transport or physical process. CFC's may be the best candidate as a surrogate for the CO2-induced oceanic climate study.

  19. Effects of Four Different Restoration Treatments on the Natural Abundance of 15N Stable Isotopes in Plants

    PubMed Central

    Temperton, Vicky M.; Märtin, Lea L. A.; Röder, Daniela; Lücke, Andreas; Kiehl, Kathrin

    2012-01-01

    δ15N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil–plant N dynamics in relation to the restoration treatments. In particular, δ15N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ15N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ15N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ15N of the non-legume species, with very depleted δ15N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ15N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ15N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ15N signals. We discuss our results in the light of what the δ15N signals may be telling us about plant–soil N dynamics and their potential value as an indicator for N dynamics in restoration. PMID:22645597

  20. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  1. Vineyard weeds control practices impact on surface water transfers: using numerical tracer experiment coupled to a distributed hydrological model to manage agricultural practices spatial arrangements.

    NASA Astrophysics Data System (ADS)

    Colin, F.; Moussa, R.

    2009-04-01

    In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard

  2. CXTFIT/Excel-A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Mayes, Melanie A.; Parker, Jack C.; Jardine, Philip M.

    2010-09-01

    We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) could be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.

  3. Towards interpreting nitrate-δ15N records in ice cores in terms of nitrogen oxide sources

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Buffen, A. M.

    2011-12-01

    The isotopic composition of nitrate preserved in ice cores offers unique potential for reconstructing past contributions of nitrogen oxides (NOx = NO and NO2) to the atmosphere. Sources of NOx imprint a nitrogen stable isotopic (δ15N) signature, which can be conserved during subsequent oxidation to form nitrate. Major sources of NOx include fossil fuels combustion, biomass burning, microbial processes in soils, and lightning, and thus a quantitative tracer of emissions would help detail connections between the atmosphere, the biosphere, and climate. Unfortunately, the δ15N signatures of most NOx sources are not yet well enough constrained to allow for quantitative partitioning, though new methodology for directly collecting NOx for isotopic analysis is promising (Fibiger and Hastings, A43D-0265, AGU 2010). Still, a growing network of ice core δ15N records may offer insight into source signatures, as different sources are important to different regions of the world. For example, a 300-year ice core record of nitrate-δ15N from Summit, Greenland shows a clear and significant 12% (vs. N2) decrease since the Preindustrial that reflects emissions from fossil fuel combustion and/or soils related to changing agricultural practices in North America and Europe. Over the same time period, Antarctic ice cores show no such trend in δ15N. This would be consistent with previous work suggesting that biomass burning and/or stratospheric intrusion of NOx produced from N2O oxidation are dominant sources for nitrate formation at high southern latitudes. In comparison to the polar records, nitrate in tropical ice cores should represent more significant inputs from lightning, microbial processes in soils, and biomass burning. This may be reflected in new results from a high-elevation site in the Peruvian Andes that shows strong seasonal δ15N cycles of up to 15% (vs. N2). We compare and contrast these records in an effort to evaluate the contribution of NOx sources to nitrate over

  4. [Effect of fertilization depth on 15N-urea absorption, utilization and loss in dwarf apple trees].

    PubMed

    Ding, Ning; Chen, Qian; Xu, Hai-gang; Ji, Meng-meng; Jiang, Han; Jiang, Yuan-mao

    2015-03-01

    Five-year-old 'Fuji'3/M26/M. hupehensis Rehd. seedlings were treated by 15N tracer to study the effects of fertilization depth (0, 20 and 40 cm) on 15N-urea absorption, distribution, utilization and loss in soil. The results showed that the plant leaf area, chlorophyll content and total N of apple leaves in 20 cm treatment were obviously higher than 0 cm and 40 cm treatments. The 15N derived from fertilizer (Ndff) in different organs of apple plant under different depths were significantly different, and the Ndff was the highest in roots at the full-bloom stage, and then in perennial branches. During the shoot rapid-growing and flower bud differentiation stage, the Ndff of new organs higher than that of the storage organs, and the Ndff of different organs were high level at fruit rapid-expanding stage, and the Ndff of fruit was the highest. The distribution ratio of 15N at fruit maturity stage was significantly different under fertilization depths, and that of the vegetative and repro- ductive organs of 20 cm treatment were obviously higher than 0 cm and 40 cm treatments, but that of the storage organs of 20 cm treatment was lower than 0 cm and 40 cm treatments. At fruit maturity stage, 15N utilization rate of apple plant of 20 cm treatment was 24.0%, which was obviously higher than 0 cm (14.1%) and 40 cm (7.6%) treatments, and 15N loss rate was 54.0%, which was obviously lower than 0 cm (67.8%) and 40 cm (63.5%) treatments. With the increase of fertilization depths, the N residue in soil increased sharply. PMID:26211056

  5. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  6. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances. PMID:25604918

  7. Synthesis of 7-15N-Oroidin and Evaluation of Utility for Biosynthetic Studies of Pyrrole-Imidazole Alkaloids by Microscale1H-15N HSQC and FTMS†

    PubMed Central

    Wang, Yong-Gang; Morinaka, Brandon I.; Reyes, Jeremy Chris P.; Wolff, Jeremy H.; Romo, Daniel; Molinski, Tadeusz F.

    2010-01-01

    Numerous marine-derived pyrrole-imidazole alkaloids (PIAs), ostensibly derived from the simple precursor oroidin, 1a, have been reported and have garnered intense synthetic interest due to their complex structures and in some cases biological activity; however very little is known regarding their biosynthesis. We describe a concise synthesis of 7-15N-oroidin (1d) from urocanic acid and a direct method for measurement of 15N incorporation by pulse labeling and analysis by 1D 1H-15N HSQC NMR and FTMS. Using a mock pulse labeling experiment, we estimate the limit of detection (LOD) for incorporation of newly biosynthesized PIA by 1D 1H-15N HSQC to be 0.96 μg equivalent of 15N oroidin (2.4 nmole) in a background of 1500 μg unlabeled oroidin (about 1 part per 1600). 7-15N-Oroidin will find utility in biosynthetic feeding experiments with live sponges to provide direct information to clarify the pathways leading to more complex pyrrole-imidazole alkaloids. PMID:20095632

  8. Suspended Sediment Moves 10 km Before Entering Storage: Re-Interpreting a 20th Century Industrial Mercury Release as a Tracer Experiment, South River, Virginia

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.

    2014-12-01

    Recent analyses suggest that the velocity of downstream transport of suspended sediment (averaged over long timescales that include periods of transport and storage in alluvial deposits) can be represented as the ratio Ls/T, where Ls is a distance particles move before entering storage and T is the waiting time particles spend in storage before being remobilized. Sediment budget analyses suggest that Ls is 1-100 km in the mid-Atlantic region, while T may be ~103 years, such that particles move 3-5 orders of magnitude slower than the water in the channel. Given the well-known inaccuracy of sediment budgets, independent verification from a tracer study would be desirable. Here, an historic industrial release of mercury is interpreted as a decadal sediment tracer experiment, releasing sediment particles "tagged" with mercury that are deposited on floodplains. As expected, floodplain mercury inventories decrease exponentially downstream, with a characteristic decay length of 10 km (95% confidence interval: 5-25 km) that defines the distance suspended particles typically move downstream before entering storage. Floodplain mercury inventories are not significantly different above and below three colonial age mill dams (present at the time of mercury release but now breached), suggesting that these results reflect ongoing processes. Suspended sediment routing models that neglect long-term storage, and the watershed management plans based on them, may need revision.

  9. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGESBeta

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; Kispal, Brianna M.; Mireault, Christopher R.; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W.

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  10. Preliminary Results from a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Neira, N. M.; Clark, J. F.; Fisher, A. T.; Wheat, C. G.

    2013-12-01

    We present the first results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of vigorous hydrothermal circulation. A mixture of tracers was injected in Hole 1362B in 2010, during IODP Expedition 327, as part of a 24-hour pumping experiment. Fluid samples were subsequently collected from this hole and three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. The array of holes is located on 3.5 M.y. old seafloor, and oriented N20°E, subparallel to the Endeavor Segment of Juan de Fuca Ridge, 100 km to the west. Sulfur hexafluoride (SF6) was injected at a concentration of 0.0192 mol/min, with fluid pumping rate of 6.7 L/s for 20.2 h, resulting in a mean concentration of 47.6 μM and 23.3 mol of SF6 being added to crustal fluids. Borehole fluid samples were collected in copper coils using osmotic pumps attached to the wellheads of several long-term, subseafloor observatories (CORKs). These samples were recovered from the seafloor using a remotely-operated vehicle in 2011 and 2013. Analyses of SF6 concentrations in samples recovered in 2011 indicate the first arrival of SF6 in Hole 1301A, 550 m south of the injection Hole 1362B, ~265 days after injection. This suggests that the most rapid lateral transport of gas (at the leading edge of the plume) occurred at ~2 m/day. Samples recovered in 2013 should provide a more complete breakthrough curve, allowing assessment of the mean lateral transport rate. Additional insights will come from analysis of metal salts and particle tracers injected contemporaneously with the SF6, the cross-hole pressure response to injection and a two-year fluid discharge experiment. Additional wellhead samples will be collected in Summer 2014, as will downhole osmosamplers deployed in perforated casing within the upper ocean crust in Holes 1362A and 1362B.

  11. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  12. Spectroscopic labeling of A, S/T in the 1H- 15N HSQC spectrum of uniformly ( 15N- 13C) labeled proteins

    NASA Astrophysics Data System (ADS)

    Chugh, Jeetender; Hosur, Ramakrishna V.

    2008-10-01

    A new triple resonance two-dimensional experiment, termed (HC)NH, has been described to generate specific labels on the peaks of alanines and serines/threonines, separately, in the 1H- 15N HSQC spectrum of a protein. The performance of the pulse sequence has been demonstrated with a 151 residue protein. The method permits the investigation of local environments around those specific residues without actually having to obtain complete resonance assignments for the entire protein. With this one can envisage use of the technique for studying large protein systems from different points of view.

