Science.gov

Sample records for 15q24 microdeletion syndrome

  1. Congenital diaphragmatic hernia is part of the new 15q24 microdeletion syndrome.

    PubMed

    Van Esch, Hilde; Backx, Liesbeth; Pijkels, Elly; Fryns, Jean-Pierre

    2009-01-01

    The recurrent microdeletion 15q24 syndrome is rare with only 5 cases reported thus far. Here we describe an additional patient with this deletion, presenting with many features common to this syndrome, including developmental delay, loose connective tissue, digital and genital anomalies and a distinct facial gestalt. Interestingly, in addition, this patient has a large congenital diaphragmatic hernia, as was described in one other patient with a 15q24 microdeletion, indicating that this feature might be part of the syndrome. Chromosome 15q24 has a highly polymorphic architecture that is prone to genomic rearrangements underlying this novel microdeletion syndrome.

  2. An inferential study of the phenotype for the chromosome 15q24 microdeletion syndrome: a bootstrap analysis

    PubMed Central

    Ramírez-Prado, Dolores; Cortés, Ernesto; Aguilar-Segura, María Soledad; Gil-Guillén, Vicente Francisco

    2016-01-01

    In January 2012, a review of the cases of chromosome 15q24 microdeletion syndrome was published. However, this study did not include inferential statistics. The aims of the present study were to update the literature search and calculate confidence intervals for the prevalence of each phenotype using bootstrap methodology. Published case reports of patients with the syndrome that included detailed information about breakpoints and phenotype were sought and 36 were included. Deletions in megabase (Mb) pairs were determined to calculate the size of the interstitial deletion of the phenotypes studied in 2012. To determine confidence intervals for the prevalence of the phenotype and the interstitial loss, we used bootstrap methodology. Using the bootstrap percentiles method, we found wide variability in the prevalence of the different phenotypes (3–100%). The mean interstitial deletion size was 2.72 Mb (95% CI [2.35–3.10 Mb]). In comparison with our work, which expanded the literature search by 45 months, there were differences in the prevalence of 17% of the phenotypes, indicating that more studies are needed to analyze this rare disease. PMID:26925314

  3. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    PubMed Central

    2010-01-01

    Background The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval. Methods We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE) for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR. Results Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears), single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb). Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed. Conclusions From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a frequency of about 0.3% in

  4. Microdeletion of chromosome 15q24.3-25.2 and orofacial clefting.

    PubMed

    Sing, Bindya; Song, Dongli; DeSandre, Glenn; Govindaswami, Balaji; Rosenthal, Scott; Gunn, Shelly; Wallerstein, Robert

    2011-09-01

    We report a case of de novo microdeletion of 15q24.3-q25.2 in an infant with orofacial cleft and general hypotonia and suggest that this may be a critical region in orofacial development. In addition, this case highlights the usefulness of comparative genomic microarray in the evaluation of children with congenital anomalies with such defects.

  5. Ancient Haplotypes at the 15q24.2 Microdeletion Region Are Linked to Brain Expression of MAN2C1 and Children's Intelligence.

    PubMed

    Cáceres, Alejandro; Esko, Tõnu; Pappa, Irene; Gutiérrez, Armand; Lopez-Espinosa, Maria-Jose; Llop, Sabrina; Bustamante, Mariona; Tiemeier, Henning; Metspalu, Andres; Joshi, Peter K; Wilsonx, James F; Reina-Castillón, Judith; Shin, Jean; Pausova, Zdenka; Paus, Tomáš; Sunyer, Jordi; Pérez-Jurado, Luis A; González, Juan R

    2016-01-01

    The chromosome bands 15q24.1-15q24.3 contain a complex region with numerous segmental duplications that predispose to regional microduplications and microdeletions, both of which have been linked to intellectual disability, speech delay and autistic features. The region may also harbour common inversion polymorphisms whose functional and phenotypic manifestations are unknown. Using single nucleotide polymorphism (SNP) data, we detected four large contiguous haplotype-genotypes at 15q24 with Mendelian inheritance in 2,562 trios, African origin, high population stratification and reduced recombination rates. Although the haplotype-genotypes have been most likely generated by decreased or absent recombination among them, we could not confirm that they were the product of inversion polymorphisms in the region. One of the blocks was composed of three haplotype-genotypes (N1a, N1b and N2), which significantly correlated with intelligence quotient (IQ) in 2,735 children of European ancestry from three independent population cohorts. Homozygosity for N2 was associated with lower verbal IQ (2.4-point loss, p-value = 0.01), while homozygosity for N1b was associated with 3.2-point loss in non-verbal IQ (p-value = 0.0006). The three alleles strongly correlated with expression levels of MAN2C1 and SNUPN in blood and brain. Homozygosity for N2 correlated with over-expression of MAN2C1 over many brain areas but the occipital cortex where N1b homozygous highly under-expressed. Our population-based analyses suggest that MAN2C1 may contribute to the verbal difficulties observed in microduplications and to the intellectual disability of microdeletion syndromes, whose characteristic dosage increment and removal may affect different brain areas.

  6. Ancient Haplotypes at the 15q24.2 Microdeletion Region Are Linked to Brain Expression of MAN2C1 and Children's Intelligence

    PubMed Central

    Cáceres, Alejandro; Esko, Tõnu; Pappa, Irene; Gutiérrez, Armand; Lopez-Espinosa, Maria-Jose; Llop, Sabrina; Bustamante, Mariona; Tiemeier, Henning; Metspalu, Andres; Wilsonx, James F.; Reina-Castillón, Judith; Shin, Jean; Pausova, Zdenka; Paus, Tomáš; Sunyer, Jordi; Pérez-Jurado, Luis A.; González, Juan R.

    2016-01-01

    The chromosome bands 15q24.1-15q24.3 contain a complex region with numerous segmental duplications that predispose to regional microduplications and microdeletions, both of which have been linked to intellectual disability, speech delay and autistic features. The region may also harbour common inversion polymorphisms whose functional and phenotypic manifestations are unknown. Using single nucleotide polymorphism (SNP) data, we detected four large contiguous haplotype-genotypes at 15q24 with Mendelian inheritance in 2,562 trios, African origin, high population stratification and reduced recombination rates. Although the haplotype-genotypes have been most likely generated by decreased or absent recombination among them, we could not confirm that they were the product of inversion polymorphisms in the region. One of the blocks was composed of three haplotype-genotypes (N1a, N1b and N2), which significantly correlated with intelligence quotient (IQ) in 2,735 children of European ancestry from three independent population cohorts. Homozygosity for N2 was associated with lower verbal IQ (2.4-point loss, p-value = 0.01), while homozygosity for N1b was associated with 3.2-point loss in non-verbal IQ (p-value = 0.0006). The three alleles strongly correlated with expression levels of MAN2C1 and SNUPN in blood and brain. Homozygosity for N2 correlated with over-expression of MAN2C1 over many brain areas but the occipital cortex where N1b homozygous highly under-expressed. Our population-based analyses suggest that MAN2C1 may contribute to the verbal difficulties observed in microduplications and to the intellectual disability of microdeletion syndromes, whose characteristic dosage increment and removal may affect different brain areas. PMID:27355585

  7. Jacobsen syndrome and Beckwith-Wiedemann syndrome caused by a parental pericentric inversion inv(11)(p15q24).

    PubMed

    Gadzicki, D; Baumer, A; Wey, E; Happel, C M; Rudolph, C; Tönnies, H; Neitzel, H; Steinemann, D; Welte, K; Klein, C; Schlegelberger, B

    2006-11-01

    Here we report on a male infant presenting the typical pattern of Jacobsen syndrome including trigonocephaly, thrombocytopenia, congenital heart defect, urethral stenosis, and partial agenesis of the corpus callosum. Conventional karyotyping, FISH, SKY and CGH analyses showed that the region distal to the MLL locus on 11q23 was lost and replaced by the distal region of 11p, leading to a partial trisomy of 11p and a partial monosomy of 11q. According to ISCN (1995) the karyotype can be described as 46,XY,add(11)(q2?3). ish 11ptel(D11S2071x3),11qtel(VIJyRM2072x1). Array-CGH analysis allowed us to narrow down the breakpoints to 11p15.1 and 11q24.1. Methylation analyses of genes located on 11p showed an increased level of the non-methylated paternal allele of the KCNQ1OT1 gene, confirming the concomitant presence of Beckwith-Wiedemann syndrome (BWS). The phenotype resulting from the 11q deletion seems to dominate the phenotype due to the distal 11p trisomy. Investigation of the parents revealed that this chromosomal rearrangement was caused by a paternal pericentric inversion inv(11)(p15q24). Since chromosomal aberrations like the one described here can easily be overlooked during routine chromosome analysis, combined FISH analysis using subtelomeric and possibly additional probes should be applied if there is any doubt about the integrity of telomeric regions.

  8. Genetics Home Reference: 15q24 microdeletion

    MedlinePlus

    ... Encyclopedia: Hypospadias Health Topic: Developmental Disabilities Additional NIH Resources (1 link) National Human Genome Research Institute: Chromosomal Abnormalities Educational Resources (6 ...

  9. The genetics of microdeletion and microduplication syndromes: an update.

    PubMed

    Watson, Corey T; Marques-Bonet, Tomas; Sharp, Andrew J; Mefford, Heather C

    2014-01-01

    Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.

  10. New microdeletion and microduplication syndromes: A comprehensive review

    PubMed Central

    Nevado, Julián; Mergener, Rafaella; Palomares-Bralo, María; Souza, Karen Regina; Vallespín, Elena; Mena, Rocío; Martínez-Glez, Víctor; Mori, María Ángeles; Santos, Fernando; García-Miñaur, Sixto; García-Santiago, Fé; Mansilla, Elena; Fernández, Luis; de Torres, María Luisa; Riegel, Mariluce; Lapunzina, Pablo

    2014-01-01

    Several new microdeletion and microduplication syndromes are emerging as disorders that have been proven to cause multisystem pathologies frequently associated with intellectual disability (ID), multiple congenital anomalies (MCA), autistic spectrum disorders (ASD) and other phenotypic findings. In this paper, we review the “new” and emergent microdeletion and microduplication syndromes that have been described and recognized in recent years with the aim of summarizing their main characteristics and chromosomal regions involved. We decided to group them by genomic region and within these groupings have classified them into those that include ID, MCA, ASD or other findings. This review does not intend to be exhaustive but is rather a quick guide to help pediatricians, clinical geneticists, cytogeneticists and/or molecular geneticists. PMID:24764755

  11. Microdeletion syndromes, balanced translocations, and gene mapping.

    PubMed Central

    Schinzel, A

    1988-01-01

    High resolution prometaphase chromosome banding has allowed the detection of discrete chromosome aberrations which escaped earlier metaphase examinations. Consistent tiny deletions have been detected in some well established malformation syndromes: an interstitial deletion in 15q11/12 in the majority of patients with the Prader-Willi syndrome and in a minority of patients with the Angelman (happy puppet) syndrome; a terminal deletion of 17p13.3 in most patients examined with the Miller-Dieker syndrome; an interstitial deletion of 8q23.3/24.1 in a large majority of patients with the Giedion-Langer syndrome; an interstitial deletion of 11p13 in virtually all patients with the WAGR (Wilms' tumour-aniridia-gonadoblastoma-retardation) syndrome; and an interstitial deletion in 22q11 in about one third of patients with the DiGeorge sequence. In addition, a combination of chromosome prometaphase banding and DNA marker studies has allowed the localisation of the genes for retinoblastoma and for Wilms' tumour and the clarification of both the autosomal recessive nature of the mutation and the possible somatic mutations by which the normal allele can be lost in retina and kidney cells. After a number of X linked genes had been mapped, discrete deletions in the X chromosome were detected by prometaphase banding with specific attention paid to the sites of the gene(s) in males who had from one to up to four different X linked disorders plus mental retardation. Furthermore, the detection of balanced translocations in probands with disorders caused by autosomal dominant or X linked genes has allowed a better insight into the localisation of these genes. In some females with X linked disorders, balanced X; autosomal translocations have allowed the localisation of X linked genes at the breakpoint on the X chromosome. Balanced autosome; autosome translocations segregating with autosomal dominant conditions have provided some clues to the gene location of these conditions. In two

  12. 14q12 Microdeletion syndrome and congenital variant of Rett syndrome.

    PubMed

    Mencarelli, Maria Antonietta; Kleefstra, Tjitske; Katzaki, Eleni; Papa, Filomena Tiziana; Cohen, Monika; Pfundt, Rolph; Ariani, Francesca; Meloni, Ilaria; Mari, Francesca; Renieri, Alessandra

    2009-01-01

    Only two patients with 14q12 deletion have been reported to date. Here, we describe an additional patient with a similar deletion in order to improve the clinical delineation of this new microdeletion syndrome. The emerging phenotype is characterized by a Rett-like clinical course with an almost normal development during the first months of life followed by a period of regression. A peculiar facial phenotype is also present and it is characterized by mild dysmorphisms such as downslanting palpebral fissures, bilateral epicanthic folds, depressed nasal bridge, bulbous nasal tip, tented upper lip, everted lower lip and large ears. The relationship between this microdeletion syndrome and the congenital variant of Rett syndrome due to point mutations in one of the genes included in the deleted region, FOXG1, is discussed.

  13. Congenital diaphragmatic hernia may be associated with 17q12 microdeletion syndrome.

    PubMed

    Goumy, Carole; Laffargue, Fanny; Eymard-Pierre, Eléonore; Kemeny, Stéphen; Gay-Bellile, Mathilde; Gouas, Laetiti; Gallot, Denis; Francannet, Christine; Tchirkov, Andrei; Pebrel-Richard, Céline; Vago, Philippe

    2015-01-01

    Microdeletions of 17q12 encompassing TCF2 are associated with maturity-onset of diabetes of the young type 5, cystic renal disease, pancreatic atrophy, Mullerian aplasia in females and variable cognitive impairment. We report on a patient with a de novo 17q12 microdeletion, 1.8 Mb in size, associated with congenital diaphragmatic hernia (CDH). The 5-year-old male patient presented multicystic renal dysplasia kidneys, minor facial dysmorphic features and skeletal anomalies, but neither developmental delay nor behavioral abnormalities. CDH has been previously associated with the 17q12 microdeletion syndrome only in one prenatal case. The present study reinforces the hypothesis that CDH is part of the phenotype for 17q12 microdeletion and that 17q12 encompasses candidate(s) gene(s) involved in diaphragm development. We suggest that PIGW, a gene involved in an early step of GPI biosynthesis, could be a strong candidate gene for CDH.

  14. Fifty microdeletions among 112 cases of sotos syndrome: Low copy repeats possibly mediate the common deletion

    SciTech Connect

    Kurotaki, Naohiro; Harada, Naoki; Shimokawa, Osamu; Miyake, Noriko; Kawame, Hiroshi; Uetake, Kimiaki; Makita, Yoshio; Kondoh, Tatsuro; Ogata, Tsutomu; Hasegawa, Tomoko; Nagai, Toshiro; Ozaki, Takao; Touyama, Mayumi; Shenhav, Ruthie; Ohashi, Hirofumi; Medne, Livija; Shiihara, Takashi; Ohtsu, Shigeyuki; Kato, Zen-ichiro; Okamoto, Nobuhiko; Nishimoto, Junji; Lev, Dorit; Miyoshi, Yoko; Ishikiriyama, Satoshi; Sonoda, Tohru; Sakazume, Satoru; Fukushima, Yoshimitsu; Kurosawa, Kenji; Cheng, Jan-Fang; Yoshiura, Koh-ichiro; Ohta, Tohru; Kishino, Tatsuya; Niikawa, Norio; Matsumoto, Naomichi

    2003-04-15

    Sotos syndrome (SoS) is an autosomal dominant overgrowth syndrome with characteristic craniofacial dysmorphic features and various degrees of mental retardation. We previously showed that haploin sufficiency of the NSD1 gene is the major cause of SoS, and submicroscopic deletions at 5q35, including NSD1, were found in about a half (20/42) of our patients examined. Since the first report, an additional 70 SoS cases consisting of 53 Japanese and 17 non-Japanese have been analyzed. We found 50 microdeletions (45 percent) and 16 point mutations (14 percent) among all the 112 cases. A large difference in the frequency of microdeletions between Japanese and non-Japanese patients was noted: 49 (52 percent) of the 95 Japanese patients and only one (6 percent) of the 17 non-Japanese had microdeletions. A sequence-based physical map was constructed to characterize the microdeletions. Most of the microdeletions were confirmed to be identical by FISH analysis. We identified highly homologous sequences, i.e., possible low copy repeats (LCRs), in regions flanking proximal and distal breakpoints of the common deletion. This suggests that LCRs may mediate the deletion. Such LCRs seem to be present in different populations. Thus the different frequency of microdeletions between Japanese and non-Japanese cases in our study may have been caused by patient-selection bias.

  15. Neocentromeres in 15q24-26 Map to Duplicons Which Flanked an Ancestral Centromere in 15q25

    PubMed Central

    Ventura, Mario; Mudge, Jonathan M.; Palumbo, Valeria; Burn, Sally; Blennow, Elisabeth; Pierluigi, Mauro; Giorda, Roberto; Zuffardi, Orsetta; Archidiacono, Nicoletta; Jackson, Michael S.; Rocchi, Mariano

    2003-01-01

    The existence of latent centromeres has been proposed as a possible explanation for the ectopic emergence of neocentromeres in humans. This hypothesis predicts an association between the position of neocentromeres and the position of ancient centromeres inactivated during karyotypic evolution. Human chromosomal region 15q24-26 is one of several hotspots where multiple cases of neocentromere emergence have been reported, and it harbors a high density of chromosome-specific duplicons, rearrangements of which have been implicated as a susceptibility factor for panic and phobic disorders with joint laxity. We investigated the evolutionary history of this region in primates and found that it contains the site of an ancestral centromere which became inactivated about 25 million years ago, after great apes/Old World monkeys diverged. This inactivation has followed a noncentromeric chromosomal fission of an ancestral chromosome which gave rise to phylogenetic chromosomes XIV and XV in human and great apes. Detailed mapping of the ancient centromere and two neocentromeres in 15q24-26 has established that the neocentromere domains map approximately 8 Mb proximal and 1.5 Mb distal of the ancestral centromeric region, but that all three map within 500 kb of duplicons, copies of which flank the centromere in Old World Monkey species. This suggests that the association between neocentromere and ancestral centromere position on this chromosome may be due to the persistence of recombinogenic duplications accrued within the ancient pericentromere, rather than the retention of “centromere-competent” sequences per se. The high frequency of neocentromere emergence in the 15q24-26 region and the high density of clinically important duplicons are, therefore, understandable in the light of the evolutionary history of this region. PMID:12915487

  16. A clinical case report and literature review of the 3q29 microdeletion syndrome

    PubMed Central

    Cox, Devin M.; Butler, Merlin G.

    2016-01-01

    We report on a 15-year-old male with the 3q29 microdeletion syndrome and summarize the medical literature. He had intellectual disability, autism spectrum disorder, anxiety, obsessive compulsive tendencies, speech delay, delayed walking, a hypernasal voice, gait abnormalities, chronic constipation, gastroesophageal reflux disorder, urinary voiding dysfunction, abnormal skin pigmentation, and dysmorphic features. We present a review of the literature for the 3q29 microdeletion syndrome by comparing both the phenotype and the genetic defects in reported cases. Of the 38 previously reported cases with deletion size information, the most common chromosome deletion was 1.6 Mb in size including ~30 genes. This emerging microdeletion syndrome is characterized by intellectual disability, speech delay, behavioral problems, craniofacial dysmorphism, and musculoskeletal abnormalities. PMID:25714563

  17. Assessment of cognitive outcome measures in teenagers with 15q13.3 microdeletion syndrome

    PubMed Central

    Crutcher, Emeline; Ali, May; Harrison, John; Sovago, Judit; Gomez-Mancilla, Baltazar; Schaaf, Christian P.

    2017-01-01

    15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We aimed to determine if any or all of three cognitive tests (the KiTAP, CogState, and Stanford-Binet) are suitable for assessment of cognitive function in affected individuals. These three tests were administered to ten individuals with 15q13.3 microdeletion syndrome (14–18 years of age), and the results were analyzed to determine feasibility of use, potential for improvement, and internal consistency. It was determined that the KiTAP, CogState, and Stanford-Binet are valid tests of cognitive function in 15q13.3 microdeletion patients. Therefore, these tests may be considered for use as objective outcome measures in future clinical trials, assessing change in cognitive function over a period of pharmacological treatment. PMID:26754479

  18. Hemiconvulsion-hemiplegia-epilepsy syndrome with 1q44 microdeletion: causal or chance association.

    PubMed

    Gupta, Rekha; Agarwal, Meenal; Boqqula, Vijay R; Phadke, Rajendra V; Phadke, Shubha R

    2014-01-01

    Hemiconvulsion-hemiplegia-epilepsy (HHE) syndrome is a rare syndrome characterized by childhood onset partial motor convulsions, hemiplegia, and epilepsy in sequence. Exact pathogenesis is not clear. Here we are describing a 3-year-old girl with HHE syndrome with cytogenetic microarray (CMA) showing deletion of 1.8 Mb in 1q44 region. Along with HHE syndrome, the patient also had global developmental delay, subtle facial dysmorphism, and preaxial polydactyly. Clinical phenotype of 1q44 microdeletion syndrome is quite variable. Main clinical features are microcephaly, seizures, and abnormality of corpus callosum. We compared the patient's phenotype with other patients in 10 previously published papers of 1q44 microdeletion syndrome. HNRNPU and FAM36A are two important genes in the deleted region. HNRNPU gene mediate long range control of SHH gene which is likely explanation of preaxial polydactyly in the present patient. HHE may be a chance co-occurrence.

  19. Assessment of Cognitive Outcome Measures in Teenagers with 15q13.3 Microdeletion Syndrome

    ERIC Educational Resources Information Center

    Crutcher, Emeline; Ali, May; Harrison, John; Sovago, Judit; Gomez-Mancilla, Baltazar; Schaaf, Christian P.

    2016-01-01

    15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We aimed to determine if any or all of three cognitive testing systems (the KiTAP, CogState, and Stanford-Binet) are suitable for assessment of cognitive function in affected individuals. These three tests were administered to ten…

  20. 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome.

    PubMed

    Willatt, Lionel; Cox, James; Barber, John; Cabanas, Elisabet Dachs; Collins, Amanda; Donnai, Dian; FitzPatrick, David R; Maher, Eddy; Martin, Howard; Parnau, Josep; Pindar, Lesley; Ramsay, Jacqueline; Shaw-Smith, Charles; Sistermans, Erik A; Tettenborn, Michael; Trump, Dorothy; de Vries, Bert B A; Walker, Kate; Raymond, F Lucy

    2005-07-01

    We report the identification of six patients with 3q29 microdeletion syndrome. The clinical phenotype is variable despite an almost identical deletion size. The phenotype includes mild-to-moderate mental retardation, with only slightly dysmorphic facial features that are similar in most patients: a long and narrow face, short philtrum, and high nasal bridge. Autism, gait ataxia, chest-wall deformity, and long and tapering fingers were noted in at least two of six patients. Additional features--including microcephaly, cleft lip and palate, horseshoe kidney and hypospadias, ligamentous laxity, recurrent middle ear infections, and abnormal pigmentation--were observed, but each feature was only found once, in a single patient. The microdeletion is approximately 1.5 Mb in length, with molecular boundaries mapping within the same or adjacent bacterial artificial chromosome (BAC) clones at either end of the deletion in all patients. The deletion encompasses 22 genes, including PAK2 and DLG1, which are autosomal homologues of two known X-linked mental retardation genes, PAK3 and DLG3. The presence of two nearly identical low-copy repeat sequences in BAC clones on each side of the deletion breakpoint suggests that nonallelic homologous recombination is the likely mechanism of disease causation in this syndrome.

  1. Diagnostics of common microdeletion syndromes using fluorescence in situ hybridization: Single center experience in a developing country

    PubMed Central

    Kurtovic-Kozaric, Amina; Mehinovic, Lejla; Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Catibusic, Feriha; Kozaric, Mirza; Dinarevic, Senka Mesihovic; Hasanhodzic, Mensuda; Sumanovic-Glamuzina, Darinka

    2016-01-01

    Microdeletion syndromes are caused by chromosomal deletions of less than 5 megabases which can be detected by fluorescence in situ hybridization (FISH). We evaluated the most commonly detected microdeletions for the period from June 01, 2008 to June 01, 2015 in the Federation of Bosnia and Herzegovina, including DiGeorge, Prader-Willi/Angelman, Wolf-Hirschhorn, and Williams syndromes. We report 4 patients with DiGeorge syndromes, 4 patients with Prader-Willi/Angelman, 4 patients with Wolf-Hirschhorn syndrome, and 3 patients with Williams syndrome in the analyzed 7 year period. Based on the positive FISH results for each syndrome, the incidence was calculated for the Federation of Bosnia and Herzegovina. These are the first reported frequencies of the microdeletion syndromes in the Federation of Bosnia and Herzegovina. PMID:26937776

  2. The MEF2C-Related and 5q14.3q15 Microdeletion Syndrome

    PubMed Central

    Zweier, M.; Rauch, A.

    2012-01-01

    Disorders related to the autosomal transcription factor MEF2C located in 5q14.3 were first described in 2009 and have since evolved to one of the more common microdeletion syndromes. Mutational screening in a larger cohort revealed heterozygous de novo mutations of MEF2C in about 1% of patients with moderate to severe intellectual disability, and the phenotype is similar in patients with intragenic deletions and multigenic microdeletions. Clinically, MEF2C-related disorders are characterized by severe intellectual disability with absent speech and limited walking abilities, hypotonia, seizures, and a variety of minor brain anomalies. The majority of patients show a similar facial gestalt with broad forehead, flat nasal bridge, hypotonic mouth, and small chin, as well as strabismus, but this phenotype is clinically not well recognized. The course of the disease is generally quite uniform, but patients with point mutations and smaller deletions seem to have a higher chance of walking skills and a lower risk of refractory seizures. Patients in whom the microdeletion also includes the RASA1 gene show features of the respective capillary and arterio-venous malformations and fistula syndrome. The phenotypic overlap with Rett syndrome is explained by a shared pathway and, accordingly, diminished MECP2 and CDKL5 expression is measureable in patients with MEF2C defects. Further research of this pathway may therefore eventually lead to a common therapeutic target. PMID:22670137

  3. An additional patient with 3q27.3 microdeletion syndrome.

    PubMed

    Castori, Marco; Bottillo, Irene; Laino, Luigi; Morlino, Silvia; Grammatico, Barbara; Grammatico, Paola

    2015-03-01

    The 3q27.3 microdeletion syndrome has been recently delineated in 7 subjects from 5 families sharing a 1.4 Mb smallest region of overlap. This condition appears recognizable by the association of Marfanoid habitus, mild but distinctive facial dysmorphism, intellectual disability, psychosis, and mood disorder. Here, we describe an additional 17-year-old man with an ~7.7-Mb deletion encompassing the 3q27.3 microdeletion critical region, previously run undetected at standard karyotyping. The constellation of major clinical findings overlaps with those reported in the 7 previously published patients and thus confirms the existence of a strongly recognizable syndrome linked to imbalance of 3q27.3. The role of AHSG and, possibly, of other genes in determining the 3q27.3 microdeletion habitus is discussed by comparison of the deleted segments. The involvement of adjacent loci and genes, such as OPA1 and GP5, may contribute in this patient to novel satellite features, such as optic atrophy and subclinical coagulopathy.

  4. Familial 16q24.3 microdeletion involving ANKRD11 causes a KBG-like syndrome.

    PubMed

    Sacharow, Stephanie; Li, Deling; Fan, Yao Shan; Tekin, Mustafa

    2012-03-01

    Haploinsufficiency of ANKRD11 encoding ankyrin repeat domain-containing protein 11 was recently reported as the cause of a syndrome due to microdeletion, characterized by intellectual disability with minor facial anomalies and short stature. Most recently, intragenic mutations of ANKRD11 were found in a cohort of patients with KBG syndrome. KBG is an autosomal dominant intellectual disability syndrome characterized by short stature, characteristic facial appearance, macrodontia, and skeletal anomalies. It remains unknown if deletion of the entire ANKRD11 causes KBG syndrome. We present a mother and child with a heterozygous 365 Kb deletion at 16q24.3 containing ANKRD11, ZNF778, and SPG7 genes. The child presented with developmental delay, facial anomalies, hand anomalies, and a congenital heart defect. The mother has short stature, facial anomalies, macrodontia, hand anomalies, and learning disability. Both individuals had many findings reported in KBG syndrome and the family met the suggested diagnostic criteria. However, typical macrodontia with fused incisors, costovertebral anomalies, and delayed bone age were not present. We conclude that microdeletions involving ANKRD11 result in a phenotype similar to that of KBG syndrome. © 2012 Wiley Periodicals, Inc.

  5. De novo 15q13.3 microdeletion with cryptogenic West syndrome.

    PubMed

    Lacaze, Elodie; Gruchy, Nicolas; Penniello-Valette, Marie-José; Plessis, Ghislaine; Richard, Nicolas; Decamp, Mathieu; Mittre, Hervé; Leporrier, Nathalie; Andrieux, Joris; Kottler, Marie-Laure; Gerard, Marion

    2013-10-01

    West syndrome is a well-recognized form of epilepsy, defined by a triad of infantile spasms, hypsarrhythmia and developmental arrest. West syndrome is heterogenous, caused by mutations of genes ARX, STXBP1, KCNT1 among others; 16p13.11 and 17q21.31 microdeletions are less frequent, usually associated with intellectual disability and facial dysmorphism. So-called "idiopathic" West syndrome is of better prognostic, without prior intellectual deficiency and usually responsive to anti-epileptic treatment. We report on a boy falling within the scope of idiopathic West syndrome, with no dysmorphic features and normal development before the beginning of West syndrome, with a good resolution after treatment, bearing a de novo 15q13.3 microdeletion. Six genes are located in the deleted region, including CHRNA7, which encodes a subunit of a nicotinic acetylcholine receptor, and is frequently associated with epilepsy. Exploration of the 15q13.3 region should be proposed in idiopathic West syndrome.

  6. Two families with sibling recurrence of the 17q21.31 microdeletion syndrome due to low-grade mosaicism

    PubMed Central

    Koolen, David A; Dupont, Juliette; de Leeuw, Nicole; Vissers, Lisenka ELM; van den Heuvel, Simone PA; Bradbury, Alyson; Steer, James; de Brouwer, Arjan PM; ten Kate, Leo P; Nillesen, Willy M; de Vries, Bert BA; Parker, Michael J

    2012-01-01

    The 17q21.31 microdeletion syndrome is characterised by intellectual disability, epilepsy, distinctive facial dysmorphism, and congenital anomalies. To date, all individuals reported with this syndrome have been simplex patients, resulting from de novo deletions. Here, we report sibling recurrence of the 17q21.31 microdeletion syndrome in two independent families. In both families, the mother was confirmed to be the parent-of-origin for the 17q21.31 deletion. Fluorescence in situ hybridisation analyses in buccal mucosa cells, of the mother of family 1, identified monosomy 17q21.31 in 4/50 nuclei (8%). In mother of family 2, the deletion was identified in 2/60 (3%) metaphase and in 3/100 (3%) interphase nuclei in peripheral lymphocytes, and in 7/100 (7%) interphase nuclei in buccal cells. A common 17q21.31 inversion polymorphism predisposes to non-allelic homologous recombination and hereby to the 17q21.31 microdeletion syndrome. On the basis of the 17q21.31 inversion status of the parents, we calculated that the probability of the second deletion occurring by chance alone was 1/14 438 and 1/4812, respectively. If the inversion status of the parents of a child with the 17q21.31 microdeletion syndrome is unknown, the overall risk of a second child with the 17q21.31 microdeletion is 1/9461. We conclude that the presence of low-level maternal somatic–gonadal mosaicism is associated with the microdeletion recurrence in these families. This suggests that the recurrence risk for parents with a child with a 17q21.31 microdeletion for future pregnancies is higher than by chance alone and testing for mosaicism in the parents might be considered as a helpful tool in the genetic counselling. PMID:22293690

  7. Clinical and molecular delineation of the 17q21.31 microdeletion syndrome

    PubMed Central

    Koolen, D A; Sharp, A J; Hurst, J A; Firth, H V; Knight, S J L; Goldenberg, A; Saugier-Veber, P; Pfundt, R; Vissers, L E L M; Destrée, A; Grisart, B; Rooms, L; Aa, N Van der; Field, M; Hackett, A; Bell, K; Nowaczyk, M J M; Mancini, G M S; Poddighe, P J; Schwartz, C E; Rossi, E; De Gregori, M; Antonacci-Fulton, L L; McLellan, M D; Garrett, J M; Wiechert, M A; Miner, T L; Crosby, S; Ciccone, R; Willatt, L; Rauch, A; Zenker, M; Aradhya, S; Manning, M A; Strom, T M; Wagenstaller, J; Krepischi-Santos, A C; Vianna-Morgante, A M; Rosenberg, C; Price, S M; Stewart, H; Shaw-Smith, C; Brunner, H G; Wilkie, A O M; Veltman, J A; Zuffardi, O; Eichler, E E; de Vries, B B A

    2011-01-01

    Background The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. Aim We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. Results We estimate the prevalence of the syndrome to be 1 in 16 000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729–41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p<10–5). Conclusion Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder. PMID:18628315

  8. 16p13.11 microdeletion in a patient with hemiconvulsion-hemiplegia-epilepsy syndrome: a case report.

    PubMed

    Miteff, Christina I; Smith, Robert L; Bain, Nicole L; Subramanian, Gopinath; Brown, Janis E; Kamien, Ben

    2015-01-01

    We describe a patient with hemiconvulsion-hemiplegia-epilepsy syndrome. The pathophysiology of hemiconvulsion-hemiplegia-epilepsy syndrome remains uncertain and there are probably multiple potential contributing factors. Our patient had a chromosomal 16p13.11 microdeletion that confers susceptibility to various types of epilepsy. This is the first report detailing an association of hemiconvulsion-hemiplegia-epilepsy syndrome with a 16p13.11 deletion and identifies another potential causal factor for hemiconvulsion-hemiplegia-epilepsy syndrome.

  9. A Chinese patient with KBG syndrome and a 9q31.2-33.1 microdeletion.

    PubMed

    Xu, Mingzhi; Zhou, Huali; Yong, Jing; Cong, Peikuan; Li, Chengjiang; Yu, Yunsong; Qi, Ming

    2013-05-01

    KBG syndrome is characterized by postnatal short stature, macrodontia, facial and hand anomalies, delayed bone age and intellectual disability. KBG syndrome is an infrequently reported autosomal dominant condition caused by a mutation or haploinsufficiency of ANKRD11 at 16q24.3. We report on a patient, who showed many manifestations of KBG syndrome and was found to harbor a de novo ANKRD11 mutation, c.362T > A (p.Met121Lys). As the patient showed additional characteristics not occurring in KBG syndrome, a CGH array was performed which showed a de novo microdeletion of 9q31.2-q33.1. The majority of findings in our patient can be explained by the combined ANKRD11 mutation and 9q31.2-33.1 deletion. The case demonstrates well the need for comparing an abnormal genotype with a detailed phenotype analysis and the need for further studies in case the phenotype is unusual for the genotype.

  10. VEGFA polymorphisms and cardiovascular anomalies in 22q11 microdeletion syndrome: a case-control and family-based study.

    PubMed

    Calderón, Juan Francisco; Puga, Alonso R; Guzmán, M Luisa; Astete, Carmen Paz; Arriaza, Marta; Aracena, Mariana; Aravena, Teresa; Sanz, Patricia; Repetto, Gabriela M

    2009-01-01

    Microdeletion 22q11 in humans causes velocardiofacial and DiGeorge syndromes. Most patients share a common 3Mb deletion, but the clinical manifestations are very heterogeneous. Congenital heart disease is present in 50-80% of patients and is a significant cause of morbidity and mortality. The phenotypic variability suggests the presence of modifiers. Polymorphisms in the VEGFA gene, coding for the vascular endothelial growth factor A, have been associated with non-syndromic congenital heart disease, as well as with the presence of cardiovascular anomalies in patients with microdeletion 22q11. We evaluated the association of VEGFA polymorphisms c.-2578C>A (rs699947), c.-1154G>A (rs1570360) and c.-634C>G (rs2010963) with congenital heart disease in Chilean patients with microdeletion 22q11. The study was performed using case-control and family-based association designs. We evaluated 122 patients with microdeletion 22q11 and known anatomy of the heart and great vessels, and their parents. Half the patients had congenital heart disease. We obtained no evidence of association by either method of analysis. Our results provide further evidence of the incomplete penetrance of the cardiovascular phenotype of microdeletion 22ql 1, but do not support association between VEGFA promoter polymorphisms and the presence of congenital heart disease in Chilean patients with this syndrome.

  11. Increased first-trimester nuchal translucency associated with a dicentric chromosome and 9q34.3 microdeletion syndrome.

    PubMed

    Huang, Lv-Yin; Yang, Yu; He, Ping; Li, Dong-Zhi

    2016-12-14

    We present prenatal diagnosis and chromosomal microarray analysis (CMA) of 9q34.3 microdeletion in a foetus with an increased nuchal translucency (NT). Conventional G-banding analysis showed a de novo translocation: 45, XX, dic (9;13)(q34;p13). CMA revealed a 3.6 Mb 9q34.3 microdeletion encompassing an OMIM gene of EHMT1 consistent with the diagnosis of Kleefstra syndrome and 9q subtelomeric deletion syndrome. We suggest an application of CMA at prenatal diagnosis in pregnancies with increased NT and an apparent balanced translocation on conventional karyotype.

  12. Investigation Into the Role of C17orf79/COPR5 in E2F/DP Target Gene Overexpression in NF1 Microdeletion Syndrome

    DTIC Science & Technology

    2014-05-01

    Gene Overexpression in NF1 Microdeletion Syndrome   PRINCIPAL INVESTIGATOR: André Bernards Ph.D. CONTRACTING ORGANIZATION......Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The5-10% of NF1 patients who harbor so-called microdeletions (µΔ

  13. Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome

    PubMed Central

    Raca, Gordana; Baas, Becky S; Kirmani, Salman; Laffin, Jennifer J; Jackson, Craig A; Strand, Edythe A; Jakielski, Kathy J; Shriberg, Lawrence D

    2013-01-01

    We report clinical findings that extend the phenotype of the ∼550 kb 16p11.2 microdeletion syndrome to include a rare, severe, and persistent pediatric speech sound disorder termed Childhood Apraxia of Speech (CAS). CAS is the speech disorder identified in a multigenerational pedigree (‘KE') in which half of the members have a mutation in FOXP2 that co-segregates with CAS, oromotor apraxia, and low scores on a nonword repetition task. Each of the two patients in the current report completed a 2-h assessment protocol that provided information on their cognitive, language, speech, oral mechanism, motor, and developmental histories and performance. Their histories and standard scores on perceptual and acoustic speech tasks met clinical and research criteria for CAS. Array comparative genomic hybridization analyses identified deletions at chromosome 16p11.2 in each patient. These are the first reported cases with well-characterized CAS in the 16p11.2 syndrome literature and the first report of this microdeletion in CAS genetics research. We discuss implications of findings for issues in both literatures. PMID:22909774

  14. A New Case of 13q12.2q13.1 Microdeletion Syndrome Contributes to Phenotype Delineation

    PubMed Central

    Di Gregorio, Eleonora; Calcia, Alessandro; Savin, Elisa

    2014-01-01

    A recently described genetic disorder has been associated with 13q12.3 microdeletion spanning three genes, namely, KATNAL1, LINC00426, and HMGB1. Here, we report a new case with similar clinical features that we have followed from birth to 5 years old. The child carried a complex rearrangement with a double translocation: 46,XX,t(7;13)(p15;q14),t(11;15)(q23;q22). Array-CGH identified a de novo microdeletion at 13q12.2q13.1 spanning 3–3.4 Mb and overlapping 13q12.3 critical region. Clinical features resembling those reported in the literature confirm the existence of a distinct 13q12.3 microdeletion syndrome and provide further evidence that is useful to characterize its phenotypic expression during the 5 years of development. PMID:25506442

  15. A unique TBX5 microdeletion with microinsertion detected in patient with Holt-Oram syndrome.

    PubMed

    Morine, Mikio; Kohmoto, Tomohiro; Masuda, Kiyoshi; Inagaki, Hidehito; Watanabe, Miki; Naruto, Takuya; Kurahashi, Hiroki; Maeda, Kazuhisa; Imoto, Issei

    2015-12-01

    Holt-Oram syndrome (HOS) is an autosomal dominant condition characterized by upper limb and congenital heart defects and caused by numerous germline mutations of TBX5 producing preterminal stop codons. Here, we report on a novel and unusual heterozygous TBX5 microdeletion with microinsertion (microindel) mutation (c.627delinsGTGACTCAGGAAACGCTTTCCTGA), which is predicted to synthesize a truncated TBX5 protein, detected in a sporadic patient with clinical features of HOS prenatally diagnosed by ultrasonography. This uncommon and relatively large inserted sequence contains sequences derived from nearby but not adjacent templates on both sense and antisense strands, suggesting two possible models, which require no repeat sequences, causing this complex microindel through the bypass of large DNA adducts via an error-prone DNA polymerase-mediated translesion synthesis.

  16. Growth in Chilean infants with chromosome 22q11 microdeletion syndrome.

    PubMed

    Guzman, Maria Luisa; Delgado, Iris; Lay-Son, Guillermo; Willans, Edward; Puga, Alonso; Repetto, Gabriela M

    2012-11-01

    Chromosome 22q11 microdeletion syndrome has a wide range of clinical manifestations including congenital heart malformations, palatal defects, endocrine abnormalities, immunologic deficits, learning difficulties, and an increased predisposition to psychiatric disease. Short stature and poor weight gain in infancy are common findings and are usually seen in the absence of hormone deficiencies. An increased frequency of obesity has been observed in adolescents and adults. We generated gender-specific growth curves from 0 to 24 months of age, based on 479 length and 475 weight measurements from 138 Chilean patients with 22q11 deletion. Final adult height and weight on 25 individuals were analyzed. The 10th, 50th, and 90th centile-smoothed curves for infants were built using the LMS method and compared with World Health Organization Child Growth Standards. The 50th centile for length in the deleted patients was slightly lower than the 10th centile of WHO standards in boys and girls. The same was observed for weight, although a trend toward a gradual increase near 2 years of age was observed, particularly in boys. Average adult height was 152 cm (ranging from 143 to 162 cm) in females, corresponding to the 10th centiles of WHO standards, and 166 cm for males (160-172 cm), at the 20th centile of WHO standards. A third of the adult females and none of the males had body mass index (BMI) greater than 25. The curves should be useful to monitor growth in infants with 22q11 microdeletion syndrome.