  13. Anisotropic diffusion at the field scale in a 4-year multi-tracer diffusion and retention experiment - I: Insights from the experimental data

    NASA Astrophysics Data System (ADS)

    Gimmi, Thomas; Leupin, Olivier X.; Eikenberg, Jost; Glaus, Martin A.; Van Loon, Luc R.; Waber, H. Niklaus; Wersin, Paul; Wang, Hao A. O.; Grolimund, Daniel; Borca, Camelia N.; Dewonck, Sarah; Wittebroodt, Charles

    2014-01-01

    Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in ∼250 samples and ∼1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into ∼0.1 m during the ∼4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the

  14. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  15. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    transferred to P. mariana roots (mean δ15N at 1 and 2 months of 15.26 × 3.30 and 16.19 × 1.21) more than shoots (mean δ15N at 1 and 2 months of 6.57 × 0.52 and 4.67×0.17) (initial δ15N values of roots and shoots of 2.16 × 0.37 and 5.54 × 0.35, respectively). Nitrogen also was transferred to V. oxycoccos roots (δ15N at 2 months of 21.46 × 3.61) more than shoots (δ15N 2 months of -2.17 × 0.23) (initial δ15N values of roots and shoots of -6.41 × 0.21 and -6.85 × 0.15, respectively). A two-way ANOVA and Tukey's HSD verified that both vascular plants' roots were significantly enriched with 15N (P. mariana roots; p < 0.0001, V. oxycoccus roots; p < 0.0001) after 1 month. These results indicate that bog vascular plants may derive considerable nitrogen from biological N2-fixation taking place in Sphagnum moss capitula. The experiment was subsequently repeated in-situ.

  16. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  17. Theoretical and experimental study of 15N NMR protonation shifts.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2015-06-01

    A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp(2)-hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine-type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. PMID:25891386

  18. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  19. The role of snowmelt and glacier melt on runoff in a glacierized catchment: a multi-tracer experiment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Engel, Michael; Mao, Luca; Dell'Agnese, Andrea; Bertoldi, Giacomo; Comiti, Francesco

    2013-04-01

    The release of water as snowmelt and ice melt in high elevation catchments has significant social and economic impacts for population living in mountain areas. This is even more critical under the current conditions of glacier retreat as a consequence of global warming. Therefore, it is important to understand the role of ice and snow meltwater on runoff dynamics and groundwater recharge in glacierized environments. This task can be effectively accomplished by integrating isotopic and other tracers that are widely recognized as useful tools for the identification of the main water sources contributing to streamflow. In this work, we collected water samples from different sources in the Saldur catchment (Eastern Italian Alps). The catchment (area: 62 km², elevation range: 1600-3700 m a.s.l.) hosts a small glacier (2.8 km²) in its upper portion. Samples of rainfall, snow, snowmelt, glacier melt, stream water (main stream and tributaries) and spring water have been manually collected between April-October 2011 and April-November 2012 approximately on a monthly basis. Furthermore, 24-hour samplings with hourly collection frequency were performed at two cross sections during five melt-runoff events. The composition in stable water isotopes was determined by laser spectroscopy and mass spectrometry. Electrical conductivity (EC) and water temperature were measured in the field. Additionally, deuterium excess (DE) was computed for all samples based on the relationship between deuterium and 18-oxygen. The isotopic composition of rainfall and snow shows marked altitudinal and seasonal variations. A strong positive correlation is also evident in the relationship between DE of spring waters and elevation. Rainfall and snow samples fall perfectly on the Global Meteoric Water Line, revealing a predominant Atlantic origin of air masses producing precipitation in the study area. EC and water temperature linearly increase with the distance from the glacier snout, suggesting a

  20. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  1. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  2. Catalytic Roles of βLys87 in Tryptophan Synthase: 15N Solid State NMR Studies

    PubMed Central

    Caulkins, Bethany G.; Yang, Chen; Hilario, Eduardo; Fan, Li; Dunn, Michael F.; Mueller, Leonard J.

    2015-01-01

    The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4′ for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-15N-lysine TS was prepared to access the protonation state of βLys87 using 15N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. PMID:25688830

  3. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  4. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  5. Tracer Verification of Trajectory Models.

    NASA Astrophysics Data System (ADS)

    Haagenson, Philip L.; Kuo, Ying-Hwa; Syumanich, Marina; Seaman, Nelson L.

    1987-03-01

    Perfluorocarbon tracer data collected during the Cross Appalachian Tracer Experiment (CAPTEX '83) are used to determine the accuracy of three trajectory models: an isentropic, an isobaric, and a dimensional sigma model. The root-mean-square separation between model trajectories and trajectories derived from the surface tracer concentration is used to evaluate the models and assess the validity of isobaric, isentropic, isosigma, and mean transport vector assumptions. The root-mean-square data suggest that wind flow corresponding approximately to the low to middle boundary layer is the most appropriate for simulating the transport of boundary layer pollutants, and that the isentropic and isosigma transport assumptions are more realistic than the isobaric assumption, The results also indicate that synoptic type and the diurnal variation of mixing and wind shell within the boundary layer can affect the magnitude of root-mean-square separation between tracer trajectory and transport model trajectories. The uncertainty of the trajectory error suggested by the root-mean- square separation is approximately 50 km. Comparison of the tracer study with a theoretical study suggests that surface tracer data are useful for quantifying the magnitude of error in trajectory model calculations of boundary layer transport.

  6. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.

    PubMed

    Pintacuda, Guido; Keniry, Max A; Huber, Thomas; Park, Ah Young; Dixon, Nicholas E; Otting, Gottfried

    2004-03-10

    A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy. PMID:14995214

  7. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Law, C. S.; Hutchins, D. A.; Abraham, E. R.; Croot, P. L.; Ellwood, M.; Frew, R. D.; Hadfield, M.; Hall, J.; Handy, S.; Hare, C.; Higgins, J.; Hill, P.; Hunter, K. A.; Leblanc, K.; Maldonado, M. T.; McKay, R. M.; Mioni, C.; Oliver, M.; Pickmere, S.; Pinkerton, M.; Safi, K.; Sander, S.; Sanudo-Wilhelmy, S. A.; Smith, M.; Strzepek, R.; Tovar-Sanchez, A.; Wilhelm, S. W.

    2005-12-01

    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ˜50-fold (i.e., 7- to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24).

  8. You are not always what we think you eat. Selective assimilation across multiple whole-stream isotopic tracer studies

    DOE PAGESBeta

    Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; et al

    2014-10-01

    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less

  9. The vibrational spectra of [ 15N 2]-succinonitrile

    NASA Astrophysics Data System (ADS)

    Fengler, O. I.

    2001-07-01

    For the first time, the infrared and Raman spectra of [ 15N 2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth.

  10. The vibrational spectra of [15N2]-succinonitrile.

    PubMed

    Fengler, O I

    2001-07-01

    For the first time, the infrared and Raman spectra of [15N2]-succinonitrile are presented and discussed in detail. Assignments of the vibrational bands of its two rotational conformers gauche and trans, respectively, have been made for both infrared and Raman spectra. The assignments were based on a recent ab-initio force field calculation for succinonitrile, taking into account the vibrational frequencies of other succinonitrile isotopomers. There are differences in the frequencies of the vibrational bands due to the mass increase in the cyanide groups, which have been analysed in depth. PMID:11471715

  11. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  12. Experimental plant for simultaneous production of (14)N and (15)N by (15)N/(14)N exchange in NO, NO(2)-HNO(3) system under pressure.

    PubMed

    Axente, Damian; Marcu, Cristina; Muresan, Ancuţa; Kaucsar, Martin; Misan, Ioan; Popeneciu, Gabriel; Gligan, Nicolae; Cristea, Gabriela

    2010-06-01

    An experimental study on (14)N and (15)N simultaneous separation using the chemical exchange in NO, NO(2)-HNO(3) system under pressure is presented. The influence of the pressure and of the interstage 10 M HNO(3) flow rate on the separation of (14)N and (15)N was measured on a packed column with product and waste refluxers. At steady state and 1.8 atm (absolute), the isotopic concentration at the bottom of the separation column was 0.563 at% (15)N, and in the top of the column was 0.159 at% (15)N. The height equivalent to a theoretical plate and interstage 10 M HNO(3) flow rate values, obtained in these experimental conditions, allows the separation of (14)N highly depleted of (15)N and of (15)N at 99 at% (15)N concentration. PMID:20582793

  13. Natural abundance (14)N and (15)N solid-state NMR of pharmaceuticals and their polymorphs.

    PubMed

    Veinberg, Stanislav L; Johnston, Karen E; Jaroszewicz, Michael J; Kispal, Brianna M; Mireault, Christopher R; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W

    2016-06-29

    (14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of

  14. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  15. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253

  16. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation

    NASA Astrophysics Data System (ADS)

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    15N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated 15N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that 15N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.

  17. INL Tracer Interpretation

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  18. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    NASA Astrophysics Data System (ADS)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  19. Preferential upward flow in soils: A 3D comparison of modeled and ERT-derived data from a salt tracer experiment under evaporation conditions

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Vanderborght, Jan; Herbst, Michael; Weihermueller, Lutz; Kasteel, Roy; Ippisch, Olaf; Guenther, Thomas; Vereecken, Harry

    2010-05-01

    Upward water flow induced by evaporation or groundwater level rise can cause soil salinization and transport of contaminants to the soil surface. A limitation for the prediction of upward transport using numerical models might be an incomplete process description of this transport within the models, especially under consideration of heterogeneous structures. In contrast to infiltration conditions, few experimental datasets of transport under upward flow conditions that can be used to test existing models exist. Therefore, we studied upward transport at the pedon-scale in a laboratory soil with a defined heterogeneity and controlled upper and lower boundary conditions. A second aim was the assessment of the potential of Electrical Resistivity Tomography (ERT) to image and characterize upward transport and to use these temporal and spatial highly resolved experimental data to validate current model approaches. Using stochastic simulation, we designed a laboratory soil composed of three materials, which represent a correlated indicator field with horizontal and vertical heterogeneity. A salt tracer experiment was performed over 40 days with steady-state upward flow. Constant evaporation conditions were established using an air-conditioning chamber. A constant water level with the tracer solution was imposed at the lower boundary. ERT results showed solute mass flowing upwards along a few preferential pathways and accumulating heterogeneously at the soil surface. Three-dimensional numerical simulations based on Richards' and the convection-dispersion equation satisfactorily described solute transport in the lower part of the soil, whereas closer to the surface larger discrepancies occurred. On the experimental side, uncertainties in the petrophysical relationship and spatial smoothing inherent to the applied Occam-type smoothness constrained geophysical inversion contributed to observed deviations between ERT and model results. Comparing measured with modeled (using

  20. An ensemble Kalman filter approach to identify the hydraulic conductivity spatial distribution from electrical resistivity tomography time-lapse monitoring of three-dimensional tracer test experiments

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Perri, M. T.; Salandin, P.

    2012-04-01

    An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is applied to assess the spatial distribution of hydraulic conductivity K by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) images generated for a synthetic tracer test in a heterogeneous aquifer. Assuming that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating both the hydrological state in terms of solute concentration and the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the aquifer heterogeneity at the local scale can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of the uncertainty inherently affecting ERT inversions in terms of tracer concentration and the choice of the prior statistics of K. The results show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework, the reconstruction of the hydraulic conductivity spatial distribution being satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  1. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    USGS Publications Warehouse

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  2. Simulation of a field scale tritium tracer experiment in a fractured, weathered shale using discrete-fracture/matrix-diffusion and equivalent porous medium models

    SciTech Connect

    Stafford, P.L.

    1996-05-01

    Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, {alpha}{sub L}, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, {alpha}{sub T}, of 0.8 to 0.08 meters was used indicating an {alpha}{sub L}/{alpha}{sub T} ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.

  3. Validation of the BERT Point Source Inversion Scheme Using the Joint Urban 2003 Tracer Experiment Dataset - Final Report

    SciTech Connect

    Brambilla, Sara; Brown, Michael J.

    2012-06-18

    zones. Due to a unique source inversion technique - called the upwind collector footprint approach - the tool runs fast and the source regions can be determined in a few minutes. In this report, we provide an overview of the BERT framework, followed by a description of the source inversion technique. The Joint URBAN 2003 field experiment held in Oklahoma City that was used to validate BERT is then described. Subsequent sections describe the metrics used for evaluation, the comparison of the experimental data and BERT output, and under what conditions the BERT tool succeeds and performs poorly. Results are aggregated in different ways (e.g., daytime vs. nighttime releases, 1 vs. 2 vs. 3 hit collectors) to determine if BERT shows any systematic errors. Finally, recommendations are given for how to improve the code and procedures for optimizing performance in operational mode.

  4. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  5. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  6. Dual-tracer receptor concentration imaging using tracers with different tissue delivery kinetics

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Diop, Mamadou; Elliott, Jonathan T.; Samkoe, Kimberley S.; Hasan, Tayyaba; St. Lawrence, Keith; Pogue, Brian W.

    2014-03-01

    Simultaneous dynamic fluorescent imaging of a suitable untargeted tracer in conjunction with any molecular targeted fluorescent agent has been shown to be a powerful approach for quantifying cancer-specific cell surface receptors in vivo in the presence of non-specific uptake and tracer delivery variability. The identification of a "suitable" untargeted tracer (i.e., one having equivalent plasma and tissue delivery pharmacokinetics to the targeted tracer) for every targeted tracer, however, may not always be feasible or could require extensive testing. This work presents a "deconvolution" approach capable of correcting for plasma and tissue-delivery pharmacokinetic differences between tracers by quantifying dynamic differences in targeted and untargeted tracer uptake in a receptor-free tissue (one devoid of targeted molecular species) and correcting uptake in all other tissues accordingly. This deconvolution correction approach is evaluated in theoretical models and explored in an in vivo mouse xenograft model of human glioma. In the animal experiments, epidermal growth factor receptor (EGFR: a receptor known to be overexpressed in the investigated glioma cell line) was targeted using a fluorescent tracer with very different plasma pharmacokinetics than a second untargeted fluorescent tracer. Without correcting for these differences, the dual-tracer approach yielded substantially higher estimations of EGFR concentration in all tissues than expected; however, deconvolution correction was able to produce estimates that matched ex vivo validation.

  7. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  8. Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data

    PubMed Central

    Lyon, David; Castillejo, Maria Angeles; Staudinger, Christiana; Weckwerth, Wolfram; Wienkoop, Stefanie; Egelhofer, Volker

    2014-01-01

    Protein turnover is a well-controlled process in which polypeptides are constantly being degraded and subsequently replaced with newly synthesized copies. Extraction of composite spectral envelopes from complex LC/MS shotgun proteomics data can be a challenging task, due to the inherent complexity of biological samples. With partial metabolic labeling experiments this complexity increases as a result of the emergence of additional isotopic peaks. Automated spectral extraction and subsequent protein turnover calculations enable the analysis of gigabytes of data within minutes, a prerequisite for systems biology high throughput studies. Here we present a fully automated method for protein turnover calculations from shotgun proteomics data. The approach enables the analysis of complex shotgun LC/MS 15N partial metabolic labeling experiments. Spectral envelopes of 1419 peptides can be extracted within an hour. The method quantifies turnover by calculating the Relative Isotope Abundance (RIA), which is defined as the ratio between the intensity sum of all heavy (15N) to the intensity sum of all light (14N) and heavy peaks. To facilitate this process, we have developed a computer program based on our method, which is freely available to download at http://promex.pph.univie.ac.at/protover. PMID:24736476

  9. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  10. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I and 58Co) in Opalinus clay, anhydrite and quartz

    NASA Astrophysics Data System (ADS)

    Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna

    2013-08-01

    Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.

  11. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  12. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  13. Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of 15N tracer field studies

    EPA Science Inventory

    Anthropogenic nitrogen (N) deposition can have a range of effects on terrestrial ecosystems, but these effects depend in part on the fate of this deposited N, particularly in the amount retained or lost from the system, and in the partitioning of retained N between plants and soi...

  14. FUNCTIONAL OVERLAP OF ROOT SYSTEMS IN AN OLD-GROWTH FOREST INFERRED FROM TRACER 15N UPTAKE

    EPA Science Inventory

    Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are few data describing the lateral extent and overlap of competing root systems. We quantified the func...

  15. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  16. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  17. Studies with 15N-labeled ammonia and urea in the malnourished child

    PubMed Central

    Read, W. W. C.; McLaren, D. S.; Tchalian, Marie; Nassar, Siham

    1969-01-01

    Investigations using ammonium citrate-15N and urea-15N showed that children in the acute stage of kwashiorkor and marasmus receiving a diet of adequate protein content retained a considerable percentage of the label from both compounds. Excretion of both total 15N and urea-15N was subnormal and elimination was virtually completed 36 hr after administration of the isotope. During recovery from kwashiorkor total 15N excretion had approached normal a month after commencement of rehabilitation. Urea-15N excretion was still slightly subnormal after 3 months. In marasmus urea-15N formed a normal proportion of total 15N excretion after 1 month, although total 15N excretion then was still low. Ammonia nitrogen was retained to a greater extent than urea nitrogen in all cases. As it is known that a considerable amount of urea is degraded to ammonia in the gastrointestinal tract, it seems probable that urea nitrogen became available for use after this degradation. Examination of blood from one marasmic child after feeding ammonia-15N and from another after intravenous injection of urea-15N showed incorporation of the label into blood cells and plasma proteins. This did not occur in well nourished controls. It is concluded that ammonia and urea as sources of nonessential nitrogen may play an important part in protein metabolism in the malnourished child. PMID:5771193

  18. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    SciTech Connect

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W.

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  19. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve

    PubMed Central

    van Gils, Jan A.; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from ‘normal’ bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  20. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve.

    PubMed

    van Gils, Jan A; Ahmedou Salem, Mohamed Vall

    2015-01-01

    The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus), consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis). Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from 'normal' bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment. PMID:26458005

  1. Short-term recovery of NH4-15N applied to a temperate forest inceptisol and ultisol in east Tennessee USA

    SciTech Connect

    Garten Jr, Charles T; Brice, Deanne Jane; Todd Jr, Donald E

    2007-11-01

    The short-term fate and retention of ammonium (NH4)-{sup 15}nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH{sub 4}-{sup 15}N tracer were made to the forest floor at 2- to 4-week intervals over a 14-week period in 2004. Nitrogen-15 recovery in the forest floor, fine roots (<2 mm), and the mineral soil (0-20 cm) was calculated at 6, 21, and 42 weeks after the last application. Most of the {sup 15}N was retained in the forest floor and the mineral soil, with only small amounts ({approx}<2%) found in roots from both soil layers. Recovery of NH{sub 4}-{sup 15}N was greater in Inceptisols, which had a wider carbon (C)-to-N ratio than Ultisols. For both soil types, higher NH{sub 4}-{sup 15}N recoveries and long retention times (half-lives>100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.

  2. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    PubMed

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation. PMID:21661551

  3. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    NASA Astrophysics Data System (ADS)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  4. Isolation and measurement of /sup 15/N/sub 2/ from respiratory gases of animals administered /sup 15/N-labeled substances

    SciTech Connect

    Springer, D.L.; Reed, D.J.; Dost, F.N.

    1981-07-01

    A method is described for collection of metabolic /sup 15/N/sub 2/ from in vitro preparations or intact rats administered /sup 15/N-containing compounds. The method enables routine collection and mass spectrometric measurement of as little as 10 ..mu..mol /sup 15/N/sub 2/ respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O/sub 2/ replenishment and removal of CO/sub 2/ and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O/sub 2/. Recovery of /sup 15/N/sub 2/ gas from the system without an animal present was 101.3 +/- 5.75%. When /sup 15/N/sub 2/ gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of (/sup 15/N)hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to /sup 15/N/sub 2/, followed by slower conversion of an additional 7-10% over the next several hours.

  5. Final Report: Development of X-ray tracer diagnostics for radiatively-driven ablator experiments, November 1, 1997 - October 31, 1998

    SciTech Connect

    MacFarlane, J.J.; Cohen, D.H.; Ping Wang, G.A.; Moses, R.R.; Peterson, P.A.; Jaanimagi; Landen, O.L.; Olson, R.E.; Murphy, T.J.; Magelssen, G.R.; Delamater, N.D.

    1999-06-01

    This is a combined experimental and theoretical analysis of tracer layers as spectral diagnostics for radiation burn-through of ablator materials. German-doped plastic is attached as a witness plate to a laser driven hohlraum. Backlit absorption spectroscopy is used as a diagnostic. Target shots were performed on the OMEGSA laser at UR/LLE.

  6. DEMONSTRATION OF A LONG RANGE TRACER SYSTEM USING PERFLUOROCARBONS

    EPA Science Inventory

    Regional-scale tracer experiments are needed to validate atmospheric dispersion aspects of air pollution models. The capability of a new system, using perfluorocarbon tracers (PFTs), for long-range dispersion experiments at reasonable cost, was demonstrated in two experiments. Tw...

  7. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    NASA Astrophysics Data System (ADS)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the σ 15N and σ 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest σ 15N and highest σ 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a σ 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low σ 15N and high σ 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  8. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  9. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  10. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  11. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  12. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  13. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  14. Analysis of fluorescent particle tracer data

    SciTech Connect

    Clements, W.E.

    1980-01-01

    Four fluorescent particle tracer experiments were conducted during the July 1979 ASCOT experiment in the Anderson Creek Valley of northern California. The purpose of the experiment was to examine the transport and elongation of a plume traveling in the Anderson Creek nocturnal drainage flow and investigate the interaction of the Anderson Creek and Putah Creek flow fields. Sequential samples of tracer material at three downwind locations in Anderson Creek gave effective transport velocities of 1 to 2 m/s and showed an approximately linear relationship between plume elongation and travel distance. Integrated samples taken in both the Anderson Creek and Putah Creek air sheds indicated considerable interaction between the two flow fields.