  17. Prevalence of 22q11.2 microdeletion syndrome in Iranian patients with cleft palate

    PubMed Central

    Nouri, Narges; Memarzadeh, Mehrdad; Salehi, Mansoor; Nouri, Nayereh; Meamar, Rokhsareh; Behnam, Mahdiyeh; Derakhshandeh, Fatemeh; Kashkoolinejad, Tahereh; Abdali, Hossein

    2016-01-01

    Background: 22q11.2 microdeletion syndrome is the most common multiple genetic disorder associated with learning disabilities, developmental delays, immune deficiency, hypocalcemia, and cleft palate. Finding some valid criteria for screening of 22q11.2 deletion syndromes in infants would be very helpful in early diagnosis and treatment. Materials and Methods: Since 69% of individuals with 22q11.2 deletion have a palatal abnormality, we studied the prevalence of 22q11.2 deletion syndrome in 378 Iranian patients during a 5-year period, including 291 patients affected with cleft palate only without cleft lip (CPO) and 87 patients affected with velopharyngeal incompetence (VPI) and/or submucous cleft palate (SMCP). DNA copy number was analyzed with multiplex ligation-dependent probe amplification (MLPA) technique. Results: In our study, 15/378 (3.97%) patients with palatal anomalies showed 22q11.2 deletion. Interestingly, this prevalence between syndromic patients was 15/104 (14.42%). Conclusion: It seems that SMCP or VPI, in addition to one or more another features of 22q11.2 deletions, especially developmental delay, may be good criteria for molecular investigation of 22q11.2 region. PMID:28217639

  18. Clinical characterization of a male patient with the recently described 8q21.11 microdeletion syndrome.

    PubMed

    Quintela, Ines; Barros, Francisco; Castro-Gago, Manuel; Carracedo, Angel; Eiris, Jesus

    2015-06-01

    The 8q21.11 microdeletion syndrome (OMIM # 614230) has been recently described and is primarily characterized by intellectual disability and facial dysmorphism. We describe here a male patient of 9 years 9 months of age with moderate intellectual disability and dysmorphic facial features. A high resolution copy number variation analysis, performed with the Affymetrix Cytogenetics Whole-Genome 2.7 M SNP array, allowed the identification of a heterozygous 7.069 Mb microdeletion at chromosome 8q21.11-q21.13. Clinical comparison of our patient with literature shows many similarities. However, the whole facial appearance of our patient, especially the elongated rather than rounded face and the absence of a wide nasal bridge and epicanthal folds, confers him a phenotype similar only to a subset, but not to the majority, of the hitherto described patients.

  19. A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients

    PubMed Central

    Engels, Hartmut; Wohlleber, Eva; Zink, Alexander; Hoyer, Juliane; Ludwig, Kerstin U; Brockschmidt, Felix F; Wieczorek, Dagmar; Moog, Ute; Hellmann-Mersch, Birgit; Weber, Ruthild G; Willatt, Lionel; Kreiß-Nachtsheim, Martina; Firth, Helen V; Rauch, Anita

    2009-01-01

    Molecular karyotyping is being increasingly applied to delineate novel disease causing microaberrations and related syndromes in patients with mental retardation of unknown aetiology. We report on three unrelated patients with overlapping de novo interstitial microdeletions involving 5q14.3-q15. All three patients presented with severe psychomotor retardation, epilepsy or febrile seizures, muscular hypotonia and variable brain and minor anomalies. Molecular karyotyping revealed three overlapping microdeletions measuring 5.7, 3.9 and 3.6 Mb, respectively. The microdeletions were identified using single nucleotide polymorphism (SNP) arrays (Affymetrix 100K and Illumina 550K) and array comparative genomic hybridization (1 Mb Sanger array-CGH). Confirmation and segregation studies were performed using fluorescence in situ hybridization (FISH) and quantitative PCR. All three aberrations were confirmed and proven to have occurred de novo. The boundaries and sizes of the deletions in the three patients were different, but an overlapping region of around 1.6 Mb in 5q14.3 was defined. It included five genes: CETN3, AC093510.2, POLR3G, LYSMD3 and the proximal part of GPR98/MASS1, a known epilepsy gene. Haploinsufficiency of GPR98/MASS1 is probably responsible for the seizure phenotype in our patients. At least one other gene contained in the commonly deleted region, LYSMD3, shows a high level of central nervous expression during embryogenesis and is also, therefore, a good candidate gene for other central nervous system (CNS) symptoms, such as psychomotor retardation, brain anomalies and muscular hypotonia of the 5q14.3 microdeletion syndrome. PMID:19471318

  20. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome.

    PubMed

    Sparago, Angela; Cerrato, Flavia; Vernucci, Maria; Ferrero, Giovanni Battista; Silengo, Margherita Cirillo; Riccio, Andrea

    2004-09-01

    The overgrowth- and tumor-associated Beckwith-Wiedemann syndrome results from dysregulation of imprinted genes on chromosome 11p15.5. Here we show that inherited microdeletions in the H19 differentially methylated region (DMR) that abolish two CTCF target sites cause this disease. Maternal transmission of the deletions results in hypermethylation of the H19 DMR, biallelic IGF2 expression, H19 silencing and Beckwith-Wiedemann syndrome, indicative of loss of function of the IGF2-H19 imprinting control element.

  1. A prenatally sonographically diagnosed conotruncal anomaly with mosaic type trisomy 21 and 22q11.2 microdeletion/DiGeorge syndrome.

    PubMed

    Balci, S; Altugan, F S; Alehan, D; Aypar, E; Baltaci, V

    2009-01-01

    A prenatally sonographically diagnosed conotruncal anomaly with mosaic type trisomy 21 and 22q11.2 microdeletion/DiGeorge syndrome: We report a prenatally sonographically diagnosed conotruncal and urogenital anomaly. Postnatally, the patient presented with seizures, hypocalcemia, hypoparathyroidism and thymic aplasia and diagnosed as DiGeorge syndrome. Echocardiography showed malalignment VSD, supravalvular pulmonary stenosis and overriding aorta. Chromosome and FISH studies showed the association of mosaic type trisomy 21 and 22q11.2 microdeletion. The present patient is the second case of mosaic type of Down syndrome associated with 22q11.2 microdeletion. In addition the patient also had clinical and laboratory features of DiGeorge syndrome.

  2. Further Characterization of Microdeletion Syndrome Involving 2p15-p16.1

    PubMed Central

    Félix, Têmis Maria; Petrin, Aline Lourenço; Sanseverino, Maria Teresa Vieira; Murray, Jeffrey C.

    2010-01-01

    We report on a patient presenting with cognitive delay, prenatal and postnatal growth deficiency, microcephaly, ptosis of eyelids, high and broad nasal root and camptodactyly. Analysis of a dense whole genome SNP array showed a de novo 3.35Mb deletion on 2p15-p16.1. In order to study the parental origin of the deletion we analyzed selected SNPs in the deleted area in the proband and her parents showing Mendelian incompatibilities suggesting a de novo deletion on the chromosome of paternal origin. Based on the five cases described previously in the literature, we have narrowed the critical region responsible for the 2p15-p16.1 microdeletion syndrome phenotype. The critical region does not include the VRK2 gene that had been speculated to have a role in cortical dysplasia. However, the association of the VRK2 gene with cortical dysplasia remains to be determined, as MRI imaging of the brain and gene content of the 2p15-16 deletion becomes established in more patients. PMID:20799320

  3. The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype.

    PubMed

    van Bon, Bregje W M; Koolen, David A; Brueton, Louise; McMullan, Dominic; Lichtenbelt, Klaske D; Adès, Lesley C; Peters, Gregory; Gibson, Kate; Moloney, Susan; Novara, Francesca; Pramparo, Tiziano; Dalla Bernardina, Bernardo; Zoccante, Leonardo; Balottin, Umberto; Piazza, Fausta; Pecile, Vanna; Gasparini, Paolo; Guerci, Veronica; Kets, Marleen; Pfundt, Rolph; de Brouwer, Arjan P; Veltman, Joris A; de Leeuw, Nicole; Wilson, Meredith; Antony, Jayne; Reitano, Santina; Luciano, Daniela; Fichera, Marco; Romano, Corrado; Brunner, Han G; Zuffardi, Orsetta; de Vries, Bert B A

    2010-02-01

    Six submicroscopic deletions comprising chromosome band 2q23.1 in patients with severe mental retardation (MR), short stature, microcephaly and epilepsy have been reported, suggesting that haploinsufficiency of one or more genes in the 2q23.1 region might be responsible for the common phenotypic features in these patients. In this study, we report the molecular and clinical characterisation of nine new 2q23.1 deletion patients and a clinical update on two previously reported patients. All patients were mentally retarded with pronounced speech delay and additional abnormalities including short stature, seizures, microcephaly and coarse facies. The majority of cases presented with stereotypic repetitive behaviour, a disturbed sleep pattern and a broad-based gait. These features led to the initial clinical impression of Angelman, Rett or Smith-Magenis syndromes in several patients. The overlapping 2q23.1 deletion region in all 15 patients comprises only one gene, namely, MBD5. Interestingly, MBD5 is a member of the methyl CpG-binding domain protein family, which also comprises MECP2, mutated in Rett's syndrome. Another gene in the 2q23.1 region, EPC2, was deleted in 12 patients who had a broader phenotype than those with a deletion of MBD5 only. EPC2 is a member of the polycomb protein family, involved in heterochromatin formation and might be involved in causing MR. Patients with a 2q23.1 microdeletion present with a variable phenotype and the diagnosis should be considered in mentally retarded children with coarse facies, seizures, disturbed sleeping patterns and additional specific behavioural problems.

  4. Complex chromosomal rearrangement in a girl with psychomotor-retardation and a de novo inversion: inv(2)(p15;q24.2).

    PubMed

    Granot-Hershkovitz, Einat; Raas-Rothschild, Annick; Frumkin, Ayala; Granot, David; Silverstein, Shira; Abeliovich, Dvorah

    2011-08-01

    Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse-PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1; the phenotypic effect of these genes is not currently known.

  5. Phenotypic variability in patients with interstitial 6q21-q22 microdeletion and Acro-Cardio-Facial syndrome.

    PubMed

    Shukla, Anju; Hebbar, Malavika; Harms, Frederike L; Kadavigere, Rajagopal; Girisha, Katta M; Kutsche, Kerstin

    2016-11-01

    Deletions of 6q are known to be associated with variable clinical phenotypes including facial dysmorphism, hand malformations, heart defects, microcephaly, intellectual disability, epilepsy, and other neurodevelopmental and neuropsychiatric conditions. Here, we report a 7-year-old boy evaluated for facial dysmorphism, trigonocephaly, microcephaly, global developmental delay, and behavioral abnormalities. Molecular karyotyping revealed a 13-Mb deletion within 6q21-q22.31, (chr6:105,771,520-119,130,805; hg19, GRch37) comprising 81 genes. Review of 15 cases with interstitial 6q21-q22.3 deletion from the literature showed that facial dysmorphism, intellectual disability, and corpus callosum abnormalities are the most consistent clinical features in these individuals. Deleted genes and breakpoints in the 6q21-q22 region of the patient reported here are similar to two earlier reported cases with the clinical diagnosis of Acro-Cardio-Facial syndrome. However, the present case lacks characteristic clinical findings of Acro-Cardio-Facial syndrome. We discuss, the considerable phenotypic variability seen in individuals with 6q21-q22 microdeletion and emphasize the need for further scrutiny into the hypothesis of Acro-Cardio-Facial syndrome being a microdeletion syndrome. © 2016 Wiley Periodicals, Inc.

  6. Confirmation and further delineation of the 3q26.33-3q27.2 microdeletion syndrome.

    PubMed

    Dasouki, Majed; Roberts, Jennifer; Santiago, Angela; Saadi, Irfan; Hovanes, Karine

    2014-02-01

    Recently, 3 unrelated children with a potentially novel 3q26.33-3q27.2 microdeletion syndrome were reported. We now report a new 9 ½ years old Caucasian boy with a 2 Mb deletion of the same genomic region in combination with Klinefelter syndrome. He presented with facial dysmorphism, developmental delay, Asperger syndrome, thrombocytopenia, recurrent infections and hypogammaglobulinemia. The deletion in our patient improves upon the minimum region of the novel 3q26.33-3q27.2 microdeletion, and provides additional insights into the underlying genetic basis of the observed phenotypes. Consistent with two of three previously described patients, our patient also presents with thrombocytopenia, which we postulate is caused by haploinsufficiency of THPO. In addition, haploinsufficiency of LAMP3, a lymphoid and dendritic cell expressed protein that is implicated in bacterial and viral infections, pulmonary surfactant protein transport and amelogenin degradation, may be a novel cause for the immune deficiency, lung disease and dental abnormalities respectively as seen in these patients.

  7. Oculo-auriculo-vertebral spectrum, cat eye, and distal 22q11 microdeletion syndromes: a unique double rearrangement.

    PubMed

    Torti, Erin E; Braddock, Stephen R; Bernreuter, Kristen; Batanian, Jacqueline R

    2013-08-01

    An array-CGH on 19-year-old male showed a proximal 1.11 Mb duplication and a distal 1.7 Mb deletion of 22q11.2 regions flanking the Velocardiofacial/DiGeorge syndrome region that remained intact. FISH analyses revealed both abnormalities to be on the same homolog 22. This double rearrangement lead to the co-existence of two syndromes: Cat eye and distal 22q11.2 microdeletion syndromes with a rare associated phenotype of oculo-auriculo-vertebral spectrum (OAVS). A review of the literature indicates that this is the second report of a proximal duplication and the fifth report of a distal deletion and OAVS suggestive of a possible OAVS candidate gene in this region.

  8. Partial deletion of ANKRD11 results in the KBG phenotype distinct from the 16q24.3 microdeletion syndrome.

    PubMed

    Khalifa, Mohamed; Stein, Jennifer; Grau, Lance; Nelson, Valery; Meck, Jeanne; Aradhya, Swaroop; Duby, John

    2013-04-01

    KBG syndrome (OMIM 148050) is a very rare genetic disorder characterized by macrodontia, distinctive craniofacial abnormalities, short stature, intellectual disability, skeletal, and neurologic involvement. Approximately 60 patients have been reported since it was first described in 1975. Recently mutations in ANKRD11 have been documented in patients with KBG syndrome, and it has been proposed that haploinsufficiency of ANKRD11 is the cause of this syndrome. In addition, copy number variation in the 16q24.3 region that includes ANKRD11 results in a variable phenotype that overlaps with KBG syndrome and also includes autism spectrum disorders and other dysmorphic facial features. In this report we present a 2½-year-old African American male with features highly suggestive of KBG syndrome. Genomic microarray identified an intragenic 154 kb deletion at 16q24.3 within ANKRD11. This child's mother was mosaic for the same deletion (present in approximately 38% of cells) and exhibited a milder phenotype including macrodontia, short stature and brachydactyly. This family provides additional evidence that ANKRD11 causes KBG syndrome, and the mild phenotype in the mosaic form suggests that KBG phenotypes might be dose dependent, differentiating it from the more variable 16q24.3 microdeletion syndrome. This family has additional features that might expand the phenotype of KBG syndrome.

  9. The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant.

    PubMed

    Koolen, David A; Pfundt, Rolph; Linda, Katrin; Beunders, Gea; Veenstra-Knol, Hermine E; Conta, Jessie H; Fortuna, Ana Maria; Gillessen-Kaesbach, Gabriele; Dugan, Sarah; Halbach, Sara; Abdul-Rahman, Omar A; Winesett, Heather M; Chung, Wendy K; Dalton, Marguerite; Dimova, Petia S; Mattina, Teresa; Prescott, Katrina; Zhang, Hui Z; Saal, Howard M; Hehir-Kwa, Jayne Y; Willemsen, Marjolein H; Ockeloen, Charlotte W; Jongmans, Marjolijn C; Van der Aa, Nathalie; Failla, Pinella; Barone, Concetta; Avola, Emanuela; Brooks, Alice S; Kant, Sarina G; Gerkes, Erica H; Firth, Helen V; Õunap, Katrin; Bird, Lynne M; Masser-Frye, Diane; Friedman, Jennifer R; Sokunbi, Modupe A; Dixit, Abhijit; Splitt, Miranda; Kukolich, Mary K; McGaughran, Julie; Coe, Bradley P; Flórez, Jesús; Nadif Kasri, Nael; Brunner, Han G; Thompson, Elizabeth M; Gecz, Jozef; Romano, Corrado; Eichler, Evan E; de Vries, Bert B A

    2016-05-01

    The Koolen-de Vries syndrome (KdVS; OMIM #610443), also known as the 17q21.31 microdeletion syndrome, is a clinically heterogeneous disorder characterised by (neonatal) hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Expressive language development is particularly impaired compared with receptive language or motor skills. Other frequently reported features include social and friendly behaviour, epilepsy, musculoskeletal anomalies, congenital heart defects, urogenital malformations, and ectodermal anomalies. The syndrome is caused by a truncating variant in the KAT8 regulatory NSL complex unit 1 (KANSL1) gene or by a 17q21.31 microdeletion encompassing KANSL1. Herein we describe a novel cohort of 45 individuals with KdVS of whom 33 have a 17q21.31 microdeletion and 12 a single-nucleotide variant (SNV) in KANSL1 (19 males, 26 females; age range 7 months to 50 years). We provide guidance about the potential pitfalls in the laboratory testing and emphasise the challenges of KANSL1 variant calling and DNA copy number analysis in the complex 17q21.31 region. Moreover, we present detailed phenotypic information, including neuropsychological features, that contribute to the broad phenotypic spectrum of the syndrome. Comparison of the phenotype of both the microdeletion and SNV patients does not show differences of clinical importance, stressing that haploinsufficiency of KANSL1 is sufficient to cause the full KdVS phenotype.

  10. 17q21.31 microdeletion syndrome: further expanding the clinical phenotype.

    PubMed

    Sharkey, F H; Morrison, N; Murray, R; Iremonger, J; Stephen, J; Maher, E; Tolmie, J; Jackson, A P

    2009-01-01

    Microdeletions of the 17q21.31 region are associated with hypotonia, oromotor dyspraxia, an apparently characteristic face, moderate learning disability and have an estimated prevalence of approximately 1 in 16,000. Here we report 3 individuals who extend further the phenotypic spectrum observed with microdeletions of the 17q21.31 region. They all have learning disability, hypotonia, and craniofacial dysmorphism in keeping with previous reported cases. One case has iris-choroid coloboma and partial situs inversus, 2 features that are newly recorded phenotype abnormalities. These deletions were detected from a cohort of 600 individuals with learning disability and congenital anomalies, reflecting that 17q21.31 microdeletions are a common finding in such cases. FISH analysis demonstrated that each of the deletions occurred as de novo events. The deleted region in our cases encompasses the previously defined critical region for 17q21.31, and includes CRHR1 and MAPT, putative candidate genes for the 17q21.31 phenotype. The 17q21.31 microdeletion phenotype is perhaps more variable than previously described despite haploinsufficiency for the same genes in many cases.

  11. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome

    PubMed Central

    Willemsen, Marjolein H; Fernandez, Bridget A; Bacino, Carlos A; Gerkes, Erica; de Brouwer, Arjan PM; Pfundt, Rolph; Sikkema-Raddatz, Birgit; Scherer, Stephen W; Marshall, Christian R; Potocki, Lorraine; van Bokhoven, Hans; Kleefstra, Tjitske

    2010-01-01

    The clinical use of array comparative genomic hybridization in the evaluation of patients with multiple congenital anomalies and/or mental retardation has recently led to the discovery of a number of novel microdeletion and microduplication syndromes. We present four male patients with overlapping molecularly defined de novo microdeletions of 16q24.3. The clinical features observed in these patients include facial dysmorphisms comprising prominent forehead, large ears, smooth philtrum, pointed chin and wide mouth, variable cognitive impairment, autism spectrum disorder, structural anomalies of the brain, seizures and neonatal thrombocytopenia. Although deletions vary in size, the common region of overlap is only 90 kb and comprises two known genes, Ankyrin Repeat Domain 11 (ANKRD11) (MIM 611192) and Zinc Finger 778 (ZNF778), and is located approximately 10 kb distally to Cadherin 15 (CDH15) (MIM 114019). This region is not found as a copy number variation in controls. We propose that these patients represent a novel and distinctive microdeletion syndrome, characterized by autism spectrum disorder, variable cognitive impairment, facial dysmorphisms and brain abnormalities. We suggest that haploinsufficiency of ANKRD11 and/or ZNF778 contribute to this phenotype and speculate that further investigation of non-deletion patients who have features suggestive of this 16q24.3 microdeletion syndrome might uncover other mutations in one or both of these genes. PMID:19920853

  12. A twin sibling with Prader-Willi syndrome caused by type 2 microdeletion following assisted reproductive technology: A case report

    PubMed Central

    HAN, JI YOON; PARK, JOONHONG; JANG, WOORI; CHAE, HYOJIN; KIM, MYUNGSHIN; KIM, YONGGOO

    2016-01-01

    Prader-Willi syndrome (PWS) is a neurobehavioral imprinting disorder, which arises due to an absence of paternally expressed genes within the 15q11.2-q13 region. This occurs via one of the three main genetic mechanisms, as follows: Deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. Recent studies have reported an association between imprinting disorders and assisted reproductive technologies (ART). The current study presents a 6-year-old female patient who is a dizygotic twin, in which one was born with de novo microdeletion at 15q11.2-q13.1 following in vitro fertilization. The patient had characteristic facial features including narrow bifrontal diameter, strabismus, downturned mouth, feeding problems and generalized hypotonia during infancy, developmental delay, mental retardation and rapid weight gain. Based upon phenotypic resemblance and the medical records, methylation-specific multiplex ligation-dependent probe amplification and array-based comparative genome hybridization analyses demonstrate type 2 microdeletion between breaking point 2 (BP2) and BP3, which occur from MKRN3 through HERC2 at 15q11.2-q13.1. To the best of our knowledge, the present study is the first to report a PWS case born following ART reported in South Korea. In addition to previous studies, the present study contributes to the consensus regarding genotype-phenotype comparisons in this respect. PMID:27330749

  13. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome

    PubMed Central

    Nilsson, Simon RO.; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A.; Kent, Brianne A.; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W.; Saksida, Lisa M.; Stensbøl, Tine B.; Tricklebank, Mark D.; Didriksen, Michael; Bussey, Timothy J.

    2016-01-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus – within the current protocols – the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional “hits” being required for phenotypic expression. PMID:27507786

  14. 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome-like phenotype.

    PubMed

    Ellaway, Carolyn J; Ho, Gladys; Bettella, Elisa; Knapman, Alisa; Collins, Felicity; Hackett, Anna; McKenzie, Fiona; Darmanian, Artur; Peters, Gregory B; Fagan, Kerry; Christodoulou, John

    2013-05-01

    Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in ∼90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the CDKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant. We report the clinical features and array CGH findings of three atypical Rett syndrome patients who had severe intellectual impairment, early-onset developmental delay, postnatal microcephaly and hypotonia. In addition, the females had a seizure disorder, agenesis of the corpus callosum and subtle dysmorphism. All three were found to have an interstitial deletion of 14q12. The deleted region in common included the PRKD1 gene but not the FOXG1 gene. Gene expression analysis suggested a decrease in FOXG1 levels in two of the patients. Screening of 32 atypical Rett syndrome patients did not identify any pathogenic mutations in the PRKD1 gene, although a previously reported frameshift mutation affecting FOXG1 (c.256dupC, p.Gln86ProfsX35) was identified in a patient with the congenital Rett syndrome variant. There is phenotypic overlap between congenital Rett syndrome variants with FOXG1 mutations and the clinical presentation of our three patients with this 14q12 microdeletion, not encompassing the FOXG1 gene. We propose that the primary defect in these patients is misregulation of the FOXG1 gene rather than a primary abnormality of PRKD1.

  15. Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU.

    PubMed

    Depienne, Christel; Nava, Caroline; Keren, Boris; Heide, Solveig; Rastetter, Agnès; Passemard, Sandrine; Chantot-Bastaraud, Sandra; Moutard, Marie-Laure; Agrawal, Pankaj B; VanNoy, Grace; Stoler, Joan M; Amor, David J; Billette de Villemeur, Thierry; Doummar, Diane; Alby, Caroline; Cormier-Daire, Valérie; Garel, Catherine; Marzin, Pauline; Scheidecker, Sophie; de Saint-Martin, Anne; Hirsch, Edouard; Korff, Christian; Bottani, Armand; Faivre, Laurence; Verloes, Alain; Orzechowski, Christine; Burglen, Lydie; Leheup, Bruno; Roume, Joelle; Andrieux, Joris; Sheth, Frenny; Datar, Chaitanya; Parker, Michael J; Pasquier, Laurent; Odent, Sylvie; Naudion, Sophie; Delrue, Marie-Ange; Le Caignec, Cédric; Vincent, Marie; Isidor, Bertrand; Renaldo, Florence; Stewart, Fiona; Toutain, Annick; Koehler, Udo; Häckl, Birgit; von Stülpnagel, Celina; Kluger, Gerhard; Møller, Rikke S; Pal, Deb; Jonson, Tord; Soller, Maria; Verbeek, Nienke E; van Haelst, Mieke M; de Kovel, Carolien; Koeleman, Bobby; Monroe, Glen; van Haaften, Gijs; Attié-Bitach, Tania; Boutaud, Lucile; Héron, Delphine; Mignot, Cyril

    2017-04-01

    Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.

  16. The 3q29 Microdeletion Syndrome: Report of Three New Unrelated Patients and In Silico “RNA Binding” Analysis of the 3q29 Region

    PubMed Central

    Dasouki, Majed J.; Lushington, Gerald H.; Hovanes, Karine; Casey, James; Gorre, Mereceds

    2012-01-01

    The human 3q29 microdeletion syndrome is associated with mild facial dysmorphism, developmental delay and variable congenital malformations. We report three new unrelated patients with this syndrome. We also performed in silico RNA binding analysis in silico on the 3q29 critical region genes. Several genes within this genomic region including DLG1 and RNF168 are predicted to bind RNA. While recessive mutations in RNF168 cause RIDDLE syndrome, an immune deficiency and radiosensitivity disorder, the potential impact of heterozygous deletion of RNF168 on patients with the 3q29 deletion syndrome is still unknown. PMID:21626679

  17. The 8q22.1 microdeletion syndrome or Nablus mask-like facial syndrome: report on two patients and review of the literature.

    PubMed

    Raas-Rothschild, Annick; Dijkhuizen, Trijnie; Sikkema-Raddatz, Birgit; Werner, Marion; Dagan, Judith; Abeliovich, Devorah; Lerer, Israela

    2009-01-01

    Nablus mask-like facial syndrome (NMFLS) is a rare microdeletion syndrome with a mask-like facial appearance as the most characteristic feature. In 2000, Teebi, was the first to report on a 4 years old boy affected with NMFLS. Since then two additional patients have been reported. Three years later, with the development of the array CGH technology, Shieh et al., elucidated the etiology of NMFLS by showing that the two patients studied share a approximately 4 Mb microdeletion in the long arm of chromosome 8 (q21.3-q22.1). Here we report on two NMFLS patients among which the first patient described by Teebi in 2000, and present newly described clinical findings including the common happy behaviour of the children. Array CGH analysis of these two patients permitted to reveal a deletion in the same region, 8q21.3-q22.1. Combining the available literature and our data, we were able to narrow the common deleted region to 2.78 Mb (93.56-96.34 Mb) in 8q22.1. Direct relations between the clinical findings with (one of) the genes in the critical region have to await further studies on NFMLS patients with overlapping or smaller deletions.

  18. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth

    PubMed Central

    Lynch, Sally Ann; Foulds, Nicola; Thuresson, Ann-Charlotte; Collins, Amanda L; Annerén, Göran; Hedberg, Bernt-Oves; Delaney, Carol A; Iremonger, James; Murray, Caroline M; Crolla, John A; Costigan, Colm; Lam, Wayne; Fitzpatrick, David R; Regan, Regina; Ennis, Sean; Sharkey, Freddie

    2011-01-01

    We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism. PMID:21267005

  19. A Korean family with KBG syndrome identified by ANKRD11 mutation, and phenotypic comparison of ANKRD11 mutation and 16q24.3 microdeletion.

    PubMed

    Kim, Hyo Jeong; Cho, Eunhae; Park, Jong Bum; Im, Woo Young; Kim, Hyon J

    2015-02-01

    KBG syndrome is a rare disease characterized by intellectual disability, typical craniofacial dysmorphism, macrodontia of the upper central incisors, short stature, and skeletal anomalies. Recently, ANKRD11 was identified as a gene that is responsible for the disease. In addition, microdeletion of 16q24.3, including ANKRD11, has been reported to result in the KBG syndrome phenotype. Herein, we discuss a Korean family with KBG syndrome, as identified by ANKRD11 gene mutation. The patients included a nine-month-old boy and his 21-month-old sister who failed to thrive and have delayed development. Chromosomal microarray was performed to identify the underlying genetic cause, but the results showed no abnormalities. However, the mother of the children was found to have features similar to her children. Therefore, we strongly suspected an autosomal-dominant inherited disease and performed whole exome sequencing. A mutation of ANKRD11 gene was found in all patients, and the frameshift variant c.2395-2398delAAAG was confirmed. Clinical manifestations of the patients were consistent with KBG syndrome. We reviewed all reported cases with confirmed ANKRD11 mutation or 16q24.3 microdeletion including ANKRD11. As a result, we conclude that severe short stature, intellectual disability, and macrodontia are the main characteristics in KBG syndrome related to ANKRD11 mutation.

  20. Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome

    SciTech Connect

    Asou, Hiroya; Matsui, Hirotaka; Ozaki, Yuko; Nagamachi, Akiko; Nakamura, Megumi; Aki, Daisuke; Inaba, Toshiya

    2009-05-29

    Monosomy 7 and interstitial deletions in the long arm of chromosome 7 (-7/7q-) is a common nonrandom chromosomal abnormality found frequently in myeloid disorders including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML). Using a short probe-based microarray comparative genomic hybridization (mCGH) technology, we identified a common microdeletion cluster in 7q21.3 subband, which is adjacent to 'hot deletion region' thus far identified by conventional methods. This common microdeletion cluster contains three poorly characterized genes; Samd9, Samd9L, and a putative gene LOC253012, which we named Miki. Gene copy number assessment of three genes by real-time PCR revealed heterozygous deletion of these three genes in adult patients with AML and MDS at high frequency, in addition to JMML patients. Miki locates to mitotic spindles and centrosomes and downregulation of Miki by RNA interference induced abnormalities in mitosis and nuclear morphology, similar to myelodysplasia. In addition, a recent report indicated Samd9 as a tumor suppressor. These findings indicate the usefulness of the short probe-based CGH to detect microdeletions. The three genes located to 7q21.3 would be candidates for myeloid tumor-suppressor genes on 7q.

  1. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    PubMed Central

    Jalbrzikowski, Maria; Villalon-Reina, Julio E.; Karlsgodt, Katherine H.; Senturk, Damla; Chow, Carolyn; Thompson, Paul M.; Bearden, Carrie E.

    2014-01-01

    22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk. PMID

  2. A de novo Microdeletion of ANKRD11 Gene in a Korean Patient with KBG Syndrome

    PubMed Central

    Lim, Ji-Hun; Kim, Yoo-Mi; Cho, Hyun-Ju; Lee, Jin-Ok; Cheon, Chong Kun; Yoo, Han-Wook

    2014-01-01

    KBG syndrome is a very rare genetic disorder characterized by macrodontia of upper central incisors, global developmental delay, distinctive craniofacial features, short stature, and skeletal anomalies. Ankyrin repeat domain 11 gene (ANKRD11) has recently been identified as a causal factor of this syndrome. We describe a 6-yr-old Korean boy with features of KBG syndrome. The patient had a short stature, macrodontia, dysmorphic facial features, speech and motor delay with intellectual disability, and partial seizures as indicated by the electroencephalogram, but he was neither autistic nor had autism spectrum disorders. Using high-resolution oligonucleotide array comparative genomic hybridization, we identified a heterozygous 240-kb deletion at 16q24.3 corresponding to ANKRD11. This patient provided additional evidence on the influence of ANKRD11 in KBG syndrome and suggested that deletion limited to ANKRD11 is unlikely to cause autism. PMID:25187894

  3. A de novo microdeletion of ANKRD11 gene in a Korean patient with KBG syndrome.

    PubMed

    Lim, Ji-Hun; Seo, Eul-Ju; Kim, Yoo-Mi; Cho, Hyun-Ju; Lee, Jin-Ok; Cheon, Chong Kun; Yoo, Han-Wook

    2014-09-01

    KBG syndrome is a very rare genetic disorder characterized by macrodontia of upper central incisors, global developmental delay, distinctive craniofacial features, short stature, and skeletal anomalies. Ankyrin repeat domain 11 gene (ANKRD11) has recently been identified as a causal factor of this syndrome. We describe a 6-yr-old Korean boy with features of KBG syndrome. The patient had a short stature, macrodontia, dysmorphic facial features, speech and motor delay with intellectual disability, and partial seizures as indicated by the electroencephalogram, but he was neither autistic nor had autism spectrum disorders. Using high-resolution oligonucleotide array comparative genomic hybridization, we identified a heterozygous 240-kb deletion at 16q24.3 corresponding to ANKRD11. This patient provided additional evidence on the influence of ANKRD11 in KBG syndrome and suggested that deletion limited to ANKRD11 is unlikely to cause autism.

  4. A new case of 8q22.1 microdeletion restricts the critical region for Nablus mask-like facial syndrome.

    PubMed

    Debost-Legrand, Anne; Eymard-Pierre, Eleonore; Pebrel-Richard, Céline; Gouas, Laetitia; Goumy, Carole; Giollant, Michel; Ayed, Wiem; Tchirkov, Andreï; Francannet, Christine; Vago, Philippe

    2013-01-01

    Microdeletions of 8q21.3-8q22.1 have been identified in all patients with Nablus mask-like facial syndrome (NMLFS). A recent report of a patient without this specific phenotype presented a 1.6 Mb deletion in this region that partially overlapped with previously reported 8q21.3 microdeletions, thus restricting critical region for this syndrome. We report on another case of an 8q21.3 deletion revealed by array comparative genome hybridization (aCGH) in a 4-year-old child with global developmental delay, autism, microcephaly, but without Nablus phenotype. The size of the interstitial deletion was estimated to span 5.2 Mb. By combining the data from previous reports on 8q21.3-8q22.1 deletions and our case, we were able to narrow the critical region of Nablus syndrome to 0.5 Mb. The deleted region includes FAM92A1, which seems to be a potential candidate gene in NMLFS.

  5. Molecular genetic screening of MBS1 locus on chromosome 13 for microdeletions and exclusion of FGF9, GSH1 and CDX2 as causative genes in patients with Moebius syndrome.

    PubMed

    Uzumcu, Abdullah; Karaman, Birsen; Toksoy, Guven; Uyguner, Z Oya; Candan, Sukru; Eris, Hacer; Tatli, Burak; Geckinli, Bilge; Yuksel, Adnan; Kayserili, Hulya; Basaran, Seher

    2009-01-01

    Moebius syndrome is a rare disorder primarily characterized by congenital facial palsy, frequently accompanied by ocular abduction anomalies, and occasionally associated with orofacial, limb and musculoskeletal malformations. Abnormal development of cranial nerves V through XII underlines the disease pathogenesis. Although some investigations suggested that a causative gene may lie on 13q12.2-q13, there have been no molecular studies targeting possible microdeletions in this region to date. In the present study, we performed microdeletion analyses on 13q12.11-q13 in nine patients, and sequenced three candidate genes in nineteen patients for functional relevance and further resolution of our screening. We ruled out microdeletions on the critical region as a common cause of Moebius syndrome and excluded FGF9, GSH1 and CDX2 genes.

  6. Further characterization of the new microdeletion syndrome of 16p11.2-p12.2.

    PubMed

    Battaglia, Agatino; Novelli, Antonio; Bernardini, Laura; Igliozzi, Roberta; Parrini, Barbara

    2009-06-01

    Using aCGH, we have identified a pericentromeric deletion, spanning about 8.2 Mb, within 16p11.2-p12.2 in a patient with developmental delay (DD) and dysmorphic features. This deletion arose de novo and is flanked by segmental duplications. The proposita was the only child of healthy nonconsanguineous parents, born after an uneventful pregnancy, at 40 weeks gestation, by normal delivery. She was referred to us at age 3 10/12 years for evaluation of DD and absent speech. On examination, there were a flat face; low-set, posteriorly rotated ears; high-arched palate; hypotonic face; right single palmar crease; long, thin fingers; and a sacral dimple. Her height was at the 50th centile, weight at the 25th, and OFC at the 30th. Results of DNA FraX, HRB chromosomes, metabolic work-up, audiologic evaluation, brain MRI, electroencephalogram, and heart/abdomen ultrasonography were normal. When last seen, aged 8 years, she had a moderate intellectual disability (ID) and poor speech. She was hyperactive with short attention span and difficulty in concentration, but, based on formal testing, did not have autism. Our patient shows common clinical features to the four individuals described by Ballif et al. [Ballif et al. (2007); Nat Genet 39:1071-1073], and further characterizes the new microdeletion syndrome of 16p11.2-p12.2. aCGH suggests that the deletions of all cases share the same distal breakpoint. Of note, the proximal breakpoint of our proposita overlaps the distal breakpoint of the autistic patients studied by Kumar et al. [Kumar et al. (2008); Hum Mol Genet 17:628-638] and Weiss et al. [Weiss et al. (2008); N Eng J Med 358:667-675], confirming that the 16p region carrying susceptibility to autism is more centromeric. Our observation further defines two different, contiguous 16p genomic regions, responsible for a distinct MCA/ID syndrome, and for autism, respectively.

  7. Case fatality rate and associated factors in patients with 22q11 microdeletion syndrome: a retrospective cohort study

    PubMed Central

    Repetto, Gabriela M; Guzmán, M Luisa; Delgado, Iris; Loyola, Hugo; Palomares, Mirta; Lay-Son, Guillermo; Vial, Cecilia; Benavides, Felipe; Espinoza, Karena; Alvarez, Patricia

    2014-01-01

    Objective Chromosome 22q11.2 deletion is the most commonly occurring known microdeletion syndrome. Deaths related to the syndrome have been reported, but the magnitude of death has not been quantified. This study evaluated the deletion's impact on survival and its clinical manifestations in a large cohort of Chilean patients. Design Demographic and clinical data of individuals with 22q11 deletions diagnosed between 1998 and 2013 were collected from medical records and death certificates. Case fatality rate was calculated and compared with national vital statistics. OR with 95% CI analysis was used to assess the association between clinical manifestations and death. Setting Genetic services in tertiary care centres in Chile, following patients with 22q11.2 deletion. Outcomes Fatality rate and associated factors. Results 59 of 419 patients (14.1%) died during the study period at a median of 3.4 months (range 0 to 32 years of age). Factors associated with death included congenital heart disease (OR 5.27; 95% CI 2.06 to 13.99; p<0.0001), hypocalcaemia (OR 4.27; 95% CI 1.67 to 11.15; p<0.002) and airway malacia (OR 13.37; 95% CI 1.19 to 110.51; p<0.002). Patients with deletions and defects such as tetralogy of Fallot with or without pulmonary atraesia, truncus arteriosus or ventricular septal defect, had a 2.6-fold to 4.6-fold higher death rate compared with nationwide reports for the same types of defects. Conclusions In this cohort, we observed a death rate of 14.1%, implying that one in seven patients with 22q11 deletion died during the study period. Significant associations with cardiac defects, hypocalcaemia and airway malacia were observed. Furthermore, the death risk in patients with 22q11 deletion and cardiac defects exceeded the global figures observed in Chile for infants with structurally similar but apparently isolated anomalies. These observations indicate a need to identify patients who may require specific perioperative management to improve survival

  8. A novel microdeletion syndrome at 9q21.13 characterised by mental retardation, speech delay, epilepsy and characteristic facial features.

    PubMed

    Boudry-Labis, Elise; Demeer, Bénédicte; Le Caignec, Cédric; Isidor, Bertrand; Mathieu-Dramard, Michèle; Plessis, Ghislaine; George, Alice M; Taylor, Juliet; Aftimos, Salim; Wiemer-Kruel, Adelheid; Kohlhase, Jürgen; Annerén, Göran; Firth, Helen; Simonic, Ingrid; Vermeesch, Joris; Thuresson, Ann-Charlotte; Copin, Henri; Love, Donald R; Andrieux, Joris

    2013-03-01

    The increased use of array-CGH and SNP-arrays for genetic diagnosis has led to the identification of new microdeletion/microduplication syndromes and enabled genotype-phenotype correlations to be made. In this study, nine patients with 9q21 deletions were investigated and compared with four previously Decipher reported patients. Genotype-phenotype comparisons of 13 patients revealed several common major characteristics including significant developmental delay, epilepsy, neuro-behavioural disorders and recognizable facial features including hypertelorism, feature-less philtrum, and a thin upper lip. The molecular investigation identified deletions with different breakpoints and of variable lengths, but the 750 kb smallest overlapping deleted region includes four genes. Among these genes, RORB is a strong candidate for a neurological phenotype. To our knowledge, this is the first published report of 9q21 microdeletions and our observations strongly suggest that these deletions are responsible for a new genetic syndrome characterised by mental retardation with speech delay, epilepsy, autistic behaviour and moderate facial dysmorphy.

  9. Distinctive Skeletal Abnormalities With No Microdeletions or Microduplications on Array-CGH in a Boy With Mohr Syndrome (Oro-Facial-Digital Type II)

    PubMed Central

    Kaissi, Ali Al; Pospischill, Renata; Grill, Franz; Ganger, Rudolf

    2015-01-01

    We describe a constellation of distinctive skeletal abnormalities in an 8-year-old boy who presented with the full clinical criteria of oro-facial-digital (OFD) type II (Mohr syndrome): bony changes of obtuse mandibular angle, bimanual hexadactyly and unilateral synostosis of the metacarpo-phalanges of 3-4, bilateral coxa valga associated with moderate hip subluxation, over-tubulation of the long bones, vertical talus of the left foot and talipes equinovarus of the right foot respectively. Interestingly, we encountered variable minor malformations in his parents, confirming the autosomal recessive pattern of inheritance. There were no microdeletions or microduplications after performing array-CGH-analysis. We report what might be a constellation of unreported skeletal abnormalities in a child with OFD type II (Mohr syndrome). PMID:26566416

  10. Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH.

    PubMed

    Caselli, R; Speciale, C; Pescucci, C; Uliana, V; Sampieri, K; Bruttini, M; Longo, I; De Francesco, S; Pramparo, T; Zuffardi, O; Frezzotti, R; Acquaviva, A; Hadjistilianou, T; Renieri, A; Mari, F

    2007-01-01

    We describe three patients with retinoblastoma, dysmorphic features and developmental delay. Patients 1 and 2 have high and broad forehead, deeply grooved philtrum, thick anteverted lobes and thick helix. Patient 1 also has dolicocephaly, sacral pit/dimple and toe crowding; patient 2 shows intrauterine growth retardation and short fifth toe. Both patients have partial agenesis of corpus callosum. Patient 3 has growth retardation, microcephaly, thick lower lip and micrognathia. Using array-comparative genomic hybridization (CGH), we identified a 13q14 de novo deletion in patients 1 and 2, while patient 3 had a 7q11.21 maternally inherited deletion, probably not related to the disease. Our results confirm that a distinct facial phenotype is related to a 13q14 deletion. Patients with retinoblastoma and malformations without a peculiar facial phenotype may have a different deletion syndrome or a casual association of mental retardation and retinoblastoma. Using array-CGH, we defined a critical region for mental retardation and dysmorphic features. We compared this deletion with a smaller one in a patient with retinoblastoma (case 4) and identified two distinct critical regions, containing 30 genes. Four genes appear to be good functional candidates for the neurological phenotype: NUFIP1 (nuclear fragile X mental retardation protein 1), HTR2A (serotonin receptor 2A), PCDH8 (prothocaderin 8) and PCDH17 (prothocaderin 17).

  11. Microdeletion of 19p13.3 in a girl with Peutz-Jeghers syndrome, intellectual disability, hypotonia, and distinctive features.

    PubMed

    Kuroda, Yukiko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Masuno, Mitsuo; Kurosawa, Kenji

    2015-02-01

    Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant disease characterized by gastrointestinal polyposis and mucocutaneous pigmentation. Germline point mutations in the serine/threonine kinase 11 (STK11) have been identified in about 70% of patients with PJS. Only a few large genomic deletions have been identified. We report on a girl with PJS and multiple congenital anomalies. She had intellectual disability, umbilical hernia, bilateral inguinal hernias, scoliosis, and distinct facial appearance including prominent mandible, smooth philtrum, and malformed ears. She developed lip pigmentation at the age of 12 years but had no gastrointestinal polyps. Array comparative genomic hybridization revealed an approximately 610 kb deletion at 19p13.3, encompassing STK11. Together with previous reports, the identification of common clinical features suggests that microdeletion at 19p13.3 encompassing STK11 constitutes a distinctive phenotype.

  12. Microdeletion 15q26.2qter and Microduplication 18q23 in a Patient with Prader-Willi-Like Syndrome: Clinical Findings.

    PubMed

    Dello Russo, Patrizia; Demori, Eliana; Sechi, Annalisa; Passon, Nadia; Romagno, Daniela; Gnan, Chiara; Zoratti, Raffaele; Damante, Giuseppe

    2016-01-01

    The small interstitial deletion in the long arm of chromosome 15 causing Prader-Willi/Angelman syndrome is well known, whereas cases that report terminal deletions in 15q in association with the Prader-Willi-like phenotype are very rare. By using GTG-banding analysis, metaphase FISH, MLPA analysis, and genome-wide array CGH, we detected an unbalanced translocation involving a microdeletion of the distal part of 15q and a microduplication of the distal part of 18q. The unbalanced translocation was found in a boy that was referred with clinical suspicion of Prader-Willi syndrome. In the 15q-deleted region, 23 genes have been identified, and 13 of them are included in the OMIM database. Among these, the deleted IGFR1, MEF2A, CHSY1, and TM2D3 genes could contribute to the patient's phenotype. Seven genes are included in the duplicated chromosome segment 18q, but only one (CTDP1) is present in the OMIM database. We suggest that the deleted chromosome segment 15q26.2qter may be responsible for the phenotype of our case and may also be a candidate locus of Prader-Willi-like syndrome.

  13. Fortuitous FISH diagnosis of an interstitial microdeletion (5)(q31.1q31.2) in a girl suspected to present a cri-du-chat syndrome.

    PubMed

    Mosca, A L; Callier, P; Leheup, B; Marle, N; Jalloul, M; Coffinet, L; Feillet, F; Valduga, M; Jonveaux, P; Mugneret, F

    2007-06-15

    Constitutional interstitial deletions of 5q are relatively rare and most are poorly characterized cytogenetically. Consequently a definite karyotype-phenotype correlation is difficult to establish. We report on a new case of a girl presenting with an abnormal cry, upslanting palpebral fissures, hypertelorism, anteverted nostrils, microretrognathia, growth retardation, and an adenoid cyst at the base of the tongue. The first suspected diagnosis was cri-du-chat syndrome because of the mewing cry. Standard cytogenetic analyses were interpreted as normal, but FISH studies using the probe of cri-du-chat syndrome with the control probe EGR1 (5q31.2)/D5S23 (Abbott) revealed a 5q31.2 microdeletion which was then confirmed by CGH-array (Abbott). FISH studies using PACs and BACs clones (Rocchi, Italia) enabled us to characterize the breakpoints of the deleted region. Cytogenetic analysis with FISH studies revealed a normal karyotype with normal 5q31 region in both parents. This case is compared with the other cases reported in the literature.

  14. Genetics Home Reference: 1q21.1 microdeletion

    MedlinePlus

    ... symptoms. Researchers sometimes refer to 1q21.1 microdeletion as the recurrent distal 1.35-Mb deletion to distinguish it from the genetic change that causes thrombocytopenia-absent radius syndrome (TAR syndrome). TAR syndrome results from the ...

  15. PIAS4 is associated with macro/microcephaly in the novel interstitial 19p13.3 microdeletion/microduplication syndrome

    PubMed Central

    Nevado, Julián; Rosenfeld, Jill A; Mena, Rocío; Palomares-Bralo, María; Vallespín, Elena; Ángeles Mori, María; Tenorio, Jair A; Gripp, Karen W; Denenberg, Elizabeth; del Campo, Miguel; Plaja, Alberto; Martín-Arenas, Rubén; Santos-Simarro, Fernando; Armengol, Lluis; Gowans, Gordon; Orera, María; Sanchez-Hombre, M Carmen; Corbacho-Fernández, Esther; Fernández-Jaén, Alberto; Haldeman-Englert, Chad; Saitta, Sulagna; Dubbs, Holly; Bénédicte, Duban B; Li, Xia; Devaney, Lani; Dinulos, Mary Beth; Vallee, Stephanie; Crespo, M Carmen; Fernández, Blanca; Fernández-Montaño, Victoria E; Rueda-Arenas, Inmaculada; de Torres, María Luisa; Ellison, Jay W; Raskin, Salmo; Venegas-Vega, Carlos A; Fernández-Ramírez, Fernando; Delicado, Alicia; García-Miñaúr, Sixto; Lapunzina, Pablo

    2015-01-01

    Array comparative genomic hybridization (aCGH) is a powerful genetic tool that has enabled the identification of novel imbalances in individuals with intellectual disability (ID), autistic disorders and congenital malformations. Here we report a ‘genotype first' approach using aCGH on 13 unrelated patients with 19p13.3 submicroscopic rearrangement (11 deletions and 2 duplications) and review cases in the literature and in public databases. Shared phenotypic features suggest that these patients represent an interstitial microdeletion/microduplication syndrome at 19p13.3. Common features consist of abnormal head circumference in most patients (macrocephaly with the deletions and microcephaly with the duplications), ID with developmental delay (DD), hypotonia, speech delay and common dysmorphic features. The phenotype is associated with at least a ~0.113 Mb critical region harboring three strong candidate genes probably associated with DD, ID, speech delay and other dysmorphic features: MAP2K2, ZBTB7A and PIAS4, an E3 ubiquitin ligase involved in the ubiquitin signaling pathways, which we hypothesize for the first time to be associated with head size in humans. PMID:25853300

  16. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome.

    PubMed

    Eberle, P; Berger, C; Junge, S; Dougoud, S; Büchel, E Valsangiacomo; Riegel, M; Schinzel, A; Seger, R; Güngör, T

    2009-02-01

    A subgroup of patients with 22q11.2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4(+) T cells. To detect these patients, 20 newborns with 22q11.2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4(+) and cytotoxic CD3(+)CD8(+) T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31(+)) expressing CD45RA(+)RO(-)CD4(+) cells containing high numbers of T cell receptor excision circle (T(REC))-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4(+) and naive CD4(+) T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA(+)RO(-)CD4(+) T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4(+) and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31(+)CD45RA(+)RO(-)CD4(+), naive CD45RA(+)RO(-)CD4(+) T cells as well as T(RECs)/10(6) mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4(+) and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM.

  17. Pleiotropy in microdeletion syndromes: neurologic and spermatogenic abnormalities in mice homozygous for the p6H deletion are likely due to dysfunction of a single gene.

    PubMed

    Rinchik, E M; Carpenter, D A; Handel, M A

    1995-07-03

    Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p6H deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p6H deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p6H deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p6H deletion homozygotes. Because EtNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p6H deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans.

  18. Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies

    PubMed Central

    Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-01-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944

  19. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies.

    PubMed

    Lal, Dennis; Ruppert, Ann-Kathrin; Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C M; Koeleman, Bobby P; Lindhout, Dick; Weber, Yvonne G; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J; Kunz, Wolfram S; Surges, Rainer; Elger, Christian E; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M; Rosenow, Felix; Neubauer, Bernd A; Reinthaler, Eva M; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-05-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.

  20. 20p12.3 microdeletion predisposes to Wolff–Parkinson–White syndrome with variable neurocognitive deficits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wolff–Parkinson–White syndrome (WPW) is a bypass re-entrant tachycardia that results from an abnormal connection between the atria and ventricles. Mutations in PRKAG2 have been described in patients with familial WPW syndrome and hypertrophic cardiomyopathy. Based on the role of bone morphogenetic p...

  1. Refined FISH characterization of a de novo 1p22-p36.2 paracentric inversion and associated 1p21-22 deletion in a patient with signs of 1p36 microdeletion syndrome.

    PubMed

    Finelli, P; Giardino, D; Russo, S; Gottardi, G; Cogliati, F; Grugni, G; Natacci, F; Larizza, L

    2001-04-01

    We report on a 10-year-old boy presenting with obesity, moderate mental retardation, large anterior fontanelle at birth, mild physical anomalies including mid-face hypoplasia, deep-set eyes, long philtrum, and small mouth. He was found to carry a paracentric inversion inv(1)(p22p36.2) associated with a 10 cM deletion at the proximal breakpoint. By YAC FISH, the boundaries of the deletion were established at IB1028 (1p21) and WI-5166 (1p22) STSs contained in YACs 781E8 and 954F6, respectively. This large region, covering about 10 cM, contains the COL11A1 and AMY2B genes, whose haploinsufficiency does not seem to contribute significantly to the clinical phenotype. On the other hand, the patient's clinical manifestations, also including visual problems and moderate mental retardation, are those typically observed in the 1p36 deletion syndrome. Refined mapping of the telomeric 1p36.2 inversion breakpoint was obtained by FISH of a PAC contig constructed to encompass this subinterval of the 1p36 microdeletion syndrome region. PACs 1024B10 and 884E7 were found to span the breakpoint, suggesting that the clinical signs of the 1p36 microdeletion syndrome might be due to disruption of a sequence lying at 1p36.2.

  2. Unique Combination of 22q11 and 14qter Microdeletion Syndromes Detected Using Oligonucleotide Array-CGH

    PubMed Central

    Zrnová, E.; Vranová, V.; Šoukalová, J.; Slámová, I.; Vilémová, M.; Gaillyová, R.; Kuglík, P.

    2012-01-01

    We report an infant with a unique combination of 22q11 deletion syndrome and 14q terminal deletion syndrome. The proband had clinical symptoms compatible with diagnosis of 22q11 deletion syndrome: microcephaly, micrognathia, high-arched palate, hypertelorism, short palpebral fissures, square nasal root, prominent tubular nose, hypoplastic nasal alae, bulbous nasal tip, dysplastic low-set ears, short philtrum, and heart defect, but no cell-mediated immunodeficiency typical for the syndrome. G-banding and fluorescence in situ hybridization analyses revealed a karyotype 45,XY,der(14)t(14;22)(q32.3;q11.2),-22.ish del(14)(q32.33)(D14S1420-),del(22)(q11.2q11.2)(N25-). Subsequent analyses disclosed a translocation between chromosomes 14 and 22 in the proband's mother with a deleted 14q telomere. Using comparative genome hybridization on oligonucleotide-based microarray (array-CGH), the deletion at 22q11.21 in the size of ∼4.25 Mb was revealed in the proband as well as the deletion of the telomeric area at 14q32.33qter (∼3.24 Mb) in the proband and his mother. However, both the proband and his mother showed mild symptoms (microcephaly, thin lips, carp-shaped mouth) typical for patients with the described terminal 14q deletion syndrome. PMID:22511897

  3. Complex Phenotype Associated with 17q21.31 Microdeletion

    PubMed Central

    Dornelles-Wawruk, H.; Pic-Taylor, A.; Rosenberg, C.; Krepischi, A.C.V.; Safatle, H.P.N.; Ferrari, I.; Mazzeu, J.F.

    2013-01-01

    We report on a patient carrying a 17q21.31 microdeletion and exhibiting many common syndrome features, together with other clinical signs which have rarely or never been described to date. The detected 695-kb 17q21.31 deletion is larger than in most previously reported cases but is still probably the result of recombination between flanking low-copy repeats. Due to the complexity of the patient's clinical condition, together with the presence of 3 previously unreported symptoms, namely chronic anemia, cervical vertebrae arthrosis and vertebrae fusion, this case is an important addition to the existing knowledge about the 17q21.31 microdeletion syndrome. PMID:24167466

  4. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis.

    PubMed Central

    Driscoll, D A; Salvin, J; Sellinger, B; Budarf, M L; McDonald-McGinn, D M; Zackai, E H; Emanuel, B S

    1993-01-01

    Deletions of chromosome 22q11 have been seen in association with DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). In the present study, we analysed samples from 76 patients referred with a diagnosis of either DGS or VCFS to determine the prevalence of 22q11 deletions in these disorders. Using probes and cosmids from the DiGeorge critical region (DGCR), deletions of 22q11 were detected in 83% of DGS and 68% of VCFS patients by DNA dosage analysis, fluorescence in situ hybridisation, or by both methods. Combined with our previously reported patients, deletions have been detected in 88% of DGS and 76% of VCFS patients. The results of prenatal testing for 22q11 deletions by FISH in two pregnancies are presented. We conclude that FISH is an efficient and direct method for the detection of 22q11 deletions in subjects with features of DGS and VCFS as well as in pregnancies at high risk for a deletion. Images PMID:8230155

  5. A boy with homozygous microdeletion of NEUROG1 presents with a congenital cranial dysinnervation disorder [Moebius syndrome variant

    PubMed Central

    2013-01-01

    Background We report on a 6-year-old Turkish boy with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild developmental delay. Further findings included scaphocephaly, plagiocephaly, long palpebral fissures, high narrow palate, low-set posteriorly rotated ears, torticollis, hypoplastic genitalia and faulty foot posture. Parents were consanguineous. Methods and results Computed tomography and magnetic resonance imaging showed bilateral single widened cochlear turn, narrowing of the internal auditory canal, and bilateral truncation of the vestibulo-cochlear nerve. Microarray analysis and next generation sequencing showed a homozygous deletion of chromosome 5q31.1 spanning 115.3 kb and including three genes: NEUROG1 (encoding neurogenin 1), DCNP1 (dendritic cell nuclear protein 1, C5ORF20) and TIFAB (TIFA-related protein). The inability to chew and swallow, deafness and balance disorder represented congenital palsies of cranial nerves V (trigeminal nerve) and VIII (vestibulo-cochlear nerve) and thus a congenital cranial dysinnervation disorder. Conclusions Based on reported phenotypes of neurog1 null mutant mice and other vertebrates, we strongly propose NEUROG1 as the causative gene in this boy. The human NEUROG1 resides within the DFNB60 locus for non-syndromic autosomal recessive deafness on chromosome 5q22-q31, but linkage data have excluded it from being causative in the DFNB60 patients. Given its large size (35 Mb, >100 genes), the 5q22-q31 area could harbor more than one deafness gene. We propose NEUROG1 as a new gene for syndromic autosomal recessive hearing loss and congenital cranial dysinnervation disorder including cranial nerves V and VIII. PMID:23419067

  6. Evidence of the impact of visuo-spatial processing on magnitude representation in 22q11.2 microdeletion syndrome.

    PubMed

    Attout, Lucie; Noël, Marie-Pascale; Vossius, Line; Rousselle, Laurence

    2017-03-23

    The influence of visuo-spatial skills on numerical magnitude processing is the subject of a long-standing debate. As most of the numerical and non-numerical magnitude abilities underpinning mathematical development are visual by nature, they are often assessed in the visual modality, thereby confusing visuo-spatial and numerical processing. In order to assess the influence of visuo-spatial processing on numerical magnitude representation, we examined magnitude processing in patients with 22q11.2 deletion syndrome (22q11DS), a genetic condition characterized by a cognitive profile with a relative weakness in visuo-spatial abilities but with preserved verbal abilities. Twenty-seven participants with 22q11DS were compared to two control groups (one matched on verbal intelligence and the other on visuo-spatial abilities) on several magnitude comparison tasks each with different visuo-spatial processing requirements. Our results showed that participants with 22q11DS present a consistent pattern of impairment in magnitude comparison tasks requiring the processing of visuo-spatial dimensions: comparison of lengths and collections. In contrast, their performance did not differ from the control groups in a visual task with no spatial processing requirement (i.e. numerical comparison of flashed dot sequences) or in auditory tasks (i.e., duration comparison and numerical comparison of sound sequences). Finally, a specific deficit of enumeration processes was observed in the subitizing range. Taken together, these results show that deficits in magnitude can occur as a consequence of a visuo-spatial deficit. This highlights the influence of the nature of the tasks selected to assess magnitude representation.

  7. Truncation and microdeletion of EVC/EVC2 with missense mutation of EFCAB7 in Ellis-van Creveld syndrome.

    PubMed

    Nguyen, Tran Quynh Nhu; Saitoh, Makiko; Trinh, Huu Tung; Doan, Nguyen Minh Thien; Mizuno, Yoko; Seki, Masafumi; Sato, Yusuke; Ogawa, Seishi; Mizuguchi, Masashi

    2016-09-01

    Ellis-van Creveld syndrome (EvC) is a ciliopathy with cardiac anomalies, disproportionate short stature, polydactyly, dystrophic nails and oral defects. To obtain further insight into the genetics of EvC, we screened EVC/EVC2 mutations in eight Vietnamese EvC patients. All the patients had a congenital heart defect with atypical oral and/or skeletal abnormalities. One had compound heterozygous EVC2 mutations: a novel mutation c.769G > T-p.E177X in exon 6 inherited from father and another previously reported c.2476C > T-p.R826X mutation in exon 14 inherited from mother. The EVC2 mRNA expression level was significantly lower in the patient and her parents compared to controls. Another case had a novel heterozygous EVC mutation (c.1717C > G-p.S572X) in exon 12, inherited from his father. Of note, the mother without any EVC mutation on Sanger sequencing showed a lower expression level of EVC mRNA compared with controls. SNP array analysis revealed that the patient and mother had a heterozygous 16.4 kb deletion in EVC. This patient also had a heterozygous novel variant in exon 9 of EFCAB7 (c.1171 T > C-p.Y391H), inherited from his father. The atypical cardiac phenotype of this patient and the father suggested that EFCAB7 may modify the phenotype by interacting with EVC. In conclusion, we detected two novel nonsense mutations and a partial deletion of EVC/EVC2 in two Vietnamese families with EvC. Moreover, we found in one family a missense mutation of EFCAB7, a possible modifier gene in EvC and its related disorders.

  8. Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion.

    PubMed

    Neubert, Gerda; von Au, Katja; Drossel, Katrin; Tzschach, Andreas; Horn, Denise; Nickel, Renate; Kaindl, Angela M

    2013-01-10

    Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11-q13 (about 70-90%), but can also be caused by paternal uniparental disomy of chromosome 15q11-q13 (3-7%), an imprinting defect (2-4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5Mb-deletion of chromosome 15q11.2-q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~364kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2-q13.1 deletion contains genes critical for Prader-Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.

  9. A three-generation family with terminal microdeletion involving 5p15.33-32 due to a whole-arm 5;15 chromosomal translocation with a steady phenotype of atypical cri du chat syndrome.

    PubMed

    Elmakky, Amira; Carli, Diana; Lugli, Licia; Torelli, Paola; Guidi, Battista; Falcinelli, Cristina; Fini, Sergio; Ferrari, Fabrizio; Percesepe, Antonio

    2014-03-01

    Cri du chat syndrome is characterized by cat-like cry, facial dysmorphisms, microcephaly, speech delay, intellectual disability and slow growth rate, which are present with variable frequency. The typical cri du chat syndrome, due to 5p15.2 deletion, includes severe intellectual disability, facial dysmorphisms, neonatal hypotonia and pre- and post-natal growth retardation, whereas more distal deletions in 5p15.3 lead to cat-like cry and speech delay and produce the clinical picture of the atypical cri du chat syndrome, with minimal or absent intellectual impairment. In this article we report a three-generation family with an unbalanced whole arm translocation between chromosome 5 and 15 and a microdeletion of 5.5 Mb involving 5p15.33-32. By reporting the smallest terminal deletion of 5p15.3 described so far and by reviewing the literature we discuss the genotype/phenotype correlations of the distal region of the cri du chat syndrome. The previously described critical region for the speech delay may be narrowed down and microcephaly, growth retardation and dysmorphic facial features can be included in the phenotypic expression of the atypical cri du chat syndrome due to 5p15.3 deletions.

  10. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome

    PubMed Central

    Kuechler, Alma; Zink, Alexander M; Wieland, Thomas; Lüdecke, Hermann-Josef; Cremer, Kirsten; Salviati, Leonardo; Magini, Pamela; Najafi, Kimia; Zweier, Christiane; Czeschik, Johanna Christina; Aretz, Stefan; Endele, Sabine; Tamburrino, Federica; Pinato, Claudia; Clementi, Maurizio; Gundlach, Jasmin; Maylahn, Carina; Mazzanti, Laura; Wohlleber, Eva; Schwarzmayr, Thomas; Kariminejad, Roxana; Schlessinger, Avner; Wieczorek, Dagmar; Strom, Tim M; Novarino, Gaia; Engels, Hartmut

    2015-01-01

    Intellectual disability (ID) has an estimated prevalence of 2–3%. Due to its extreme heterogeneity, the genetic basis of ID remains elusive in many cases. Recently, whole exome sequencing (WES) studies revealed that a large proportion of sporadic cases are caused by de novo gene variants. To identify further genes involved in ID, we performed WES in 250 patients with unexplained ID and their unaffected parents and included exomes of 51 previously sequenced child–parents trios in the analysis. Exome analysis revealed de novo intragenic variants in SET domain-containing 5 (SETD5) in two patients. One patient carried a nonsense variant, and the other an 81 bp deletion located across a splice-donor site. Chromosomal microarray diagnostics further identified four de novo non-recurrent microdeletions encompassing SETD5. CRISPR/Cas9 mutation modelling of the two intragenic variants demonstrated nonsense-mediated decay of the resulting transcripts, pointing to a loss-of-function (LoF) and haploinsufficiency as the common disease-causing mechanism of intragenic SETD5 sequence variants and SETD5-containing microdeletions. In silico domain prediction of SETD5, a predicted SET domain-containing histone methyltransferase (HMT), substantiated the presence of a SET domain and identified a novel putative PHD domain, strengthening a functional link to well-known histone-modifying ID genes. All six patients presented with ID and certain facial dysmorphisms, suggesting that SETD5 sequence variants contribute substantially to the microdeletion 3p25.3 phenotype. The present report of two SETD5 LoF variants in 301 patients demonstrates a prevalence of 0.7% and thus SETD5 variants as a relatively frequent cause of ID. PMID:25138099

  11. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice

    PubMed Central

    Didriksen, Michael; Fejgin, Kim; Nilsson, Simon R.O.; Birknow, Michelle R.; Grayton, Hannah M.; Larsen, Peter H.; Lauridsen, Jes B.; Nielsen, Vibeke; Celada, Pau; Santana, Noemi; Kallunki, Pekka; Christensen, Kenneth V.; Werge, Thomas M.; Stensbøl, Tine B.; Egebjerg, Jan; Gastambide, Francois; Artigas, Francesc; Bastlund, Jesper F.; Nielsen, Jacob

    2017-01-01

    Background The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on, to our knowledge, the most comprehensive study undertaken to date in 22q11.2DS models. The study was conducted in male mice. Results We found elevated postpubertal N-methyl-d-aspartate (NMDA) receptor antagonist–induced hyperlocomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR were resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. Limitations The 22q11.2 microdeletion has incomplete penetrance in humans, and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. Conclusion The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders associated with the 22q11DS. PMID:27391101

  12. Cryptic microdeletion of the CREBBP gene from t(1;16) (p36.2;p13.3) as a novel genetic defect causing Rubinstein-Taybi syndrome.

    PubMed

    Kim, Suk Ran; Kim, Hee-Jin; Kim, Yae-Jean; Kwon, Jeong-Yi; Kim, Jong-Won; Kim, Sun-Hee

    2013-01-01

    Rubinstein-Taybi syndrome (RTS) is a multiple congenital anomaly syndrome characterized by facial abnormalities, broad thumbs and toes, and mental retardation. RTS is known to be caused by the disruption, either by point mutations or microdeletions, of the human CREB-binding protein (CREBBP) gene on 16p13.3. Gross rearrangements involving 16p13.3, such as translocations or inversions, have rarely been reported in RTS. A 3-month-old boy with a phenotype typical of RTS was referred for genetic diagnosis. Cytogenetic analysis revealed a novel reciprocal translocation: t(1;16)(p36.2;p13.3). Gene dosage analysis for the CREBBP gene was performed using multiple ligation-dependent probe amplification (MLPA) and revealed heterozygous deletion of the whole CREBBP gene. Genome-wide single nucleotide polymorphism (SNP)-array confirmed the deletion and also indicated large genomic deletions in both 1p36.2 and 16p13.3. To the best of our knowledge, this is the first report of characterization of the genomic dosage imbalances in RTS by SNP-array.

  13. [Analysis of microdeletions in 22q11 in Colombian patients with congenital heart disease].

    PubMed

    Salazar, Marleny; Villalba, Guiovanny; Mateus, Heidi; Villegas, Victoria; Fonseca, Dora; Núñez, Federico; Caicedo, Víctor; Pachón, Sonia; Bernal, Jaime E

    2011-12-01

    Cardiac defects are the most frequent congenital malformations, with an incidence estimated between 4 and 12 per 1000 newborns. Their etiology is multifactorial and might be attributed to genetic predispositions and environmental factors. Since 1990 these types of pathologies have been associated with 22q11 microdeletion. In this study, the frequency of microdeletion 22q11 was determined in 61 patients with non-syndromic congenital heart disease. DNA was extracted from peripheral blood and TUPLE1 and STR D10S2198 genes were amplified by multiplex PCR and visualized in agarose gels. Gene content was quantified by densitometry. Three patients were found with microdeletion 22q11, representing a 4.9% frequency. This microdeletion was associated with two cases of Tetralogy of Fallot and a third case with atrial septal defect (ASD). In conclusion, the frequency for microdeletion 22q11 in the population analyzed was 4.9%. The cases that presented Teratology of Fallot had a frequency for this microdeletion of 7.4% and for ASD of 11.1%.

  14. Benign infantile convulsions (IC) and subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome.

    PubMed

    Weber, Axel; Köhler, Angelika; Hahn, Andreas; Neubauer, Bernd; Müller, Ulrich

    2013-11-01

    Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is caused by mutations in the gene PRRT2 located in 16p11.2. A deletion syndrome 16p11.2 is well established and is characterized by intellectual disability, speech delay, and autism. PKD/IC, however, is extremely rare in this syndrome. We describe a case of PKD/IC and 16p11.2 deletion syndrome and discuss modifiers of PRRT2 activity to explain the rare concurrence of both syndromes.

  15. Behavioral characteristics associated with 19p13.2 microdeletions.

    PubMed

    Welham, Alice; Barth, Bursharan; Moss, Joanna; Penhallow, Jessica; Sheth, Krupa; Wilde, Lucy; Wynn, Sarah; Oliver, Chris

    2015-10-01

    A small number of recent papers have described individuals with intellectual disabilities and microdeletions in chromosome band 19p13.2. However, little is known about the behavioral characteristics of individuals with microdeletions in this area. The current study examines behavioral characteristics of a series of 10 participants ranging in age from 2 to 20 years with 19p13.2 microdeletions. Parents/caregivers completed a series of established behavioral measures which have aided the elucidation of the behavioral phenotypes of a number of genetic neurodevelopmental syndromes. All but the youngest two participants (aged 2 and 3 years) were verbal, ambulant, and classified as "partly able" or "able" with regard to self-help skills. Six of eight participants for whom a screening measure for autism spectrum disorders (ASD) could be deployed met criteria for an ASD. Six of the 10 participants had displayed self-injurious behavior in the month prior to assessment, eight had displayed destruction/disruption of property, and eight had shown physically aggressive behaviors. Repetitive behaviors were prevalent in the sample (with all participants displaying at least one repetitive behavior to a clinically relevant level), as were problems with sleep. Low mood was not prevalent in this group, and nor were overactivity or impulsivity. Full determination of a behavioral phenotype for this group would require a larger sample size, distinguishing between genetic subtypes. However, the current data suggest that ASD characteristics, repetitive, and challenging behaviors (such as aggression and self-injury) might be associated with 19p13.2 microdeletions, providing a basis for future investigation.

  16. Kabuki syndrome is not caused by a microdeletion in the DiGeorge/velocardiofacial chromosomal region within 22q11.2

    SciTech Connect

    Li, M.; Zackai, E.H.; Kaplan, P.; Driscoll, D.A.; Niikawa, Norio

    1996-10-16

    Kabuki syndrome (KS) or Niikawa-Kuroki syndrome is a sporadic disorder characterized by postnatal growth retardation, developmental delay, mild to moderate retardation, and a characteristic facial appearance. Cardiovascular defects, clefts of the lip, palate, or both, and musculoskeletal abnormalities occur in about 50% of patients with KS. The cause of this multiple congenital anomaly syndrome is unknown, and investigators have speculated that KS is a contiguous gene-deletion syndrome. Based on the presence of congenital heart defects in patients with KS, it was suggested that this disorder might share a common cause with the 22q11 deletion syndromes. A preliminary study of 2 patients with KS failed to detect a deletion within 22q11. We report the results of fluorescence in situ hybridization with cosmid probes for loci D22S75 (N25) and D22S259 (1132) within the DiGeorge chromosomal region (DGCR) on metaphase spreads from an additional 5 patients, 2 non-Japanese and 3 Japanese, with KS. None of the 5 had deletions at either locus. It is unlikely that KS is caused by a deletion within 22q11. 16 refs.

  17. An Individual with Gilles de la Tourette Syndrome and Smith-Magenis Microdeletion Syndrome: Is Chromosome 17p11.2 a Candidate Region for Tourette Syndrome Putative Susceptibility Genes?

    ERIC Educational Resources Information Center

    Shelley, B. P.; Robertson, M. M.; Turk, J.

    2007-01-01

    This is the first published case description in the current literature of the association of definite Gilles de la Tourette syndrome (GTS) and the Smith-Magenis syndrome (SMS), both confirmed by DSM-IV-TR criteria and molecular cytogenetic analysis, respectively. The co-occurrence of GTS, SMS and their common behavioural/neuropsychiatric…

  18. A rare association of interrupted aortic arch type C and microdeletion 22q11.2.

    PubMed

    Cuturilo, Goran; Drakulic, Danijela; Stevanovic, Milena; Jovanovic, Ida; Djukic, Milan; Miletic-Grkovic, Slobodanka; Atanaskovic-Markovic, Marina

    2008-10-01

    Microdeletion 22q11.2 is associated with a variety of findings, and the most common are cardiac defects. It is very frequently associated with interrupted aortic arch (IAA) type B and very rarely with type A and type C. Here we report the first case of IAA type C associated with 22q11.2 deletion in Serbia and, to the best of our knowledge, the fourth case described worldwide so far. By this report we would like to point out that all patients with IAA type C who have additional features specific for 22q11.2 microdeletion syndrome should be screened for the presence of this deletion.

  19. Combined microdeletions and CHD7 mutation causing severe CHARGE/DiGeorge syndrome: clinical presentation and molecular investigation by array-CGH.

    PubMed

    Kaliakatsos, Marios; Giannakopoulos, Aristeidis; Fryssira, Helena; Kanariou, Maria; Skiathitou, Anna-Venetia; Siahanidou, Tania; Giannikou, Krinio; Makrythanasis, Periklis; Kanavakis, Emmanuel; Tzetis, Maria

    2010-11-01

    Phenotypic variation in CHARGE syndrome remains unexplained. A subcategory of CHARGE patients show overlapping phenotypic characteristics with DiGeorge syndrome (thymic hypo/aplasia, hypocalcemia, T-cell immunodeficiency). Very few have been tested or reported to carry a mutation of the CHD7 (chromodomain helicase DNA-binding domain) gene detected in two-thirds of CHARGE patients. In an attempt to explore the genetic background of a severe CHARGE/DiGeorge phenotype, we performed comparative genomic array hybridization in an infant carrier of a CHD7 mutation. The high-resolution comparative genomic array hybridization revealed interesting findings, including a deletion distal to the DiGeorge region and disruptions in other chromosomal regions of genes implicated in immunological and other functions possibly contributing to the patient's severe phenotype and early death.

  20. Microdeletion on 17p11.2 in a Smith-Magenis syndrome patient with mental retardation and congenital heart defect: first report from China.

    PubMed

    Huang, C; Yang, Y-F; Zhang, H; Xie, L; Chen, J-L; Wang, J; Tan, Z-P; Luo, H

    2012-08-13

    Smith-Magenis syndrome (SMS) is a rare syndrome with multiple congenital malformations, including development and mental retardation, behavioral problems and a distinct facial appearance. SMS is caused by haploinsufficiency of RAI1 (deletion or mutation of RAI1). We describe an eight-year-old female Chinese patient with multiple malformations, congenital heart defect, mental retardation, and behavioral problems (self hugging, sleeping disturbance). High-resolution genome wide single nucleotide polymorphism array revealed a 3.7-Mb deletion in chromosome region 17p11.2. This chromosome region contains RAI1, a critical gene involved in SMS. To the best of our knowledge, this is the first report of an SMS patient in mainland China.

  1. Prenatal Screening of 21 Microdeletion/Microduplication Syndromes and Subtelomeric Imbalances by MLPA in Fetuses with Increased Nuchal Translucency and Normal Karyotype.

    PubMed

    Gouas, Laetitia; Kémény, Stéphan; Beaufrère, Anne-Marie; Eymard-Pierre, Eléonore; Pebrel-Richard, Céline; Tchirkov, Andrei; Lemery, Didier; Laurichesse-Delmas, Hélène; Vago, Philippe; Goumy, Carole

    2015-01-01

    Fetuses with increased nuchal translucency thickness (NT) are at increased risk for chromosomal abnormalities. In case of a normal karyotype, a minority of them may present with structural abnormalities or genetic syndromes, which may be related to submicroscopic chromosomal imbalances. The objective of this study was to evaluate whether MLPA screening of 21 syndromic and subtelomeric regions could improve the detection rate of small chromosomal aberrations in fetuses with increased NT and a normal karyotype. A total of 106 prenatal samples from fetuses with NT ≥ 99th centile and normal R- and G-banding were analyzed by MLPA for subtelomeric imbalances (SALSA P036 and P070) and 21 syndromic regions (SALSA P245). One sample showed a benign CNV (dup(8)pter, FBXO25 gene), and 1 patient was found to have a loss of 18 qter and a gain of 5 pter as a result of an unbalanced translocation. The incidence of cryptic pathogenic variants was <1% or 2.7% when only fetuses with other ultrasound abnormalities were taken into account. Submicroscopic imbalances in fetuses with increased NT may be individually rare, and genome-wide screening seems more likely to improve the diagnostic yield in these fetuses.

  2. 9q31.1q31.3 deletion in two patients with similar clinical features: a newly recognized microdeletion syndrome?

    PubMed

    Mucciolo, M; Magini, P; Marozza, A; Mongelli, P; Mencarelli, M A; Hayek, G; Tavalazzi, F; Mari, F; Seri, M; Renieri, A; Graziano, C

    2014-03-01

    Interstitial deletions of the long arm of chromosome 9 are rare and most patients have been detected by conventional cytogenetic techniques. Disparities in size and localization are large and no consistent region of overlap has been delineated. We report two similar de novo deletions of 6.3 Mb involving the 9q31.1q31.3 region, identified in two monozygotic twins and one unrelated patient through array-CGH analysis. By cloning the deletion breakpoints, we could show that these deletions are not mediated by segmental duplications. The patients displayed a distinct clinical phenotype characterized by mild intellectual disability, short stature with high body mass index, thick hair, arched eyebrows, flat profile with broad chin and mild prognathism, broad, and slightly overhanging tip of the nose, short neck with cervical gibbus. The twin patients developed a metabolic syndrome (type 2 diabetes, hypercholesterolemia, vascular hypertension) during the third decade of life. Although long-term follow-up and collection of additional patients will be needed to obtain a better definition of the phenotype, our findings characterize a previously undescribed syndromic disorder associated with haploinsufficiency of the chromosome 9q31.1q31.3 region.

  3. Phenotypic variability in Waardenburg syndrome resulting from a 22q12.3-q13.1 microdeletion involving SOX10.

    PubMed

    Jelena, Brezo; Christina, Lam; Eric, Vilain; Fabiola, Quintero-Rivera

    2014-06-01

    Waardenburg syndrome (WS) is a neurocristopathy characterized by pigmentation abnormalities of the skin, hair, and iris, as well as sensorineural hearing loss. Contiguous gene deletions encompassing SOX10 are rare, which limits conclusions about genotype-phenotype correlation regarding patient prognosis and management. This study adds to the existing body of knowledge by characterizing a 2.4 Mb deletion [arr[hg19] 22q12.3-q13.1 (36467502-38878207)x1] encompassing SOX10 and 53 additional RefSeq genes in a 15-year-old female with atypical WS. The patient presented with developmental delay, profound bilateral sensorineural hearing loss, heterochromia iridis, hypotonia, and bilateral finger contractures. Published genomic and phenotypic profiles of patients with SOX10-encompassing deletions point toward several plausible candidate gene that could account for the considerable clinical heterogeneity. These studies suggest the existence of modifiers among the co-deleted, dosage-sensitive genes (e.g., MYH9) and among genes whose effect may depend on the unmasking of recessive mutations (e.g., PLA2G6). Finally, we highlight evidence illustrating extensive interconnectivity of SOX10-hypothesizing that haploinsufficiency of SOX10 may "unmask" subtler effects on expression or epistasis associated with variants in SOX10 targets (e.g., DHH), in its partners (e.g., PAX3, EGR2), and in genes with functional overlap (e.g., SOX8, SOX9).

  4. Velocardiofacial Syndrome

    ERIC Educational Resources Information Center

    Gothelf, Doron; Frisch, Amos; Michaelovsky, Elena; Weizman, Abraham; Shprintzen, Robert J.

    2009-01-01

    Velocardiofacial syndrome (VCFS), also known as DiGeorge, conotruncal anomaly face, and Cayler syndromes, is caused by a microdeletion in the long arm of Chromosome 22. We review the history of the syndrome from the first clinical reports almost half a century ago to the current intriguing molecular findings associating genes from the…

  5. Expanding the BP1-BP2 15q11.2 Microdeletion Phenotype: Tracheoesophageal Fistula and Congenital Cataracts.

    PubMed

    Wong, D; Johnson, S M; Young, D; Iwamoto, L; Sood, S; Slavin, T P

    2013-01-01

    The proximal q arm of chromosome 15 contains breakpoint regions BP1-BP5 with the classic deletion of BP1-BP3 best known to be associated with Prader-Willi and Angelman syndromes. The region is approximately 500 kb and microdeletions within the BP1-BP2 region have been reported in patients with developmental delay, behavioral abnormalities, and motor apraxia as well as dysmorphic features including hypertelorism, cleft or narrow palate, ear abnormalities, and recurrent upper airway infections. We report two patients with unique, never-before-reported 15q11.2 BP1-2 microdeletion syndrome findings, one with proximal esophageal atresia and distal tracheoesophageal fistula (type C) and one with congenital cataracts. Cataracts have been described in Prader-Willi syndrome but we could not find any description of cataracts in Angelman syndrome. Esophageal atresia and tracheoesophageal fistula have not been reported to our knowledge in either syndrome. A chance exists that both cases are sporadic birth defects; however, the findings of the concomitant microdeletion cannot be overlooked as a possible cause. Based on our review of the literature and the presentation of our patients, we recommend that esophageal atresia and distal tracheoesophageal fistula as well as congenital cataracts be included in the phenotypic spectrum of 15q11.2 BP1-2 microdeletion syndrome.

  6. An individual with Gilles de la Tourette syndrome and Smith-Magenis microdeletion syndrome: is chromosome 17p11.2 a candidate region for Tourette syndrome putative susceptibility genes?