  15. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  16. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  17. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  18. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  19. Sources and transformations of N in reclaimed coastal tidelands: evidence from soil δ15N data

    NASA Astrophysics Data System (ADS)

    Kwak, Jin-Hyeob; Choi, Woo-Jung; Lim, Sang-Sun; Lee, Seung-Heon; Lee, Sang-Mo; Chang, Scott X.; Jung, Jae-Woon; Yoon, Kwang-Sik; Choi, Soo-Myung

    2008-01-01

    Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (-7.1 to -2.0‰) of total inorganic N (NH4 ++NO3 -) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 - excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 - in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 - (-9.2 to -5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 -. A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.

  20. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  1. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  2. δ 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...

  3. Over 20% (15)N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe.

    PubMed

    Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Theis, Thomas; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-07-01

    Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing. PMID:27321159

  4. Tracer-based prediction of thermal reservoir lifetime: scope, limitations, and the role of thermosensitive tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Licha, T.; Nottebohm, M.; Sauter, M.

    2012-04-01

    correlation between (early) tracer signals and (later) thermal breakthrough can be re-established. Thus, thermosensitive tracers are indispensable for predicting thermal breakthrough, in such geothermal reservoirs whose 'hydrogeological personality' is given by a finite set of fractures, with flow occurring both across and along the fractures. In terms of the 'gebo benchmark-model' typology investigated by Hördt et al. (2011) [http://eposters.agu.org/abstracts/models-of-geothermal-reservoirs-as-a-basis-for-interdisciplinary-cooperation/] , such systems combine flow and transport patterns of the 'petrothermal' type and of the so-called 'deep-aquifer' type: across the fractures, heat is travelling faster than conservative-solute tracers; along the fractures, conservative-solute tracers experience much less retardation by transversal exchange (matrix diffusion), than heat; fluid (and tracer) flow is not limited to the fractures; matrix flow yields essential contribution to prolonging the fluid (and tracer) residence time. Thermal lifetime results from the opposite effects of fracture aperture as an: advection-related parameter: fluid travel time increases with increasing fracture aperture advection-unrelated parameter: fracture - matrix exchange rate increases with decreasing fracture aperture, which accelerates transport across the fracture, but retards transport along the fracture. In conservative-solute tracer signals, all these fracture aperture effects on tracer transport are masked by the very long residence time associated with the matrix flow component. Thermosensitive tracers are able to 'magnify' the visibility of fracture aperture effects against matrix flow effects. Acknowledgment: This study benefits from thermosensitive-tracer research conducted within the projects Smart Tracers and LOGRO, funded by the German Ministry for Environment, Nature Conservation and Nuclear Safety (BMU, 0327579 and 0325111B) and by Energie Baden-Württemberg (EnBW).

  5. The 15N isotope effect in Escherichia coli: a neutron can make the difference.

    PubMed

    Filiou, Michaela D; Varadarajulu, Jeeva; Teplytska, Larysa; Reckow, Stefan; Maccarrone, Giuseppina; Turck, Christoph W

    2012-11-01

    Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the (15) N isotope effect on Escherichia coli cultures that were grown in either unlabeled ((14) N) or (15) N-labeled media by LC-ESI-MS/MS-based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between (14) N and (15) N-labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between (14) N and (15) N-labeled bacteria. Our data demonstrate for the first time that the introduction of the (15) N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques. PMID:22887715

  6. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  7. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  8. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    USGS Publications Warehouse

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  9. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  10. Trace elements and stable isotopes (delta13C and delta15N) in shallow and deep-water organisms from the East China Sea.

    PubMed

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Mochizuki, Hiroko; Ramu, Karri; Inoue, Suguru; Kubodera, Tsunemi; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2008-12-01

    Trace elements (22) and stable isotope ratios (delta15N and delta13C) were analyzed in marine organisms from shallow (SW) and deep-water (DW) of the East China Sea to understand biomagnification and prey source of trace elements. In the benthic marine organisms from DW, delta15N values were negatively correlated with Ba, Cu, Ag, Mo, Sr, As, and Co concentrations. This may be due to the specific accumulation in lower trophic animals and/or the biodilution through the food web in DW. Relationships between delta15N and concentrations of Co, Cr, Bi, and Tl in fish and Ag, Bi, V, Hg, and Tl in crustaceans showed positive correlations, suggesting that trophic position was affecting the concentrations of those elements in phyla, with higher trophic animals retaining higher concentrations than the lower trophic animals. Positive correlations between delta13C and Rb were observed in marine organisms. Therefore, Rb may be a possible substitute of delta13C as tracer of prey source in the East China Sea although further investigation is required. PMID:18583004

  11. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    PubMed

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined. PMID:12322752

  12. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  13. Design of a tracer test experience and dynamic calibration of the hydraulic model for a full-scale wastewater treatment plant by use of AQUASIM.

    PubMed

    Fall, C; Loaiza-Navia, J L

    2007-08-01

    The setup of the hydraulic model structure of wastewater treatment plants (WWTPs) is an important step in the calibration of activated sludge models. The hydrodynamics of a full-scale municipal WWTP (Monterrey, Mexico) has been studied by means of the use of tracer tests and of a commercial simulator. A presimulation approach allowed the authors to quantify the appropriate rhodamine mass, set up a sampling plan, and evaluate the anticipated visual effect of the tracer test in the receiving river. The hydraulic behavior of the aeration tank for the first treatment line, a 7-cell plug-flow reactor, was shown to be best represented by 5 virtual mixed-tanks-in-series. The second treatment line, which included a vertical loop reactor (VLR), was best modeled as 3 tanks-in-series. The VLR, alone, was shown to be similar to a continuously stirred tank reactor, and not a circuit of tanks, as generally used to represent oxidation ditch reactors. PMID:17824536

  14. Indirect Measurement of {sup 15}N(p,{alpha}){sup 12}C and {sup 18}O(p,{alpha}){sup 15}N. Applications to the AGB Star Nucleosynthesis

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Tribble, R.; Al-Abdullah, T.; Banu, A.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-04-06

    The Trojan Horse Method has been recently applied to the study of reactions involved in fluorine nucleosynthesis inside AGB stars. Fluorine abundance is important since it allows to constrain mixing models from the comparison of the observed fluorine abundances with the ones predicted by models. Anyway direct measurements of the cross section do not extend down to the Gamow peak, which is the astrophysically relevant energy region. In particular the study focuses on the {sup 15}N(p,{alpha}){sup 12}C and the {sup 18}O(p,{alpha}){sup 15}N reactions which can influence fluorine yield as they are part of {sup 19}F production/destruction network.

  15. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  16. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  17. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  18. Ammonia 15N/14N Isotope Ratio in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.R.; Niemann, H. B.; Atreya, S. K.; Wong, M. H.; Owen, T. C; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Data from the Galileo Probe Mass Spectrometer has been used to derive the N-15/N-14 isotope ratio in ammonia at Jupiter. Although the mass spectral interference from the water contribution to 18 amu makes an accurate derivation of the (N-15)H3/(N-14)H3 ratio difficult from measurements of the singly ionized signals at 18 and 17 amu, this interference is not present in the doubly charged 8.5 and 9.0 amu signals from (N-14)H3++ and (N-15)H3++ respectively. Although the count rate from the 9 amu signal is low during the direct sampling of the atmosphere, the ammonia signal was considerably enhanced during the first enrichment cell (EC1) experiment that measured gas sampled between 0.8 and 2.8 bar. Count rates at 9 amu in the EC1 experiment reach 60/second and measure ammonia sampled from 0.88 to 2.8 bar. In the EC1 measurements the 8.5 amu signal is not measured directly, but can be calculated from the ammonia contribution to 17 amu and the ratio of NH3 ions of a double to single charged observed during a high resolution mass scan taken near the end of the descent. The high resolution scan gives this ratio from ammonia sampled much deeper in the atmosphere. These results are described and compared with Infrared Space Observatory-Short Wavelength Spectrometer (ISO-SWS) observations that give this ratio at 400 mbar.

  19. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles. PMID:25621737

  20. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. ); Lodwig, S.N. . Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  1. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Junium, Christopher K.; Canfield, Donald E.; House, Christopher H.

    2008-09-01

    In this study we examine the effects of varying Fe, Mo, and P concentrations on δ15N fractionation during N2 fixation in the cyanobacterium Anabaena variabilis. We show that when grown in Fe-enriched media ([Fe] ≥ 50 nM), this organism produces biomass up to 3‰ lower in δ15N than when grown in Fe-limited media ([Fe] < 50 nM). A compilation of our data with previous measurements of δ15N in N2-fixing cyanobacteria reveals a general trend toward the production of more 15N-depleted biomass at higher Fe concentrations. We discuss our results in the context of negative δ15N values preserved in Archean and some Phanerozoic sediments, generally attributed to the production of marine organic matter with low δ15N by N2 fixation (and potentially NH4+ regeneration) during periods of fluctuating nutrient dynamics. We suggest that enhanced Fe availability during periods of widespread ocean anoxia can further stimulate the production of 15N-depleted biomass by N2-fixing organisms, contributing to the isotopic record.

  2. Landscape hydrology and scaling of nitrate 15N and 18O isotope composition in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Martin, R. A.; Keller, C. K.; Orr, C. H.; Huggins, D. R.; Evans, R. D.

    2014-12-01

    Understanding how pore- to hillslope-scale processes combine to control nutrient export at larger scales is a fundamental challenge in today's agroecosystems as the carbon and contamination footprints of production agriculture come under increasing scrutiny. At the Cook Agronomy Farm (CAF) Long-Term Agricultural Research (LTAR) station near Pullman, WA we are using in-field observations to track how local-scale hydrological routing and biogeochemical processing interact to control landscape-scale water and nutrient exports. Previous research at the CAF has shown that conservative tracers and reactive nutrient quantities (NO3-,and DOC concentrations, DOM quality) in landscape-scale drainage can be explained by straightforward mixing of waters from variably contributing areas. Nitrate stable isotope composition in subsurface drain effluent indicate that most leached nitrate originates from reduced nitrogen fertilizer applied to the CAF in the autumn, which undergoes nitrification and subsequent leaching. This occurs over a timespan of weeks to months. However, water samples from contributing areas exhibit nitrate d15N and d18O significantly greater than subsurface drain effluent at all locations, and time-series consistent with the occurrence of denitrification at some locations. Possible explanations include pore-scale processing of nitrogen that does not affect the other tracers (like EC, DOM quality, and DOC concentration), and landscape-scale transport pathways that bypass our field instruments. Through this work we are contributing to a broader understand of how global change and local factors and management practices interact to affect the fate of fertilizer N, which is a cross-cutting research theme of the national LTAR network.

  3. Radiative p 15N Capture in the Region of Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burtebaev, N.; Dzhazairov-Kakhramanov, A. V.; Alimov, D. K.