    PubMed

    Shelley, B P; Robertson, M M; Turk, J

    2007-08-01

    This is the first published case description in the current literature of the association of definite Gilles de la Tourette syndrome (GTS) and the Smith-Magenis syndrome (SMS), both confirmed by DSM-IV-TR criteria and molecular cytogenetic analysis, respectively. The co-occurrence of GTS, SMS and their common behavioural/neuropsychiatric abnormalities should warrant further genetic investigation of chromosome 17p11.2 deletion site as it may be a promising region for containing a gene(s) of aetiological importance in the development of the GTS phenotype. Alternatively, the co-occurrence may be due to the common endophenotypic mechanisms shared by these disorders, rather than being specific for GTS that could be explored using strategies of quantitative trait loci - endophenotype-based approach. Research into this genomic region may also benefit psychiatric genetic research in enhancing understanding of the biological and molecular underpinnings of common behavioural problems that are seen in both GTS and SMS. This would lead to advancement in neurobehavioural/neuropsychiatric genetics which will help in further explaining the broader perspective of gene-brain-behaviour interrelationships.

  7. A 15q13.3 microdeletion segregating with autism

    PubMed Central

    Pagnamenta, Alistair T; Wing, Kirsty; Akha, Elham Sadighi; Knight, Samantha JL; Bölte, Sven; Schmötzer, Gabriele; Duketis, Eftichia; Poustka, Fritz; Klauck, Sabine M; Poustka, Annemarie; Ragoussis, Jiannis; Bailey, Anthony J; Monaco, Anthony P

    2009-01-01

    Autism and mental retardation (MR) show high rates of comorbidity and potentially share genetic risk factors. In this study, a rare ∼2 Mb microdeletion involving chromosome band 15q13.3 was detected in a multiplex autism family. This genomic loss lies between distal break points of the Prader–Willi/Angelman syndrome locus and was first described in association with MR and epilepsy. Together with recent studies that have also implicated this genomic imbalance in schizophrenia, our data indicate that this CNV shows considerable phenotypic variability. Further studies should aim to characterise the precise phenotypic range of this CNV and may lead to the discovery of genetic or environmental modifiers. PMID:19050728

  8. Clinical and Molecular Consequences of NF1 Microdeletion

    DTIC Science & Technology

    2006-05-01

    from NF1 microdeletion adults. To date we have obtained neurofibromas from two microdeletion patients, including multiple neurofibromas from on of...discovery also poses the possibility that neurofibromin haploinsufficiency or deficiency in some tumor cell types may lead to centrosome dysregulation...archival DNA specimens.  We have obtained multiple neurofibromas from one NF1 deletion patient and samples of MPNST from a second NF1 microdeletion

  9. 7p22.1 microdeletions involving ACTB associated with developmental delay, short stature, and microcephaly.

    PubMed

    Shimojima, Keiko; Narai, Satoshi; Togawa, Masami; Doumoto, Tomotsune; Sangu, Noriko; Vanakker, Olivier M; de Paepe, Anne; Edwards, Matthew; Whitehall, John; Brescianini, Sally; Petit, Florence; Andrieux, Joris; Yamamoto, Toshiyuki

    2016-10-01

    There are no published reports of patients harboring microdeletions involving the 7p22.1 region. Although 7p22.1 microdeletions are rare, some reports have shown microduplications encompassing this region. In this study, we report five patients with overlapping deletions of the 7p22.1 region. The patients exhibited clinical similarities including non-specific developmental delay, short stature, microcephaly, and other distinctive features. The shortest region of overlap within the 7p22.1 region includes five genes, FBXL18, ACTB, FSCN1, RNF216, and ZNF815P. Of these genes, only ACTB is known to be associated with an autosomal dominant trait. Dominant negative mutations in ACTB are responsible for Baraitser-Winter syndrome 1. We analyzed ACTB expression in immortalized lymphocytes derived from one of the patients and found that it was reduced to approximately half that observed in controls. This indicates that ACTB expression is linearly correlated with the gene copy number. We suggest that haploinsufficiency of ACTB may be responsible for the clinical features of patients with 7p22.1 microdeletions.

  10. Microdeletions Including FMR1 in Three Female Patients with Intellectual Disability – Further Delineation of the Phenotype and Expression Studies

    PubMed Central

    Zink, A.M.; Wohlleber, E.; Engels, H.; Rødningen, O.K.; Ravn, K.; Heilmann, S.; Rehnitz, J.; Katzorke, N.; Kraus, C.; Blichfeldt, S.; Hoffmann, P.; Reutter, H.; Brockschmidt, F.F.; Kreiß-Nachtsheim, M.; Vogt, P.H.; Prescott, T.E.; Tümer, Z.; Lee, J.A.

    2014-01-01

    Fragile X syndrome (FXS) is one of the most common causes of intellectual disability/developmental delay (ID/DD), especially in males. It is caused most often by CGG trinucleotide repeat expansions, and less frequently by point mutations and partial or full deletions of the FMR1 gene. The wide clinical spectrum of affected females partly depends on their X-inactivation status. Only few female ID/DD patients with microdeletions including FMR1 have been reported. We describe 3 female patients with 3.5-, 4.2- and 9.2-Mb de novo microdeletions in Xq27.3-q28 containing FMR1. X-inactivation was random in all patients, yet they presented with ID/DD as well as speech delay, macrocephaly and other features attributable to FXS. No signs of autism were present. Here, we further delineate the clinical spectrum of female patients with microdeletions. FMR1 expression studies gave no evidence for an absolute threshold below which signs of FXS present. Since FMR1 expression is known to be highly variable between unrelated females, and since FMR1 mRNA levels have been suggested to be more similar among family members, we further explored the possibility of an intrafamilial effect. Interestingly, FMR1 mRNA levels in all 3 patients were significantly lower than in their respective mothers, which was shown to be specific for patients with microdeletions containing FMR1. PMID:24715853

  11. Prevalence of microdeletion 22q11 in patients with hypernasal speech due to velopharyngeal insufficiency: Expanded phenotype and clinical comparison to nondeletion

    SciTech Connect

    Siegel-Bartelt, J.; Cytrynbaum, C.; Witzel, M.A.; Teshima, I.E.

    1994-09-01

    Microdeletion 22q11.2 has been reported as a frequent ethiology of both velocardiofacial (VCF) and DiGeorge syndromes. We have studied the prevalence of microdeletion 22q11 in a group of patients ascertained through a Speech and Language clinic presenting with (1) velopharyngeal insufficiency (VPI) and (2) difficultly in school. Growth parameters were measured, and facies were scored for features of VCF. Microdeletions were detected at locus D22S75 by FISH with probe N25 (Oncor), and at 22q11.2 with high resolution banding analysis (HRB). One child with typical VCF facies was considered to have a deletion at 22q11 with HRB, but is not deleted with N25, indicating that N25 may not detect all deletion patients. An additional 8/30 children tested to date were deleted with the N25 probe. Heart defects were present in only 2/8 deletion patients: VSD/ASD and PS/AS. One N25 deletion patient was atypica; he has a tall, lanky habitus (height = 90%), and facies not characteristic of CVF. As expected, there is a trend to lower head size, smaller ear size, and more typical facies in deletion patients; however, four of the nondeletion patients also had a clinical diagnosis of VCF. Medially displaced carotid arteries were present in both groups, which is therefore not a diagnostic feature of microdeletion 22q11. Our findings indicate that the microdeletion 22q11 is frequent (26% in this series) in a population with VPI, even when not selected for typical facies. We believe this series supports the view that microdeletion 22q11 has a broader clinical phenotype than previously recognized.

  12. A complex microdeletion 17q12 phenotype in a patient with recurrent de novo membranous nephropathy

    PubMed Central

    2012-01-01

    Background Microdeletions on chromosome 17q12 cause of diverse spectrum of disorders and have only recently been identified as a rare cause of Mayer-Rokitansky-Kuester-Hauser-Syndrome (MRKH), which is characterized by uterus aplasia ± partial/complete vaginal aplasia in females with a regular karyotype. For the first time we report about a patient with a 17q12 microdeletion who is affected by MRKH in combination with a vascular and soft tissue disorder. Repeatedly she suffered from kidney transplant failure caused by consuming membranous nephropathy. Case presentation A 38-year-old female patient had been diagnosed with right kidney aplasia, left kidney dysplasia and significantly impaired renal function during infancy. Aged 16 she had to start hemodialysis. Three years later she received her first kidney transplant. Only then she was diagnosed with MRKH. The kidney transplant was lost due to consuming nephrotic syndrome caused by de novo membranous nephropathy, as was a second kidney transplant years later. In addition, a hyperelasticity syndrome affects the patient with congenital joint laxity, kyphoscoliosis, bilateral hip dysplasia, persistent hypermobility of both elbows, knees and hips. Her clinical picture resembles a combination of traits of a hypermobile and a vascular form of Ehlers-Danlos-Syndrome, but no mutations in the COL3A1 gene was underlying. Instead, array-based comparative genomic hybridisation (CGH) detected a heterozygous 1.43 Mb deletion on chromosome 17q12 encompassing the two renal developmental genes HNF1β and LHX1. Conclusions Deletions of HNF1β have recently drawn significant attention in pediatric nephrology as an important cause of prenatally hyperechogenic kidneys, renal aplasia and renal hypodysplasia. In contrast, membranous nephropathy represents an often-unaccounted cause of nephrotic syndrome in the adult population. A causative connection between theses two conditions has never been postulated, but is suggestive enough in

  13. Identification and characterization of marker chromosomes, de novo rearrangements and microdeletions in 100 cases with fluorescence in situ hybridization (FISH)

    SciTech Connect

    Anderson, S.M.; Liu, Y.; Papenhausen, P.R.

    1994-09-01

    Results of molecular cytogenetic analysis are presented for 100 cases in which fluorescence in situ hybridization (FISH) was used as an adjunct to standard cytogenetics. Commercially available centromeric, telomeric, chromosome painting and unique sequence probes were used. Cases were from a 12-month period (June 1993-May 1994) and included examples of sex chromosome abnormalities (8), duplications (5), de novo translocations (6), satellited (12) and non-satellited (7) markers, and microdeletion syndromes (62). Satellited marker chromosomes were evaluated using a combination of DAPI/Distamycin A staining, hybridization with a classical satellite probe for chromosome 15 and hybridization with alpha-satellite probes for chromosomes 13, 14, 21 and 22. Markers positive for the chromosome 15 probe were further evaluated using unique sequence probes for the Prader-Willi/Angelman region. Microdeletion analysis was performed for Prader-Willi/Angelman (49) and DiGeorge/VCF (13) syndromes. Seven cases evaluated for Prader-Willi/Angelman syndrome demonstrated evidence of a deletion within this region. Uniparental disomy analysis was available in cases where a deletion was not detected by FISH, yet follow-up was clinically indicated. Two cases evaluated for DiGeorge/VCF syndrome demonstrated molecular evidence of a deletion. Included in our analysis is an example of familial DiGeorge syndrome.

  14. Genetics Home Reference: Koolen-de Vries syndrome

    MedlinePlus

    ... Vries P, Scheffer H, Vissers LE, de Brouwer AP, Brunner HG, Veltman JA, Schenck A, Yntema HG, ... J, Stephen J, Maher E, Tolmie J, Jackson AP. 17q21.31 microdeletion syndrome: further expanding the clinical ...

  15. Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22.3 microdeletion encompassing the PTCH1 and FANC-C loci.

    PubMed

    Garavelli, Livia; Piemontese, Maria Rosaria; Cavazza, Alberto; Rosato, Simonetta; Wischmeijer, Anita; Gelmini, Chiara; Albertini, Enrico; Albertini, Giuseppe; Forzano, Francesca; Franchi, Fabrizia; Carella, Massimo; Zelante, Leopoldo; Superti-Furga, Andrea

    2013-11-01

    Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant condition mainly characterized by the development of mandibular keratocysts which often have their onset during the second decade of life and/or multiple basal cell carcinoma (BCC) normally arising during the third decade. Cardiac and ovarian fibromas can be found. Patients with NBCCS develop the childhood brain malignancy medulloblastoma (now often called primitive neuro-ectodermal tumor [PNET]) in 5% of cases. The risk of other malignant neoplasms is not clearly increased, although lymphoma and meningioma can occur in this condition. Wilms tumor has been mentioned in the literature four times. We describe a patient with a 10.9 Mb 9q22.3 deletion spanning 9q22.2 through 9q31.1 that includes the entire codifying sequence of the gene PTCH1, with Wilms tumor, multiple neoplasms (lung, liver, mesenteric, gastric and renal leiomyomas, lung typical carcinoid tumor, adenomatoid tumor of the pleura) and a severe clinical presentation. We propose including leiomyomas among minor criteria of the NBCCS.

  16. A microdeletion encompassing PHF21A in an individual with global developmental delay and craniofacial anomalies.

    PubMed

    Labonne, Jonathan D J; Vogt, Julie; Reali, Lisa; Kong, Il-Keun; Layman, Lawrence C; Kim, Hyung-Goo

    2015-12-01

    In Potocki-Shaffer syndrome (PSS), the full phenotypic spectrum is manifested when deletions are at least 2.1 Mb in size at 11p11.2. The PSS-associated genes EXT2 and ALX4, together with PHF21A, all map to this region flanked by markers D11S1393 and D11S1319. Being proximal to EXT2 and ALX4, a 1.1 Mb region containing 12 annotated genes had been identified by deletion mapping to explain PSS phenotypes except multiple exostoses and parietal foramina. Here, we report a male patient with partial PSS phenotypes including global developmental delay, craniofacial anomalies, minor limb anomalies, and micropenis. Using microarray, qPCR, RT-qPCR, and Western blot analyses, we refined the candidate gene region, which harbors five genes, by excluding two genes, SLC35C1 and CRY2, which resulted in a corroborating role of PHF21A in developmental delay and craniofacial anomalies. This microdeletion contains the least number of genes at 11p11.2 reported to date. Additionally, we also discuss the phenotypes observed in our patient with respect to those of published cases of microdeletions across the Potocki-Shaffer interval.

  17. Split Hand/Foot Malformation Associated with 7q21.3 Microdeletion: A Case Report

    PubMed Central

    Sivasankaran, Aswini; Srikanth, Ambika; Kulshreshtha, Pooja S.; Anuradha, Deenadayalu; Kadandale, Jayarama S.; Samuel, Chandra R.

    2016-01-01

    Split hand/foot malformation (SHFM) or ectrodactyly is a rare genetic condition affecting limb development. SHFM shows clinical and genetic heterogeneity. It can present as an isolated form or in combination with additional anomalies affecting the long bones (nonsyndromic form) or other organ systems including the craniofacial, genitourinary and ectodermal structures (syndromic ectrodactyly). This study reports a girl with SHFM who also exhibited developmental delay, mild dysmorphic facial features and sensorineural hearing loss. High-resolution banding analysis indicated an interstitial deletion within the 7q21 band. FISH using locus-specific BAC probes confirmed the microdeletion of 7q21.3. Chromosomal microarray analysis also revealed a microdeletion of 1.856 Mb in 7q21.3. However, a larger 8.44-Mb deletion involving bands 7q21.11q21.2 was observed, and the breakpoints were refined. The phenotype and the candidate genes underlying the pathogenesis of this disorder are discussed. PMID:27022330

  18. The Low Prevalence of Y Chromosomal Microdeletions is Observed in the Oligozoospermic Men in the Area of Mato Grosso State and Amazonian Region of Brazilian Patients

    PubMed Central

    dos Santos Godoy, Gleice Cristina; Galera, Bianca Borsatto; Araujo, Claudinéia; Barbosa, Jacklyne Silva; de Pinho, Max Fernando; Galera, Marcial Francis; de Medeiros, Sebastião Freitas

    2014-01-01

    OBJECTIVE To determine the prevalence of chromosomal abnormalities and microdeletions on Y chromosome in infertile patients with oligozoospermia or azoospermia in Mato Grosso state, Brazil. METHODS This cross-sectional study enrolled 94 men from infertile couples. Karyotype analysis was performed by lymphocyte culture technique. DNA from each sample was extracted using non-enzymatic method. Microdeletions were investigated by polymerase chain reaction (PCR). RESULTS With the use of cytogenetic analysis, five patients (5.3%) had abnormal karyotype, one azoospermic patient (1.1%) had karyotype 46,XY,t(7;1) (qter-p35), one (1.1%) with mild oligozoospermia had karyotype 46,XY,delY(q), and two other azoospermic patients had karyotype 47,XXY, consistent with Klinefelter syndrome (KS). One of them (1.1%) with severe oligozoospermia had karyotype 46,XY,8p+. Microdeletion on Y chromosome was found in the azoospermia factor c (AZFc) region in only one azoospermic patient (1.1%). CONCLUSIONS The prevalence of genetic abnormalities in oligo/azoospermic Brazilian men from infertile couple was 5.3%, and microdeletion on Y chromosome was not a common finding in this population (1.1%). PMID:25210487

  19. De Novo 17q24.2-q24.3 microdeletion presenting with generalized hypertrichosis terminalis, gingival fibromatous hyperplasia, and distinctive facial features.

    PubMed

    Afifi, Hanan H; Fukai, Ryoko; Miyake, Noriko; Gamal El Din, Amina A; Eid, Maha M; Eid, Ola M; Thomas, Manal M; El-Badry, Tarek H; Tosson, Angie M S; Abdel-Salam, Ghada M H; Matsumoto, Naomichi

    2015-10-01

    Generalized hypertrichosis is a feature of several genetic disorders, and the nosology of these entities is still provisional. Recent studies have implicated chromosome 17q24.2-q24.3 microdeletion and the reciprocal microduplication in a very rare form of congenital generalized hypertrichosis terminalis (CGHT) with or without gingival hyperplasia. Here, we report on a 5-year-old Egyptian girl born to consanguineous parents. The girl presented with CGHT and gingival hyperplasia for whom we performed detailed clinical, pathological, and molecular studies. The girl had coarse facies characterized by bilateral epicanthic folds, thick and abundant eyelashes, a broad nose, full cheeks, and lips that constituted the distinctive facial features for this syndrome. Biopsy of the gingiva showed epithelial marked acanthosis and hyperkeratosis with hyperplastic thick collagen bundles and dense fibrosis in the underlying tissues. Array analysis indicated a 17q24.2-q24.3 chromosomal microdeletion. We validated this microdeletion by real-time quantitative PCR and confirmed a perfect co-segregation of the disease phenotype within the family. In summary, this study indicates that 17q24.2-q24.3 microdeletion caused CGHT with gingival hyperplasia and distinctive facies, which should be differentiated from the autosomal recessive type that lacks the distinctive facies.

  20. Identification of a de novo microdeletion 1q44 in a patient with hypogenesis of the corpus callosum, seizures and microcephaly - A case report.

    PubMed

    Westphal, Dominik S; Andres, Stephanie; Beitzel, Kirsten I; Makowski, Christine; Meitinger, Thomas; Hoefele, Julia

    2017-03-21

    Microdeletion 1q44 on the long arm of chromosome 1 leads to a phenotype that includes microcephaly, seizure, agenesis or hypogenesis of the corpus callosum, polydactyly, congenital heart defects and severe developmental delay along with characteristic facial dysmorphic signs. Until today, the distinct genetic causes for the different symptoms remain unclear. We here report a 1.2Mb de novo microdeletion 1q44 identified by performing a SNP array analysis. The female patient presented with microcephaly, seizure, hypogenesis of corpus callosum, postaxial hexadactyly, an atrial septal defect, a ventricular septal defect, hypertelorism, a long and smooth philtrum, thin vermilion borders, and micrognathia, all common features of microdeletion 1q44. An additionally performed chromosome analysis excluded any chromosomal rearrangements. The deleted region included the genes ZBTB18 as well as HNRNPU amongst others. Both are possibly candidate genes for the dysgenesis of the corpus callosum. AKT3, another candidate gene, was not affected by the deletion in this patient. Thus, the genetic findings in this case report spotlight ZBTB18 and HNRNPU in the genesis of the typical microdeletion 1q44 symptoms, especially concerning the dysgenesis of the corpus callosum, and therefore could help to unveil more of the genetic background of this syndrome.

  1. The Prevalence of Y Chromosome Microdeletions in Iranian Infertile Men with Azoospermia and Severe Oligospermia

    PubMed Central

    Asadi, Fahimeh; Sadighi Gilani, Mohammad Ali; Ghaheri, Azadeh; Roodgar Saffari, Javad; Zamanian, Mohammadreza

    2017-01-01

    Objective Microdeletions of the Y chromosome long arm are the most common molecular genetic causes of severe infertility in men. They affect three regions including azoospermia factors (AZFa, AZFb and AZFc), which contain various genes involved in spermatogenesis. The aim of the present study was to reveal the patterns of Y chromosome microdeletions in Iranian infertile men referred to Royan Institute with azoospermia/ severe oligospermia. Materials and Methods Through a cross-sectional study, 1885 infertile men referred to Royan Institute with azoospermia/severe oligospermia were examined for Y chromosome microdeletions from March 2012 to March 2014. We determined microdeletions of the Y chromosome in the AZFa, AZFb and AZFc regions using multiplex Polymerase chain reaction and six different Sequence-Tagged Site (STS) markers. Results Among the 1885 infertile men, we determined 99 cases of Y chromosome microdeletions (5.2%). Among 99 cases, AZFc microdeletions were found in 70 cases (70.7%); AZFb microdeletions in 5 cases (5%); and AZFa microdeletions in only 3 cases (3%). AZFbc microdeletions were detected in 18 cases (18.1%) and AZFabc microdeletions in 3 cases (3%). Conclusion Based on these data, our results are in agreement with similar studies from other regions of the world as well as two other recent studies from Iran which have mostly reported a frequency of less than 10% for Y chromosome microdeletions. PMID:28367414

  2. Molecular screening for microdeletions at 9p22-p24 and 11q23-q24 in a large cohort of patients with trigonocephaly.

    PubMed

    Jehee, F S; Johnson, D; Alonso, L G; Cavalcanti, D P; de Sá Moreira, E; Alberto, F L; Kok, F; Kim, C; Wall, S A; Jabs, E W; Boyadjiev, S A; Wilkie, A O M; Passos-Bueno, M R

    2005-06-01

    Trigonocephaly is a rare form of craniosynostosis characterized by the premature closure of the metopic suture. To contribute to a better understanding of the genetic basis of metopic synostosis and in an attempt to restrict the candidate regions related to metopic suture fusion, we studied 76 unrelated patients with syndromic and non-syndromic trigonocephaly. We found a larger proportion of syndromic cases in our population and the ratio of affected male to female was 1.8 : 1 and 5 : 1 in the non-syndromic and syndromic groups, respectively. A microdeletion screening at 9p22-p24 and 11q23-q24 was carried out for all patients and deletions in seven of them were detected, corresponding to 19.4% of all syndromic cases. Deletions were not found in non-syndromic patients. We suggest that a molecular screening for microdeletions at 9p22-p24 and 11q23-q24 should be offered to all syndromic cases with an apparently normal karyotype because it can potentially elucidate the cause of trigonocephaly in this subset of patients. We also suggest that genes on the X-chromosome play a major role in syndromic trigonocephaly.

  3. Proximal interstitial 1p36 deletion syndrome: the most proximal 3.5-Mb microdeletion identified on a dysmorphic and mentally retarded patient with inv(3)(p14.1q26.2).

    PubMed

    Shimojima, Keiko; Páez, Marco T; Kurosawa, Kenji; Yamamoto, Toshiyuki

    2009-09-01

    From the investigation by microarray-based comparative genomic hybridization (aCGH), a new syndrome with "atypical" proximal interstitial deletion of 1p36.23-36.11 has been suggested. Here, we report on an 8.5-year-old girl with psychomotor developmental delay and a dysmorphic appearance. Although her G-banded chromosomal analysis showed inv(3)(p14.1q26.2), detailed FISH analyses denied pathogenic deletions around the breakpoints of chromosome 3. Accordingly, aCGH analysis was performed to identify a genomic aberration related to her phenotype, and a 3.5-Mb interstitial deletion of 1p36.13-36.12 was revealed. This deletion was the most proximal interstitial deletion of 1p36. Compared to the previously reported patients, abnormally shaped teeth, delayed tooth eruption, and leg malformation are unique phenotypes only to this patient, which might be due to the centromeric unique deletion region with 0.8-Mb.

  4. Familial TAB2 microdeletion and congenital heart defects including unusual valve dysplasia and tetralogy of fallot.

    PubMed

    Weiss, Karin; Applegate, Carolyn; Wang, Tao; Batista, Denise A S

    2015-11-01

    Haploinsufficiency of TAB2 was recently implicated as a cause for a variety of congenital heart defects. Reported cases have genomic deletions of 2-10 Mbs including TAB2 at 6q24-25 are almost always de novo and show variable cardiac and extra cardiac phenotype. We report on an inherited, 281 kb deletion in a three generation family. This is the smallest reported deletion involving TAB2 that segregates with congenital heart defects. Three affected individuals in this family present with myxomatous cardiac valves in addition to structural heart defects commonly associated with TAB2 deletions. Findings from this family support a key role of TAB2 haploinsufficiency in congenital heart defects and expand the phenotypic spectrum of TAB2-microdeletion syndrome.

  5. Paroxysmal Kinesigenic Dyskinesia Caused by 16p11.2 Microdeletion

    PubMed Central

    Termsarasab, Pichet; Yang, Amy C.; Reiner, Jennifer; Mei, Hui; Scott, Stuart A.; Frucht, Steven J.

    2014-01-01

    Background Four cases of paroxysmal kinesigenic dyskinesia (PKD) have been reported in individuals with proximal 16p11.2 microdeletions that include PRRT2. Case Report We describe a fifth patient with PKD, features of Asperger’s syndrome, and mild language delays. Sanger sequencing of the PRRT2 gene did not identify any mutations implicated in PKD. However, microarray-based comparative genomic hybridization (aCGH) detected a 533.9-kb deletion on chromosome 16, encompassing over 20 genes and transcripts. Discussion This case underscores the importance of aCGH testing for individuals with PKD who do not have PRRT2 mutations, particularly when developmental delays, speech problems, intellectual disability, and/or autism spectrum disorder are present. PMID:25667815

  6. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    ERIC Educational Resources Information Center

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…

  7. Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy

    PubMed Central

    Coughlin, Curtis R.; Geiger, Elizabeth A.; Salvador, Blake J.; Elias, Ellen R.; Cavanaugh, Jean L.; Chatfield, Kathryn C.; Miyamoto, Shelley D.; Shaikh, Tamim H.

    2016-01-01

    Restrictive cardiomyopathy (RCM) is a rare cause of heart muscle disease with the highest mortality rate among cardiomyopathy types. The etiology of RCM is poorly understood, although genetic causes have been implicated, and syndromic associations have been described. Here, we describe a patient with an atrial septal defect and restrictive cardiomyopathy along with craniofacial anomalies and intellectual disabilities. Initial screening using chromosomal microarray analysis (CMA) identified a maternally inherited 2q13 microdeletion. The patient had many of the features reported in previous cases with the recurrent 2q13 microdeletion syndrome. However, the inheritance of the microdeletion from an unaffected mother combined with the low incidence (10%) and milder forms of cardiac defects in previously reported cases made the clinical significance of the CMA results unclear. Whole-exome sequencing (WES) with trio-based analysis was performed and identified a paternally inherited TMEM87B mutation (c.1366A>G, p.Asn456Asp) in the patient. TMEM87B, a highly conserved, transmembrane protein of currently unknown function, lies within the critical region of the recurrent 2q13 microdeletion syndrome. Furthermore, a recent study had demonstrated that depletion of TMEM87B in zebrafish embryos affected cardiac development and led to cardiac hypoplasia. Thus, by combining CMA and WES, we potentially uncover an autosomal-recessive disorder characterized by a severe cardiac phenotype caused by mutations in TMEM87B. This study expands the spectrum of phenotypes associated with the recurrent 2q13 microdeletion syndrome and also further suggests the role of TMEM87B in its etiology, especially the cardiac pathology. PMID:27148590

  8. Double-blind Y chromosome microdeletion analysis in men with known sperm parameters and reproductive hormone profiles: microdeletions are specific for spermatogenic failure.

    PubMed

    Krausz, C; Rajpert-De Meyts, E; Frydelund-Larsen, L; Quintana-Murci, L; McElreavey, K; Skakkebaek, N E

    2001-06-01

    Y chromosome microdeletions have been reported as a possible genetic factor of male infertility. Despite a large number of studies in this subject, there is still considerable debate and confusion surrounding the role of Y chromosome microdeletions in male infertility. This has been further compounded by observations of Y microdeletions in fertile males. The aim of the present study was to evaluate: 1) the incidence of Y microdeletions in control male population and infertile males, where complete semen and hormonal analysis was available to define whether Y microdeletions are specific for spermatogenic failure or if they can be found also in normospermic men; and 2) whether the suboptimal semen quality reported in Denmark is associated with a higher incidence of Y microdeletions in respect to other populations. Double-blind molecular study of deletions was performed in 138 consecutive patients seeking intracytoplasmic sperm injection treatment, 100 men of known fertility, and 107 young military conscripts from the general Danish population. Microdeletions or gene-specific deletions were not detected in normospermic subjects or in subfertile men with a sperm count of more than 1 x 10(6)/mL. Deletions of the Azoospermia factor (AZF)c region were detected in 17% of individuals with idiopathic azoo/cryptozoospermia and in 7% of individuals with nonidiopathic azoo/cryptozoospermia. The data indicate that: 1) the composition of the study population is the major factor in determining deletion frequency; 2) Y chromosome microdeletions are specifically associated with severe spermatogenic failure; therefore, the protocol described here is reliable for the routine clinical workup of severe male factor infertility; and 3) the frequency of Yq microdeletions in the Danish population is similar to that from other countries and argues against the involvement of microdeletions in the relatively low sperm count of the Danish population.

  9. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion.

    PubMed

    Voelckel, Marie-Antoinette; Girardot, Lydie; Giusiano, Bernard; Levy, Nicolas; Philip, Nicole

    2004-01-01

    Microdeletion at the 22q11 locus is characterised by a high clinical variability. Congenital heart defects (CHD) are the most life-threatening manifestations of the syndrome and affect approximately 50% of patients carrying the deleted chromosome 22. The causes of this phenotype variability remain unknown although several hypotheses have been raised. It has been suggested that allelic variations at the haploid locus could modify the phenotypic expression. Regarding this hypothesis, TBX1 was thought to be a major candidate to the cardiac phenotype or its severity in patients carrying the 22q11 microdeletion. A mutational screening was performed in this gene, in a series of 39 deleted patients, with and without CHD. The results indicate that mutations in TBX1 are not likely to be involved in the cardiac phenotype observed in del22q11 patients.

  10. BACs-on-Beads technology: a reliable test for rapid detection of aneuploidies and microdeletions in prenatal diagnosis.

    PubMed

    García-Herrero, Sandra; Campos-Galindo, Inmaculada; Martínez-Conejero, José Antonio; Serra, Vicente; Olmo, Inés; Lara, Coral; Simón, Carlos; Rubio, Carmen

    2014-01-01

    The risk of fetal aneuploidies is usually estimated based on high resolution ultrasound combined with biochemical determination of criterion in maternal blood, with invasive procedures offered to the population at risk. The purpose of this study was to investigate the effectiveness of a new rapid aneuploidy screening test on amniotic fluid (AF) or chorionic villus (CV) samples based on BACs-on-Beads (BoBs) technology and to compare the results with classical karyotyping by Giemsa banding (G-banding) of cultured cells in metaphase as the gold standard technique. The prenatal-BoBs kit was used to study aneuploidies involving chromosomes 13, 18, 21, X, and Y as well as nine microdeletion syndromes in 321 AF and 43 CV samples. G-banding of metaphase cultured cells was performed concomitantly for all prenatal samples. A microarray-based comparative genomic hybridization (aCGH) was also carried out in a subset of samples. Prenatal-BoBs results were widely confirmed by classical karyotyping. Only six karyotype findings were not identified by Prenatal-BoBs, all of them due to the known limitations of the technique. In summary, the BACs-on-Beads technology was an accurate, robust, and efficient method for the rapid diagnosis of common aneuploidies and microdeletion syndromes in prenatal samples.

  11. BACs-on-Beads Technology: A Reliable Test for Rapid Detection of Aneuploidies and Microdeletions in Prenatal Diagnosis

    PubMed Central

    Martínez-Conejero, José Antonio; Serra, Vicente; Olmo, Inés; Lara, Coral; Simón, Carlos

    2014-01-01

    The risk of fetal aneuploidies is usually estimated based on high resolution ultrasound combined with biochemical determination of criterion in maternal blood, with invasive procedures offered to the population at risk. The purpose of this study was to investigate the effectiveness of a new rapid aneuploidy screening test on amniotic fluid (AF) or chorionic villus (CV) samples based on BACs-on-Beads (BoBs) technology and to compare the results with classical karyotyping by Giemsa banding (G-banding) of cultured cells in metaphase as the gold standard technique. The prenatal-BoBs kit was used to study aneuploidies involving chromosomes 13, 18, 21, X, and Y as well as nine microdeletion syndromes in 321 AF and 43 CV samples. G-banding of metaphase cultured cells was performed concomitantly for all prenatal samples. A microarray-based comparative genomic hybridization (aCGH) was also carried out in a subset of samples. Prenatal-BoBs results were widely confirmed by classical karyotyping. Only six karyotype findings were not identified by Prenatal-BoBs, all of them due to the known limitations of the technique. In summary, the BACs-on-Beads technology was an accurate, robust, and efficient method for the rapid diagnosis of common aneuploidies and microdeletion syndromes in prenatal samples. PMID:24795887

  12. The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology

    PubMed Central

    Leite, Ana Julia Cunha; Pinto, Irene Plaza; Cunha, Damiana Mirian da Cruz e; Ribeiro, Cristiano Luiz; da Silva, Claudio Carlos; da Cruz, Aparecido Divino; Minasi, Lysa Bernardes

    2016-01-01

    The chromosome 22q11.2 region has long been implicated in genomic diseases. Some genomic regions exhibit numerous low copy repeats with high identity in which they provide increased genomic instability and mediate deletions and duplications in many disorders. DiGeorge Syndrome is the most common deletion syndrome and reciprocal duplications could be occurring in half of the frequency of microdeletions. We described five patients with phenotypic variability that carries deletions or reciprocal duplications at 22q11.2 detected by Chromosomal Microarray Analysis. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had clinical indication to global developmental delay and a normal karyotype. We observed in our study three microdeletions and two microduplications in 22q11.2 region with variable intervals containing known genes and unstudied transcripts as well as the LCRs that are often flanking and within this genomic rearrangement. The identification of these variants is of particular interest because it may provide insight into genes or genomic regions that are crucial for specific phenotypic manifestations and are useful to assist in the quest for understanding the mechanisms subjacent to genomic deletions and duplications. PMID:27123452

  13. The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology.

    PubMed

    Leite, Ana Julia Cunha; Pinto, Irene Plaza; Cunha, Damiana Mirian da Cruz E; Ribeiro, Cristiano Luiz; da Silva, Claudio Carlos; da Cruz, Aparecido Divino; Minasi, Lysa Bernardes

    2016-01-01

    The chromosome 22q11.2 region has long been implicated in genomic diseases. Some genomic regions exhibit numerous low copy repeats with high identity in which they provide increased genomic instability and mediate deletions and duplications in many disorders. DiGeorge Syndrome is the most common deletion syndrome and reciprocal duplications could be occurring in half of the frequency of microdeletions. We described five patients with phenotypic variability that carries deletions or reciprocal duplications at 22q11.2 detected by Chromosomal Microarray Analysis. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had clinical indication to global developmental delay and a normal karyotype. We observed in our study three microdeletions and two microduplications in 22q11.2 region with variable intervals containing known genes and unstudied transcripts as well as the LCRs that are often flanking and within this genomic rearrangement. The identification of these variants is of particular interest because it may provide insight into genes or genomic regions that are crucial for specific phenotypic manifestations and are useful to assist in the quest for understanding the mechanisms subjacent to genomic deletions and duplications.

  14. Clinical and Molecular Consequences of NF1 Microdeletion

    DTIC Science & Technology

    2007-05-01

    the University of Colorado, to perform FISH analyses to rule out moscaicism for an NF1 microdeletion. • Construct STS-content maps, sequence fosmids...neurofibromin in the centrosomes. However, because of cellular interactions in the tumor microenvironment, this does not rule out a role for either...Virginia P. Sybert. Developmental Embryology of the Skin. David W. Smith Dysmorphology Meeting, Lake Arrowhead, CA September, 2006. Virginia P. Sybert

  15. Clinical and Molecular Consequences of NF1 Microdeletion

    DTIC Science & Technology

    2005-05-01

    sequences from the shotgun ( Celera ) cloning of the human genome , which we expect to provide evidence to help us decide if a duplication is possible. In...Database. "* Analyze data for phenotype/genotype correlations and prognostic utility. "• Analyze the complete sequence of the NF1 microdeletion region for...new genes and paralogs. "• Perform comparative mapping of final human sequence with that of the mouse. "* Write manuscripts Progress on new and

  16. Clinical and Molecular Consequences of NF1 Microdeletion

    DTIC Science & Technology

    2009-08-01

    neurofibromin- deficient progenitor cell proliferates and manifests as a neurofibroma. Multiple mechanisms could be proposed. For example, NPL could encode (or...We obtained neurofibromas from two microdeletion patients, including multiple neurofibromas from one of the patients. In addition, we obtained MPNST...mors.[2,3] Such genetic studies are consistent with a model whereby normal tissues become highly malignant due to successive mutation of multiple genes

  17. SNP-based Microdeletion and Aneuploidy RegisTry (SMART)

    ClinicalTrials.gov

    2016-04-19

    22q11 Deletion Syndrome; DiGeorge Syndrome; Trisomy 21; Trisomy 18; Trisomy 13; Monosomy X; Sex Chromosome Abnormalities; Cri-du-Chat Syndrome; Angelman Syndrome; Prader-Willi Syndrome; 1p36 Deletion Syndrome

  18. Genetic Modifiers of the Physical Malformations in Velo-Cardio-Facial Syndrome/DiGeorge Syndrome

    ERIC Educational Resources Information Center

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2008-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that "Tbx1", a…

  19. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients

    PubMed Central

    Yu, Xiao-Wei; Wei, Zhen-Tong; Jiang, Yu-Ting; Zhang, Song-Ling

    2015-01-01

    Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed. PMID:26628946

  20. Candidate gene association studies in syndromic and non-syndromic cleft lip and palate

    SciTech Connect

    Daack-Hirsch, S.; Basart, A.; Frischmeyer, P.

    1994-09-01

    Using ongoing case ascertainment through a birth defects registry, we have collected 219 nuclear families with non-syndromic cleft lip and/or palate and 111 families with a collection of syndromic forms. Syndromic cases include 24 with recognized forms and 72 with unrecognized syndromes. Candidate gene studies as well as genome-wide searches for evidence of microdeletions and isodisomy are currently being carried out. Candidate gene association studies, to date, have made use of PCR-based polymorphisms for TGFA, MSX1, CLPG13 (a CA repeat associated with a human homologue of a locus that results in craniofacial dysmorphogenesis in the mouse) and an STRP found in a Van der Woude syndrome microdeletion. Control tetranucleotide repeats, which insure that population-based differences are not responsible for any observed associations, are also tested. Studies of the syndromic cases have included the same list of candidate genes searching for evidence of microdeletions and a genome-wide search using tri- and tetranucleotide polymorphic markers to search for isodisomy or structural rearrangements. Significant associations have previously been identified for TGFA, and, in this report, identified for MSX1 and nonsyndromic cleft palate only (p = 0.04, uncorrected). Preliminary results of the genome-wide scan for isodisomy has returned no true positives and there has been no evidence for microdeletion cases.

  1. Electrophysiological Correlates of Semantic Processing in Williams Syndrome

    ERIC Educational Resources Information Center

    Pinheiro, Ana P.; Galdo-Alvarez, Santaigo; Sampaio, Adriana; Niznikiewicz, Margaret; Goncalves, Oscar F.

    2010-01-01

    Williams syndrome (WS), a genetic neurodevelopmental disorder due to microdeletion in chromosome 7, has been described as a syndrome with an intriguing socio-cognitive phenotype. Cognitively, the relative preservation of language and face processing abilities coexists with severe deficits in visual-spatial tasks, as well as in tasks involving…

  2. Interstitial 1q21.1 Microdeletion Is Associated with Severe Skeletal Anomalies, Dysmorphic Face and Moderate Intellectual Disability.

    PubMed

    Gamba, Bruno F; Zechi-Ceide, Roseli M; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Rosenberg, Carla; Krepischi Santos, Ana C V; Ribeiro-Bicudo, Lucilene; Richieri-Costa, Antonio

    2016-11-01

    We report on a Brazilian patient with a 1.7-Mb interstitial microdeletion in chromosome 1q21.1. The phenotypic characteristics include microcephaly, a peculiar facial gestalt, cleft lip/palate, and multiple skeletal anomalies represented by malformed phalanges, scoliosis, abnormal modeling of vertebral bodies, hip dislocation, abnormal acetabula, feet anomalies, and delayed neuropsychological development. Deletions reported in this region are clinically heterogeneous, ranging from subtle phenotypic manifestations to severe congenital heart defects and/or neurodevelopmental findings. A few genes within the deleted region are associated with congenital anomalies, mainly the RBM8A, DUF1220, and HYDIN2 paralogs. Our patient presents with a spectrum of unusual malformations of 1q21.1 deletion syndrome not reported up to date.

  3. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling.

    PubMed

    Rives, Nathalie

    2014-05-01

    Infertility affects 15% of couples at reproductive age and human male infertility appears frequently idiopathic. The main genetic causes of spermatogenesis defect responsible for non-obstructive azoospermia and severe oligozoospermia are constitutional chromosomal abnormalities and microdeletions in the azoospermia factor region of the Y chromosome. The improvement of the Yq microdeletion screening method gave new insights in the mechanism responsible for the genesis of Yq microdeletions and for the consequences of the management of male infertility and genetic counselling in case of assisted reproductive technology.

  4. Y-chromosomal DNA haplotypes in infertile European males carrying Y-microdeletions.

    PubMed

    Paracchini, S; Stuppia, L; Gatta, V; Palka, G; Moro, E; Foresta, C; Mengua, L; Oliva, R; Ballescà, J L; Kremer, J A; van Golde, R J; Tuerlings, J H; Hargreave, T; Ross, A; Cooke, H; Huellen, K; Vogt, P H; Tyler-Smith, C

    2000-11-01

    We have determined Y-chromosomal DNA haplotypes in 73 infertile European males carrying Y microdeletions and compared them with the haplotypes of 299 infertile males lacking microdeletions. Chromosomes were typed with a set of 11 binary Y markers, which identified 8 haplogroups in the sample. Haplogroup frequencies were compared between 3 microdeletion classes and the non-deleted infertile males. Deletions arise on many different haplotypic backgrounds. No statistically significant differences in frequency were seen, although the small number of AZFa deletions lay predominantly on one branch of the Y haplotype tree.

  5. Investigation of TBR1 Hemizygosity: Four Individuals with 2q24 Microdeletions

    PubMed Central

    Traylor, R.N.; Dobyns, W.B.; Rosenfeld, J.A.; Wheeler, P.; Spence, J.E.; Bandholz, A.M.; Bawle, E.V.; Carmany, E.P.; Powell, C.M.; Hudson, B.; Schultz, R.A.; Shaffer, L.G.; Ballif, B.C.

    2012-01-01

    TBR1 encodes a transcription factor with critical roles in corticogenesis, including cortical neuron migration and axon pathfinding, establishment of regional and laminar identity of cortical neurons, and control of glutamatergic neuronal cell fate. Based upon TBR1's role in cortical development, we sought to investigate TBR1 hemizygosity in individuals referred for genetic evaluation of intellectual disability and developmental delay. We describe 4 patients with microdeletions identified by molecular cytogenetic techniques, encompassing TBR1 and spanning 2q24.1q31.1, ranging in size from 2.17 to 12.34 Mb. Only the patient with the largest deletion had a possible cortical malformation. Mild ventriculomegaly is the only common brain anomaly, present in all patients; a Chiari I malformation is seen in 2 patients, and mega cisterna magna is seen in a third. Our findings are consistent with Tbr1 mouse models showing that hemizygosity of the gene requires additional genetic factors for the manifestation of severe structural brain malformations. Other syndromic features are present in these patients, including autism spectrum disorders, ocular colobomas, and craniosynostosis, features that are likely affected by the deletion of genes other than TBR1. PMID:23112752

  6. Annotation: Velo-Cardio-Facial Syndrome

    ERIC Educational Resources Information Center

    Murphy, K. C.

    2005-01-01

    Background: Velo-cardio-facial syndrome (VCFS), the most frequent known interstitial deletion identified in man, is associated with chromosomal microdeletions in the q11 band of chromosome 22. Individuals with VCFS are reported to have a characteristic behavioural phenotype with high rates of behavioural, psychiatric, neuropsychological and…

  7. Polydactyly in a boy with Smith-Magenis syndrome.

    PubMed

    Mariannejensen, Lisbeth; Kirchhoff, Maria

    2005-10-01

    Smith-Magenis syndrome is a microdeletion syndrome involving chromosome 17p11.2. The characteristic features include mental retardation, dysmorphic facial features, minor skeletal anomalies including brachydactyly and behavioural abnormalities, such as disturbed sleep pattern, restlessness and self-destructive behaviour. We present a patient with this syndrome and with six digits on each hand. Polydactyly has not yet been described in Smith-Magenis syndrome as far as we know.

  8. Genetic effects of a 13q31.1 microdeletion detected by noninvasive prenatal testing (NIPT).

    PubMed

    Jia, Yifang; Zhao, Heyong; Shi, Donghong; Peng, Wen; Xie, Luwen; Wang, Wei; Jiang, Fuman; Zhang, Hongyun; Wang, Xietong

    2014-01-01

    Microdeletions of chromosome 13q31.1 are relatively rare. These types of deletions may cause different genetic effects on genotypes and/or phenotypes. There are several ways to detect microdeletions; noninvasive prenatal testing (NIPT) is the newest detection method. In this study, we aimed to investigate the genetic effects of a 13q31.1 microdeletion detected by NIPT and to reconfirm the feasibility of this procedure in predicting sub-chromosomal copy number variations (CNVs). The 13q31.1 microdeletion, which has previously been described as a disease-associated fragment, was detected by NIPT in a pregnant woman. To validate the finding and to explain the origin of this sub-chromosomal CNV, we collected fetal amniotic fluid and parental blood samples and tested the samples using array-based comparative genomic hybridization (aCGH). Karyotype analysis was performed on all of the samples to rule out balanced or mosaic anomalies. The aCGH results confirmed the NIPT findings. We detected the same type of microdeletion in the fetus and the mother via aCGH. The mother had a normal phenotype; therefore, in a post-test genetic counseling session, we predicted a normal phenotype for the fetus. After delivery, the normal phenotype of the newborn confirmed our prediction. Based on the present study, this 13q31.1 microdeletion may be considered as a chromosomal polymorphism. This study also reconfirmed the feasibility of obtaining a molecular karyotype of a fetus via NIPT.

  9. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    PubMed

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  10. Breakpoint Associated with a novel 2.3 Mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions

    PubMed Central

    Uddin, Raihan K; Zhang, Yang; Siu, Victoria Mok; Fan, Yao-Shan; O'Reilly, Richard L; Rao, Jay; Singh, Shiva M

    2006-01-01

    Background Chromosome 22q11.2 region is highly susceptible to rearrangement, specifically deletions that give rise to a variety of genomic disorders including velocardiofacial or DiGeorge syndrome. Individuals with this 22q11 microdeletion syndrome are at a greatly increased risk to develop schizophrenia. Methods Genotype analysis was carried out on the DNA from a patient with the 22q11 microdeletion using genetic markers and custom primer sets to define the deletion. Bioinformatic analysis was performed for molecular characterization of the deletion breakpoint sequences in this patient. Results This 22q11 deletion patient was established to have a novel 2.3 Mb deletion with a proximal breakpoint located between genetic markers RH48663 and RH48348 and a distal breakpoint between markers D22S1138 and SHGC-145314. Molecular characterization of the sequences at the breakpoints revealed a 270 bp shared sequence of the breakpoint regions (SSBR) common to both ends that share >90% sequence similarity to each other and also to short interspersed nuclear elements/Alu elements. Conclusion This Alu sequence like SSBR is commonly in the proximity of all known deletion breakpoints of 22q11 region and also in the low copy repeat regions (LCRs). This sequence may represent a preferred sequence in the breakpoint regions or LCRs for intra-chromosomal homologous recombination mechanisms resulting in common 22q11 deletion. PMID:16512914

  11. Haploinsufficiency of ANKRD11 (16q24.3) Is Not Obligatorily Associated with Cognitive Impairment but Shows a Clinical Overlap with Silver-Russell Syndrome.

    PubMed

    Spengler, S; Oehl-Jaschkowitz, B; Begemann, M; Hennes, P; Zerres, K; Eggermann, T

    2013-06-01

    Microdeletions in 16q24.3 are associated with intellectual disability and a specific phenotype, e.g. short stature and a prominent forehead. The 16q24.3 microdeletion syndrome shows a broad phenotypic overlap with the KBG syndrome, which is caused by mutations within the ANKRD11 gene. Furthermore, both KBG and the 16q24.3 microdeletion syndromes show clinical findings reminiscent of Silver-Russell syndrome (SRS), an imprinting disorder characterized by severe primordial growth retardation. In a cohort of patients referred as SRS, we previously identified a 16q24.3 deletion, but at that time, only patients with larger imbalances in 16q24.3 and intellectual disability had been published. Considering the recent description of the ANKRD11 gene as the causative factor for the 2 16q24.3-associated disorders, we now classified our patient as a 16q24.3 microdeletion syndrome patient exhibiting some characteristic features but normal intelligence. Our case illustrates the broad clinical spectrum associated with microdeletions, and we confirm that the 16q24.3 microdeletion syndrome is a further microdeletion syndrome with very variable expressivity. Indeed, our case is the first 16q24.3 patient of normal intelligence, but we assume that this variant is present in further mentally healthy probands which have not yet been tested. In conclusion, the detection of the 16q24.3 deletion in a proband of unremarkable intellectual capacities once again illustrates the need to perform molecular karyotyping in dysmorphic patients with normal intelligence.

  12. Haploinsufficiency of ANKRD11 (16q24.3) Is Not Obligatorily Associated with Cognitive Impairment but Shows a Clinical Overlap with Silver-Russell Syndrome

    PubMed Central

    Spengler, S.; Oehl-Jaschkowitz, B.; Begemann, M.; Hennes, P.; Zerres, K.; Eggermann, T.

    2013-01-01

    Microdeletions in 16q24.3 are associated with intellectual disability and a specific phenotype, e.g. short stature and a prominent forehead. The 16q24.3 microdeletion syndrome shows a broad phenotypic overlap with the KBG syndrome, which is caused by mutations within the ANKRD11 gene. Furthermore, both KBG and the 16q24.3 microdeletion syndromes show clinical findings reminiscent of Silver-Russell syndrome (SRS), an imprinting disorder characterized by severe primordial growth retardation. In a cohort of patients referred as SRS, we previously identified a 16q24.3 deletion, but at that time, only patients with larger imbalances in 16q24.3 and intellectual disability had been published. Considering the recent description of the ANKRD11 gene as the causative factor for the 2 16q24.3-associated disorders, we now classified our patient as a 16q24.3 microdeletion syndrome patient exhibiting some characteristic features but normal intelligence. Our case illustrates the broad clinical spectrum associated with microdeletions, and we confirm that the 16q24.3 microdeletion syndrome is a further microdeletion syndrome with very variable expressivity. Indeed, our case is the first 16q24.3 patient of normal intelligence, but we assume that this variant is present in further mentally healthy probands which have not yet been tested. In conclusion, the detection of the 16q24.3 deletion in a proband of unremarkable intellectual capacities once again illustrates the need to perform molecular karyotyping in dysmorphic patients with normal intelligence. PMID:23885231

  13. [Familial presentation of microdeletion and inverted microduplication with array-CGH].

    PubMed

    Beseler-Soto, Beatriz; Jiménez-Candel, M Isabel; Pedrón-Marzal, Gema; Pérez-García, Begoña; Carpena-Lucas, Pedro J

    2014-12-16

    INTRODUCTION. Over the years the field of genetics has advanced significantly. Following the polymerase chain reaction and mass sequencing techniques, the array-CGH technique (comparative genomic hybridization) has helped to improve genetic procedures. A resolution of up to 200 kb is currently being accomplished in the human genome. CASE REPORTS. We report the case of two sisters with delays in developmental milestones and a characteristic phenotype with normal results from initial studies of the karyotype and subtelomeric regions. Array-CGH was later used to detect a deletion and duplication that were different in each of the sisters, this being the result of a balanced paternal translocation. In the two cases, despite being the result of the same translocation, the genetic and phenotype expression were different. CONCLUSIONS. The precision achieved by means of array-CGH is making it possible to establish a correlation between minimum gains or losses of the genome and the clinical features. Chromosome 3 codes for genes that play a fundamental role in neurological development (contactins, neurotransmitter modulator proteins, etc.) and chromosome 10 codes for proteins involved in apoptosis and proteins regulating transcription. In the literature there have been reports of chromosome 3 deletion syndrome and monosomy 10. Likewise, there are also descriptions of rearrangements between these chromosomes in individuals from the same family. Nevertheless, we describe two cases of a family with a micro-deletion and an inverted microduplication, detected by means of array-CGH, that have not been reported to date. This technique can provide a diagnostic and prognostic approximation as regards development and offer genetic counselling.

  14. Screening of Y chromosome microdeletions in 46,XY partial gonadal dysgenesis and in patients with a 45,X/46,XY karyotype or its variants

    PubMed Central

    2013-01-01

    Background Partial and mixed gonadal dysgenesis (PGD and MGD) are characterized by genital ambiguity and the finding of either a streak gonad and a dysgenetic testis or two dysgenetic testes. The karyotype in PGD is 46,XY, whereas a 45,X/46,XY mosaicism or its variants (more than two lineages and/or structural abnormalities of the Y chromosome) is generally found in MGD. Such mosaics are also compatible with female phenotype and Turner syndrome, ovotesticular disorder of sex development, and infertility in men with normal external genitalia. During the last few years, evidences of a linkage between Y microdeletions and 45,X mosaicism have been reported. There are also indications that the instability caused by such deletions might be more significant in germ cells. The aim of this work was to investigate the presence of Y chromosome microdeletions in individuals with PGD and in those with 45,X/46,XY mosaicism or its variants and variable phenotypes. Methods Our sample comprised 13 individuals with PGD and 15 with mosaicism, most of them with a MGD phenotype (n = 11). Thirty-six sequence tagged sites (STS) spanning the male specific region (MSY) on the Y chromosome (Yp, centromere and Yq) were analyzed by multiplex PCR and some individual reactions. Results All STS showed positive amplifications in the PGD group. Conversely, in the group with mosaicism, six individuals with MGD had been identified with Yq microdeletions, two of them without structural abnormalities of the Y chromosome by routine cytogenetic analysis. The deleted STSs were located within AZFb and AZFc (Azoospermia Factor) regions, which harbor several genes responsible for spermatogenesis. Conclusions Absence of deletions in individuals with PGD does not confirm the hypothesis that instability of the Y chromosome in the gonads could be one of the causes of such condition. However, deletions identified in the second group indicate that mosaicism may be associated with Y chromosome abnormalities

  15. X-linked mixed deafness (DFN3): Cloning and characterization of the critical region allows the identification of novel microdeletions and a duplication

    SciTech Connect

    Cremers, F.P.M.; de Kok, Y.J.M.; Huber, I.

    1994-09-01

    We have constructed a 1.8 megabase YAC contig in the Xq21.41 region using DXS169, DXS26, and DXS995. This contig encompasses the X-linked mixed deafness (DFN3) gene(s) as judged from detailed physical mapping of large Xq21 deletions associated with contiguous gene syndromes and two microdeletions associated with classical DFN3. As a prerequisite for positional cloning of the DFN3 gene, a 850-kb cosmid contig spanning the critical region was constructed by subcloning of two YACs and by cosmid walking in the ICRF X-chromosome library. Using Southern- and PFGE-analysis, we were able to identify 2 novel microdeletions and a 150-kb duplication associated with DFN3. We also identified a sizeable deletion in a patient suffering from choroideremia and mental retardation. This deletion encompasses 40 kb of the distal end of the cosmid contig. Since this patient does not show hearing loss, this finding positions the distal boundary of the DFN3 critical region in our cosmid contig. Our observations suggest that the DFN3 gene is very large (>400 kb) spanning the loci DXS26 and DXS995. In collaboration with Drs. B. Korn and A. Poustka (DKFZ, Heidelberg), cosmids from the contig were used to enrich for cDNAs from the relevant region. Detailed characterization of these cDNAs should soon enable us to identify the DFN3 gene(s).

  16. Advocating for Inclusion of Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Self, Michelle A.

    2010-01-01

    The purpose of this study was to describe and explore the experience of inclusion of students with Williams syndrome, a rare genetic condition of a microdeletion on chromosome 7 which has medical, behavior, and cognitive issues. The study was conducted by gaining an understanding from the parents' point of view. The study was twofold. First, the…

  17. Y Choromosomal Microdeletion Screening in The Workup of Male Infertility and Its Current Status in India

    PubMed Central

    Suganthi, Ramaswamy; Vijesh, Vijayabhavanath Vijayakumaran; Vandana, Nambiar; Fathima Ali Benazir, Jahangir

    2014-01-01

    Spermatogenesis is an essential stage in human male gamete development, which is regulated by many Y chromosome specific genes. Most of these genes are centred in a specific region located on the long arm of the human Y chromosome known as the azoospermia factor region (AZF). Deletion events are common in Y chromosome because of its peculiar structural organization. Astonishingly, among the several known genetic causes of male infertility, Y chromosomal microdeletions emerged as the most frequent structural chromosome anomaly associated with the quantitative reduction of sperm. The development of assisted reproductive techniques (ART) like intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) helps to bypass the natural barriers of fertilization, but it increases the concern about the transmission of genetic defects. Experimental evidence suggested that the men with Y chromosomal microdeletions vertically transmitted their deletion as well as related fertility disorders to their offspring via these ART techniques. In India, infertility is on alarming rise. ART centres have opened up in virtually every state but still most of the infertility centres in India do not choose to perform Y chromosomal microdeletion diagnosis because of some advanced theoretical reasons. Moreover, there is no consensus among the clinicians about the diagnosis and management of Y chromosomal microdeletion defects. The current review discusses thoroughly the role of Y chromosome microdeletion screening in the workup of male infertility, its significance as a diagnostic test, novel approaches for screening Y deletions and finally a systematic review on the current status of Y chromosome microdeletion deletion screening in India. PMID:24520494

  18. A de novo deletion at 16q24.3 involving ANKRD11 in a Japanese patient with KBG syndrome.

    PubMed

    Miyatake, Satoko; Murakami, Akira; Okamoto, Nobuhiko; Sakamoto, Michiko; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-05-01

    KBG syndrome is a rare autosomal dominant congenital syndrome comprising developmental delay with various neurological involvements, macrodontia of the upper central incisors, characteristic facial dysmorphism, and skeletal anomalies. ANKRD11 was recently identified as the gene responsible for this syndrome. To date, there have been only five KBG syndrome families described, each carrying a single base substitution or a 1- to 14-bp deletion of this gene. Here, we present a patient with clinically confirmed KBG syndrome carrying a de novo 690-kb deletion at 16q24.3 involving part of ANKRD11. He had characteristic facial appearance, macrodontia of the upper central incisors, hand anomalies, delayed bone age and intellectual impairment without autistic features. Interestingly, the deleted region overlaps with the critical region for 16q24.3 microdeletion syndrome. We discuss the clinical entities of KBG syndrome and 16q24.3 microdeletion syndrome from a clinical and genetic point of view.

  19. Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy.

    PubMed

    Dejanovic, Borislav; Lal, Dennis; Catarino, Claudia B; Arjune, Sita; Belaidi, Abdel A; Trucks, Holger; Vollmar, Christian; Surges, Rainer; Kunz, Wolfram S; Motameny, Susanne; Altmüller, Janine; Köhler, Anna; Neubauer, Bernd A; Epicure Consortium; Nürnberg, Peter; Noachtar, Soheyl; Schwarz, Günter; Sander, Thomas

    2014-07-01

    Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine and γ-aminobutyric acid type-A receptors (GABAARs) at inhibitory synapses. An impairment of GABAergic synaptic inhibition represents a key pathway of epileptogenesis. Recently, exonic microdeletions in the gephyrin (GPHN) gene have been associated with neurodevelopmental disorders including autism spectrum disorder, schizophrenia and epileptic seizures. Here we report the identification of novel exonic GPHN microdeletions in two patients with idiopathic generalized epilepsy (IGE), representing the most common group of genetically determined epilepsies. The identified GPHN microdeletions involve exons 5-9 (Δ5-9) and 2-3 (Δ2-3), both affecting the gephyrin G-domain. Molecular characterization of the GPHN Δ5-9 variant demonstrated that it perturbs the clustering of regular gephyrin at inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative manner, resulting in a significant loss of γ2-subunit containing GABAARs. GPHN Δ2-3 causes a frameshift resulting in a premature stop codon (p.V22Gfs*7) leading to haplo-insufficiency of the gene. Our results demonstrate that structural exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor for IGE and other neuropsychiatric disorders by an impairment of the GABAergic inhibitory synaptic transmission.

  20. X-linked mixed deafness (DFN3): cloning and characterization of the critical region allows the identification of novel microdeletions.

    PubMed

    Huber, I; Bitner-Glindzicz, M; de Kok, Y J; van der Maarel, S M; Ishikawa-Brush, Y; Monaco, A P; Robinson, D; Malcolm, S; Pembrey, M E; Brunner, H G

    1994-07-01

    We have found that the microsatellite marker AFM207zg5 (DXS995) maps to all previously described deletions which are associated with X-linked mixed deafness (DFN3) with or without choroideremia and mental retardation. Employing this marker and pHU16 (DXS26) we have identified two partially overlapping yeast artificial chromosome clones which were used to construct a complete 850 kb cosmid contig. Cosmids from this contig have been tested by Southern blot analysis on DNA from 16 unrelated males with X-linked deafness. Two novel microdeletions were detected in patients which exhibit the characteristic DFN3 phenotype. Both deletions are completely contained within one of the known DFN3-deletions, but one of them does not overlap with two previously described deletions in patients with contiguous gene syndromes consisting of DFN3, choroideremia, and mental retardation. Assuming that only a single gene is involved, this suggests that the DFN3 gene spans a chromosomal region of at least 400 kb.

  1. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders

    PubMed Central

    Drew, Liam J.; Crabtree, Gregg W.; Markx, Sander; Stark, Kimberly L.; Chaverneff, Florence; Xu, Bin; Mukai, Jun; Fenelon, Karine; Hsu, Pei-Ken; Gogos, Joseph A.; Karayiorgou, Maria

    2010-01-01

    Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25–30% and such deletions account for as many as 1–2% of cases of sporadic schizophrenia in the general population. Access to a relatively homogeneous population of individuals that suffer from schizophrenia as the result of a shared etiological factor and the potential to generate etiologically valid mouse models provides an immense opportunity to better understand the pathobiology of this disease. In this review we survey the clinical literature associated with the 22q11.2 microdeletions with a focus on neuroanatomical changes. Then, we highlight results from work modeling this structural mutation in animals. The key biological pathways disrupted by the mutation are discussed and how these changes impact the structure and function of neural circuits is described. PMID:20920576

  2. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech

    PubMed Central

    Thevenon, Julien; Callier, Patrick; Andrieux, Joris; Delobel, Bruno; David, Albert; Sukno, Sylvie; Minot, Delphine; Mosca Anne, Laure; Marle, Nathalie; Sanlaville, Damien; Bonnet, Marlène; Masurel-Paulet, Alice; Levy, Fabienne; Gaunt, Lorraine; Farrell, Sandra; Le Caignec, Cédric; Toutain, Annick; Carmignac, Virginie; Mugneret, Francine; Clayton-Smith, Jill; Thauvin-Robinet, Christel; Faivre, Laurence

    2013-01-01

    Speech sound disorders are heterogeneous conditions, and sporadic and familial cases have been described. However, monogenic inheritance explains only a small proportion of such disorders, in particular in cases with childhood apraxia of speech (CAS). Deletions of <5 Mb involving the 12p13.33 locus is one of the least commonly deleted subtelomeric regions. Only four patients have been reported with such a deletion diagnosed with fluorescence in situ hybridisation telomere analysis or array CGH. To further delineate this rare microdeletional syndrome, a French collaboration together with a search in the Decipher database allowed us to gather nine new patients with a 12p13.33 subtelomeric or interstitial rearrangement identified by array CGH. Speech delay was found in all patients, which could be defined as CAS when patients had been evaluated by a speech therapist (5/9 patients). Intellectual deficiency was found in 5/9 patients only, and often associated with psychiatric manifestations of various severity. Two such deletions were inherited from an apparently healthy parent, but reevaluation revealed abnormal speech production at least in childhood, suggesting variable expressivity. The ELKS/ERC1 gene, which encodes for a synaptic factor, is found in the smallest region of overlap. These results reinforce the hypothesis that deletions of the 12p13.33 locus may be responsible for variable phenotypes including CAS associated with neurobehavioural troubles and that the presence of CAS justifies a genetic work-up. PMID:22713806

  3. Rapid molecular cytogenetic analysis of X-chromosomal microdeletions: Fluorescence in situ hybridization (FISH) for complex glycerol kinase deficiency

    SciTech Connect

    Worley, K.C.; Lindsay, E.A.; McCabe, E.R.B.

    1995-07-17

    Diagnosis of X-chromosomal microdeletions has relied upon the traditional methods of Southern blotting and DNA amplification, with carrier identification requiring time-consuming and unreliable dosage calculations. In this report, we describe rapid molecular cytogenetic identification of deleted DNA in affected males with the Xp21 contiguous gene syndrome (complex glycerol kinase deficiency, CGKD) and female carriers for this disorder. CGKD deletions involve the genes for glycerol kinase, Duchenne muscular dystrophy, and/or adrenal hypoplasia congenita. We report an improved method for diagnosis of deletions in individuals with CGKD and for identification of female carriers within their families using fluorescence in situ hybridization (FISH) with a cosmid marker (cosmid 35) within the glycerol kinase gene. When used in combination with an Xq control probe, affected males demonstrate a single signal from the control probe, while female carriers demonstrate a normal chromosome with two signals, as well as a deleted chromosome with a single signal from the control probe. FISH analysis for CGKD provides the advantages of speed and accuracy for evaluation of submicroscopic X-chromosome deletions, particularly in identification of female carriers. In addition to improving carrier evaluation, FISH will make prenatal diagnosis of CGKD more readily available. 17 refs., 2 figs.

  4. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech.

    PubMed

    Thevenon, Julien; Callier, Patrick; Andrieux, Joris; Delobel, Bruno; David, Albert; Sukno, Sylvie; Minot, Delphine; Mosca Anne, Laure; Marle, Nathalie; Sanlaville, Damien; Bonnet, Marlène; Masurel-Paulet, Alice; Levy, Fabienne; Gaunt, Lorraine; Farrell, Sandra; Le Caignec, Cédric; Toutain, Annick; Carmignac, Virginie; Mugneret, Francine; Clayton-Smith, Jill; Thauvin-Robinet, Christel; Faivre, Laurence

    2013-01-01

    Speech sound disorders are heterogeneous conditions, and sporadic and familial cases have been described. However, monogenic inheritance explains only a small proportion of such disorders, in particular in cases with childhood apraxia of speech (CAS). Deletions of <5 Mb involving the 12p13.33 locus is one of the least commonly deleted subtelomeric regions. Only four patients have been reported with such a deletion diagnosed with fluorescence in situ hybridisation telomere analysis or array CGH. To further delineate this rare microdeletional syndrome, a French collaboration together with a search in the Decipher database allowed us to gather nine new patients with a 12p13.33 subtelomeric or interstitial rearrangement identified by array CGH. Speech delay was found in all patients, which could be defined as CAS when patients had been evaluated by a speech therapist (5/9 patients). Intellectual deficiency was found in 5/9 patients only, and often associated with psychiatric manifestations of various severity. Two such deletions were inherited from an apparently healthy parent, but reevaluation revealed abnormal speech production at least in childhood, suggesting variable expressivity. The ELKS/ERC1 gene, which encodes for a synaptic factor, is found in the smallest region of overlap. These results reinforce the hypothesis that deletions of the 12p13.33 locus may be responsible for variable phenotypes including CAS associated with neurobehavioural troubles and that the presence of CAS justifies a genetic work-up.

  5. Multiple Coronary Artery Microfistulas in a Girl with Kleefstra Syndrome

    PubMed Central

    Vargiami, Euthymia; Ververi, Athina; Al-Mutawa, Hamda; Gioula, Georgia; Gerou, Spyridon; Rouvalis, Fotios; Kambouris, Marios; Zafeiriou, Dimitrios I.

    2016-01-01

    Kleefstra syndrome is characterized by hypotonia, developmental delay, dysmorphic features, congenital heart defects, and so forth. It is caused by 9q34.3 microdeletions or EHMT1 mutations. Herein a 20-month-old girl with Kleefstra syndrome, due to a de novo subterminal deletion, is described. She exhibits a rare and complex cardiopathy, encompassing multiple coronary artery microfistulas, VSD/ASD, and PFO. PMID:27239352

  6. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity.

    PubMed

    Witteveen, Josefine S; Willemsen, Marjolein H; Dombroski, Thaís C D; van Bakel, Nick H M; Nillesen, Willy M; van Hulten, Josephus A; Jansen, Eric J R; Verkaik, Dave; Veenstra-Knol, Hermine E; van Ravenswaaij-Arts, Conny M A; Wassink-Ruiter, Jolien S Klein; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M; Engels, Hartmut; de Munnik, Sonja A; Visser, Jasper E; Brunner, Han G; Martens, Gerard J M; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M

    2016-08-01

    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.

  7. Genetics Home Reference: 9q22.3 microdeletion

    MedlinePlus

    ... and a buildup of fluid in the brain (hydrocephalus). Affected individuals can also have distinctive facial features ... Encyclopedia: Basal Cell Nevus Syndrome Encyclopedia: Craniosynostosis Encyclopedia: ... Seizures Health Topic: Developmental Disabilities ...

  8. Syndromic mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of three patients.

    PubMed

    Katzaki, Eleni; Morin, Gilles; Pollazzon, Marzia; Papa, Filomena Tiziana; Buoni, Sabrina; Hayek, Joussef; Andrieux, Joris; Lecerf, Laure; Popovici, Cornel; Receveur, Aline; Mathieu-Dramard, Michèle; Renieri, Alessandra; Mari, Francesca; Philip, Nicole

    2010-07-01

    During the last few years, an increasing number of microdeletion/microduplication syndromes have been delineated. This rapid evolution is mainly due to the availability of microarray technology as a routine diagnostic tool. Microdeletions of the 21q22.11q22.12 region encompassing the RUNX1 gene have been reported in nine patients presenting with syndromic thrombocytopenia and mental retardation. RUNX1 gene is responsible for an autosomal dominant platelet disorder with predisposition to acute myelogenous leukemia. We report on three novel patients with an overlapping "de novo" interstitial deletion involving the band 21q22 characterized by array-CGH. All our patients presented with severe developmental delay, dysmorphic features, behavioral problems, and thrombocytopenia. Comparing the clinical features of our patients with the overlapping ones already reported two potential phenotypes related to 21q22 microdeletion including RUNX1 were highlighted: thrombocytopenia with +/- mild dysmorphic features and syndromic thrombocytopenia with growth and developmental delay.

  9. Smith-Magenis Syndrome: Face Speaks.

    PubMed

    Gupta, Rekha; Gupta, Neerja; Nampoothiri, Sheela; Mandal, Kausik; Kishore, Yougal; Sharma, Pankaj; Kabra, Madhulika; Phadke, Shubha R

    2016-06-01

    Smith-Magenis syndrome is a well delineated microdeletion syndrome with characteristic facial and behavioral phenotype. With the availability of the multi-targeted molecular cytogenetic techniques like Multiplex Ligation Probe Amplification and cytogenetic microarray, the cases are diagnosed even without clinical suspicion. Here, the authors present clinical features of nine Indian cases of Smith-Magenis syndrome. Characteristic facial phenotype including tented upper lip, broad forehead, midface hypoplasia, short philtrum and upslant of palpebral fissure is obvious in the photographs. The behavioral variations were seen in some of the cases but were not the presenting features. The characteristic facial phenotype can be an important clinical guide to the diagnosis.

  10. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population

    PubMed Central

    Ambulkar, Prafulla S.; Sigh, Ramji; Reddy, MVR; Varma, Poonam S.; Gupta, Dilip O.; Shende, Moreshwar R; Pal, Asoke K

    2014-01-01

    Background: Genetic factors cause about 15% of male infertility. Azoospermia factors (AZFa, AZFb, and AZFc) present on Yq are most important for spermatogenesis. We have made an attempt to evaluate the frequencies of microdeletions of AZFa, AZFb, AZFc in idiopathic cases of azoospermia and oligozoospermia from central Indian population. Materials and Methods: We have analyzed a total of 156 subjects (95 oligozoospermia and 61 azoospermia) & 50 control subjects. DNA samples were analyzed for microdeletions of Y chromosome by PCR-screening of 18 sequences-tagged-site (STS) markers from different region of the AZF on Yq and SRY on Yp. Results: Out of 156 cases analyzed, 13 (8.33%) subjects (8 azoospermia and 5 oligozoospermia) showed partial deletion of AZF regions, of which deletion in AZFc region was the most common (84.6%) followed by AZFb (15.4%) and AZFa (15.4%). The sites and sizes of deletions varied among patients. Histological study of the testicular tissue of the available subjects, who showed microdeletions of Y chromosome, showed spermatogenic arrest at different stages. The frequency of Y chromosome microdeletion in our subjects was 8.33%. Conclusion: Some Indian studies reported low frequencies of microdeletions than that of our result. We suggest that the frequency of deletions may be affected by the involvement of different genetic factors, ethnic population and different geographical regions. PCR based Y chromosome screening for microdeletions will be useful and great help to infertility clinics for genetic counselling and assisted reproduction. PMID:24783090

  11. Cognitive behavioral therapy in 22q11.2 microdeletion with psychotic symptoms: What do we learn from schizophrenia?

    PubMed

    Demily, Caroline; Franck, Nicolas

    2016-11-01

    The 22q11.2 deletion syndrome (22q11.2DS) is one of the most common microdeletion syndromes, with a widely underestimated prevalence between 1 per 2000 and 1 per 6000. Since childhood, patients with 22q11.2DS are described as having difficulties to initiate and maintain peer relationships. This lack of social skills has been linked to attention deficits/hyperactivity disorder, anxiety and depression. A high incidence of psychosis and positive symptoms is observed in patients with 22q11.2DS and remains correlated with poor social functioning, anxiety and depressive symptoms. Because 22q11.2DS and schizophrenia share several major clinical features, 22q11.2DS is sometimes considered as a genetic model for schizophrenia. Surprisingly, almost no study suggests the use of cognitive and behavioral therapy (CBT) in this indication. We reviewed what should be learned from schizophrenia to develop specific intervention for 22q11.2DS. In our opinion, the first step of CBT approach in 22q11.2DS with psychotic symptoms is to identify precisely which tools can be used among the already available ones. Cognitive behavioral therapy (CBT) targets integrated disorders, i.e. reasoning biases and behavior disorders. In 22q11.2DS, CBT-targeted behavior disorders may take the form of social avoidance and withdrawal or, in the contrary, a more unusual disinhibition and aggressiveness. In our experience, other negative symptoms observed in 22q11.2DS, such as motivation deficit or anhedonia, may also be reduced by CBT. Controlled trials have been studying the benefits of CBT in schizophrenia and several meta-analyses proved its effectiveness. Therefore, it is legitimate to propose this tool in 22q11.2DS, considering symptoms similarities. Overall, CBT is the most effective psychosocial intervention on psychotic symptoms and remains a relevant complement to pharmacological treatments such as antipsychotics.

  12. Language and Literacy Development in Individuals with Velo-Cardio-Facial Syndrome

    ERIC Educational Resources Information Center

    Antshel, Kevin M.; Marrinan, Eileen; Kates, Wendy R.; Fremont, Wanda; Shprintzen, Robert J.

    2009-01-01

    Velo-cardio-facial syndrome (VCFS) is a genetic disorder caused by a microdeletion of chromosome 22q11.2. Although there is some variability, VCFS is associated with a characteristic physical, behavioral, and cognitive phenotype. This review article focuses on aspects of language and literacy development in VCFS, describing what is known and…

  13. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    ERIC Educational Resources Information Center

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  14. Abnormal Processing of Emotional Prosody in Williams Syndrome: An Event-Related Potentials Study

    ERIC Educational Resources Information Center

    Pinheiro, Ana P.; Galdo-Alvarez, Santiago; Rauber, Andreia; Sampaio, Adriana; Niznikiewicz, Margaret; Goncalves, Oscar F.

    2011-01-01

    Williams syndrome (WS), a neurodevelopmental genetic disorder due to a microdeletion in chromosome 7, is described as displaying an intriguing socio-cognitive phenotype. Deficits in prosody production and comprehension have been consistently reported in behavioral studies. It remains, however, to be clarified the neurobiological processes…

  15. Toward a genetic etiology of CHARGE syndrome: I. A systematic scan for submicroscopic deletions.

    PubMed

    Lalani, Seema R; Stockton, David W; Bacino, Carlos; Molinari, Laura M; Glass, Nancy L; Fernbach, Susan D; Towbin, Jeffrey A; Craigen, William J; Graham, John M; Hefner, Margaret A; Lin, Angela E; McBride, Kim L; Davenport, Sandra L; Belmont, John W

    2003-04-30

    CHARGE syndrome is a distinctive subgroup within the more heterogeneous group of patients with CHARGE association. While significant progress has been made in the clinical delineation of this syndrome, the molecular basis of the disorder remains unknown. Based on the complex phenotype, some overlap with DiGeorge/velocardiofacial syndrome (DGS/VCFS), and its estimated population incidence, we hypothesized that CHARGE syndrome could be caused by an unidentified genomic microdeletion. In order to address this hypothesis, we carried out a genome-wide screen for loss of expected heterozygosity using 811 microsatellite markers in ten CHARGE syndrome subjects and their unaffected parents. Eight markers gave results suggestive of failure to inherit one parental allele. These loci were tested with fluorescence in situ hybridization (FISH), but none showed evidence of deletion. This screen sets upper limits on the length of a CHARGE-related microdeletion, should that be the genetic mechanism underlying the phenotype.

  16. Brief Report: Functional MRI of a Patient with 7q11.23 Duplication Syndrome and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Prontera, Paolo; Serino, Domenico; Caldini, Bernardo; Scarponi, Laura; Merla, Giuseppe; Testa, Giuseppe; Muti, Marco; Napolioni, Valerio; Mazzotta, Giovanni; Piccirilli, Massimo; Donti, Emilio

    2014-01-01

    The duplication of the Williams-Beuren syndrome (WBS) region (7q11.23) is a copy number variant associated with autism spectrum disorder (ASD). One of the most intriguing aspects is that the reciprocal microdeletion causes WBS, characterized by hypersociability, marked empathy, and a relative capacity in verbal short-term memory and language.…

  17. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion.

    PubMed

    Quintela, Ines; Gomez-Guerrero, Lorena; Fernandez-Prieto, Montse; Resches, Mariela; Barros, Francisco; Carracedo, Angel

    2015-12-01

    In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes.

  18. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR.

    PubMed

    Tai, Derek J C; Ragavendran, Ashok; Manavalan, Poornima; Stortchevoi, Alexei; Seabra, Catarina M; Erdin, Serkan; Collins, Ryan L; Blumenthal, Ian; Chen, Xiaoli; Shen, Yiping; Sahin, Mustafa; Zhang, Chengsheng; Lee, Charles; Gusella, James F; Talkowski, Michael E

    2016-03-01

    Recurrent, reciprocal genomic disorders resulting from non-allelic homologous recombination (NAHR) between near-identical segmental duplications (SDs) are a major cause of human disease, often producing phenotypically distinct syndromes. The genomic architecture of flanking SDs presents a challenge for modeling these syndromes; however, the capability to efficiently generate reciprocal copy number variants (CNVs) that mimic NAHR would represent a valuable modeling tool. We describe here a CRISPR/Cas9 genome engineering method, single-guide CRISPR/Cas targeting of repetitive elements (SCORE), to model reciprocal genomic disorders and demonstrate its capabilities by generating reciprocal CNVs of 16p11.2 and 15q13.3, including alteration of one copy-equivalent of the SDs that mediate NAHR in vivo. The method is reproducible, and RNA sequencing reliably clusters transcriptional signatures from human subjects with in vivo CNVs and their corresponding in vitro models. This new approach will provide broad applicability for the study of genomic disorders and, with further development, may also permit efficient correction of these defects.

  19. Prevalence and patterns of Y chromosome microdeletion in infertile men with azoospermia and oligzoospermia in Northeast China

    PubMed Central

    Elfateh, Fadlalla; Rulin, Dai; Xin, Yun; Linlin, Li; Haibo, Zhu; Liu, Rui-Zhi

    2014-01-01

    Background: In some cases infertile men showed small deletions of specific genes in the Y chromosome. It had been confirmed, these deleted genes are greatly associated with spermatogenic failure. However, the frequency and the patterns of such microdeletions among infertile men are not clearly clarified. Objective: We sought to determine the frequency and the patterns of Y chromosome microdeletions in azoospermic and oligozoospermic infertile men in Northeast China, and try to optimize the selection of sequence tagged sites (STSs) of AZF microdeletions in multiplex polymerase chain reaction (PCR). Materials and Methods: 720 azoospermic and 330 oligozoospermic infertile men, from Northeast China were included in this retrospective study during May 2008 to November 2012. Semen analysis was performed according to the World Health Organization guidelines. Y chromosome microdeletions were detected by polymerase chain reaction assays. G-banding method was used for chromosome Karyotype analysis. Chi-square tests were used to compare patterns of Y chromosome microdeletions in azoospermic and oligozoospermic patients. Results: Of 1050 infertile men, 12.95% cases had shown Y chromosome microdeletions, and 19.43% of cases showed abnormal chromosomal karyotype. Deletions in AZFc region was the most frequent 75.00%, followed by deletions in AZFb region 13.33%, AZFbc region 09.62%, and AZFa region 2.22%. All oligozoospermic patients showed presence of sY84, sY86, sY127, and sY134. Deletion of sY127 (p=0.0101) and sY157 (p=0.0043) showed significant difference between azoospermic group and oligozoospermic group. Conclusion: Deletions of sY127 may relate to azoospermia while sY84, sY86, sY127 can be ignored in AZF screening for oligozoospermic patients. PMID:25071845

  20. Chromosomal aberrations, Yq microdeletion, and sperm DNA fragmentation in infertile men opting for assisted reproduction.

    PubMed

    Shamsi, Monis B; Kumar, Rajeev; Malhotra, Neena; Singh, Nita; Mittal, Suneeta; Upadhyay, Ashish D; Dada, Rima

    2012-09-01

    Male infertility is a multi-factorial disorder, and identification of its etiology in an individual is critical for treatment. Systematically elucidating the underlying genetic causes (chromosomal and Yq microdeletion) and factors, such as reactive oxygen species (ROS) levels and total antioxidant capacity (TAC), which contribute to sperm DNA damage, may help to reduce the number of men with idiopathic infertility and provide them with the most suitable therapeutics and counseling. This study was done to comprehensively investigate genetic and oxidative stress factors that might be the etiology of a large percentage of men with idiopathic infertility. One hundred twelve infertile men and 76 fertile controls were screened for chromosomal aberrations and Yq microdeletions. ROS, TAC, and sperm DNA damage were assessed in cytogenetically normal, non-azoospermic men with intact Y chromosome (n = 93). ROS was assessed in neat and washed semen by chemiluminescence; seminal TAC with a commercially available kit; and sperm DNA damage by the comet assay. Two men had cytogenetic abnormalities and seven men harbored Yq microdeletions. ROS levels in neat and washed semen of infertile men were significantly higher (P < 0.01) than controls. Infertile men had significantly lower (P < 0.01) TAC levels (1.79 mM), whereas sperm DNA fragmentation in infertile men was significantly higher (P < 0.01) than controls. Genetic factors and oxidative stress cumulatively account for large number of idiopathic infertile cases. Unlike, genetic causes, which cannot be cured, timely identification and management of oxidative stress may help to reverse/reduce the effects on induced DNA damage, and improve the outcomes for infertile males.