    2016-06-01

    Within the framework of the modified potential cluster model with classification of orbital states according to the Young schemes, the possibility of describing experimental data for the astrophysical S-factor of p 15N radiative capture at energies from 50 to 1500 keV is considered. It is shown that on the basis of M1 and E1 transitions from various p 15N scattering states to the ground state of the 16O nucleus in the p 15N channel it is entirely possible to successfully explain the overall behavior of the S-factor in the considered energy region in the presence of two resonances.

  4. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE COD, MASSACHUSETTS - 1. EXPERIMENTAL DESIGN AND OBSERVED TRACER MOVEMENT

    EPA Science Inventory

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...

  5. The dispersion of atmospheric tracers in nocturnal drainage flows

    SciTech Connect

    Gudiksen, P. H.; Shearer, D. L.

    1989-07-01

    This paper summarizes the results of a series of perfluorocarbon tracer experiments that were carried out in the Brush Creek Valley in western Colorado under the auspices of the Atmospheric Studies in Complex Terrain (ASCOT) program. The results indicate that tracers entrained within the valley's nocturnal drainage flows displayed well defined plumes that were not influenced significantly by the larger scale flows above this deep and narrow valley. Thus, the spatial distributions of the tracers were primarily governed by the structure of the drainage flows. None of the tracers released within the valley were detected in significant quantities on the adjoining meses or within the adjacent valleys prior to sunrise.

  6. Nitrogen dynamics in a Western Boundary Upwelling System (Cabo Frio, Brazil) based on δ15N-nitrate and δ15N of sinking particle signals

    NASA Astrophysics Data System (ADS)

    Fontana, L.; Belem, A. L.; Venancio, I.; Duarte, C.; Chiara, S. D.; Albuquerque, A. L.

    2014-12-01

    To improve the efficiency of upwelling to control nitrogen dynamic in the ocean, better understanding of the occurring processes is necessary. This research explores δ15N of nitrate and sinking particles on a western boundary upwelling System (Cabo Frio, Brazil). The Continental Shelf of southeastern Brazil is dominated by the oligotrophic Brazil Current, whose instabilities promote the coastal upwelling of South Atlantic Central Water (SACW), and consequently increases of primary productivity. The coastal upwelling system plays an important role in the nitrogen dynamics on the Cabo Frio Upwelling System (CFUS). However, the interactions between biological induced processes, including biological N-fixation and nitrate inputs from upwelled waters in CFUS still have not been well explored. Then, this study aims clarify N-dynamics on CFUS based on a cross-shelf approach. δ15N-nitrate was characterized for each water masses present on the shelf (South Atlantic Central Water, Tropical Water and Coastal Water) and associated with physicochemical parameters (T/S, nutrients), as well as the δ15N of sinking particles at different depths (from surface to the bottom water). Samples were collected in a time interval of 1 month during ~4 years (2011 to 2014). Cross-shelf gradients of nitrogen species concentration (ammonium + nitrite + nitrate) and stable isotopes were observed. The δ15N of nitrate and sinking particles were interpreted according to the prevailing processes of the N-transformations. Considering the region as N-limited (N:P < 16), processes as biological N-fixation seems to be dominant on oligotrophic Tropical Waters. Coastal upwelled SACW showed δ15N-nitrate signature within the global average of deep ocean (5-6‰) characterizing the inner and mid-shelf conditions, where the input of new nitrate from upwelling is rapidly used by organisms in the euphotic zone without any fractionation. On the other hands, the dominance of N-limited Tropical Waters on the

  7. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT.

    PubMed

    Agbogun, H M D; Al, Tom A; Hussein, Esam M A

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φ(d)) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φ(d) and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φ(d) values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φ(d) measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φ(d) and C(t) that reflect solute diffusion in heterogeneous porous geologic media. PMID:23298531

  8. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Agbogun, H. M. D.; Al, Tom A.; Hussein, Esam M. A.

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φd) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φd and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φd values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φd measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φd and C(t) that reflect solute diffusion in heterogeneous porous geologic media.

  9. The Application of a Novel Pressurized Liquid Extraction Method to Quantify Organic Tracers Combined with Historic and Novel Organic Contaminants for the Discover-AQ Houston Field Experiment

    NASA Astrophysics Data System (ADS)

    Clark, A. E.; Yoon, S.; Sheesley, R. J.; Usenko, S.

    2014-12-01

    DISCOVER-AQ is a NASA mission seeking to better understand air quality in cities across the United States. In September 2013, flight, satellite and ground-based data was collected in Houston, TX and the surrounding metropolitan area. Over 300 particulate matter filter samples were collected as part of the ground-based sampling efforts, at four sites across Houston. Samples include total suspended particle matter (TSP) and fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM2.5). For this project, an analytical method has been developed for the pressurized liquid extraction (PLE) of a wide variety of organic tracers and contaminants from quartz fiber filters (QFFs). Over 100 compounds were selected including polycyclic aromatic hydrocarbons (PAHs), hopanes, levoglucosan, organochlorine pesticides, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organophosphate flame retardants (OPFRs). Currently, there is no analytical method validated for the reproducible extraction of all seven compound classes in a single automated technique. Prior to extraction, QFF samples were spiked with known amounts of target analyte standards and isotopically-labeled surrogate standards. The QFF were then extracted with methylene chloride:acetone at high temperatures (100˚C) and pressures (1500 psi) using a Thermo Dionex Accelerated Solvent Extractor system (ASE 350). Extracts were concentrated, spiked with known amounts of isotopically-labeled internal standards, and analyzed by gas chromatography coupled with mass spectrometry utilizing electron ionization and electron capture negative ionization. Target analytes were surrogate recovery-corrected to account for analyte loss during sample preparation. Ambient concentrations of over 100 organic tracers and contaminants will be presented for four sites in Houston during DISCOVER-AQ.

  10. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  11. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  12. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  13. ISOPRENE EMISSION FLUXES DETERMINED BY AN ATMOSPHERIC TRACER TECHNIQUE

    EPA Science Inventory

    Sulfur hexafluoride tracer was used in a series of experiments to simulate isoprene emissions from an isolated oak grove. The measured tracer release rate and ambient concentrations of isoprene and SF sub 6 observed along downwind sample lines were combined to determine the mass ...

  14. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  15. Theoretical and experimental (15)N NMR study of enamine-imine tautomerism of 4-trifluoromethyl[b]benzo-1,4-diazepine system.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Rulev, Alexander Yu; Krivdin, Leonid B

    2015-12-01

    The tautomeric structure of 4-trifluoromethyl[b]benzo-1,4-diazepine system in solution has been evaluated by means of the calculation of (15)N NMR chemical shifts of individual tautomers in comparison with the averaged experimental shifts to show that the enamine-imine equilibrium is entirely shifted toward the imine form. The adequacy of the theoretical level used for the computation of (15)N NMR chemical shifts in this case has been verified based on the benchmark calculations in the series of the push-pull and captodative enamines together with related azomethynes, which demonstrated a good to excellent agreement with experiment. PMID:26290420

  16. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  17. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  18. Sources of δ15N variability in sinking particulate nitrogen in the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Montes, Enrique; Thunell, Robert; Muller-Karger, Frank E.; Lorenzoni, Laura; Tappa, Eric; Troccoli, Luis; Astor, Yrene; Varela, Ramón

    2013-09-01

    Ten years of monthly observations of the δ15N of sinking particulate nitrogen (δ15N-PN (in ‰ versus atmospheric N2)=[(15N/14N)sample/(15N/14N)standard)-1]1000) in the Cariaco Basin, Venezuela, confirm that the basin's bottom sediments store information about nitrogen dynamics related to seasonal and interannual variability in regional surface ocean processes. During the upwelling period of the southern Caribbean Sea (February-April), the δ15N-PN is similar to that of the thermocline nitrate (˜3.5‰). This nitrate is imported into the Cariaco Basin with Subtropical Underwater (SUW), which wells up near the coast. Thus, particles generated by phytoplankton photosynthesis during this productive period bear a sub-tropical North Atlantic isotopic imprint of N2 fixation (low compared to the global average of nitrate δ15N≈5‰). During the non-upwelling period when surface waters are stratified (September-November), the δ15N-PN is also 3.5-4.0‰, and reflects a mixture of local N2 fixation within the mixed layer, inputs of terrigenous organic matter and SUW nitrate consumption by phytoplankton below the mixed layer, which most likely exerts the strongest control on the δ15N-PN signal during this time. In the transition periods of May-July and December-January, the δ15N-PN increases to 4.5-6.5‰. This coincides with maxima of continental material fluxes (terrestrial PON δ15N is >6‰) into the Cariaco Basin. The δ15N signal in the sediments of the Cariaco Basin thus provides information about the relative strength of the local coastal upwelling, the relative input of continental material via river runoff, and local N2 fixation. The findings contribute to interpretations of the basin's paleoclimatic nitrogen cycle variations based on observations of the sedimentary δ15N record at this location.

  19. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N < 100.The coherent 15N enrichment in comets from different formation zones suggests that these isotopic enhancements are remnants of the interstellar chemistry in the natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to

  20. Whole-body protein turnover in preterm appropriate for gestational age and small for gestational age infants: comparison of [15N]glycine and [1-(13)C]leucine administered simultaneously.

    PubMed

    Van Goudoever, J B; Sulkers, E J; Halliday, D; Degenhart, H J; Carnielli, V P; Wattimena, J L; Sauer, P J

    1995-04-01

    Measurements of whole-body protein turnover in preterm infants have been made using different stable isotope methods. Large variation in results has been found, which could be due to different clinical conditions and/or the use of different tracers. We studied 14 appropriate for gestational age and nine small for gestational age orally fed preterm infants using [15N]glycine and [1-(13)C]leucine simultaneously, which allowed us to make a comparison of commonly used methods to calculate whole-body protein turnover. Whole-body protein turnover was calculated from 15N enrichment in urinary ammonia and urea after [15N]-glycine administration and from the 13C enrichment in expired CO2 after administration of [1-(13)C]leucine. Enrichment of alpha-ketoisocaproic acid after [1-(13)C]leucine constant infusion was measured as a direct parameter of whole-body protein turnover. Group means for whole-body protein turnover using [15N]glycine or [1-(13)C]leucine ranged from 10 to 14 g.kg-1.d-1, except when using the end product method that assumes a correlation between leucine oxidation and total nitrogen excretion. We found very low 15N enrichment of urinary urea in the majority of small for gestational age infants. These infants also had a lower nitrogen excretion in urine and oxidized less leucine. Nitrogen balance was higher in small for gestational age infants (416 +/- 25 mg.kg-1.d-1) compared with appropriate for gestational age infants (374 +/- 41 mg.kg-1.d-1, p = 0.003). [15N]Glycine does not seem to exchange its label with the body nitrogen pool to a significant degree and is therefore not always suitable as a carrier for 15N in protein turnover studies in premature infants. PMID:7596675

  1. 15N techniques and analytical procedures. Indo/U. S. science and technology initiative. Research report

    SciTech Connect

    Porter, L.K.; Mosier, A.R.