  1. Screening for Y-chromosome microdeletions in a population of infertile males in the Gaza Strip

    PubMed Central

    Shaqalaih, Ashraf J.; Abu Halima, Masood S.; Ashour, Mohammed J.; Sharif, Fadel A.

    2009-01-01

    Infertility is an extraordinary public health problem in the Arab world, as it affects about 15% of couples seeking children. The male partner is responsible for infertility in approximately half of these cases. Classic microdeletions of the Y-chromosome involving the azoospermia factor (AZF) regions are known to be associated with spermatogenic impairment, and non-obstructive azoospermia must be differentiated on the basis of endocrine evaluation and testicular biopsy. Partial AZFc deletions remain controversial because there is no clear agreement regarding their role in spermatogenic failure. In the current study, 50 fertile males (controls) and 125 patients with primary idiopathic male infertility were studied in order to describe the frequency of Y-chromosome mirodeletions among male infertility patients in the Gaza Strip-Palestine area. No Y chromosome classical microdeletions could be detected in any of the 125 infertile men, suggesting that ethnic factors, genetic background, and Y chromosome haplogroups are key factors in such deletions. On the other hand, six gr/gr and one b1/b3 AZFc partial deletions were detected in the infertile population. The gr/gr deletion was also noted in relatives of four of the six patients with this deletion, and in one of the fertile controls. In conclusion, our study shows that the incidence of Y-chromosome microdeletions in our population is rare; these data suggest that other genetic, epigenetic, nutritional and/or local factors are responsible for impairments in semen parameters observed in this Gazan population. We further hypothesise that the gr/gr deletion is not associated with male infertility, at least in this sub-group. PMID:20485582

  2. Sertoli Cell-Only Syndrome: Behind the Genetic Scenes.

    PubMed

    Stouffs, Katrien; Gheldof, Alexander; Tournaye, Herman; Vandermaelen, Deborah; Bonduelle, Maryse; Lissens, Willy; Seneca, Sara

    2016-01-01

    Sertoli cell-only syndrome is defined by the complete absence of germ cells in testicular tissues and always results in male infertility. The aetiology often remains unknown. In this paper, we have investigated possible causes of Sertoli cell-only syndrome with a special focus on genetic causes. Our results show that, for a large part of the patients (>23% in an unselected group), the sex chromosomes are involved. The majority of patients had a Klinefelter syndrome, followed by patients with Yq microdeletions. Array comparative genomic hybridization in a selected group of "idiopathic patients" showed no known infertility related copy number variations.

  3. Sertoli Cell-Only Syndrome: Behind the Genetic Scenes

    PubMed Central

    Stouffs, Katrien; Gheldof, Alexander; Tournaye, Herman; Vandermaelen, Deborah; Bonduelle, Maryse; Lissens, Willy; Seneca, Sara

    2016-01-01

    Sertoli cell-only syndrome is defined by the complete absence of germ cells in testicular tissues and always results in male infertility. The aetiology often remains unknown. In this paper, we have investigated possible causes of Sertoli cell-only syndrome with a special focus on genetic causes. Our results show that, for a large part of the patients (>23% in an unselected group), the sex chromosomes are involved. The majority of patients had a Klinefelter syndrome, followed by patients with Yq microdeletions. Array comparative genomic hybridization in a selected group of “idiopathic patients” showed no known infertility related copy number variations. PMID:26925412

  4. Fryns syndrome without diaphragmatic hernia, DOOR syndrome or Fryns-like syndrome? Report on patients from Indian Ocean islands.

    PubMed

    Alessandri, Jean-Luc; Cuillier, Fabrice; Malan, Valerie; Brayer, Claire; Grondard, Maeva; Jacquemot-Dekkak, Laure; Kieffer-Traversier, Marie; Pierre, Florence; Laurain, Céline; Samperiz, Sylvain; Tiran-Rajaofera, Isabelle; Ramful, Duksha

    2014-03-01

    We report on six patients (five unpublished patients) from the Indian Ocean islands, with coarse face, cleft lip or palate, eye anomalies, brachytelephalangy, nail hypoplasia, various malformations (genitourinary or cerebral), abnormal electroencephalograms with impaired neurological examination and lethal outcome. Massive polyhydramnios was noted in the third trimester of pregnancy and neonatal growth was normal or excessive. The combination of the features is consistent with the diagnosis of Fryns syndrome (FS) without congenital diaphragmatic hernia. Besides chromosomal aberrations and microdeletion syndrome, differential diagnoses include conditions overlapping with FS such as Simpson-Golabi-Behmel, and conditions with hypoplasia/absence of the distal phalanges such as DOOR syndrome, Schinzel-Giedion syndrome, and Rudiger syndrome.

  5. Incidence of Y-chromosome microdeletions in children whose fathers underwent vasectomy reversal or in vitro fertilization with epididymal sperm aspiration: a case-control study

    PubMed Central

    Ghirelli-Filho, Milton; de Marchi, Patricia Leme; Mafra, Fernanda Abani; Cavalcanti, Viviane; Christofolini, Denise Maria; Barbosa, Caio Parente; Bianco, Bianca; Glina, Sidney

    2016-01-01

    ABSTRACT Objective To evaluate the incidence of Y-chromosome microdeletions in individuals born from vasectomized fathers who underwent vasectomy reversal or in vitro fertilization with sperm retrieval by epididymal aspiration (percutaneous epididymal sperm aspiration). Methods A case-control study comprising male children of couples in which the man had been previously vasectomized and chose vasectomy reversal (n=31) or in vitro fertilization with sperm retrieval by percutaneous epididymal sperm aspiration (n=30) to conceive new children, and a Control Group of male children of fertile men who had programmed vasectomies (n=60). Y-chromosome microdeletions research was performed by polymerase chain reaction on fathers and children, evaluating 20 regions of the chromosome. Results The results showed no Y-chromosome microdeletions in any of the studied subjects. The incidence of Y-chromosome microdeletions in individuals born from vasectomized fathers who underwent vasectomy reversal or in vitro fertilization with spermatozoa recovered by percutaneous epididymal sperm aspiration did not differ between the groups, and there was no difference between control subjects born from natural pregnancies or population incidence in fertile men. Conclusion We found no association considering microdeletions in the azoospermia factor region of the Y chromosome and assisted reproduction. We also found no correlation between these Y-chromosome microdeletions and vasectomies, which suggests that the assisted reproduction techniques do not increase the incidence of Y-chromosome microdeletions. PMID:28076602

  6. [Microdeletion 12p12 involving SOX5 gene: a new syndrome with developmental delay].

    PubMed

    Arroyo-Carrera, Ignacio; de Zaldívar-Tristancho, M Solo; Martín-Fernández, Rebeca; Hernández-Martín, Raquel; López-Lafuente, Amparo; Rodríguez-Revenga, Laia

    2015-05-16

    Introduccion. El gen SOX5 codifica un factor de transcripcion implicado en la regulacion de la condrogenia y el desarrollo del sistema nervioso. Caso clinico. Niña de 10 anos con discapacidad intelectual, alteracion conductual y malformaciones menores de este nuevo sindrome con alteracion en el neurodesarrollo, con una delecion 12p12 que incluye el gen SOX5. Conclusiones. Se revisan los casos publicados tanto de deleciones intragenicas de SOX5 como de deleciones mas grandes que incluyen este gen, y se analizan las correlaciones genotipo-fenotipo y los genes implicados en esta paciente.

  7. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  8. [Diagnostic difficulties in Smith-Magenis Syndrome (SMS) on the basis of own experience and literature data].

    PubMed

    Stembalska, Agnieszka; Jakubiak, Aleksandra; Śmigiel, Robert

    2012-01-01

    The Smith-Magenis syndrome (SMS) is a rare microdeletion dysmorphic syndrome (interstitial microdeletion of chromosome 17p11.2), which occurs sporadically. Mutations in the RAI1 gene are found in part of the patients. SMS is characterized by intellectual disability and behavioural disturbances (sleep disturbances, hyperactivity, attention deficit, self-injury behaviour), craniofacial dysmorphism and defects of other organs and systems (teeth, eyes and upper respiratory and hearing disturbances, short stature, brachydactyly, scoliosis, cardiac and genitourinary defects). There are also neurological problems (muscular hypotonia, peripheral neuropathy, epilepsy and decreased sensitivity to pain). Many of the features that appear in the SMS may occur in other genetic syndromes, which may cause diagnostic difficulties. We report two cases of late diagnosed patients with the Smith-Magenis syndrome. Additionally, we present a review of literature and differential diagnosis. This may help in making the diagnosis and in giving optimal medical and psychological care to patients with SMS.

  9. Clinical consequences of microdeletions of the Y chromosome: the extended Münster experience.

    PubMed

    Simoni, Manuela; Tüttelmann, Frank; Gromoll, Jörg; Nieschlag, Eberhard

    2008-02-01

    A total of 3179 patients were screened for Y-chromosome microdeletions and 821 patients for partial AZFc deletions. Thirty-nine Y-chromosomal microdeletions were found (2.4% of men with <1 x 10(6)/ml spermatozoa): two AZFa, two AZFb, one AZFbc, one partial AZFb, one partial AZFb+c and 32 AZFc (b2/b4). Partial AZFc deletions were found in 45 patients (5.5%), mostly gr/gr deletions (n = 28). In patients with AZFc deletion, azoospermia was found in 53.1% and sperm concentrations of mostly <0.1 x 10(6)/ml were found in 46.9%. Semen analyses and FSH measurements showed no trend over time. Elongated spermatids were seen in 6/15 AZFc patients and bilateral Sertoli cell-only was found in 4/15. Testicular sperm extraction (TESE) was attempted in 10 patients and spermatozoa were found in six. Compared with infertile men matched by sperm concentration, no differences in hormonal and seminal parameters could be found in patients with AZFc or gr/gr deletions. It is concluded that: (i) frequency of AZF deletions in Germany is much lower than in other countries; (ii) AZFc deletions are associated with severe disturbances of spermatogenesis and TESE is not possible in half of these patients; (iii) AZFc and gr/ gr deletions are not associated with any clinical diagnostic parameter; (iv) and no trend is apparent over time.

  10. Genotype–phenotype relationship in three cases with overlapping 19p13.12 microdeletions

    PubMed Central

    Bonaglia, Maria C; Marelli, Susan; Novara, Francesca; Commodaro, Simona; Borgatti, Renato; Minardo, Grazia; Memo, Luigi; Mangold, Elisabeth; Beri, Silvana; Zucca, Claudio; Brambilla, Daniele; Molteni, Massimo; Giorda, Roberto; Weber, Ruthild G; Zuffardi, Orsetta

    2010-01-01

    We describe the detailed clinical and molecular characterization of three patients (aged 7, 84/12 and 31 years) with overlapping microdeletions in 19p13.12, extending to 19p13.13 in two cases. The patients share the following clinical features with a recently reported 10-year-old girl with a 19p13.12 microdeletion: mental retardation (MR), psychomotor and language delay, hearing impairment, brachycephaly, anteverted nares and ear malformations. All patients share a 359-kb deleted region in 19p13.12 harboring six genes (LPHN1, DDX39, CD97, PKN1, PTGER1 and GIPC1), several of which may be MR candidates because of their function and expression pattern. LPHN1 and PKN1 are the most appealing; LPHN1 for its interaction with Shank family proteins, and PKN1 because it is involved in a variety of functions in neurons, including cytoskeletal organization. Haploinsufficiency of GIPC1 may contribute to hearing impairment for its interaction with myosin VI. A behavioral phenotype was observed in all three patients; it was characterized by overactive disorder associated with MR and stereotyped movements (ICD10) in one patient and hyperactivity in the other two. As Ptger1-null mice show behavioral inhibition and impulsive aggression with defective social interaction, PTGER1 haploinsufficiency may be responsible for the behavioral traits observed in these patients. PMID:20648052

  11. Pedigrees of infertile Chinese men with Y chromosome microdeletions derived from natural transmission and de novo mutation.

    PubMed

    Li, L L; Zhu, Y Z; Yu, X W; Wang, R X; Hu, Z M; Liu, R Z

    2015-03-20

    Y chromosome microdeletions can cause male infertility and are classified as natural transmission and de novo mutations. To examine the source of these deletions in Chinese men and to provide a theoretical and laboratory basis for genetic counseling, patients from Northeast China with primary male infertility (N = 22) and their fathers were investigated. Karyotype analysis was performed on peripheral blood lymphocytes using standard G-banding. Multiplex polymerase chain reaction amplification using 18 specific sequence-tagged sites was selected to detect Y chromosome microdeletions. De novo mutations were observed in 17 father-son pairs, leading to a mutation rate of 77.27% (17/22), while the vertical transmission of Yq AZFc microdeletions was detected in 5 cases of the families investigated (29.41%, 5/17). There were no statistically significant differences between vertically transmitted and de novo mutations in men with AZFc deletions regarding age, testicular volume, and reproductive hormone levels. Most Y chromosome microdeletions in men from Northeast China are the result of de novo mutations via natural conception, and men with Yq AZFc deletions showed no clear differences between vertical transmission and de novo mutations.

  12. Copy number variation and microdeletions of the Y chromosome linked genes and loci across different categories of Indian infertile males

    PubMed Central

    Kumari, Anju; Yadav, Sandeep Kumar; Misro, Man Mohan; Ahmad, Jamal; Ali, Sher

    2015-01-01

    We analyzed 34 azoospermic (AZ), 43 oligospermic (OS), and 40 infertile males with normal spermiogram (INS) together with 55 normal fertile males (NFM) from the Indian population. AZ showed more microdeletions in the AZFa and AZFb regions whereas oligospermic ones showed more microdeletions in the AZFc region. Frequency of the AZF partial deletions was higher in males with spermatogenic impairments than in INS. Significantly, SRY, DAZ and BPY2 genes showed copy number variation across different categories of the patients and much reduced copies of the DYZ1 repeat arrays compared to that in normal fertile males. Likewise, INS showed microdeletions, sequence and copy number variation of several Y linked genes and loci. In the context of infertility, STS deletions and copy number variations both were statistically significant (p = 0.001). Thus, semen samples used during in vitro fertilization (IVF) and assisted reproductive technology (ART) must be assessed for the microdeletions of AZFa, b and c regions in addition to the affected genes reported herein. Present study is envisaged to be useful for DNA based diagnosis of different categories of the infertile males lending support to genetic counseling to the couples aspiring to avail assisted reproductive technologies. PMID:26638807

  13. [DiGeorge syndrome/velcardiofacial syndrome: oral and maxillofacial surgery].

    PubMed

    Pradel, W; Bartsch, O; Müller, R; Lauer, G; Eckelt, U

    2003-09-01

    The DiGeorge syndrome/velocardiofacial syndrome is the most frequent chromosomal microdeletion syndrome. Partial deletion of chromosome 22q11 may lead to symptoms including facial dysmorphy, hypoparathyroidism, thymic aplasia, congenital heart disease, developmental retardation, and disturbance of speech development. According to the literature, 9% of patients have cleft palate, an additional 5% have a submucosal cleft, and a total of 32% show velopharyngeal insufficiency. We studied 64 children with a cleft, or with delayed speech development and a submucosal or occult cleft, for the presence of the 22q11deletion using fluorescent in situ hybridisation. Five patients had the 22q11 deletion. We conclude that patients presenting with nasal speech and additional anomalies should all be studied for the presence of submucosal or occult clefting and for the presence of the DiGeorge syndrome/velocardiofacial syndrome.

  14. Prader-Willi syndrome.

    PubMed

    Cassidy, Suzanne B; Driscoll, Daniel J

    2009-01-01

    Prader-Willi syndrome (PWS) is a highly variable genetic disorder affecting multiple body systems whose most consistent major manifestations include hypotonia with poor suck and poor weight gain in infancy; mild mental retardation, hypogonadism, growth hormone insufficiency causing short stature for the family, early childhood-onset hyperphagia and obesity, characteristic appearance, and behavioral and sometimes psychiatric disturbance. Many more minor characteristics can be helpful in diagnosis and important in management. PWS is an example of a genetic condition involving genomic imprinting. It can occur by three main mechanisms, which lead to absence of expression of paternally inherited genes in the 15q11.2-q13 region: paternal microdeletion, maternal uniparental disomy, and imprinting defect.

  15. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    PubMed Central

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D. J.

    2016-01-01

    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  16. Airway Management in a Patient with Wolf-Hirschhorn Syndrome

    PubMed Central

    Udani, Andrea G.

    2016-01-01

    We present a case of a 3-month-old female with Wolf-Hirschhorn syndrome (WHS) undergoing general anesthesia for laparoscopic gastrostomy tube placement with a focus on airway management. WHS is a rare 4p microdeletion syndrome resulting in multiple congenital abnormalities, including craniofacial deformities. Microcephaly, micrognathia, and glossoptosis are common features in WHS patients and risk factors for a pediatric airway that is potentially difficult to intubate. We discuss anesthesia strategies for airway preparation and management in a WHS patient requiring general anesthesia with endotracheal intubation. PMID:27752382

  17. FISH analysis in Prader-Willi and Angelman syndrome patients

    SciTech Connect

    Bettio, D.; Rizzi, N.; Giardino, D.

    1995-03-27

    We report on a combined high resolution cytogenetic and fluorescent in situ hybridization study (FISH) on 15 Prader-Willi syndrome (PWS) and 14 Angelman syndrome (AS) patients. High resolution banding showed a microdeletion in the 15q11-q13 region in 7 out of 15 PWS patients, and FISH analysis of the D15S11 and SNRPN cosmids demonstrated absence of the critical region in three additional cases. Likewise 8 out of 14 AS patients were found to be deleted with FISH, using the GABRB3 specific cosmid, whereas only 4 of them had a cytogenetically detectable deletion. 19 refs., 3 figs., 1 tab.

  18. [An attempt to identify 22q11.2 microdeletions in samples of the Hungarian schizophrenia DNA bank by multiplex ligation-based probe amplification (MLPA): literature review, methodology and results].

    PubMed

    Klein, Izabella; Szocs, Katalin; Vincze, Katalin; Benkovits, Judit; Somogyi, Szilvia; Herman, Levente; Rethelyi, Janos M

    2016-12-01

    Schizophrenia is a severe debilitating psychiatric disorder, with a typical onset in adolescence or early adulthood. This condition is characterized by heterogeneous symptoms (hallucinations, delusions, disorganized behaviour, affective flattening, and social isolation) and a life-time prevalence of 0.5-1.2%. In spite of the efforts to uncover the etiology of the disorder, its pathogenesis and neurobiological background are poorly understood. Given the high heritability in schizophrenia, genetic research remains an important area of focus. Besides the common variations of low penetrance - single nucleotid polymorphisms (SNPs) -, rare variants, mainly copy number variations (CNVs) play a role in the genetic architecture of the disorder. The most frequent CNV associated with schizophrenia is the hemizygous deletion of the 22q11.2 region. According to previous research this genetic variant occurs in 1% of the patients and conversely, 25% of the carriers of the 22q11.2 microdeletion will develop schizophrenia. The 22q11.2 deletion syndrome (22Q11DS, velocardiofacial (VCFS) syndrome, DiGeorge-syndrome) is usually a childhood diagnosis. Its prevalence is 1:2000-4000 considering all births. Patients can demonstrate heart developmental disorders, craniofacial (elongated face, hypertelorism), immunological (thymus-hypoplasia), endocrinological (hypocalcaemia) abnormalities, and neurodevelopmental alterations, but only a proportion will have these abnormalities due to incomplete penetrance. The variable symptoms complicate the recognition of the syndrome in the day to day medical practice. 25% of the known 22Q11DS patients develop schizophrenia but the risk of neuropsychiatric problems, like autism, ADHD and childhood conduct disorder is also increased, while early onset Parkinson's disease in also more frequent in adults. The schizophrenia phenotype is not distinguishable at the moment in patients with or without the 22q11 deletion. But emerging evidence suggests that early

  19. 6q22.33 microdeletion in a family with intellectual disability, variable major anomalies, and behavioral abnormalities.

    PubMed

    Mackenroth, Luisa; Hackmann, Karl; Beyer, Anke; Schallner, Jens; Novotna, Barbara; Klink, Barbara; Schröck, Evelin; Di Donato, Nataliya

    2015-11-01

    Interstitial deletions on the long arm of chromosome six have been described for several regions including 6q16, 6q22.1, and 6q21q22.1, and with variable phenotypes such as intellectual disability/developmental delay, growth retardation, major and minor facial anomalies. However, an isolated microdeletion of the sub-band 6q22.33 has not been reported so far and thus, no information about the specific phenotype associated with such a copy number variant is available. Here, we define the clinical picture of an isolated 6q22.33 microdeletion based on the phenotype of six members of one family with loss of approximately 1 Mb in this region. Main clinical features include mild intellectual disability and behavioral abnormalities as well as microcephaly, heart defect, and cleft lip and palate.

  20. Screening for Y Chromosome Microdeletion in a Nonobstructive Azoospermic Male Patient with Allogeneic Bone Marrow Transplantation from His Sister

    PubMed Central

    Gurkan, Hakan; Kucukdurmaz, Faruk; Akman, Tolga; Aydın, Filiz; Kadioglu, Ates

    2010-01-01

    Genomic DNA of a patient diagnosed with nonobstructive azoospermia and with the history of allogenic bone marrow transplantation from his sister due to chronic myeloid leukemia was isolated from peripheral blood in order to screen Y chromosome microdeletions. 13 short tagged sites belonging to AZF a, b, and c loci were detected with multiplex polymerase chain reaction technique. Bands were determined in ZFX/ZFY wells, whereas no bands were determined in wells of other STS regions. DNA isolation was done from buccal mucosa smear to obtain genomic DNA from patient's own cells and multiplex polymerase chain reaction technique was performed again. Bands were seen in all wells of 13 STS regions. Y chromosome microdeletion was not detected in the patient. In conclusion, genomic DNA isolation in patients undergoing BMT should be done from patients' own cells. PMID:21209805

  1. Recurrent Microdeletions at Xq27.3-Xq28 and Male Infertility: A Study in the Czech Population

    PubMed Central

    Chylíková, Blanka; Hrdlička, Ivan; Veselá, Kamila; Řežábek, Karel; Liška, František

    2016-01-01

    Background Genetic causes of male infertility are hypothesized to involve multiple types of mutations, from single gene defects to complex chromosome rearrangements. Recently, several recurrent X-chromosome microdeletions (located in subtelomeric region of the long arm) were reported to be associated with male infertility in Spanish and Italian males. The aim of our study was to test their prevalence and infertility association in population of men from the Czech Republic. Methods 107 males with pathological sperm evaluation resulting in nonobstructive infertility were compared to 131 males with normal fecundity. X-chromosome microdeletions were assessed by +/- PCR with three primer pairs for each region Xcnv64 (Xq27.3), Xcnv67 (Xq28) and Xcnv69 (Xq28). The latter microdeletion was further characterized by amplification across the deleted region, dividing the deletion into three types; A, B and C. Results We detected presence of isolated Xcnv64 deletion in 3 patients and 14 controls, and Xcnv69 in 3 patients and 6 controls (1 and 1 patient vs.4 and 1 control for types A and B respectively). There was one control with combined Xcnv64 and Xcnv69 type B deletions, and one patient with combination of Xcnv64 and Xcnv69 type C deletions. The frequency of the deletions was thus not higher in patient compared to control group, Xcnv64 was marginally associated with controls (adjusted Fisher´s exact test P = 0.043), Xcnv69 was not associated (P = 0.452). We excluded presence of more extensive rearrangements in two subjects with combined Xcnv64 and Xcnv69 deletions. There was no Xcnv67 deletion in our cohort. Conclusion In conclusion, the two previously reported X-linked microdeletions (Xcnv64 and Xcnv69) do not seem to confer a significant risk to impaired spermatogenesis in the Czech population. The potential clinical role of the previously reported patient-specific Xcnv67 remains to be determined in a larger study population. PMID:27257673

  2. Substantial prevalence of microdeletions of the Y-chromosome in infertile men with idiopathic azoospermia and oligozoospermia detected using a sequence-tagged site-based mapping strategy

    SciTech Connect

    Najmabadi, H.; Huang, V.; Bhasin, D.

    1996-04-01

    Genes on the long arm of Y (Yq), particularly within interval 6, are believed to play a critical role in human spermatogenesis. Cytogenetically detectable deletions of this region are associated with azoospermia in men, but are relatively uncommon. The objective of this study was to validate a sequence-tagged site (STS)-mapping strategy for the detection of Yq microdeletions and to use this method to determine the proportion of men with idiopathic azoospermia or severe oligozoospermia who carry microdeletions in Yq. STS mapping of a sufficiently large sample of infertile men should also help further localize the putative gene(s) involved in the pathogenesis of male infertility. Genomic DNA was extracted from peripheral leukocytes of 16 normal fertile men, 7 normal fertile women, 60 infertile men, and 15 patients with the X-linked disorder, ichthyosis. PCR primers were synthesized for 26 STSs that span Yq interval 6. None of the 16 normal men of known fertility had microdeletions. Seven normal fertile women failed to amplify any of the 26 STSs, providing evidence of their Y specificity. No microdeletions were detected in any of the 15 patients with ichthyosis. Of the 60 infertile men typed with 26 STSs, 11 (18%; 10 azoospermic and 1 oligozoospermic) failed to amplify 1 or more STS. Interestingly, 4 of the 11 patients had microdeletions in a region that is outside the Yq region from which the DAZ (deleted in azoospermia gene region) gene was cloned. In an additional 3 patients, microdeletions were present both inside and outside the DAZ region. The physical locations of these microdeletions provide further support for the concept that a gene(s) on Yq deletion interval 6 plays an important role in spermatogenesis. The presence of deletions that do not overlap with the DAZ region suggests that genes other than the DAZ gene may also be implicated in the pathogenesis of some subsets of male infertility. 48 refs., 2 figs., 2 tabs.

  3. 2q37.3 Deletion Syndrome: Two Cases with Highly Distinctive Facial Phenotype, Discordant Association with Schizophrenic Psychosis, and Shared Deletion Breakpoint Region on 2q37.3.

    PubMed

    Mehraein, Yasmin; Pfob, Martina; Steinlein, Ortrud; Aichinger, Eric; Eggert, Marlene; Bubendorff, Valerie; Mannhart, Adelina; Müller, Stefan

    2015-01-01

    2q37.3 deletion syndrome belongs to the chromosomal 2q37 deletion spectrum which clinically resembles Albright hereditary osteodystrophy (AHO) syndrome. It is is mainly characterized by short stature, obesity, round face, brachydactyly type E, intellectual disability, behavioral problems, and variable intellectual deficits. Different from classical AHO syndrome, patients with 2q37 deletion syndrome lack renal parathyroid hormone resistance (pseudohypoparathyroidism) and soft tissue ossification. So far, deletion mapping or molecular breakpoint analyses of 2q37 have been performed in only few patients. Here, we report on 2 patients with 2q37.3 deletion syndrome. In both patients the breakpoint of the 5.5-Mb terminal microdeletion could be narrowed down to the same ∼ 200-kb interval on 2q37.3 by BAC-FISH and/or array-CGH. Flanking low-copy repeats may indicate a classical microdeletion syndrome genesis for the 2q37.3 microdeletion subgroup. Clinical evaluation revealed intellectual deficits and type E brachydactyly typical for classical AHO syndrome together with distinctive facial dysmorphisms not present in the former. Furthermore, one patient presented with schizophrenic psychosis, an observation that would be in accordance with previous reports about an association between schizophrenia susceptibility and an unknown gene within the chromosomal region 2q37.

  4. Angelman syndrome in Hong Kong Chinese: A 20 years' experience.

    PubMed

    Luk, H M; Lo, Ivan F M

    2016-06-01

    AS(OMIM #105830) is a neurodevelopmental disease that characterized by severe intellectual disability, lack of speech, happy disposition, ataxia, epilepsy and distinct behavioural profile. A tertiary wide study was performed in Hong Kong with aim to examine the clinical and molecular features, genotype-phenotype correlation of the Angelman syndrome (AS) patients. There were total 55 molecularly confirmed AS between January 1995 to September 2015 for review. 65.5% of them were caused by maternal microdeletion, 10.9% by paternal uniparental disomy, 3.6% by imprinting center defect and 14.5% by UBE3A gene mutation. Genotype-phenotype correlation showed epilepsy and microcephaly is more common in microdeletion type as compared with non-microdeletional type. We have concluded that the incidence rate, clinical features and underlying genetic mechanisms in Hong Kong Chinese were comparable with other western populations. The overall average age of diagnosis in this cohort was 6.2 years old (95% C.I was 5.0-7.5 years old). It is hope that by increasing awareness and early referral could result in early diagnosis and better management for AS patient.

  5. Prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with severe semen abnormalities and its correlation with successful sperm retrieval

    PubMed Central

    Mascarenhas, Mariano; Thomas, Sumi; Kamath, Mohan S.; Ramalingam, Ramya; Kongari, Ann Marie; Yuvarani, S; Srivastava, Vivi M.; George, Korula

    2016-01-01

    AIM: To estimate the prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with azoospermia and severe oligozoospermia and its correlation with successful surgical sperm retrieval. SETTING AND DESIGN: A prospective study in a tertiary level infertility unit. MATERIALS AND METHODS: In a prospective observation study, men with azoospermia and severe oligozoospermia (concentration <5 million/ml) attending the infertility center underwent genetic screening. Peripheral blood karyotype was done by Giemsa banding. Y chromosome microdeletion study was performed by a multiplex polymerase chain reaction. RESULTS: The study group consisted of 220 men, 133 of whom had azoospermia and 87 had severe oligozoospermia. Overall, 21/220 (9.5%) men had chromosomal abnormalities and 13/220 (5.9%) men had Y chromosome microdeletions. Chromosomal abnormalities were seen in 14.3% (19/133) of azoospermic men and Y chromosome microdeletions in 8.3% (11/133). Of the 87 men with severe oligozoospermia, chromosomal abnormalities and Y chromosome microdeletions were each seen in 2.3% (2/87). Testicular sperm aspiration was done in 13 men and was successful in only one, who had a deletion of azoospermia factor c. CONCLUSIONS: Our study found a fairly high prevalence of genetic abnormality in men with severe semen abnormalities and a correlation of genetic abnormalities with surgical sperm retrieval outcomes. These findings support the need for genetic screening of these men prior to embarking on surgical sperm retrieval and assisted reproductive technology intracytoplasmic sperm injection. PMID:27803587

  6. Popliteal pterygium syndrome in a Swedish family--clinical findings and genetic analysis with the van der Woude syndrome locus at 1q32-q41.

    PubMed

    Wong, F K; Gustafsson, B

    2000-04-01

    The present study describes a Swedish family in which the mother and her son were affected with signs of popliteal pterygium syndrome (PPS, OMIM 119500). Both individuals had bilateral complete cleft lip and palate, oral synechiae, paramedian pits on the lower lip, toe syndactyly and a piece of triangular skin overgrowth on the great toes. The son also presented with soft tissue syndactyly of the 2nd and 3rd fingers. Although popliteal pterygium was not found, the above clinical features were diagnostic for PPS. Chromosomal abnormalities were not revealed in either case by cytogenetic analyses. A test for microdeletion in the VWS region at 1q32-q41 was performed in the family using 5 polymorphic microsatellite markers from the region. The affected son was found to be heterozygous for all 5 markers, suggesting that microdeletion at the VWS region was unlikely. The VWS locus, however, was not excluded by haplotype analysis of the family.

  7. Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability

    PubMed Central

    Antonacci, Francesca; Dennis, Megan Y.; Huddleston, John; Sudmant, Peter H.; Steinberg, Karyn Meltz; Rosenfeld, Jill A.; Miroballo, Mattia; Graves, Tina A.; Vives, Laura; Malig, Maika; Denman, Laura; Raja, Archana; Stuart, Andrew; Tang, Joyce; Munson, Brenton; Shaffer, Lisa G.; Amemiya, Chris T.; Wilson, Richard K.; Eichler, Evan E.

    2014-01-01

    Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into its instability, we sequenced the region in patients, normal individuals and nonhuman primates. We discovered five structural configurations of the human chromosome 15q13.3 region ranging in size from 2 to 3 Mbp. These configurations arose recently (~0.5–0.9 million years ago) as a result of human-specific expansions of segmental duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 core duplicons—a ~14 kbp primate-specific chromosome 15 repeat that became organized into larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the human lineage, and independent structural changes in apes. The significant clustering (p=0.002) of breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic architecture in promoting evolutionary and disease-related instability of chromosome 15. PMID:25326701

  8. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles

    PubMed Central

    Kusenda, Mary; Vacic, Vladimir; Malhotra, Dheeraj; Rodgers, Linda; Pavon, Kevin; Meth, Jennifer; Kumar, Ravinesh A.; Christian, Susan L.; Peeters, Hilde; Cho, Shawn S.; Addington, Anjene; Rapoport, Judith L.; Sebat, Jonathan

    2015-01-01

    Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder. PMID:26391891

  9. Genetic modifiers of Velo- cardio- facial syndrome/DiGeorge syndrome

    PubMed Central

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2009-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T- box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies which may help identify genetic modifiers for VCFS/DGS. PMID:18636633

  10. Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome.

    PubMed

    Aggarwal, Vimla S; Morrow, Bernice E

    2008-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T-box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies, which may help identify possible genetic modifiers for the physical malformations in VCFS/DGS.

  11. Del 1p36 syndrome: a newly emerging clinical entity.

    PubMed

    Battaglia, Agatino

    2005-08-01

    Monosomy 1p36 is a recently delineated contiguous gene syndrome, which is now considered to be the most common subtelomeric microdeletion syndrome. From the recent literature it appears as if 1p36 deletions account for 0.5-1.2% of idiopathic mental retardation. The deletions can be detected by high resolution cytogenetic studies in a minority of patients, and fluorescence in situ hybridisation (FISH) is required in most. The deletions' parent of origin seems still unclear, although in one large series it was shown to be maternal. 1p36 deletion syndrome is characterized by distinct craniofacial features, associated with developmental delay/mental retardation, hypotonia, muscle hypotrophy, seizures, brain abnormalities, and heart defects. To help child neurologists and other professionals in the recognition of this emerging and common chromosomal syndrome, we have reviewed published articles on patients with this deletion.

  12. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3.

    PubMed

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-03-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.

  13. A de novo microdeletion in a patient with inner ear abnormalities suggests that the 10q26.13 region contains the responsible gene.

    PubMed

    Sangu, Noriko; Okamoto, Nobuhiko; Shimojima, Keiko; Ondo, Yumiko; Nishikawa, Masanori; Yamamoto, Toshiyuki

    2016-01-01

    Microdeletions in the 10q26.1 region are related to intellectual disability, growth delay, microcephaly, distinctive craniofacial features, cardiac defects, genital abnormalities and inner ear abnormalities. The genes responsible for inner ear abnormalities have been narrowed to fibroblast growth factor receptor 2 gene (FGFR2), H6 family homeobox 2 gene (HMX2) and H6 family homeobox 3 gene (HMX3). An additional patient with distinctive craniofacial features, congenital deafness and balance dysfunctions showed a de novo microdeletion of 10q26.11q26.13, indicating the existence of a gene responsible for inner ear abnormalities in this region.

  14. A variant Cri du Chat phenotype and autism spectrum disorder in a subject with de novo cryptic microdeletions involving 5p15.2 and 3p24.3-25 detected using whole genomic array CGH.

    PubMed

    Harvard, C; Malenfant, P; Koochek, M; Creighton, S; Mickelson, E C R; Holden, J J A; Lewis, M E S; Rajcan-Separovic, E

    2005-04-01

    Cri du Chat syndrome (CdCs) is a well-defined clinical entity, with an incidence of 1/15,000 to 1/50,000. The critical region for CdCs has been mapped to 5p15, with the hallmark cat-like cry sublocalized to 5p15.3 and the remaining clinical features to 5p15.2. We report findings in a subject with a de novo t(5;7)(p15.2;p12.2) and an inv(3)(p24q24), who was found to have a cryptic microdeletion in the critical region for CdCs detected using a 1-Mb genomic microarray. In addition to 5p deletion, the proband had a de novo single clone loss at the 3p breakpoint of inv(3)(p24q24) and a familial single clone deletion at 18q12. Deletions were confirmed using microsatellite analysis and fluorescence in situ hybridization. The 5p deletion encompasses approximately 3 Mb, mapping to the border between bands 5p15.2 and 5p15.31. The single clone deletion on chromosome 3 maps to 3p24.3-3p25, for which there is no known phenotype. The clinical features of our proband differ from the characteristic CdC phenotype, which may reflect the combined effect of the two de novo microdeletions and/or may further refine the critical region for CdCs. Typical features of CdCs that are present in the proband include moderate intellectual disability, speech, and motor delay as well as dysmorphic features (e.g. broad and high nasal root, hypertelorism, and coarse facies). Expected CdCs features that are not present are growth delay, microcephaly, round facies, micrognathia, epicanthal folds, and the signature high-pitched cry. Behavioral traits in this subject included autism spectrum disorder, attention-deficit hyperactivity disorder, and unmanageable behavior including aggression, tantrums, irritability, and self-destructive behavior. Several of these behaviors have been previously reported in patients with 5p deletion syndrome. Although most agree on the cat-cry critical region (5p15.3), there is discrepancy in the precise location and size of the region associated with the more severe

  15. Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region.

    PubMed

    Goldmuntz, E; Wang, Z; Roe, B A; Budarf, M L

    1996-04-15

    DiGeorge syndrome (DGS) and velocardiofacial syndrome have been shown to be associated with microdeletions of chromosomal regions 22q11. More recently, patients with conotruncal anomaly face syndrome and some nonsyndromic patients with isolated forms of conotruncal cardiac defects have been found to have 22q11 microdeletions as well. The commonly deleted region, called the DiGeorge chromosomal region (DGCR), spans approximately 1.2 Mb and is estimated to contain at least 30 genes. We report a computational approach for gene identification that makes use of large-scale sequencing of cosmids from a contig spanning the DGCR. Using this methodology, we have mapped the human homolog of a rodent citrate transport protein to the DGCR. We have isolated a partial cDNA containing the complete open reading frame and have determined the genomic structure by comparing the genomic sequence from the cosmid to the sequence of the cDNA clone. Whether the citrate transport protein can be implicated in the biological etiology of DGS or other 22q11 microdeletion syndromes remains to be defined.

  16. Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region

    SciTech Connect

    Goldmuntz, E.; Budarf, M.L.; Wang, Zhili; Roe, B.A.

    1996-04-15

    DiGeorge syndrome (DGS) and velocardiofacial syndrome have been shown to be associated with microdeletions of chromosomal region 22q11. More recently, patients with conotruncal anomaly face syndrome and some nonsyndromic patients with isolated forms of conotruncal cardiac defects have been found to have 22q11 microdeletions as well. The commonly deleted region, called the DiGeorge chromosomal region (DGCR), spans approximately 1.2 mb and is estimated to contain at least 30 genes. We report a computational approach for gene identification that makes use of large-scale sequencing of cosmids from a contig spanning the DGCR. Using this methodology, we have mapped the human homolog of a rodent citrate transport protein to the DGCR. We have isolated a partial cDNA containing the complete open reading frame and have determined the genomic structure by comparing the genomic sequence from the cosmid to the sequence of the cDNA clone. Whether the citrate transport protein can be implicated in the biological etiology of DGS or other 22q11 microdeletion syndromes remains to be defined. 36 refs., 3 figs., 1 tab.

  17. 6q22.1 microdeletion and susceptibility to pediatric epilepsy.

    PubMed

    Szafranski, Przemyslaw; Von Allmen, Gretchen K; Graham, Brett H; Wilfong, Angus A; Kang, Sung-Hae L; Ferreira, Jose A; Upton, Sheila J; Moeschler, John B; Bi, Weimin; Rosenfeld, Jill A; Shaffer, Lisa G; Wai Cheung, Sau; Stankiewicz, Paweł; Lalani, Seema R

    2015-02-01

    Genomic copy-number variations (CNVs) constitute an important cause of epilepsies and other human neurological disorders. Recent advancement of technologies integrating genome-wide CNV mapping and sequencing is rapidly expanding the molecular field of pediatric neurodevelopmental disorders. In a previous study, a novel epilepsy locus was identified on 6q16.3q22.31 by linkage analysis in a large pedigree. Subsequent array comparative genomic hybridization (array CGH) analysis of four unrelated cases narrowed this region to ∼5 Mb on 6q22.1q22.31. We sought to further narrow the critical region on chromosome 6q22. Array CGH analysis was used in genome-wide screen for CNVs of a large cohort of patients with neurological abnormalities. Long-range PCR and DNA sequencing were applied to precisely map chromosomal deletion breakpoints. Finally, real-time qPCR was used to estimate relative expression in the brain of the candidate genes. We identified six unrelated patients with overlapping microdeletions within 6q22.1q22.31 region, three of whom manifested seizures. Deletions were found to be de novo in 5/6 cases, including all subjects presenting with seizures. We sequenced the deletion breakpoints in four patients and narrowed the critical region to a ∼250-kb segment at 6q22.1 that includes NUS1, several expressed sequence tags (ESTs) that are highly expressed in the brain, and putative regulatory sequences of SLC35F1. Our findings indicate that dosage alteration in particular, of NUS1, EST AI858607, or SLC35F1 are important contributors to the neurodevelopmental phenotype associated with 6q22 deletion, including epilepsy and tremors.

  18. Mood disorder in a patient with Smith-Magenis syndrome: a case report.

    PubMed

    Bersani, Giuseppe; Russo, Daniele; Limpido, Lucilla; Marconi, Daniela

    2007-02-01

    Smith-Magenis syndrome (SMS) is a microdeletion syndrome characterized by physical and neurobehavioural features. This report describes the case of a 27 year old female affected by SMS associated with a diagnosis, according to DSMIV criteria, of Mood Disorder N.O.S. and Intermittent Explosive Disorder. To our knowledge, the association of SMS with mood shifts has never been reported. Considering the genetic alterations that characterizes the SMS, further investigations on the region of the chromosome 17p11.2 could help produce more information on the role of melatonin in the genesis of mood disorder.