    1992-05-01

    (15)N technology is used to explore many agricultural research topics, including the movement of nitrates to groundwater, use of fertilizer nitrogen by plants, ways to increase nitrogen fixation, and effects of management practices on denitrification. The publication reviews (15)N procedures and methods for handling and collecting samples, introducing isotopes into plants and soils, and for performing Kjeldahl analyses, isotope dilutions, Rittenberg oxidation conversions for isotope-ration analyses, and automated Dumas isotope-ratio analyses.

  2. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  3. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  4. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats.

    PubMed

    Kopf, Sebastian H; McGlynn, Shawn E; Green-Saxena, Abigail; Guan, Yunbin; Newman, Dianne K; Orphan, Victoria J

    2015-07-01

    To measure single-cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and (15) N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single-cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single-cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % (2) H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments. PMID:25655651

  5. Heavy water and 15N labeling with NanoSIMS analysis reveals growth-rate dependent metabolic heterogeneity in chemostats

    PubMed Central

    McGlynn, Shawn E.; Green-Saxena, Abigail

    2015-01-01

    To measure single cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labeling of microbial populations with heavy water (a passive tracer) and 15N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % 2H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 hours, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium vs. amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments. PMID:25655651

  6. Vertical diffusivities of active and passive tracers

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and R ρ (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: The passive tracer diffusivity is an algebraic function of Ri, R ρ. In doubly stable regimes (DS, ∂ T/∂z > 0, ∂S/∂ z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of R ρ < 0 and Ri > 0. In DC regimes (diffusive convection, ∂ T/∂ z < 0, ∂ S/∂ z < 0, R ρ > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. In SF regimes (salt fingers, ∂ T/∂ z > 0, ∂ S/∂ z > 0, R ρ < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO 2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  7. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  8. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    NASA Astrophysics Data System (ADS)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  9. Elastic and inelastic scattering of 15N ions by 9Be at 84 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Chercas, K. A.; Kemper, K. W.; Rusek, K.; Rudchik, A. A.; Herashchenko, O. V.; Koshchy, E. I.; Pirnak, Val. M.; Piasecki, E.; Trzcińska, A.; Sakuta, S. B.; Siudak, R.; Strojek, I.; Stolarz, A.; Ilyin, A. P.; Ponkratenko, O. A.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Szczurek, A.; Uleshchenko, V. V.

    2016-03-01

    Angular distributions of the 9Be + 15N elastic and inelastic scattering were measured at Elab(15N) = 84 MeV (Ec.m. = 31.5 MeV) for the 0-6.76 MeV states of 9Be and 0-6.32 MeV states of 15N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 9Be in ground and excited states and 15N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the 9Be + 15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the 9Be + 15N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of 9Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  10. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  11. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  12. Compound-specific δ15N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk δ15N records

    NASA Astrophysics Data System (ADS)

    Junium, Christopher K.; Arthur, Michael A.; Freeman, Katherine H.

    2015-07-01

    Understanding the processes that control the preservation of paleoceanographic proxies is of clear importance. Surface sediments from the Peru Margin oxygen-minimum zone are subject to lateral and downslope transport by bottom currents that decrease organic matter (OM) quality. Indicators of bulk OM quality (pyrolysis hydrogen index, pyrolysis S1 + S2 and C/N) demonstrate significant degradation between 150 and 400 m water depth, within the oxygen-minimum zone. Concentrations of the three most abundant chlorins (chlorophyllone, pheophytin and pyropheophytin) decrease from 750 to 150 nmol g TOC-1 from 150 to 400 m water depth though the relative abundances of the chlorins in an individual sample do not change. This suggests that the three chlorins have similar reactivity over the ambient conditions. Values for δ15N of bulk sediments (δ15Nbulk) decrease by 3‰ from the inner shelf to the upper slope (1000 m) but co-occurring compound-specific δ15N values (δ15Nchlorin) do not decrease downslope. The low variability of δ15Nchlorin values supports a single source for the chlorins, and demonstrates the recalcitrance of δ15Nchlorin values despite degradation. This set of observation raises questions about which type of OM fraction best records 'primary' signatures. We assess two possible models to guide our interpretation of these disparate datasets (1) that decreasing δ15Nbulk values are the result of degradation of a 15N-enriched fraction during downslope transport, and that δ15Nchlorin values reflect primary values; (2) that δ15Nbulk values are primary and that chlorins are derived from material transported from upslope. These data reaffirm that in active sedimentary environments such as the Eastern Tropical Pacific, transport of OM can significantly alter bulk geochemical parameters of OM integrity, but the impacts on the δ15N record of bulk sediments and chlorins are less clear, and require more study to be thoroughly understood.

  13. Nitrogen source tracking with delta(15)N content of coastal wetland plants in Hawaii.

    PubMed

    Bruland, Gregory L; MacKenzie, Richard A

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared delta(15)N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of delta(15)N with land use, human population density, and surface water quality parameters (i.e., nitrate, ammonium, and total dissolved N). The highest delta(15)N values were observed in plants from wetlands on the islands of Oahu (8.7-14.6 per thousand) and Maui (8.9-9.2 per thousand), whereas plants from wetlands on the islands of Kauai, Hawaii, and Molokai had delta(15)N values usually <4 per thousand. The enrichment in delta(15)N values in plant tissues from wetlands on Oahu and Maui was most likely a result of the more developed and densely populated watersheds on these two islands. Urban development within a 1000-m radius and population density were positively correlated to average delta(15)N vegetation values from each wetland site (r = 0.56 and 0.51, respectively; p < 0.001). This suggested that site mean delta(15)N values from mixed stands of wetland plants have potential as indices of N sources in coastal lowland wetlands in Hawaii and that certain sites on Oahu and Maui have experienced significant anthropogenic N loading. This information can be used to monitor future changes in N inputs to coastal wetlands throughout Hawaii and the Pacific. PMID:20048329

  14. Tracer for circulation determinations

    SciTech Connect

    Moore, H.; Santos, S.; Wysong, R. D.

    1985-03-19

    An improved tracer particle is described comprising an ion exchange core having a polymer coating thereon, the coated ion exchange core having a reaction site capable of reacting with a compound containing an oxirane group, said coated ion exchange core having been treated with a compound containing an oxirane group to react with said coated ion exchange core causing an increase in mass of the tracer particle. Preferably, the ion exchange core is labelled with a radionuclide. These particles have improved characteristics including improved stability against leaching and improved handling properties. Such particles are useful in circulatory determinations involving the injection of the particles as a suspension in a physiologically acceptable carrier or medium into the circulatory system of animals.

  15. EFFECT OF HIGH-ENERGY RESONANCES ON THE {sup 18}O(p, {alpha}){sup 15}N REACTION RATE AT AGB AND POST-AGB RELEVANT TEMPERATURES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.

    2010-11-10

    The {sup 18}O(p, {alpha}){sup 15}N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as {sup 19}F, {sup 18}O, and {sup 15}N. Fluorine is synthesized in the intershell region of asymptotic giant branch (AGB) stars, together with s-elements, by {alpha} radiative capture on {sup 15}N, which in turn is produced in the {sup 18}O proton-induced destruction. Peculiar {sup 18}O abundances are observed in R-Coronae Borealis stars, having {sup 16}O/{sup 18}O {approx}< 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the {sup 14}N/{sup 15}N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced by the {sup 18}O(p, {alpha}){sup 15}N reaction. In this work, a high accuracy {sup 18}O(p, {alpha}){sup 15}N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of {sup 19}F. In particular, we have focused on the study of the broad 660 keV 1/2{sup +} resonance corresponding to the 8.65 MeV level of {sup 19}F. Since {Gamma} {approx} 100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger above T {approx} 0.5 10{sup 9} K based on our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions.

  16. [Responses of Soil and Plant 15N Natural Abundance to Long-term N Addition in an N-Saturated Pinus massoniana Forest in Southwest China].

    PubMed

    Liu, Wen-jing; Kang, Rong-hua; Zhang, Ting; Zhu, Jing; Duan, Lei

    2015-08-01

    Increasing N deposition in China will possibly cause N saturation of forest ecosystem, further resulting in a series of serious environmental problems. In order to explore the response of forest ecosystem to N deposition in China, and further evaluate and predict the N status of ecosystem, the 15N natural abundance (delta 15N) of soil and plants was measured in a typical Masson pine (Pinus massoniana) forest in southwest China to examine the potential use of delta 15N enrichment factor (epsilon(p/s)) as an effective indicator of N status. Long-term high N addition could significantly increase delta 15N of soil and plants, which was suggested by an on-going N fertilizing experiment with NH4NO3 or NaNO3 for 7 years. Meanwhile, delta 15N of soil and plants under NH, deposition was significantly higher than that under NO- deposition, suggesting different responses of ecosystem to different N-forms of deposition. The "N enrichment factor (epsilon(p/s)) had positive correlations with N deposition, N nitrification, and N leaching in the soil water. Linear correlation between "N enrichment factor and N deposition was found for all Masson pine forests investigated in this and previous studies in China, demonstrating that 15N enrichment factor could be used as an indicator of N status. The NH3 emission control should also be carried out accompanying with NOx emission control in the future, because NH4- deposition had significantly greater impact on the forest ecosystem than NO3- deposition with the same equivalence. PMID:26592030

  17. Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo

    NASA Astrophysics Data System (ADS)

    Bonal, L.; Huss, G. R.; Krot, A. N.; Nagashima, K.; Ishii, H. A.; Bradley, J. P.

    2010-11-01

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock 15N-enrichments (δ 15N up to 1500‰) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk δ 15N values ranging between 1000‰ and 1300‰. It is also characterized by the presence of numerous 15N hotspots (δ 15N ranging from 1400‰ to 4000‰). No bulk (δD <-240‰) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were 15N-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing 15N over the

  18. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  19. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers

    SciTech Connect

    Gary A. Pope; Daene C. McKinney; Akhil Datta Gupta; Richard E. Jackson; Minquan Jin

    2000-03-20

    Majors advances have been made during the past three years in our research on interwell partitioning tracers tests (PITTs). These advances include (1) progress on the inverse problem of how to estimate the three-dimensional distribution of NAPL in aquifers from the tracer data, (2) the first ever partitioning tracer experiments in dual porosity media, (3) the first modeling of partitioning tracers in dual porosity media (4) experiments with complex NAPLs such as coal tar, (5) the development of an accurate and simple method to predict partition coefficients using the equivalent alkane carbon number approach, (6) partitioning tracer experiments in large model aquifers with permeability layers, (7) the first ever analysis of partitioning tracer data to estimate the change in composition of a NAPL before and after remediation (8) the first ever analysis of partitioning tracer data after a field demonstration of surfactant foam to remediate NAPL and (9) experiments at elevated temperatures .

  20. Rivermouth alteration of agricultural impacts on consumer tissue δ15N

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.

  1. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  2. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    PubMed

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets. PMID

  3. Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program

    SciTech Connect

    Adams, M.C.; Moore, J.N.; Benoit, W.R.; Doughty, C.; Bodvarsson, G.S.

    1993-10-01

    In the injection test described, chemical tracers established the fluid flow between one injection well and one production well. Measured tracer concentrations, calculated flow rates, sampling schedules, and the daily events of the tracer test are documented. This experiment was designed to test the application of organic tracers, to further refine the predictive capability of the reservoir model, and to improve the effectiveness of Oxbow`s injection strategy.

  4. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  5. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    SciTech Connect

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  6. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei. PMID:8995843

  7. Dynamics and mechanics of tracer particles

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Jerolmack, D. J.

    2014-06-01

    Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that: measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement lengths scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modelling framework based on momentum conservation at the grain scale. Tracer displacement shows a weak correlation with particle size at the individual flood scale, however cumulative travel distance begins to show an inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the step-pool and alluvial channels collapse onto a single curve - despite more than an order of magnitude difference in channel slope - when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  8. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  9. Determination of δ18O and δ15N in Nitrate

    USGS Publications Warehouse

    Revesz, K.; Böhlke, J.K.; Yoshinari, T.

    1997-01-01

    The analyses of both O and N isotopic compositions of nitrate have many potential applications in studies of nitrate sources and reactions in hydrology, oceanography, and atmospheric chemistry, but simple and precise methods for these analyses have yet to be developed. Testing of a new method involving reaction of potassium nitrate with catalyzed graphite (C + Pd + Au) at 520 °C resulted in quantitative recovery of N and O from nitrate as free CO2, K2CO3, and N2. The δ18O values of nitrate reference materials were obtained by analyzing both the CO2 and K2CO3 from catalyzed graphite combustion. Provisional values of δ18OVSMOW for the internationally distributed KNO3 reference materials IAEA-N3 and USGS-32 were both equal to +22.7 ± 0.5‰. Because the fraction of free CO2 and the isotopic fractionation factor between CO2 and K2CO3 were constant in the combustion products, the δ18O value of KNO3 could be calculated from measurements of the δ18O of free CO2. Thus, δ18OKNO3 = aδ18Ofree CO2 − b, where a and b were equal to 0.9967 and 3.3, respectively, for the specific conditions of the experiments. The catalyzed graphite combustion method can be used to determine δ18O of KNO3 from measurements of δ18O of free CO2 with reproducibility on the order of ±0.2‰ or better if local reference materials are prepared and analyzed with the samples. Reproducibility of δ15N was ±0.1‰ after trace amounts of CO were removed.

  10. Neutron capture cross section of {sup 15}N at stellar energies

    SciTech Connect

    Meissner, J.; Schatz, H.; Herndl, H.; Wiescher, M.; Beer, H.; Kaeppeler, F.

    1996-02-01

    The neutron capture rate on {sup 15}N may be of considerable importance for {ital s}-process nucleosynthesis in red giants as well as for the nucleosynthesis in inhomogeneous big bang scenarios. We measured the reaction cross section of {sup 15}N({ital n},{gamma}){sup 16}N at the Forschungszentrum Karlsruhe with a fast cyclic neutron activation technique at laboratory neutron energies of 25, 152, and 370 keV. Direct capture and shell model calculations were performed to interpret the results. The presented reaction rate is 30{endash}50{percent} smaller than the previously used theoretical rates. {copyright} {ital 1996 The American Physical Society.}

  11. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  12. First results on the incorporation and excretion of 15N from orally administered urea in lactating pony mares.

    PubMed

    Schubert, R; Zander, R; Gruhn, K; Hennig, A

    1991-05-01

    Two lactating pony mares were given oral offers of 20 g 15N urea [95 atom-% 15N-excess (15N')] on 6 subsequent days. About 80% of the consumed 15N' were excreted via urine and faeces, but only about 2% via milk. The 15N' secreted via milk-lysine only amounted to 0.04% of the 15N' intake. The recovery was about 90% in each case. Tissues with active metabolism had an unexpectedly high labelling (greater than 0.3 atom-% 15N'). The low extent of the conversion of oral urea N into milk-lysine speaks against an essential participation of the enteral synthesis in meeting the amino acid requirement of lactating mares. It was already concluded from this results that the determination of the amino acid requirement will be necessary for this group of performance. PMID:1888274

  13. Composition of free and adherent ruminal bacteria: inaccuracy of the microbial nutrient supply estimates obtained using free bacteria as reference samples and (15)N as the marker.

    PubMed

    González, J; Arroyo, J M; Ouarti, M; Guevara-González, J; Rodríguez, C A; Alvir, M R; Moya, V J; Piquer, O

    2012-03-01

    Previous studies have indicated that (15)N enrichment of solid-associated bacteria (SAB) may be predicted from the same value in liquid-associated bacteria (LAB). The aims of this study were to confirm this and to measure the error in the nutrient supply from SAB, when LAB are used as the reference sample. For this purpose, the chemical and amino acid (AA) compositions of both the bacterial populations were studied in four experiments carried out on different groups of three rumen cannulated wethers. Diets (one in Experiments 1 and 4 and three in Experiments 2 and 3) had forage-to-concentrate ratios (dry matter (DM) basis) between 2 : 1 and 40 : 60, and were consumed at intake levels between 40 and 75 g DM/kg (BW)(0.75). The bacteria samples were isolated after continuous infusion of ((15)NH(4))(2)SO(4) (40, 18, 30 and 25 mg (15)N/day, in Experiments 1 to 4, respectively) for at least 14 days. In all experiments, SAB had consistently higher concentrations of organic matter (826 v. 716 g/kg DM, as average) and total lipids (192 v. 95 g/kg DM, as average) than LAB. Similar CP concentrations of both populations were observed, except a higher concentration in SAB than in LAB in Experiment 3. A consistent (in Experiment 4 only as tendency) higher AA-N/total N ratio (on average 17.5%) was observed in SAB than in LAB. The (15)N enrichment in SAB was systematically lower than in LAB. On the basis of the results of all studies a close relationship was found between the (15)N enrichment in SAB and LAB, which was shown irrespective of experiments. This relationship was established from Experiments 1 and 2 and the above cited previous results (n = 20; P < 0.001; R(2) = 0.996), and then confirmed from the results of Experiments 3 and 4. These relationships between SAB and LAB demonstrate that CP supply from SAB is underevaluated by, on average, 21.2% when LAB are used as the reference. This underevaluation was higher for true protein and even higher for the lipid supply (32

  14. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  15. Geoelectrical and colour tracer monitoring with direct push observation wells

    NASA Astrophysics Data System (ADS)

    Dietrich, P.; Dietze, M.; Hoffmann, R.

    2003-04-01

    Borehole - borehole tracer tests are a hydrogeological method to characterize groundwater flow parameters. Breakthrough curves of colour tracers, injected in one borehole and measured in one or more observation wells downstream of the first, give exact but locally very limited information about groundwater flow direction and velocity. At heterogeneous subsurface conditions a large number of investigation wells and frequent sample drawing is necessary to assure recovery of the tracer, which makes the experiments very expensive. Yet, these experiments often fail or do not give sufficient information about the flow regime in the aquifer. Monitoring of salt tracers with geoelectrical methods gives an integral information about flow parameters which in most cases is a more useful information. Especially in deeper aquifers though, it is a problem to place a high number of electrodes close enough to the moving tracer to gain precise results. To assess the mentioned problems we carried out a combined geoelectrical salt and conventional colour tracer test. Our equipment for both tests was placed in direct push boreholes, which are a lot cheaper than groundwater wells, quickly installed and much less invasive. The boreholes were installed at 10 meters distance on a 120 m long profile, to form a control plane 25 meters downstream of the tracer injection. The injection took place in three different groundwater wells at a time, to provide for a good overview of the flow regime along the control plane. We show, how integral information from the geoelectrical tracer tests can be used to design a refined borehole placement for a successful colour tracer test. Our results, quite different from groundwater modelling results, strongly support the necessity to carry out precise field tracer tests for the investigation of groundwater flow parameters.

  16. Stratospheric Tracer Spectra.

    NASA Astrophysics Data System (ADS)

    Haynes, P. H.; Vanneste, J.

    2004-01-01

    The combined effects of advection and diffusion on the equilibrium spatial structure of a tracer whose spatial variation is maintained by a large-scale forcing are considered. Motivated by the lower stratosphere, the flow is taken to be large-scale, time-dependent, and purely horizontal but varying in the vertical, with the vertical shear much larger than horizontal velocity gradients. As a result, the ratio α between horizontal and vertical tracer scales is large. (For the lower stratospheric surf zone α has been shown to be about 250.) The diffusion parameterizes the mixing effects of small-scale processes.The three space dimensions and the large range between the forcing scale and the diffusive scale mean that direct numerical simulation would be prohibitively expensive for this problem. Instead, an ensemble approach is used that takes advantage of the separation between the large scale of the flow and the small scale of the tracer distribution. This approach, which has previously been used in theoretical investigations of two-dimensional flows, provides an efficient technique to derive statistical properties of the tracer distributions such as horizontal-wavenumber spectrum.First, the authors consider random-strain models in which the velocity gradient experienced by a fluid parcel is modeled by a random process. The results show the expected k-1 Batchelor spectrum at large scales, with a deviation from this form at a scale that is larger by a factor α than the diffusive scale found in the absence of vertical shear. This effect may be crudely captured by replacing the diffusivity κ by an “=uivalent diffusivity” α2κ, but the diffusive dissipation is then substantially overestimated, and the spectrum at large k is too steep. This may be attributed to the failure of the equivalent diffusivity to capture the variability of the vertical shear.The technique is then applied to lower-stratospheric velocity fields. For realistic values of the diffusivity κ

  17. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    SciTech Connect

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.