  19. Microdeletion of chromosome 1q21.3 in fraternal twins is associated with mental retardation, microcephaly, and epilepsy

    PubMed Central

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Aktas, Dilek; Alikasifoglu, Mehmet

    2017-01-01

    Summary Reported here are twins, both of whom have a 1q21.3 microdeletion and who exhibit key features common to previously reported cases such as microcephaly and developmental delay. However, some clinical findings and deleted genes differed from those in previously reported cases. The karyotype was normal 46, XX for both of the twins. Array comparative genomic hybridization (CGH) identified a 2.6 Mb deletion on chromosome 1q21.3 (chr1: 153,514,121–156,171,335 bp) in case 1 and a 1.6 Mb deletion on chromosome 1q21.3 (chr1: 154,748,365–156,358,923 bp) in case 2. The deleted region includes DPM3, MUC1, GBA, PKLR, RIT1, and LAMTOR2 in both siblings. To the extent known, this is the second report of a 1q21.3 microdeletion in a family with mental retardation, developmental delay, seizures, and some dysmorphic features, thus expanding the phenotypic spectrum. PMID:28357185

  20. A Novel Microdeletion in 1(p34.2p34.3), Involving the "SLC2A1" ("GLUT1") Gene, and Severe Delayed Development

    ERIC Educational Resources Information Center

    Vermeer, Sascha; Koolen, David A; Visser, Gepke; Brackel, Hein J. L.; van der Burgt, Ineke; de Leeuw, Nicole; Willemsen, Michel A. A. P.; Sistermans, Erik A.; Pfundt, Rolph; de Vries, Bert B. A.

    2007-01-01

    A "de novo" 4.1-megabase microdeletion of chromosome 1p34.2p34.3 has been identified by array-based comparative genomic hybridization in a young male with severely delayed development, microcephaly, pronounced hypotonia, and facial dysmorphism. The deleted region encompasses 48 genes, among them the glucose transporter 1 ("SLC2A1" or "GLUT1")…

  1. AB024. Chromosome microarray analysis (CMA) for the diagnosis of children with developmental delay and multiple congenital anomalies in Singapore

    PubMed Central

    Law, Hai-Yang; Brett, Maggie; Tan, Ene-Choo; Yong, Min-Hwee; Lai, Angeline

    2015-01-01

    Chromosome microarray analysis (CMA) is a sensitive method to identify submicroscopic changes too small to be detected by conventional karyotyping. Due to its high-sensitivity in identifying regions with structural variation and hence the genes involved, it is recommended to be the first-tier genetic test for children with intellectual disabilities, development delay or multiple congenital anomalies, and is routinely available in USA and many countries in Europe. Our lab has started offering this as a clinical test based on the research experience on screening >400 children with developmental delay and multiple congenital anomalies since February 2014. To date, 271 patients have been screened using the Agilent 4×180K CGH + SNP array. Copy number variants (CNVs) ranging in size from 10 kb to 154 Mb were found in 109 patients (40%). Pathogenic and likely pathogenic CNVs were found in 55 (20%). These included 45 with deletions, 8 with duplications and 2 patients with both deletion and duplication. Recurrent microdeletion and microduplication syndromes including the Angelman/Prader-Willi syndrome [5], 1p36 microdeletion [3], Williams syndrome [2], 22q11.2 distal deletion syndrome [2], 16p13.3 microdeletion syndrome [2], Cat Eye syndrome, Cri du Chat syndrome, Miller Decker syndrome, 3q29 microdeletion, 15q24 microdeletion, and 1q43q44 syndrome were among the variants detected in our patients. CNVs of uncertain clinical significance were detected in 54 (20%) individuals: 32 were duplications, 18 were deletions and one with both deletion and duplication. However, due to the high cost of the test, parental testing was not performed and hence, significance of these variants could not be established conclusively. In conclusion, CMA is a powerful tool in identifying pathogenic chromosomal copy number alternations. However, due to the high cost of the test, parental testing for the cases where variants of uncertain significant are found is often not possible. CMA is useful

  2. Chromosome 11q13 deletion syndrome

    PubMed Central

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the appearance of eye abnormalities, was also reported. In this report, we describe a 1-year-old girl presenting with ptosis of the left upper eyelid, right auricular deformity, high-arched palate, delayed dentition, simian line on the right hand, microcephaly, and developmental delay. In this patient, we identified a deletion in the chromosome 11q13.2-q13.3 (2.75 Mb) region by using an array-comparative genomic hybridization analysis. The deletion in chromosome 11q13 results in a syndrome characterized by variable clinical manifestations. Some of these manifestations involve craniofacial dysmorphology and require a functional workup for hearing, ophthalmic examinations, and long-term dental care. PMID:28018436

  3. Trichorhinophalangeal syndrome type II presenting with short stature in a child.

    PubMed

    Hazan, Filiz; Korkmaz, Hüseyin A; Yararbaş, Kanay; Wuyts, Wim; Tükün, Ajlan

    2016-12-01

    Trichorhinophalangeal syndrome type II (TRPSII) (synonym: Langer-Giedon syndrome) is a rare autosomal dominant contiguous gene syndrome, resulting from a microdeletion encompassing the EXT1 and the TRPS1 gene at 8q24 (MIM#150230). This syndrome combines the clinical features of two autosomal dominant disorders, trichorhinophalangeal syndrome type I (MIM#190350) and hereditary multiple osteochondromas type I (MIM # 133700). TRPSII is characterized by sparse scalp hair, a long nose with a bulbous tip, long flat philtrum, cone-shaped epiphyses of the phalanges, retarded bone age in infancy and multiple cartilaginous osteochondromas. We report a Turkish patient who had the clinical features and skeletal signs of TRPSII in whom a 13.8Mb deletion in 8q23.1- 8q24.13 was detected.

  4. Smith-Magenis syndrome.

    PubMed

    Elsea, Sarah H; Girirajan, Santhosh

    2008-04-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder caused by haploinsufficiency of the retinoic acid-induced 1 (RAI1) gene on chromosome 17p11.2. Diagnostic strategies include molecular identification of a 17p11.2 microdeletion encompassing RAI1 or a mutation in RAI1. G-banding and fluorescent in situ hybridization (FISH) are the classical methods used to detect the SMS deletions, while multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative PCR are the newer, cost-effective, and high-throughput technologies. Most SMS features are due to RAI1 haploinsufficiency, while the variability and severity of the disorder are modified by other genes in the 17p11.2 region. The functional role for RAI1 is not completely understood, but it is likely involved in transcription, based on homology and preliminary studies. Management of SMS is primarily a multidisciplinary approach and involves treatment for sleep disturbance, speech and occupational therapies, minor medical interventions, and management of behaviors.

  5. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications

    PubMed Central

    Lindgren, Valerie; McRae, Anne; Dineen, Richard; Saulsberry, Alexandria; Hoganson, George; Schrift, Michael

    2015-01-01

    We describe six individuals with microdeletions and microduplications in the distal 22q11.2 region detected by microarray. Five of the abnormalities have breakpoints in the low-copy repeats (LCR) in this region and one patient has an atypical rearrangement. Two of the six patients with abnormalities in the region between LCR22 D–E have hearing loss, which has previously been reported only once in association with these abnormalities. We especially note the behavioral/neuropsychiatric problems, including the severity and early onset, in patients with distal 22q11.2 rearrangements. Our patients add to the genotype–phenotype correlations which are still being generated for these chromosomal anomalies. PMID:26247050

  6. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013.

    PubMed

    Krausz, C; Hoefsloot, L; Simoni, M; Tüttelmann, F

    2014-01-01

    The molecular diagnosis of Y-chromosomal microdeletions is a common routine genetic test which is part of the diagnostic workup of azoospermic and severe oligozoospermic men. Since 1999, the European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) have been actively involved in supporting the improvement of the quality of the diagnostic assays by publication of the laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions and by offering external quality assessment trials. The present revision of the 2004 laboratory guidelines summarizes all the clinical novelties related to the Y chromosome (classic, partial and gene-specific deletions, genotype-phenotype correlations, methodological issues) and provides an update on the results of the quality control programme. These aspects also reflect the consensus of a large group of specialists present at a round table session during the recent Florence-Utah-Symposium on 'Genetics of male infertility' (Florence, 19-21 September, 2013). During the last 10 years the gr/gr deletion has been demonstrated as a significant risk factor for impaired sperm production. However, the screening for this deletion type in the routine diagnostic setting is still a debated issue among experts. The original basic protocol based on two multiplex polymerase chain reactions remains fully valid and appropriate for accurate diagnosis of complete AZF deletions and it requires only a minor modification in populations with a specific Y chromosome background. However, in light of novel data on genotype-phenotype correlations, the extension analysis for the AZFa and AZFb deletions is now routinely recommended. Novel methods and kits with excessively high number of markers do not improve the sensitivity of the test, may even complicate the interpretation of the results and are not recommended. Annual participation in an external quality control programme is strongly encouraged. The 12-year

  7. Cardiovascular Malformations in CHARGE Syndrome with DiGeorge Phenotype: Two Case Reports.

    PubMed

    Yasuda, Kazushi; Morihana, Eiji; Fusazaki, Naoki; Ishikawa, Shiro

    2016-01-01

    Both CHARGE syndrome and DiGeorge anomaly are frequently accompanied by cardiovascular malformations. Some specific cardiovascular malformations such as interrupted aortic arch type B and truncus arteriosus are frequently associated with 22q11.2 deletion syndrome, while conotruncal defects and atrioventricular septal defects are overrepresented in patients with CHARGE syndrome. CHD7 gene mutation is identified in approximately two-thirds of patients with CHARGE syndrome, and chromosomal microdeletion at 22q11.2 is found in more than 95% of patients with 22q11.2 deletion syndrome. CHARGE syndrome is occasionally accompanied by DiGeorge phenotype. We report two patients with dysmorphic features of both CHARGE syndrome and 22q11.2 deletion syndrome. Although both of the two cases did not have 22q11.2 deletion, they had typical dysmorphic features of 22q11.2 deletion syndrome including cardiovascular malformations such as interrupted aortic arch type B. They also had characteristic features of CHARGE syndrome including ear malformation, genital hypoplasia, limb malformation, and endocrinological disorders. CHD7 gene mutation was confirmed in one of the two cases. When a patient with cardiovascular malformations frequently associated with 22q11.2 deletion syndrome does not have 22q11.2 deletion, we suggest that associated malformations characteristic of CHARGE syndrome should be searched for.

  8. Cardiovascular Malformations in CHARGE Syndrome with DiGeorge Phenotype: Two Case Reports

    PubMed Central

    Morihana, Eiji; Fusazaki, Naoki; Ishikawa, Shiro

    2016-01-01

    Both CHARGE syndrome and DiGeorge anomaly are frequently accompanied by cardiovascular malformations. Some specific cardiovascular malformations such as interrupted aortic arch type B and truncus arteriosus are frequently associated with 22q11.2 deletion syndrome, while conotruncal defects and atrioventricular septal defects are overrepresented in patients with CHARGE syndrome. CHD7 gene mutation is identified in approximately two-thirds of patients with CHARGE syndrome, and chromosomal microdeletion at 22q11.2 is found in more than 95% of patients with 22q11.2 deletion syndrome. CHARGE syndrome is occasionally accompanied by DiGeorge phenotype. We report two patients with dysmorphic features of both CHARGE syndrome and 22q11.2 deletion syndrome. Although both of the two cases did not have 22q11.2 deletion, they had typical dysmorphic features of 22q11.2 deletion syndrome including cardiovascular malformations such as interrupted aortic arch type B. They also had characteristic features of CHARGE syndrome including ear malformation, genital hypoplasia, limb malformation, and endocrinological disorders. CHD7 gene mutation was confirmed in one of the two cases. When a patient with cardiovascular malformations frequently associated with 22q11.2 deletion syndrome does not have 22q11.2 deletion, we suggest that associated malformations characteristic of CHARGE syndrome should be searched for. PMID:27957375

  9. The First Case Report in Italy of Di George Syndrome Detected by Noninvasive Prenatal Testing

    PubMed Central

    Rapacchia, Giuseppina; Lapucci, Cristina; Pittalis, Maria Carla; Youssef, Aly; Farina, Antonio

    2015-01-01

    Panorama Plus (Natera), a single-nucleotide polymorphism- (SNP-) based approach that relies on the identification of maternal and fetal allele distributions, allows the detection of common aneuploidies and also incorporates a panel of 5 microdeletions including Di George syndrome. We report here the first case of Di George syndrome detected by NIPT in Italy; blood was drawn at 12 weeks' gestation. The patient had an amniocentesis to confirm the diagnosis by MLPA (multiplex ligation-dependent probe amplification) and an ultrasound aimed to detect the features associated with the syndrome. A right aortic arch and suspect of thymus atrophy were detected, but not other severe malformations typical of the disease. The patient terminated the pregnancy at 17 weeks. NIPT allowed an early screening of Di George syndrome. As the patient was at low risk, it is likely that an ultrasound would have missed the condition. PMID:26346617

  10. Classical Noonan syndrome is not associated with deletions of 22q11

    SciTech Connect

    Robin, N.H.; Sellinger, B.; McDonald-McGinn, D.

    1995-03-13

    Deletions of 22q11 cause DiGeorge sequence (DGS), velo-cardio-facial syndrome (VCFS), conotruncal anomaly face syndrome, and some isolated conotruncal heart anomalies. Demonstration of a 22q11 deletion in a patient with manifestations of DGS and Noonan syndrome (NS) has raised the question of whether NS is another of the chromosome 22 microdeletion syndromes. This prompted us to evaluate a cohort of patients with NS for evidence of 22q11 deletions. Five of 6 NS propositi studied in our laboratory with marker N25 (D22S75) did not have a 22q11 deletion. A 2-month-old infant with several findings suggestive of NS did have a 22q11 deletion, suggesting that a small number of 22q11 deletion propositi may present with a NS-like picture. However, most cases of NS must have another cause. 10 refs., 1 fig.

  11. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes

    PubMed Central

    Tucker, Tracy; Zahir, Farah R; Griffith, Malachi; Delaney, Allen; Chai, David; Tsang, Erica; Lemyre, Emmanuelle; Dobrzeniecka, Sylvia; Marra, Marco; Eydoux, Patrice; Langlois, Sylvie; Hamdan, Fadi F; Michaud, Jacques L; Friedman, Jan M

    2014-01-01

    Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis. PMID:24253858

  12. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes.

    PubMed

    Tucker, Tracy; Zahir, Farah R; Griffith, Malachi; Delaney, Allen; Chai, David; Tsang, Erica; Lemyre, Emmanuelle; Dobrzeniecka, Sylvia; Marra, Marco; Eydoux, Patrice; Langlois, Sylvie; Hamdan, Fadi F; Michaud, Jacques L; Friedman, Jan M

    2014-06-01

    Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis.

  13. 15q11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: a series of 52 patients.

    PubMed

    Vanlerberghe, Clémence; Petit, Florence; Malan, Valérie; Vincent-Delorme, Catherine; Bouquillon, Sonia; Boute, Odile; Holder-Espinasse, Muriel; Delobel, Bruno; Duban, Bénédicte; Vallee, Louis; Cuisset, Jean-Marie; Lemaitre, Marie-Pierre; Vantyghem, Marie-Christine; Pigeyre, Marie; Lanco-Dosen, Sandrine; Plessis, Ghislaine; Gerard, Marion; Decamp, Matthieu; Mathieu, Michèle; Morin, Gilles; Jedraszak, Guillaume; Bilan, Frédéric; Gilbert-Dussardier, Brigitte; Fauvert, Delphine; Roume, Joëlle; Cormier-Daire, Valérie; Caumes, Roseline; Puechberty, Jacques; Genevieve, David; Sarda, Pierre; Pinson, Lucie; Blanchet, Patricia; Lemeur, Nathalie; Sheth, Frenny; Manouvrier-Hanu, Sylvie; Andrieux, Joris

    2015-03-01

    Proximal region of chromosome 15 long arm is rich in duplicons that, define five breakpoints (BP) for 15q rearrangements. 15q11.2 microdeletion between BP1 and BP2 has been previously associated with developmental delay and atypical psychological patterns. This region contains four highly-conserved and non-imprinted genes: NIPA1, NIPA2, CYFIP1, TUBGCP5. Our goal was to investigate the phenotypes associated with this microdeletion in a cohort of 52 patients. This copy number variation (CNV) was prevalent in 0.8% patients presenting with developmental delay, psychological pattern issues and/or multiple congenital malformations. This was studied by array-CGH at six different French Genetic laboratories. We collected data from 52 unrelated patients (including 3 foetuses) after excluding patients with an associated genetic alteration (known CNV, aneuploidy or known monogenic disease). Out of 52 patients, mild or moderate developmental delay was observed in 68.3%, 85.4% had speech impairment and 63.4% had psychological issues such as Attention Deficit and Hyperactivity Disorder, Autistic Spectrum Disorder or Obsessive-Compulsive Disorder. Seizures were noted in 18.7% patients and associated congenital heart disease in 17.3%. Parents were analysed for abnormalities in the region in 65.4% families. Amongst these families, 'de novo' microdeletions were observed in 18.8% and 81.2% were inherited from one of the parents. Incomplete penetrance and variable expressivity were observed amongst the patients. Our results support the hypothesis that 15q11.2 (BP1-BP2) microdeletion is associated with developmental delay, abnormal behaviour, generalized epilepsy and congenital heart disease. The later feature has been rarely described. Incomplete penetrance and variability of expression demands further assessment and studies.

  14. A 1.6-Mb microdeletion in chromosome 17q22 leads to NOG-related symphalangism spectrum disorder without intellectual disability.

    PubMed

    Pang, Xiuhong; Luo, Huajie; Chai, Yongchuan; Wang, Xiaowen; Sun, Lianhua; He, Longxia; Chen, Penghui; Wu, Hao; Yang, Tao

    2015-01-01

    Microdeletions in chromosome 17q22, where the NOG gene resides, have been reported leading to the NOG-related symphalangism spectrum disorder (NOG-SSD), intellectual disability and other developmental abnormalities. In this study we reported a dominant Chinese Han family segregating with typical NOG-SSD symptoms including proximal symphalangism, conductive hearing loss, amblyopia and strabismus, but not intellectual disability. Sanger sequencing identified no pathogenic mutation in the coding regions of candidate genes NOG, GDF5 and FGF9. SNP genotyping in the genomic region surrounding NOG identified loss of heterozygosity in the affected family members. By array comparative genomic hybridization and quantitative real-time polymerase chain reaction, we identified and mapped the breakpoints of a novel 1.6-Mb microdeletion in chromosome 17q22 that included NOG and twelve other genes. It is the first microdeletion reported in chromosome 17q22 that is associated with NOG-SSD only but not with intellectual disability. Our results may help identifying the dosage sensitive genes for intellectual disability and other developmental abnormalities in chromosome 17q22. Our study also suggested that genomic deletions in chromosome 17q22 should be screened in the NOG-SSD patients in which no pathogenic mutation is identified by conventional sequencing methods.

  15. Brain anomalies in velo-cardio-facial syndrome

    SciTech Connect

    Mitnick, R.J.; Bello, J.A.; Shprintzen, R.J.

    1994-06-15

    Magnetic resonance imaging of the brain in 11 consecutively referred patients with velo-cardio-facial syndrome (VCF) showed anomalies in nine cases including small vermis, cysts adjacent to the frontal horns, and small posterior fossa. Focal signal hyperintensities in the white matter on long TR images were also noted. The nine patients showed a variety of behavioral abnormalities including mild development delay, learning disabilities, and characteristic personality traits typical of this common multiple anomaly syndrome which has been related to a microdeletion at 22q11. Analysis of the behavorial findings showed no specific pattern related to the brain anomalies, and the patients with VCF who did not have detectable brain lesions also had behavioral abnormalities consistent with VCF. The significance of the lesions is not yet known, but the high prevalence of anomalies in this sample suggests that structural brain abnormalities are probably common in VCF. 25 refs.

  16. Catatonia in an adolescent with velo-cardio-facial syndrome.

    PubMed

    Faedda, Gianni L; Wachtel, Lee E; Higgins, Anne Marie; Shprintzen, Robert J

    2015-09-01

    Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans and is probably the most frequent genetic cause of psychosis currently known. Many psychiatric disorders have been reported to occur in people with VCFS including, but not limited to schizophrenia, unipolar and bipolar mood disorders (with or without psychotic features), schizoaffective disorder, psychosis NOS, social phobia, generalized and separation anxiety, obsessive-compulsive disorder, autism spectrum disorder, cognitive impairment, and ADHD. This report describes the psychiatric onset and development of catatonia in an adolescent female with VCFS that was undiagnosed until 15 years of age. Catatonia may be a relatively common presentation in people with VCFS with treatment-refractory psychiatric manifestations.

  17. Dental aspects in patients with DiGeorge syndrome.

    PubMed

    Toka, Okan; Karl, Matthias; Dittrich, Sven; Holst, Stefan; Holst, Alexandra

    2010-01-01

    DiGeorge syndrome, which is caused by a microdeletion of 1.5 to 3.0 megabases on the long arm of chromosome 22, has an incidence of approximately 1:4,000 to 1:5,000 live births. The phenotypic spectrum of this disorder includes congenital heart defects, immunodeficiency due to thymic hypoplasia or aplasia, transient or permanent hypocalcemia due to parathyroid hypoplasia or aplasia, developmental retardation, and psychiatric disorders. Dental aspects in these patients include skeletal malformations, velopharyngeal insufficiency with or without cleft palate, small mouth, and hypotonus orofacial musculature, as well as impaired salivary flow. Enamel aberrations related to hypocalcemia may result in a higher frequency of dental caries. Based on a series of five patients, the medical and dental aspects that have to be considered in the care of patients with DiGeorge syndrome are presented.

  18. Periventricular nodular heterotopia in Smith-Magenis syndrome.

    PubMed

    Capra, Valeria; Biancheri, Roberta; Morana, Giovanni; Striano, Pasquale; Novara, Francesca; Ferrero, Giovanni Battista; Boeri, Luca; Celle, Maria Elena; Mancardi, Maria Margherita; Zuffardi, Orsetta; Parrini, Elena; Guerrini, Renzo

    2014-12-01

    Smith-Magenis syndrome (SMS) is caused by an interstitial microdeletion of chromosome 17p11.2. A few patients with the typical SMS phenotype have RAI1 gene mutations. The syndrome is characterized by minor craniofacial anomalies, short stature, sleep disturbances, behavioural and neurocognitive abnormalities, as well as variable multisystemic manifestations. Periventricular nodular heterotopia (PNH) is a genetically heterogeneous neuronal migration disorder characterized by subependymal heterotopic nodules, and is variably associated with other brain malformations, epileptic seizures and intellectual disability. Here we report on two patients harboring deletions of the 17p11.2 region in whom the SMS typical phenotype was associated with bilateral PNH. Our observations expand the spectrum of chromosomal rearrangements associated with PNH and indicate that abnormal neuronal migration may contribute to the neurocognitive phenotype of SMS.

  19. Williams-Beuren Syndrome: A Clinical Study of 55 Brazilian Patients and the Diagnostic Use of MLPA

    PubMed Central

    Honjo, Rachel Sayuri; Dutra, Roberta Lelis; Furusawa, Erika Arai; Zanardo, Evelin Aline; Costa, Larissa Sampaio de Athayde; Kulikowski, Leslie Domenici; Bertola, Debora Romeo; Kim, Chong Ae

    2015-01-01

    Williams-Beuren syndrome (WBS) is a genetic disease caused by a microdeletion in the 7q11.23 region. It is characterized by congenital heart disease, mainly supravalvular aortic stenosis, mental retardation, mild short stature, facial dysmorphisms, and variable abnormalities in different systems. Objectives. To report the clinical findings of 55 Brazilian patients confirmed by multiplex ligation-dependent probe amplification (MLPA). Methods. Patients were followed up for 4 years at the Genetics Unit of the Instituto da Criança of the Hospital das Clínicas, FMUSP, Brazil. A kit specific for WBS was used to detect the 7q11.23 microdeletion. Results. Two patients with negative FISH results had positive MLPA results for WBS. The characteristics of the patients with the deletion were as follows: typical WBS facies (98.2%), neuropsychomotor delay (98.2%), hypersocial behavior (94.5%), hyperacusis (94.5%), and congenital heart disease (81.8%). Conclusions. MLPA was effective in detecting the microdeletion in the 7q11.23 region to confirm the diagnosis of WBS. MLPA was also able to confirm the diagnosis of WBS in two patients with typical clinical characteristics but negative FISH results. Thus, MLPA is a promising method in the diagnostic investigation of WBS. WBS is a multisystemic disorder and therefore requires multidisciplinary care and specific follow-up to prevent complications. PMID:26090456

  20. Decrease in fertilization and cleavage rates, but not in clinical outcomes for infertile men with AZF microdeletion of the Y chromosome.

    PubMed

    Zhu, Yuan-Chang; Wu, Tong-Hua; Li, Guan-Gui; Yin, Biao; Liu, Hong-Jie; Song, Cheng; Mo, Mei-Lan; Zeng, Yong

    2015-10-01

    This study aimed to explore whether the presence of a Y chromosome azoospermia factor (AZF) microdeletion confers any adverse effect on embryonic development and clinical outcomes after intracytoplasmic sperm injection (ICSI) treatment. Fifty-seven patients with AZF microdeletion were included in the present study and 114 oligozoospermia and azoospermia patients without AZF microdeletion were recruited as controls. Both AZF and control groups were further divided into subgroups based upon the methods of semen collection: the AZF-testicular sperm extraction subgroup (AZF-TESE, n = 14), the AZF-ejaculation subgroup (AZF-EJA, n = 43), the control-TESE subgroup (n = 28) and the control-EJA subgroup (n = 86). Clinical data were analyzed in the two groups and four subgroups respectively. A retrospective case-control study was performed. A significantly lower fertilization rate (69.27 versus 75.70%, P = 0.000) and cleavage rate (89.55 versus 94.39%, P = 0.000) was found in AZF group compared with the control group. Furthermore, in AZF-TESE subgroup, the fertilization rate (67.54 versus 74.25%, P = 0.037) and cleavage rate (88.96 versus 94.79%, P = 0.022) were significantly lower than in the control-TESE subgroup; similarly, the fertilization rate (69.85 versus 75.85%, P = 0.004) and cleavage rate (89.36 versus 94.26%, P = 0.002) in AZF-EJA subgroup were significantly lower than in the control-EJA subgroup; however, the fertilization rate and cleavage rate in AZF-TESE (control-TESE) subgroup was similar to that in the AZF-EJA (control-EJA) subgroup. The other clinical outcomes were comparable between four subgroups (P > 0.05). Therefore, sperm from patients with AZF microdeletion, obtained either by ejaculation or TESE, may have lower fertilization and cleavage rates, but seem to have comparable clinical outcomes to those from patients without AZF microdeletion.

  1. A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability

    PubMed Central

    Mosca-Boidron, Anne-Laure; Gueneau, Lucie; Huguet, Guillaume; Goldenberg, Alice; Henry, Céline; Gigot, Nadège; Pallesi-Pocachard, Emilie; Falace, Antonio; Duplomb, Laurence; Thevenon, Julien; Duffourd, Yannis; ST-Onge, Judith; Chambon, Pascal; Rivière, Jean-Baptiste; Thauvin-Robinet, Christel; Callier, Patrick; Marle, Nathalie; Payet, Muriel; Ragon, Clemence; Goubran Botros, Hany; Buratti, Julien; Calderari, Sophie; Dumas, Guillaume; Delorme, Richard; Lagarde, Nathalie; Pinoit, Jean-Michel; Rosier, Antoine; Masurel-Paulet, Alice; Cardoso, Carlos; Mugneret, Francine; Saugier-Veber, Pascale; Campion, Dominique; Faivre, Laurence; Bourgeron, Thomas

    2016-01-01

    Semaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders. PMID:26395558

  2. A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.

    PubMed

    Mosca-Boidron, Anne-Laure; Gueneau, Lucie; Huguet, Guillaume; Goldenberg, Alice; Henry, Céline; Gigot, Nadège; Pallesi-Pocachard, Emilie; Falace, Antonio; Duplomb, Laurence; Thevenon, Julien; Duffourd, Yannis; St-Onge, Judith; Chambon, Pascal; Rivière, Jean-Baptiste; Thauvin-Robinet, Christel; Callier, Patrick; Marle, Nathalie; Payet, Muriel; Ragon, Clemence; Goubran Botros, Hany; Buratti, Julien; Calderari, Sophie; Dumas, Guillaume; Delorme, Richard; Lagarde, Nathalie; Pinoit, Jean-Michel; Rosier, Antoine; Masurel-Paulet, Alice; Cardoso, Carlos; Mugneret, Francine; Saugier-Veber, Pascale; Campion, Dominique; Faivre, Laurence; Bourgeron, Thomas

    2016-06-01

    Semaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders.

  3. Novel liver findings in ornithine transcarbamylase deficiency due to Xp11.4-p21.1 microdeletion.

    PubMed

    Gallant, Natalie M; Gui, Dorina; Lassman, Charles R; Yong, William H; Teitell, Michael; Mandelker, Diana; Lorey, Fred; Martinez-Agosto, Julian A; Quintero-Rivera, Fabiola

    2015-02-10

    Ornithine transcarbamylase deficiency (OTCD, OMIM 311250), the most common urea cycle disorder, results in impaired synthesis of citrulline from carbamoyl phosphate and ornithine. Individuals have been identified with OTCD due to a contiguous gene deletion at Xp11.4-p21.1 and unique clinical features, described as the "extended OTCD phenotype". We present a male with neonatal-lethal OTCD due to a 1.87Mb microdeletion at Xp11.4-p21.1 (37126841-38998991 hg18). Autopsy revealed a novel histological finding of hepatocyte globular and granular inclusions. Such inclusions have not been described in OTCD or other metabolic disorders and are not an associated finding in neonatal liver failure due to other causes. The deleted region includes the gene SYTL5, potentially involved in RAB27A-dependent membrane trafficking in the liver and placenta. We propose that the contiguous gene deletion could contribute to the severity of the clinical presentation here and hypothesize that deletion of SYTL5 could contribute to the liver findings.

  4. First fetal case of the 8q24.3 contiguous genes syndrome.

    PubMed

    Wells, Constance; Spaggiari, Emmanuel; Malan, Valérie; Stirnemann, Julien J; Attie-Bitach, Tania; Ville, Yves; Vekemans, Michel; Bessieres, Bettina; Romana, Serge

    2016-01-01

    Molecular cytogenetics, particularly array-CGH, opened the way to the « genotype first approach » and for the discovery of new micro rearrangement syndromes. This was the case for the 8q24.3 microdeletion syndrome. Here, we describe the phenotype of a fetus with a 8q24.3 deletion. This rare condition has to be considered as a contiguous genes syndrome because its phenotype is generated by the SCRIB and PUF60 adjacent gene endophenotypes. The fetus presented atrioventricular septal defect and hypoplastic aortic arch, facial dysmorphism, microretrognathia, dysmorphic ears, clinodactyly of the 5th digit on both hands, mild rocker bottom feet and abnormal third sacral vertebra. This fetus is the first case where the endophenotype produced by SCRIB gene is absent. This case is compared with the previous published cases.

  5. Inherited t(9;22) as the cause of DiGeorge syndrome: a case report.

    PubMed

    Shuib, Salwati; Abdul Latif, Zarina; Abidin, Nor Zarina Zainal; Akmal, Sharifah Noor; Zakaria, Zubaidah

    2009-12-01

    DiGeorge syndrome is associated with microdeletion of chromosome 22q11.2. Most cases occur sporadically although vertical transmission has been documented. We report a rare case of DiGeorge syndrome in an 8-year-old girl. Blood sample of the patient was cultured and harvested following standard procedure. All of the 20 cells analysed showed a karyotype of 45, XX, -22, t (9;22) (p23; q11.2). Cytogenetic investigation done on the patient's mother revealed that she was the carrier for the translocation. Her karyotype was 46, XX, t (9;22) (p23; q11.2). Fluorescence in situ hybridisation (FISH) analysis using TUPLE1 and N25 (Vysis, USA) probes showed deletion of the 22q11.2 region in the patient, confirming the diagnosis of DiGeorge syndrome. FISH analysis showed no deletion of the region in the mother.

  6. [Y chromosome structural abnormalities and Turner's syndrome].

    PubMed

    Ravel, C; Siffroi, J-P

    2009-06-01

    Although specifically male, the human Y chromosome may be observed in female karyotypes, mostly in women with Turner syndrome stigmata. In women with isolated gonadal dysgenesis but otherwise normal stature, the testis determining factor or SRY gene may have been removed from the Y chromosome or may be mutated. In other women with Turner syndrome, the karyotype is usually abnormal and shows a frequent 45,X/46,XY mosaicism. In these cases, the phenotype depends on the ratio between Y positive and 45,X cell lines in the body. When in mosaicism, Y chromosomes are likely to carry structural abnormalities which explain mitotic instability, such as the existence of two centromeres. Dicentric Y isochromosomes for the short arm (idic[Yp]) or ring Y chromosomes (r[Y]) are the most frequent abnormal Y chromosomes found in infertile patients and in Turner syndrome in mosaic with 45,X cells. Although monocentric, deleted Y chromosomes for the long arm and those carrying microdeletions in the AZF region are also instable and are frequently associated with a 45,X cell line. Management of infertile patients carrying such abnormal Y chromosomes must take into account the risk and the consequences of a mosaicism in the offspring.

  7. [Phenotypic variability of the 1q21.1 microdeletion syndrome in members of the same family: relevance of detection of neuropsychiatric disorders for diagnosis of genetic syndromes].

    PubMed

    Natera-De Benito, Daniel; Vidal-Esteban, Arantxa; Sanchez-Del Pozo, Jaime; Moreno-Garcia, Marta; Suela-Rubio, Javier; Cruz-Rojo, Jaime; Rivero-Martin, María José

    2015-12-16

    Introduccion. El sindrome de microdelecion 1q21.1 esta causado por una delecion recurrente de aproximadamente 800 kb que incluye al menos siete genes y se asocia a un fenotipo variable. Esta variacion en el numero de copias patogenica puede aparecer de novo o ser heredada de uno de los progenitores. La presencia de trastornos psiquiatricos se ha descrito en muchos de los casos publicados, pero se desconoce su prevalencia exacta. Objetivo. Exponer la variabilidad fenotipica de los individuos que presentan una microdelecion 1q21.1. Casos clinicos. Se incluyen cuatro individuos portadores de una delecion de 1,74 Mb en 1q21.1, todos miembros de la misma familia. El estudio genetico del caso indice se llevo a cabo mediante array de hibridacion genomica comparada, y el del resto de familiares mediante hibridacion in situ fluorescente, con una sonda especifica para la region delecionada. Los individuos presentan un fenotipo heterogeneo, y es comun a todos ellos la presencia de alteraciones psiquiatricas o del comportamiento, con un claro predominio de la presencia de trastornos relacionados con las dificultades para el control de impulsos en sus diferentes subtipos. Conclusiones. El sindrome de microdelecion 1q21.1 es fenotipicamente heterogeneo, incluso entre los miembros de una misma familia. Destaca la presencia de alteraciones psiquiatricas o del comportamiento como rasgo comun en todos los pacientes que presentamos. Existen formas paucisintomaticas en las que el individuo portador de la delecion presenta exclusivamente alteraciones psiquiatricas.

  8. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    PubMed Central

    Tonelli, Adriano R; Kosuri, Kalyan; Wei, Sainan; Chick, Davoren

    2007-01-01

    Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 40-year-old man without significant past medical history presented with a new-onset generalized tonic-clonic seizure. He had no personal history of hypocalcemia or seizures. Physical examination was remarkable for short stature, hypertelorism, prominent forehead and nasal voice. His initial laboratory examination showed hypocalcemia (Calcium 5.2 mg/dl and Calcium ionized 0.69 mmol/l) with hypoparathyroidism (Parathyroid hormone intact < 2.5 pg/ml. NV: 14–72 pg/ml). Urine Calcium was 3 mg/dl on a spot and 88 mg in a 24-hour urine collection (NV: 100–300 mg/24 hs). The electrocardiogram showed a prolonged corrected QT interval. Echocardiogram, abdominal ultrasound and electroencephalogram were normal. A computer tomography of the brain showed basal ganglia calcification. The subtle physical findings and the presence of idiopathic hypoparathyroidism motivated the performance of fluorescent in situ hybridization which demonstrated a microdeletion on one of the homologs 22q11.2. The patient was treated with calcium citrate and calcitriol with good response. Conclusion Microdeletion of chromosome 22q11.2 is among the most clinically variable syndromes, with more than 180 features associated with the deletion. It has a variable phenotypical expression, requiring a high level of awareness for its early diagnosis. Seizures, related to marked hypocalcemia due to idiopathic hypoparathyroidism, might be the presenting feature in an adult patient with this syndrome. PMID:18053182

  9. Seizure Disorder in a Patient with a 5.09 Mb 7q11.23-q21.11 Microdeletion Including the MAGI2 Gene.

    PubMed

    Peterson, Jess F; Thakur, Pankaj; Peffer, Abigail; Kolthoff, Marta; Kochmar, Sally J; Surti, Urvashi

    2014-01-01

    Infantile spasms (IS) are a severe form of epilepsy characterized by hysparrhythmia on EEG, spasms, and intellectual disability. Typically occurring before one year of age, 40-60% of patients diagnosed with IS eventually develop other seizure disorders later in life. The etiology of IS is broad, and only recently have IS-associated genes been identified. MAGI2, an implicated IS-associated gene located within the 7q11.23-q21.11 chromosome region, encodes for a synaptic scaffolding protein involved in synaptic development and function. To date, several case reports of patients with 7q11.23-q21.11 microdeletions involving MAGI2 have been described, with the majority presenting with IS or other seizure disorders that are attributed to loss of heterozygosity of the MAGI2 gene. In addition, several other patients with 7q11.23 microdeletions not including MAGI2 have been described with clinical features that include IS, epilepsy, intellectual disabilities, and neurobehavioral problems, suggesting additional IS-associated candidate genes within the 7q11.23 region. Adding to the literature, we report on a 21-year-old female with a de novo 5.09 Mb 7q11.23-q21.11 microdeletion (aCGH analysis) involving the MAGI2 gene with a history of seizure disorder, intellectual disability, and dysmorphic features. Although we agree that MAGI2 is the most likely candidate gene for seizure disorder in our patient, other candidate genes must be considered in 7q11.23 deletion cases not spanning the MAGI2 gene.

  10. Identification of a microdeletion at 7q21.3 with fluorescence in situ hybridization in a patient with split hand/split foot (ectrodactyly)

    SciTech Connect

    Hudgins, L.; Massa, H.; Disteche, C.

    1994-09-01

    Split hand/split foot (SHSF), often referred to as ectrodactyly or lobster claw deformity, is a human developmental disorder characterized by a deep median cleft of the hands and feet, missing digits, and fusion of remaining digits. This anomaly can be seen alone, frequently autosomal dominant, or in association with other abnormalities. One locus for this defect has been localized to chromosome 7q21.3-q22.1. We report a patient with SHSF plus mental retardation, short stature and dysmorphic features who was found to have a microdeletion at this locus detected only with the aid of fluorescence in situ hybridization (FISH). T.H. is a 7 y.o. male who was referred for evaluation of foot anomalies and mild mental retardation. History was remarkable for growth retardation of postnatal onset and hypotonia. Renal ultrasound and audiology evaluation were normal. Physical exam revealed dysplastic ears, micrognathia, long philtrum, high narrow palate, and malformations of the feet consistent with SHSF. Family history was negative for limb abnormalities and mental retardation. A number of patients with SHSF and other anomalies have been found to have deletions involving chromosome 7q21-q22; therefore, high resolution chromosome analysis was performed in T.H. but was inconclusive. Cosmids and yeast artificial chromosomes which we had previously mapped to the SHSF critical region were used as FISH probes and a microdeletion was detected. We were thus able to determine the etiology of this child`s abnormalities and provide accurate genetic counseling, which would not have been possible with standard cytogenetic techniques. This technique also allowed us to further refine the SHSF critical region. This case illustrates the utility of FISH for the rapid identification of suspect microdeletions in SHSF. This approach should also be useful as an expeditious way of defining the critical regions for the location of genes which give rise to other developmental malformations.

  11. A 7q31.33q32.1 microdeletion including LRRC4 and GRM8 is associated with severe intellectual disability and characteristics of autism

    PubMed Central

    Sangu, Noriko; Shimojima, Keiko; Takahashi, Yuya; Ohashi, Tsukasa; Tohyama, Jun; Yamamoto, Toshiyuki

    2017-01-01

    A 4-year-old boy with severe intellectual disability (ID) and characteristics of autism was found to have a de novo 1.9-Mb microdeletion in 7q31.33q32.1, in which LRRC4, GRM8, and 11 other genes were included. GRM8 is associated with attention deficit hyperactivity disorder. LRRC4 is related to synaptic cell adhesion molecules, some of which are associated with autism. The deletion of LRRC4 may be responsible for the severe ID and characteristics of autism observed in the present patient. PMID:28224041

  12. Failure to detect the 22q11.2 duplication syndrome rearrangement among patients with schizophrenia

    PubMed Central

    Brunet, Anna; Armengol, Lluís; Pelaez, Trini; Guillamat, Roser; Vallès, Vicenç; Gabau, Elisabeth; Estivill, Xavier; Guitart, Miriam

    2008-01-01

    Chromosome aberrations have long been studied in an effort to identify susceptibility genes for schizophrenia. Chromosome 22q11.2 microdeletion is associated with DiGeorge and Velocardiofacial syndromes (DG/VCF) and provides the most convincing evidence of an association between molecular cytogenetic abnormality and schizophrenia. In addition, this region is one of the best replicated linkage findings for schizophrenia. Recently, the reciprocal microduplication on 22q11.2 has been reported as a new syndrome. Preliminary data indicates that individuals with these duplications also suffer from neuropsychiatric disorders. In this study we have investigated the appropriateness of testing schizophrenia patients for the 22q11.2 microduplication. We used multiplex ligation-dependent probe amplification (MLPA) to measure copy number changes on the 22q11.2 region in a sample of 190 patients with schizophrenia. Our results corroborate the prevalence of the 22q11.2 microdeletion in patients with schizophrenia and clinical features of DG/VCFS and do not suggest an association between 22q11.2 microduplication and schizophrenia. PMID:18284679

  13. Prader Willi/Angelman and DiGeorge/velocardiofacial syndrome deletions: diagnosis by primed in situ labeling (PRINS).