  18. The Effect of N Fertilizer Placement on the Fate of Urea-15N and Yield of Winter Wheat in Southeast China

    PubMed Central

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Liu, Yongzhe; Gao, Shuaishuai; Zhou, Jianmin

    2016-01-01

    A field micro-plot experiment using nitrogen isotope (15N) labeling was conducted to determine the effects of placement methods (broadcast and band) and N rates (60, 150 and 240 kg ha–1) on the fate of urea-15N in the wheat–soil system in Guangde County of Anhui Province, China. N fertilizer applied in bands increased grain yield by 15% compared with broadcast application. The N fertilizer application rate had a significant effect on grain yield, straw yield and aboveground biomass, as well as on N uptake and N concentration of wheat. The recovery of urea-15N was a little higher for broadcast (34.0–39.0%) than for band treatment (31.2–38.2%). Most of the soil residual N was retained in the 0–20 cm soil layer. At the N rates of 60 and 240 kg ha–1, the residual 15N was higher for band (34.4 and 108.7 kg ha–1, respectively) than for broadcast application (29.6 and 88.4 kg ha–1, respectively). Compared with broadcast treatment, banded placement of N fertilizer decreased the N loss in the wheat–soil system. Band application one time is an alternative N management practice for winter wheat in this region. PMID:27082246

  19. Extension of transverse relaxation-optimized spectroscopy techniques to allosteric proteins: CO- and paramagnetic fluoromet-hemoglobin [beta (15N-valine)].

    PubMed

    Nocek, J M; Huang, K; Hoffman, B M

    2000-03-14

    We present the first steps in applying transverse relaxation-optimized spectroscopy (TROSY) techniques to the study of allosterism. Each beta-chain of the hemoglobin (Hb) tetramer has 17 valine residues. We have (15)N-labeled the beta-chain Val residues and detected 16 of the 17 (1)H-(15)N correlation peaks for beta-chain Val of the R state CO-Hb structure by using the TROSY technique. Sequence-specific assignments are suggested, based mainly on analysis of the (1)H pseudocontact-shift increments produced by oxidizing the diamagnetic R state HbCO to the paramagnetic R state fluoromet form. When possible, we support these assignments with sequential nuclear Overhauser effect (NOE) information obtained from a two-dimensional [(1)H,(1)H]-NOESY-TROSY experiment (NOESY, NOE spectroscopy). We have induced further the R-T conformational change by adding the allosteric effector, inositol hexaphosphate, to the fluoromet-Hb sample. This change induces substantial increments in the (1)H and (15)N chemical shifts, and we discuss the implication of these findings in the context of the tentative sequence assignments. These preliminary results suggest that amide nitrogen and amide proton chemical shifts in a selectively labeled sample are site-specific probes for monitoring the allosteric response of the ensemble-averaged solution structure of Hb. More important, the chemical-shift dispersion obtained is adequate to permit a complete assignment of the backbone (15)N/(13)C resonances upon nonselective labeling. PMID:10716987

  20. Multinuclear 1H, 13C and 15N NMR study of some substituted 2-amino-4-nitropyridines and their N-oxides

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Kolehmainen, E.; Kauppinen, R.; Lorenc, J.; Puszko, A.

    2002-05-01

    1H, 13C and 15N NMR chemical shift assignments based on pulsed field gradient selected PFG 1H,X (X= 13C and 15N) HMQC and HMBC experiments are reported for three 4-nitropyridine N-oxides and four 4-nitropyridines. It was found that an ortho effect of a methyl group inhibits the deshielding effect of the 4-nitro group and that this effect and the so-called back donation is influenced by electronegativity and position of substituents in the multisubstituted pyridine N-oxides. The shielding effect of N-oxide group is most pronounced in the 15N NMR chemical shifts of the studied compounds. This effect is further modified by methylamino, methylnitramino, 5- or 3-methyl and 4-nitro groups. Among them the 4-nitro group exerts the highest influence on the shielding effect of the N-oxide functionality. Experimental 1H, 13C and 15N NMR chemical shifts and GIAO/DFT theoretical calculations are consistent with each other and supported by the reactivity on nucleophilic substitution, the UV spectral and the dipole moment data.

  1. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data

    PubMed Central

    Hu, Kan-Nian; Qiang, Wei; Bermejo, Guillermo A.; Schwieters, Charles D.; Tycko, Robert

    2013-01-01

    Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and backbone torsion angles; (ii) restraints on inter-residue proximities from qualitative measurements of internuclear dipole–dipole couplings, detected as the presence or absence of inter-residue crosspeaks in multidimensional spectra. We show that site-specific dipole–dipole couplings among 15N-labeled backbone amide sites and among 13C-labeled backbone carbonyl sites can be measured quantitatively in uniformly-labeled proteins, using dipolar recoupling techniques that we call 15N-BARE and 13C-BARE (BAckbone REcoupling), and that the resulting data represent a new source of restraints on backbone conformation. 15N-BARE and 13C-BARE data can be incorporated into structural modeling calculations as potential energy surfaces, which are derived from comparisons between experimental 15N and 13C signal decay curves, extracted from crosspeak intensities in series of two-dimensional spectra, with numerical simulations of the 15N-BARE and 13C-BARE measurements. We demonstrate this approach through experiments on microcrystalline, uniformly 15N, 13C-labeled protein GB1. Results for GB1 show that 15N-BARE and 13C-BARE restraints are complementary to restraints from chemical shifts and inter-residue crosspeaks, improving both the precision and the accuracy of calculated structures. PMID:22449573

  2. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  3. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  4. Tracer testing for reservoir description

    SciTech Connect

    Brigham, W.E.; Abbaszadeh-Dehghani, M.

    1987-05-01

    When a reservoir is studied in detail for an EOR project, well-to-well tracers should be used as a tool to help understand the reservoir in a quantitative way. Tracers complement the more traditional reservoir evaluation tools. This paper discusses the concepts underlying tracer testing, the analysis methods used to produce quantitative results, and the meaning of these results in terms of conceptual picture of the reservoir. Some of the limitations of these analysis methods are discussed, along with ongoing research on tracer flow.

  5. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  6. {sup 15}N(p,{alpha}{sub 0}){sup 12}C S factor

    SciTech Connect

    Barker, F. C.

    2008-10-15

    Experimental values of the astrophysical S factor for the {sup 15}N(p,{alpha}{sub 0}){sup 12}C reaction are available both from direct measurements and from the Trojan horse method. We here use R-matrix formulas to fit these values and to extrapolate to zero energy to obtain values of S(0)

  7. The use of delta(15)N in assessing sewage stress on coral reefs.

    PubMed

    Risk, Michael J; Lapointe, Brian E; Sherwood, Owen A; Bedford, Bradley J

    2009-06-01

    While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, delta(15)N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, delta(15)N in gorgonians can provide information on status and trends. In coral tissue, delta(15)N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, delta(15)N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application. PMID:19286230

  8. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    NASA Astrophysics Data System (ADS)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  9. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  10. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts. PMID:26590548

  11. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  12. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    PubMed

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  13. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  14. Do Low 15N Values in Paleozoic Epeiric Basins Indicate High Rates of N Fixation?

    NASA Astrophysics Data System (ADS)

    Tuite, M. L.; Macko, S. A.

    2011-12-01

    As a consequence of the high energetic requirements of dinitrogen (N2) fixation, organic N produced by diazotrophic microorganisms typically exhibits δ15N values similar to atmospheric N2 (approximately 0%). Because the δ15N of organic-rich Paleozoic epeiric basin sediments often has values in the vicinity of 0%, it is frequently asserted that N2 fixation was the primary source of new reactive N for productivity. There are two broad reasons why recourse to widespread and intensive N fixation as the primary source of the organic N is problematic. First, there are substantial physiological and ecological constraints on marine N fixation that limit its extent in modern oceans primarily to open ocean basins. Second, preservation of an unaltered isotopic signature of diazotrophy in underlying sediments is not a likely outcome of oxic and anoxic diagenetic alteration and repeated cycles of mineralization and assimilation. Constraining the sources of reactive N for primary productivity is critical to understanding the N cycle in Paleozoic epeiric seas. In this study we report δ15N values from high organic matter Middle Ordovician through Late Devonian dysoxic and euxinic basinal sediments. We propose a nitrogen isotope mass balance model that incorporates the microbial ecology of a stratified water column and the biochemical stoichiometry of primary production and organic matter diagenesis. Results from the model support our contention that high rates of N fixation over extended time periods were not the cause of depleted nitrogen isotope values in organic-rich Paleozoic basinal sediments. Rather, the depleted values were a consequence of a diminished role for nitrification and subsequent N loss via denitrification and anammox, and the preferential preservation of a substantially 15N-depleted chlorophyll-influenced lipid fraction. The model may be applicable to earlier and later geological periods where high organic matter sediments feature depleted δ15N values.

  15. Evaluating δ(15)N-body size relationships across taxonomic levels using hierarchical models.

    PubMed

    Reum, Jonathan C P; Marshall, Kristin N

    2013-12-01

    Ecologists routinely set out to estimate the trophic position of individuals, populations, and species composing food webs, and nitrogen stable isotopes (δ(15)N) are a widely used proxy for trophic position. Although δ(15)N values are often sampled at the level of individuals, estimates and confidence intervals are frequently sought for aggregations of individuals. If individual δ(15)N values are correlated as an artifact of sampling design (e.g., clustering of samples in space or time) or due to intrinsic groupings (e.g., life history stages, social groups, taxonomy), such estimates may be biased and exhibit overly optimistic confidence intervals. However, these issues can be accommodated using hierarchical modeling methods. Here, we demonstrate how hierarchical models offer an additional quantitative tool for investigating δ(15)N variability and we explicitly evaluate how δ(15)N varies with body size at successively higher levels of taxonomic aggregation in a diverse fish assemblage. The models take advantage of all available data, better account for uncertainty in parameters estimates, may improve inferences on coefficients corresponding to groups with small to moderate sample sizes, and partition variation across model levels, which provides convenient summaries of the 'importance' of each level in terms of unexplained heterogeneity in the data. These methods can easily be applied to diet-based studies of trophic position. Although hierarchical models are well-understood and established tools, their benefits have yet to be fully reaped by stable isotope and food web ecologists. We suggest that hierarchical models can provide a robust framework for conceptualizing and statistically modeling trophic position at multiple levels of aggregation. PMID:23812110

  16. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  17. Dynamics of ribulose 1,5-bisphosphate carboxylase/oxygenase gene expression in the coccolithophorid Coccolithus pelagicus during a tracer release experiment in the Northeast Atlantic.

    PubMed

    Wyman, Michael; Davies, John T; Hodgson, Sylvia; Tarran, Glen A; Purdie, Duncan A

    2005-03-01

    We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto. PMID:15746374

  18. Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by sup 15 N methods. [Glycine max

    SciTech Connect

    Herridge, D.F. ); Peoples, M.B. )

    1990-06-01

    We report experiments to quantify the relationships between the relative abundance of ureide-N in root-bleeding sap, vacuum-extracted sap, and hot water extracts of stems and petioles of nodulated soybean (Glycine max (L.) Merrill cv Bragg) and the proportion of plant N derived from nitrogen fixation. Additional experiments examined the effects of plant genotype and strain of rhizobia on these relationships. In each of the five experiments reported, plants of cv Bragg (experiment 1), cv Lincoln (experiment