    PubMed

    Tharapel, Avirachan T; Kadandale, Jayarama S; Martens, Paula R; Wachtel, Stephen S; Wilroy, R Sid

    2002-01-15

    A recently developed methodology-primed in situ labeling (PRINS)-can be used in place of fluorescence in situ hybridization (FISH) to diagnose microdeletions. To demonstrate the efficiency, sensitivity, and specificity of PRINS in the diagnosis of microdeletions, we studied groups of patients with Prader Willi/Angelman (PWS/AS) syndrome and DiGeorge/velocardiofacial syndrome (DGS/VCFS). Results obtained by PRINS were then confirmed with the results obtained with FISH. Oligonucleotide primers specific for SNRPN and GABRB3 were used for PWS/AS syndromes. For DGS/VCFS, the primers used were DGCR2/TUPLE1 loci. Labeling patterns obtained by PRINS and FISH were analyzed and scored under a fluorescence microscope. Five normal subjects served as controls and were used for standardization of the PRINS protocol. In all, 20 study patients were involved: 10 PWS/AS and 10 DGS/VCFS. Five of the 10 patients referred with the clinical diagnosis of PWS/AS showed absence of labeling for SNRPN and GABRB3 on one chromosome 15, confirming deletion of the two loci. Similarly, 6 of the 10 patients referred for DGS/VCFS showed deletion for the DGCR2/TUPLE1 loci on one chromosome 22. The remaining patients and controls had normal patterns for all the loci as indicated by FISH and PRINS. Concordant FISH and PRINS results were obtained in all patients and controls studied.

  14. [Syndromes 2. Pfeiffer syndrome].

    PubMed

    Freihofer, H P

    1998-07-01

    Acrocephalosyndactylias are syndromes characterized by abnormalities of the head (craniosynostosis), the face (hypertelorism, retromaxillism), hands and feet (cutaneous or bony syndactyly). Inheritance is autosomal dominant, but spontaneous cases are described also. The group is divided into several syndromes with varying penetrance and expressivity. As an example of an acrocephalosyndactylia is the Pfeiffer syndrome presented.

  15. Microdeletions of chromosome 17p13 as a cause of isolated lissencephaly

    SciTech Connect

    Ledbetter, S.A.; Kuwano, Akira; Ledbetter, D.H. ); Dobyns, W.B. )

    1992-01-01

    Lissencephaly (agyria-pachygyria) is a brain malformation manifested by a smooth cerebral surface, resulting from arrest of neuronal migration at 10-14 wk gestation. Type I, or classical, lissencephaly can occur either in association with the Miller-Dieker syndrome (MDS) or as an isolated finding, termed isolated lissencephaly sequence (ILS). About 90% of MDS patients have visible or submicroscopic deletions of 17p13.3. The authors therefore investigated the possibility that some ILS patients have smaller deletions in this chromosomal region. Forty-five ILS patients with gyral abnormalities ranging from complete agyria to mixed agyria/pachygyria and complete pachygyria were studied. RFLP analysis with five polymorphic loci in 17p13.3 was performed on all patients and their parents. Somatic cell hybrids were constructed on three patients, to confirm a deletion or to determine the boundaries of a deletion. These data demonstrate that a locus on 17p13 represents a major genetic etiology for patients with lissencephaly, ranging from complete agyria to pachygyria. In situ hybridization allows rapid and sensitive deletion detection and is the preferred method for diagnostic evaluation of MDA and ILS patients.

  16. Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene

    PubMed Central

    Gill, Jennifer L.; Capper, Deborah; Vanbellinghen, Jean-François; Chung, Seo-Kyung; Higgins, Robert J.; Rees, Mark I.; Shelton, G. Diane; Harvey, Robert J.

    2011-01-01

    Defects in glycinergic synaptic transmission in humans, cattle, and rodents result in an exaggerated startle reflex and hypertonia in response to either acoustic or tactile stimuli. Molecular genetic studies have determined that mutations in the genes encoding the postsynaptic glycine receptor (GlyR) α1 and β subunits (GLRA1 and GLRB) and the presynaptic glycine transporter GlyT2 (SLC6A5) are the major cause of these disorders. Here, we report the first genetically confirmed canine cases of startle disease. A litter of seven Irish wolfhounds was identified in which two puppies developed muscle stiffness and tremor in response to handling. Although sequencing of GLRA1 and GLRB did not reveal any pathogenic mutations, analysis of SLC6A5 revealed a homozygous 4.2 kb microdeletion encompassing exons 2 and 3 in both affected animals. This results in the loss of part of the large cytoplasmic N-terminus and all subsequent transmembrane domains due to a frameshift. This genetic lesion was confirmed by defining the deletion breakpoint, Southern blotting, and multiplex ligation-dependent probe amplification (MLPA). This analysis enabled the development of a rapid genotyping test that revealed heterozygosity for the deletion in the dam and sire and three other siblings, confirming recessive inheritance. Wider testing of related animals has identified a total of 13 carriers of the SLC6A5 deletion as well as non-carrier animals. These findings will inform future breeding strategies and enable a rational pharmacotherapy of this new canine disorder. PMID:21420493

  17. Moebius Syndrome

    MedlinePlus

    ... children with Moebius syndrome have some degree of autism. There are four recognized categories of Moebius syndrome: ... children with Moebius syndrome have some degree of autism. There are four recognized categories of Moebius syndrome: ...

  18. Asperger's disorder and Williams syndrome: a case report.

    PubMed

    Kilinçaslan, Ayse; Tanidir, Canan; Tutkunkardaş, Mustafa Deniz; Mukaddes, Nahit Motavalli

    2011-01-01

    Williams syndrome (WS) is a genetic disorder caused by the hemizygous microdeletion in chromosome 7q11.23. It is characterized by dysmorphic face, cardiovascular disease, idiopathic hypercalcemia, mental retardation, and an uneven profile of cognitive-linguistic abilities and deficits. The presence of autistic features in individuals with WS is a controversial issue. While there are reports that describe them as overly friendly with excessive sociability and good empathic skills, some recent studies focus more on the qualitative impairment of their social abilities. Here, we report the clinical presentation and follow-up of an eight-year-old boy with WS and clear problems in his social interaction, non-verbal communication and circumscribed interests. To our knowledge, this is the first case report on the coexistence of WS and Asperger's disorder. It also differs from previous papers on the comorbidity of WS and autism spectrum disorders, by depicting a highly verbal, nonretarded child followed for seven years through adolescence.

  19. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease.

    PubMed

    Sampson, Matthew G; Coughlin, Curtis R; Kaplan, Paige; Conlin, Laura K; Meyers, Kevin E C; Zackai, Elaine H; Spinner, Nancy B; Copelovitch, Lawrence

    2010-10-01

    Congenital Anomalies of the Kidney and Urinary Tract can be associated with Hirschsprung disease. We report on three children with a similar 16p11.2 microdeletion with a spectrum of clinical anomalies consisting of congenital anomalies of the kidney and urinary tract in two patients (Patients 1 and 2) and Hirschsprung disease in two patients (Patients 1 and 3), leading us to hypothesize that a gene in this region is associated with these phenotypes. Patient 1 presented with left renal agenesis, grade-IV vesicoureteral reflux, and Hirschsprung disease, Patient 2 with left renal agenesis, chronic kidney disease, chronic constipation, seizures, and developmental delay, and Patient 3 with Hirschsprung disease and normal kidneys. Genome-wide microarray analysis demonstrated overlapping microdeletions within 16p11.2. The shortest region of overlap in the three patients contained only eight genes, including the SH2 domain-containing binding protein 1 (SH2B1), an adaptor protein which has been implicated in enhancement of the tyrosine kinase activity of RET, whose role in developmental disease of the kidney and enteric enervation is well established. Our findings suggest that 16p11.2 deletions are associated with abnormalities of renal and enteric development and we hypothesize that deletion of SH2B1 may account for the observed phenotype.

  20. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions

    PubMed Central

    Liu, Wanqing; He, Lijun; Ramírez, Jacqueline; Krishnaswamy, Soundararajan; Kanteti, Rajani; Wang, Yi-Ching; Salgia, Ravi; Ratain, Mark J

    2011-01-01

    Somatic mutations in the EGFR tyrosine kinase (TK) domain play a critical role in the development and treatment of non-small cell lung cancer (NSCLC). Strong genetic influence on susceptibility to these mutations has been suggested. To identify the genetic factors conferring risk for the EGFR TK mutations in NSCLC, a case-control study was conducted in 141 Taiwanese NSCLC patients by focusing on three functional polymorphisms in the EGFR gene [-216G/T, intron 1(CA)n and R497K]. Allelic imbalance (AI) of the EGFR -216G/T polymorphism was also tested in the heterozygous patients as well as in the NCI-60 cancer cell lines to further verify its function. We found that the frequencies of the alleles -216T and CA-19 are significantly higher in the patients with any mutation (p=0.032 and 0.01, respectively), in particular in those with exon 19 microdeletions (p=0.006 and 0.033, respectively), but not in the patients with L858R mutation. The -216T allele is favored to be amplified in both tumor DNA of lung cancer patients and cancer cell lines. We conclude that the local haplotype structures across the EGFR gene may favor the development of cellular malignancies and thus significantly confer risk to the occurrence of EGFR mutations in NSCLC, particularly the exon 19 microdeletions. PMID:21292812

  1. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region.

    PubMed

    Heisterkamp, N; Mulder, M P; Langeveld, A; ten Hoeve, J; Wang, Z; Roe, B A; Groffen, J

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 55 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for teh human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge syndrome and velocardio-facial syndrome may contribute to the mental deficiency seen in the patients.

  2. Feasibility and Outcomes of Multiplex Ligation-Dependent Probe Amplification on Buccal Smears as a Screening Method for Microdeletions and Duplications among 300 Adults with an Intellectual Disability of Unknown Aetiology

    ERIC Educational Resources Information Center

    Peppink, D.; Douma-Kloppenburg, D. D.; de Rooij-Askes, E. S. P.; van Zoest, I. M.; Evenhuis, H. M.; Gille, J. J. P.; van Hagen, J. M.

    2008-01-01

    Background: Determining the aetiology of intellectual disability (ID) enables anticipation of specific comorbidity and can thus be beneficial. Blood sampling, however, is considered stressful for people with ID. Our aim was to evaluate the feasibility of a non-invasive screening technique of nine microdeletions/duplications among adults with ID of…

  3. Description of common musculoskeletal findings in Williams Syndrome and implications for therapies.

    PubMed

    Copes, L E; Pober, B R; Terilli, C A

    2016-07-01

    Williams syndrome (WS), also referred to as Williams-Beuren syndrome (WBS), is a relatively rare genetic disorder affecting ∼1/10,000 persons. Since the disorder is caused by a micro-deletion of ∼1.5 Mb, it is not surprising that the manifestations of WS are extremely broad, involving most body systems. In this paper, we primarily focus on the musculoskeletal aspects of WS as these findings have not been the subject of a comprehensive review. We review the MSK features commonly seen in individuals with WS, along with related sensory and neurological issues interacting with and compounding underlying MSK abnormalities. We end by providing perspective, particularly from the vantage point of a physical therapist, on therapeutic interventions to address the most common MSK and related features seen in WS. Clin. Anat. 29:578-589, 2016. © 2016 Wiley Periodicals, Inc.

  4. “FISHed” out the diagnosis: A case of DiGeorge syndrome

    PubMed Central

    Bajaj, S; Thombare, TS; Tullu, MS; Agrawal, M

    2016-01-01

    Our patient presented with congenital heart disease (CHD: Tetralogy of Fallot), hypocalcemia, hypoparathyroidism, and facial dysmorphisms. Suspecting DiGeorge syndrome (DGS), a fluorescence in situ hybridization (FISH) analysis for 22q11.2 deletion was made. The child had a hemizygous deletion in the 22q11.2 region, diagnostic of DGS. Unfortunately, the patient succumbed to the heart disease. DGS is the most common microdeletion syndrome, and probably underrecognized due to the varied manifestations. This case stresses the importance of a detailed physical examination and a high index of suspicion for diagnosing this genetic condition. Timely diagnosis can help manage and monitor these patients better and also offer prenatal diagnosis in the next pregnancy. PMID:26489877

  5. Practical guidelines for managing adults with 22q11.2 deletion syndrome

    PubMed Central

    Fung, Wai Lun Alan; Butcher, Nancy J.; Costain, Gregory; Andrade, Danielle M.; Boot, Erik; Chow, Eva W.C.; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony E.; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; van Amelsvoort, Therese; McDonald-McGinn, Donna M.; Bassett, Anne S.

    2015-01-01

    22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities. PMID:25569435

  6. "FISHed" out the diagnosis: A case of DiGeorge syndrome.

    PubMed

    Bajaj, S; Thombare, T S; Tullu, M S; Agrawal, M

    2016-01-01

    Our patient presented with congenital heart disease (CHD: Tetralogy of Fallot), hypocalcemia, hypoparathyroidism, and facial dysmorphisms. Suspecting DiGeorge syndrome (DGS), a fluorescence in situ hybridization (FISH) analysis for 22q11.2 deletion was made. The child had a hemizygous deletion in the 22q11.2 region, diagnostic of DGS. Unfortunately, the patient succumbed to the heart disease. DGS is the most common microdeletion syndrome, and probably underrecognized due to the varied manifestations. This case stresses the importance of a detailed physical examination and a high index of suspicion for diagnosing this genetic condition. Timely diagnosis can help manage and monitor these patients better and also offer prenatal diagnosis in the next pregnancy.

  7. 22q11.2 deletion syndrome

    PubMed Central

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  8. [Autoimmune disorder secondary to DiGeorge syndrome: a long-term follow-up case report and literature review].

    PubMed

    Xie, Y; Guo, J Q; Hua, Y; Zhao, W H; Sun, Q; Lu, X T

    2016-12-18

    DiGeorge syndrome is the most common chromosome microdeletion disease. The classical complications include congenital heart disease, hypothyroidism, immunodeficiency, facial abnormalities, and hypocalcemia. According to whether there is an absence or hypoplasia of the thymus, DiGeorge syndrome can be divided into two types, complete DiGeorge syndrome and partial DiGeorge syndrome. The patient was a female born with congenital heart disease, facial abnormalities and cleft palate. When the patient went to school, she had learning difficulty and had problems in communication and personal social behavior. Breath-holding occurred when she was 6 years old. She got infections about 2-3 times a year, which was easy to be cured each time. Chromosome microdeletion test of peripheral blood showed the classical 22q11.2 microdeletion, and no evidence showed that she has thymus absence, thus her disease was diagnosed as partial DiGeorge syndrome. When the patient was 6 years old, the blood routine test showed slight thrombocytopenia, and reexaminations after that indicated the similar result. When 9 years old, she was found with anemia and severe thrombocytopenia. At the age of 10, the patient was admitted to our hospital, complaining of petechia in the body and mucous of mouth. According to the various examinations results, doctors eventually considered the situation as an autoimmune disorder phenomenon. After being treated by pulse-dose methylprednisolone for three days, the bleeding ceased. Then the patient orally took prednisone acetate and pulse-dose cyclophosphamide, however the thrombocyte and hemoglobin levels had not been back to a normal range. But when the dose of prednisone acetate was reduced, the blood platelet count declined again while the hemoglobin kept normal. The long-term follow-up of this case lasted for more than 20 years. Until now, the patient is taking orally prednisone acetate as a maintainance treatment, and the anemia has been improved since, but

  9. Clinical features and molecular analysis of the α thalassemia/mental retardation syndromes. 1. Cases due to deletions involving chromosome band 16p13.3

    PubMed Central

    Wilkie, A. O. M.; Buckle, V. J.; Harris, P. C.; Lamb, J.; Barton, N. J.; Reeders, S. T.; Lindenbaum, R. H.; Nicholls, R. D.; Barrow, M.; Bethlenfalvay, N. C.; Hutz, M. H.; Tolmie, J. L.; Weatherall, D. J.; Higgs, D. R.

    1990-01-01

    We describe eight patients who have α thalassemia which cannot be accounted for by the Mendelian inheritance of abnormal α globin genes. Apart from the hematologic abnormality, the other universal clinical finding is mild to moderate mental handicap; there is also a broad spectrum of associated dysmorphic features. Initial analysis of the α globin gene complex (which maps to chromosome band 16p13.3), demonstrated that the α thalassemia results from failure of the patient to inherit an α globin allele from one of the parents. Using a combined molecular and cytogenetic approach, we have extended this analysis to show that all of these patients have 16p deletions which are variable in extent but limited to the terminal band 16p13.3; in at least four cases the deletion results from unbalanced chromosome translocation, and hence aneuploidy of a second chromosome is also present. The relatively nonspecific clinical phenotype contrasts with the other currently known microdeletion syndromes; this may reflect ascertainment bias in the recognition of such syndromes. This work represents the first step in the characterization of a new microdeletion syndrome that is probably underdiagnosed at present. Imagesp[1116]-aFigure 1Figure 3Figure 5 PMID:2339704

  10. Dressler's Syndrome

    MedlinePlus

    ... syndrome may also be called postpericardiotomy syndrome, post-myocardial infarction syndrome and post-cardiac injury syndrome. With recent ... Dressler's syndrome. References LeWinter MM. Pericardial complications of myocardial infarction. http://www.uptodate.com/home. Accessed May 27, ...

  11. Deletion 22q13.3 syndrome.

    PubMed

    Phelan, Mary C

    2008-05-27

    The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (CGH) is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy). Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements. Individuals with

  12. NSD1 Mutations Are the Major Cause of Sotos Syndrome and Occur in Some Cases of Weaver Syndrome but Are Rare in Other Overgrowth Phenotypes

    PubMed Central

    Douglas, Jenny; Hanks, Sandra; Temple, I. Karen; Davies, Sally; Murray, Alexandra; Upadhyaya, Meena; Tomkins, Susan; Hughes, Helen E.; Cole, Trevor R. P.; Rahman, Nazneen

    2003-01-01

    Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes. PMID:12464997

  13. Velo-Cardio-Facial Syndrome: 30 Years of Study

    PubMed Central

    Shprintzen, Robert J.

    2009-01-01

    Velo-cardio-facial syndrome is one of the names that has been attached to one of the most common multiple anomaly syndromes in humans. The labels DiGeorge sequence, 22q11 deletion syndrome, conotruncal anomalies face syndrome, CATCH 22, and Sedlačková syndrome have all been attached to the same disorder. Velo-cardio-facial syndrome has an expansive phenotype with more than 180 clinical features described that involve essentially every organ and system. The syndrome has drawn considerable attention because a number of common psychiatric illnesses are phenotypic features including attention deficit disorder, schizophrenia, and bipolar disorder. The expression is highly variable with some individuals being essentially normal at the mildest end of the spectrum, and the most severe cases having life-threatening and life-impairing problems. The syndrome is caused by a microdeletion from chromosome 22 at the q11.2 band. Although the large majority of affected individuals have identical 3 megabase deletions, less than 10% of cases have smaller deletions of 1.5 or 2.0 megabases. The 3 megabase deletion encompasses a region containing 40 genes. The syndrome has a population prevalence of approximately 1:2,000 in the U.S., although incidence is higher. Although initially a clinical diagnosis, today velo-cardio-facial syndrome can be diagnosed with extremely high accuracy by fluorescence in situ hybridization (FISH) and several other laboratory techniques. Clinical management is age dependent with acute medical problems such as congenital heart disease, immune disorders, feeding problems, cleft palate, and developmental disorders occupying management in infancy and preschool years. Management shifts to cognitive, behavioral, and learning disorders during school years, and then to the potential for psychiatric disorders including psychosis in late adolescence and adult years. Although the majority of people with velo-cardio-facial syndrome do not develop psychosis, the risk

  14. GNB1L, a gene deleted in the critical region for DiGeorge syndrome on 22q11, encodes a G-protein beta-subunit-like polypeptide.

    PubMed

    Gong, L; Liu, M; Jen, J; Yeh, E T

    2000-11-15

    CATCH 22 syndromes, which include DiGeorge syndrome and Velocardiofacial syndrome, are the most common cause of congenital heart disease which involve microdeletion of 22q11. Using a strategy including EST searching, PCR amplification and 5'-RACE, we have cloned a 1487 bp cDNA fragment from human heart cDNA library. The cloned GNB1L cDNA encodes a G-protein beta-subunit-like polypeptide, and the GNB1L gene is located in the critical region for DiGeorge syndrome. A comparison of GNB1L cDNA sequence with corresponding genomic DNA sequence revealed that this gene consists of seven exons and spans an approximately 60 kb genomic region. Northern blot analysis revealed GNB1L is highly expressed in the heart.

  15. Cushing's Syndrome

    MedlinePlus

    ... example, polycystic ovary syndrome can cause menstrual disturbances, weight gain beginning in adolescence, excess hair growth, and impaired insulin action and diabetes. Metabolic syndrome-a combination of ...

  16. 22q11 Deletion Syndrome: A Genetic Subtype of Schizophrenia

    PubMed Central

    Bassett, Anne S.; Chow, Eva W.C.

    2012-01-01

    Schizophrenia is likely to be caused by several susceptibility genes and may have environmental factors that interact with susceptibility genes and/or nongenetic causes. Recent evidence supports the likelihood that 22q11 Deletion Syndrome (22qDS) represents an identifiable genetic subtype of schizophrenia. 22qDS is an under-recognized genetic syndrome associated with microdeletions on chromosome 22 and a variable expression that often includes mild congenital dysmorphic features, hypernasal speech, and learning difficulties. Initial evidence indicates that a minority of patients with schizophrenia (~2%) may have 22qDS and that prevalence may be somewhat higher in subpopulations with developmental delay. This paper proposes clinical criteria (including facial features, learning disabilities, hypernasal speech, congenital heart defects and other congenital anomalies) to aid in identifying patients with schizophrenia who may have this subtype and outlines features that may increase the index of suspicion for this syndrome. Although no specific causal gene or genes have yet been identified in the deletion region, 22qDS may represent a more homogeneous subtype of schizophrenia. This subtype may serve as a model for neurodevelopmental origins of schizophrenia that could aid in delineating etiologic and pathogenetic mechanisms. PMID:10509171

  17. DiGeorge syndrome with vertebral and rib dysplasia

    SciTech Connect

    Puno-Cocuzza, C.; David, K.; Kogekar, N.

    1994-09-01

    DiGeorge syndrome results from defect in the development of the third and fourth pharyngeal pouches, and is characterized by conotruncal heart defects, aplasia or hypoplasia of thymus and parathyroid glands resulting in immune deficiency and hypocalcemia. Other associated abnormalities include renal, thyroid and diaphragmatic defects, oral clefting, etc. Etiologically, it is heterogeneous, with a microdeletion of 22q11 present in over 80% of cases. Our patient was born following a pregnancy complicated by insulin dependent gestational diabetes. There was truncus arteriosus type 2, absense of thymic shadow on CXR with severe deficiency of T cell function, and persistent hypocalcemia with low parathormone. Right kidney was absent. Dysplastic ribs including fused and bifid ribs were noted. Hypoplastic vertebrae and hemivertebrae were present through thoracic and lumbar regions. Chromosome analysis was normal, and metaphase FISH analysis with probe N25 representing locus D22S75 did not show any deletion of 22q11.2. The skeletal findings similar to these have not been previously reported in association with DiGeorge syndrome to our knowledge. Vertebral and rib abnormalities are known to occur with pregestational maternal diabetes. Maternal diabetes has also been suggested to be a possible etiology in a very small proportion of DiGeorge syndrome cases. It is possible that these findings occured together on account of gestational maternal diabetes in our case.

  18. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity.

    PubMed

    D'Angelo, Carla S; Moller Dos Santos, Mauren F; Alonso, Luis G; Koiffmann, Celia P

    2015-07-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified 'new' microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD.

  19. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity

    PubMed Central

    D'Angelo, Carla S.; Moller dos Santos, Mauren F.; Alonso, Luis G.; Koiffmann, Celia P.

    2015-01-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified ‘new’ microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD. PMID:26279650

  20. Rare genomic rearrangement in a boy with Williams-Beuren syndrome associated to XYY syndrome and intriguing behavior.

    PubMed

    Dutra, Roberta L; Piazzon, Flavia B; Zanardo, Évelin A; Costa, Thais Virginia Moura Machado; Montenegro, Marília M; Novo-Filho, Gil M; Dias, Alexandre T; Nascimento, Amom M; Kim, Chong Ae; Kulikowski, Leslie D

    2015-12-01

    Williams-Beuren syndrome (WBS) is caused by a hemizygous contiguous gene microdeletion of 1.55-1.84 Mb at 7q11.23 region. Approximately, 28 genes have been shown to contribute to classical phenotype of SWB with presence of dysmorphic facial features, supravalvular aortic stenosis (SVAS), intellectual disability, and overfriendliness. With the use of Microarray-based comparative genomic hybridization and other molecular cytogenetic techniques, is possible define with more accuracy partial or atypical deletion and refine the genotype-phenotype correlation. Here, we report on a rare genomic structural rearrangement in a boy with atypical deletion in 7q11.23 and XYY syndrome with characteristic clinical signs, but not sufficient for the diagnosis of WBS. Cytogenetic analysis of G-banding showed a karyotype 47,XYY. Analysis of DNA with the technique of MLPA (Multiplex Ligation-dependent Probe Amplification) using kits a combination of kits (P064, P036, P070, and P029) identified an atypical deletion on 7q11.23. In addition, high resolution SNP Oligonucleotide Microarray Analysis (SNP-array) confirmed the alterations found by MLPA and revealed others pathogenic CNVs, in the chromosomes 7 and X. The present report demonstrates an association not yet described in literature, between Williams-Beuren syndrome and 47,XYY. The identification of atypical deletion in 7q11.23 concomitant to additional pathogenic CNVs in others genomic regions allows a better comprehension of clinical consequences of atypical genomic rearrangements.

  1. A 6q14.1-q15 microdeletion in a male patient with severe autistic disorder, lack of oral language, and dysmorphic features with concomitant presence of a maternally inherited Xp22.31 copy number gain.

    PubMed

    Quintela, Ines; Fernandez-Prieto, Montse; Gomez-Guerrero, Lorena; Resches, Mariela; Eiris, Jesus; Barros, Francisco; Carracedo, Angel

    2015-06-01

    We report on a male patient with severe autistic disorder, lack of oral language, and dysmorphic features who carries a rare interstitial microdeletion of 4.96 Mb at chromosome 6q14.1-q15. The patient also harbors a maternally inherited copy number gain of 1.69 Mb at chromosome Xp22.31, whose pathogenicity is under debate.

  2. A 6q14.1-q15 microdeletion in a male patient with severe autistic disorder, lack of oral language, and dysmorphic features with concomitant presence of a maternally inherited Xp22.31 copy number gain

    PubMed Central

    Quintela, Ines; Fernandez-Prieto, Montse; Gomez-Guerrero, Lorena; Resches, Mariela; Eiris, Jesus; Barros, Francisco; Carracedo, Angel

    2015-01-01

    Key Clinical Message We report on a male patient with severe autistic disorder, lack of oral language, and dysmorphic features who carries a rare interstitial microdeletion of 4.96 Mb at chromosome 6q14.1-q15. The patient also harbors a maternally inherited copy number gain of 1.69 Mb at chromosome Xp22.31, whose pathogenicity is under debate. PMID:26185640

  3. Ebstein anomaly: Genetic heterogeneity and association with microdeletions 1p36 and 8p23.1.

    PubMed

    Digilio, Maria Cristina; Bernardini, Laura; Lepri, Francesca; Giuffrida, Maria Grazia; Guida, Valentina; Baban, Anwar; Versacci, Paolo; Capolino, Rossella; Torres, Barbara; De Luca, Alessandro; Novelli, Antonio; Marino, Bruno; Dallapiccola, Bruno

    2011-09-01

    Ebstein anomaly is an uncommon congenital heart defect (CHD), characterized by downward displacement of the tricuspid valve into the right ventricle. To uncover the genetic associations with Ebstein anomaly, we have searched chromosomal imbalances using standard cytogenetic and array-CGH analysis, and single gene conditions associated with syndromic Ebstein anomaly (with extracardiac anomalies), and screened GATA4 and NKX2.5 mutations in nonsyndromic patients (without extracardiac anomalies). Between January 1997 and September 2009, 44 consecutive patients with Ebstein anomaly were evaluated in two centers of Pediatric Cardiology. Ebstein anomaly was syndromic in 12 (27%) patients, and nonsyndromic in 32 (73%). A recognizable syndrome or complex was diagnosed by clinical criteria in seven patients. In one syndromic patient an 18q deletion was diagnosed by standard cytogenetic analysis. Array-CGH analysis performed in 10 of the 12 syndromic patients detected an interstitial deletion of about 4 Mb at 8p23.1 in one patient, and a deletion 1pter > 1p36.32/dup Xpter- > Xp22.32 in another patient. In the 28 of 32 nonsyndromic patients who underwent molecular testing, no mutation in GATA4 and NKX2.5 genes were detected. We conclude that Ebstein anomaly is a genetically heterogeneous defect, and that deletion 1p36 and deletion 8p23.1 are the most frequent chromosomal imbalances associated with Ebstein anomaly. Candidate genes include the GATA4 gene (in patients with del 8p23.1), NKX2.5 (based on published patients with isolated Ebstein anomaly) and a hypothetical gene in patients with del 1p36).

  4. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay

    PubMed Central

    Seo, Go Hun; Kim, Ja Hye; Cho, Ja Hyang; Kim, Gu-Hwan; Seo, Eul-Ju; Lee, Beom Hee; Choi, Jin-Ho

    2016-01-01

    Purpose The 1p36 deletion syndrome is a microdeletion syndrome characterized by developmental delays/intellectual disability, craniofacial dysmorphism, and other congenital anomalies. To date, many cases of this syndrome have been reported worldwide. However, cases with this syndrome have not been reported in Korean populations anywhere. This study was performed to report the clinical and molecular characteristics of five Korean patients with the 1p36 deletion syndrome. Methods The clinical characteristics of the 5 patients were reviewed. Karyotyping and multiplex ligation-dependent probe amplification (MLPA) analyses were performed for genetic diagnoses. Results All 5 patients had typical dysmorphic features including frontal bossing, flat right parietal bone, low-set ears, straight eyebrows, down-slanting palpebral fissure, hypotelorism, flat nasal roots, midface hypoplasia, pointed chins, small lips, and variable degrees of developmental delay. Each patient had multiple and variable anomalies such as a congenital heart defect including ventricular septal defect, atrial septal defect, and patent duct arteriosus, ventriculomegaly, cryptorchism, or hearing loss. Karyotyping revealed the 1p36 deletion in only 1 patient, although it was confirmed in all 5 patients by MLPA analyses. Conclusion All the patients had the typical features of 1p36 deletion. These hallmarks can be used to identify other patients with this condition in their early years in order to provide more appropriate care. PMID:26893599

  5. MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome.

    PubMed

    Voss, Anne K; Vanyai, Hannah K; Collin, Caitlin; Dixon, Mathew P; McLennan, Tamara J; Sheikh, Bilal N; Scambler, Peter; Thomas, Tim

    2012-09-11

    DiGeorge syndrome, caused by a 22q11 microdeletion or mutation of the TBX1 gene, varies in severity greatly, even among monozygotic twins. Epigenetic phenomena have been invoked to explain phenotypic differences in individuals of identical genetic composition, although specific chromatin modifications relevant to DiGeorge syndrome are elusive. Here we show that lack of the histone acetyltransferase MOZ (MYST3/KAT6A) phenocopies DiGeorge syndrome, and the MOZ complex occupies the Tbx1 locus, promoting its expression and histone 3 lysine 9 acetylation. Importantly, DiGeorge syndrome-like anomalies are present in mice with homozygous mutation of Moz and in heterozygous Moz mutants when combined with Tbx1 haploinsufficiency or oversupply of retinoic acid. Conversely, a Tbx1 transgene rescues the heart phenotype in Moz mutants. Our data reveal a molecular mechanism for a specific chromatin modification of the Tbx1 locus intersecting with an environmental determinant, modeling variability in DiGeorge syndrome.

  6. Noncardiac DiGeorge syndrome diagnosed with multiplex ligation-dependent probe amplification: A case report.

    PubMed

    Fu, Chih-Hsuan; Leung, Cheung; Kao, Chuan-Hong; Yeh, Shu-Jen

    2015-08-01

    DiGeorge syndrome is not really a rare disease. A microdeletion of chromosome 22q11.2 is found in most patients. Sharing the same genetic cause, a wide spectrum of clinical manifestations such as conotruncal anomaly face syndrome, Cayler cardiofacial syndrome, and velocardiofacial syndrome have been reported. Classic characteristics are cardiac defects, abnormal facial features, thymic hypoplasia, cleft palate, and hypocalcemia. We report a 6-year-old female child presenting with generalized seizure resulting from hypocalcemia. She had no cardiac defects and no hypocalcemia episode in neonatal stage, and had been said to be normal before by her parents until the diagnosis was made. This highlights the importance of extracardiac manifestations in the diagnosis of DiGeorge syndrome, and many affected patients may be underestimated with minor facial dysmorphism. As health practitioners, it is our duty to identify the victims undermined in the population, and start thorough investigations and the following rehabilitation as soon as possible. Multiplex ligation-dependent probe amplification is a rapid, reliable, and economical alternative for the diagnosis of 22q11.2 deletion.

  7. Genomic findings in patients with clinical suspicion of 22q11.2 deletion syndrome.

    PubMed

    Koczkowska, Magdalena; Wierzba, Jolanta; Śmigiel, Robert; Sąsiadek, Maria; Cabała, Magdalena; Ślężak, Ryszard; Iliszko, Mariola; Kardaś, Iwona; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    2017-02-01

    Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ∼40 % phenotypic 22q11.2 deletion subjects.

  8. Investigating the genetic basis of fever-associated syndromic epilepsies using copy number variation analysis.

    PubMed

    Hartmann, Corinna; von Spiczak, Sarah; Suls, Arvid; Weckhuysen, Sarah; Buyse, Gunnar; Vilain, Catheline; Van Bogaert, Patrick; De Jonghe, Peter; Cook, Joseph; Muhle, Hiltrud; Stephani, Ulrich; Helbig, Ingo; Mefford, Heather C

    2015-03-01

    Fever-associated syndromic epilepsies ranging from febrile seizures plus (FS+) to Dravet syndrome have a significant genetic component. However, apart from SCN1A mutations in >80% of patients with Dravet syndrome, the genetic underpinnings of these epilepsies remain largely unknown. Therefore, we performed a genome-wide screening for copy number variations (CNVs) in 36 patients with SCN1A-negative fever-associated syndromic epilepsies. Phenotypes included Dravet syndrome (n = 23; 64%), genetic epilepsy with febrile seizures plus (GEFS+) and febrile seizures plus (FS+) (n = 11; 31%) and unclassified fever-associated epilepsies (n = 2; 6%). Array comparative genomic hybridization (CGH) was performed using Agilent 4 × 180K arrays. We identified 13 rare CNVs in 8 (22%) of 36 individuals. These included known pathogenic CNVs in 4 (11%) of 36 patients: a 1q21.1 duplication in a proband with Dravet syndrome, a 14q23.3 deletion in a proband with FS+, and two deletions at 16p11.2 and 1q44 in two individuals with fever-associated epilepsy with concomitant autism and/or intellectual disability. In addition, a 3q13.11 duplication in a patient with FS+ and two de novo duplications at 7p14.2 and 18q12.2 in a patient with atypical Dravet syndrome were classified as likely pathogenic. Six CNVs were of unknown significance. The identified genomic aberrations overlap with known neurodevelopmental disorders, suggesting that fever-associated epilepsy syndromes may be a recurrent clinical presentation of known microdeletion syndromes.

  9. [Molecular characterisation and phenotypic description of two patients with reciprocal chromosomal aberrations in the region of the 3q29 microdeletion/microduplication syndromes].

    PubMed

    Quintela, I; Barros-Angueira, F; Perez-Gay, L; Dacruz, D; Castro-Gago, M; Carracedo, A; Eiris-Punal, J

    2015-09-16

    Introduccion. Los sindromes de microdelecion y microduplicacion 3q29 se caracterizan por una marcada heterogeneidad fenotipica, y el retraso del desarrollo y la discapacidad intelectual de grado leve-moderado son las manifestaciones clinicas mas frecuentes. Casos clinicos. Dos pacientes con aberraciones cromosomicas reciprocas en la region 3q29. La paciente con la microdelecion 3q29 presenta dificultades de aprendizaje, microcefalia limite, dismorfismo facial leve, deficit atencional e impulsividad, y rasgos ansiosos y obsesivos. El paciente con la microduplicacion 3q29 reciproca presenta dificultades de aprendizaje, dismorfismo facial leve y un perfil conductual disruptivo no asociado previamente con esta duplicacion. Conclusion. Se comparan los fenotipos de estos pacientes y se revisa la bibliografia de pacientes pediatricos con microdeleciones y microduplicaciones 3q29.

  10. The proximal chromosome 14q microdeletion syndrome: delineation of the phenotype using high resolution SNP oligonucleotide microarray analysis (SOMA) and review of the literature.

    PubMed

    Torgyekes, Edina; Shanske, Alan L; Anyane-Yeboa, Kwame; Nahum, Odelia; Pirzadeh, Sara; Blumfield, Einat; Jobanputra, Vaidehi; Warburton, Dorothy; Levy, Brynn

    2011-08-01

    We report on two patients with overlapping small interstitial deletions involving regions 14q12 to 14q13.1. Both children had severe developmental delay, failure to thrive, microcephaly, and distinctive facial features, including abnormal spacing of the eyes, epicanthal folds, sloping forehead, low-set ears, rounded eyebrows with triangular media aspect and outer tapering, depressed and broad nasal bridge, small mouth, a long philtrum, and a prominent Cupid's bow. Brain MRI of both children showed partial agenesis of the corpus callosum. Our first patient had bilateral hypoplastic optic nerves causing blindness, mild hearing impairment, sinus arrhythmia, abnormal temperature regulation, frequent apneic episodes, myoclonic jerks, and opisthotonus. Our second patient had a seizure disorder confirmed by EEG, sleep apnea, chronic interstitial lung disease, and several episodes of pneumonia and gastroenteritis. Cytogenetic analysis showed a normal karyotype in Patient 1 and a unique apparently balanced three-way translocation in Patient 2 involving chromosomes 4, 14, and 11. High resolution SNP Oligonucleotide Microarray Analysis (SOMA) revealed a deletion in the proximal region of chromosome 14q overlapping with the deletion of our first patient, and no copy number changes in chromosomes 4 and 11. Here, we review and compare published cases with a deletion involving the 14q12-22.1 chromosomal region in an effort to correlate phenotype and genotype. We also examine the underlying genomic architecture to identify the possible mechanism of the chromosomal abnormality. Our review found a patient with a mirror duplication of our first patient's deletion, confirming the existence of an underlying genomic structural instability in the region. © 2011 Wiley-Liss, Inc.

  11. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia

    PubMed Central

    Davies, E. Graham

    2013-01-01

    The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation. PMID:24198816

  12. Mechanisms and treatment of cardiovascular disease in Williams-Beuren syndrome

    PubMed Central

    Pober, Barbara R.; Johnson, Mark; Urban, Zsolt

    2008-01-01

    Williams-Beuren syndrome (WBS) is a microdeletion disorder caused by heterozygous loss of approximately 1.5-Mb pairs of DNA from chromosome 7. Patients with WBS have a characteristic constellation of medical and cognitive findings, with a hallmark feature of generalized arteriopathy presenting as stenoses of elastic arteries and hypertension. Human and mouse studies establish that defects in the elastin gene, leading to elastin haploinsufficiency, underlie the arteriopathy. In this review we describe potential links between elastin expression and arteriopathy, possible explanations for disease variability, and current treatment options and their limitations, and we propose several new directions for the development of nonsurgical preventative therapies based on insights from elastin biology. PMID:18452001

  13. Cloning of a balanced translocation breakpoint mapping in the DiGeorge syndrome critical region

    SciTech Connect

    Demczuk, S.; Zucman, J.; Desmaze, C.

    1994-09-01

    DiGeorge syndrome (DGS) is a developmental defect of thymus, parathyroids and heart, which is associated with microdeletions in chromosomal region 22q11.2. A detailed physical map of the region has been established and a shortest region of overlap based on deletions and unbalanced translocations giving rise to DGS has been derived. Moreover, the breakpoint of a balanced translocation borne by a DGS patient has been localized in that critical region; thereby suggesting that the translocation breakpoint interrupts the or one of the major gene(s) implicated in DGS. We have initiated a chromosome walk by establishing cosmid contigs from probes distally flanking the breakpoint. One contig covers 150 kb of genomic DNA and a second one spans 350 kb in the region and contains the balanced translocation breakpoint. Phylogenetically conserved sequences are being searched for in the vicinity of the breakpoint to be used as probes in order to isolate cDNAs.

  14. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia.

    PubMed

    Davies, E Graham

    2013-10-31

    The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.

  15. Occurrence of anaplastic oligodendroglioma in a patient with Williams syndrome: a case report with analysis of mutational profile of tumor.

    PubMed

    Omalu, B I; Nnebe-Agumadu, U H

    2009-06-01

    Williams syndrome is a rare congenital developmental disorder characterized by a constellation of distinctive facial dysmorphisms, mental retardation, cardiovascular anomalies, infantile hypercalcemia, delayed developmental milestones, dental and musculoskeletal anomalies and distinctive personality traits. A majority of patients with Williams syndrome exhibit a hemizygous micro-deletion of chromosome 7q11.23, which is the locus of some 20-30 genes including the ELN gene that encodes the structural protein elastin. Chromosome 7q contains putative tumor suppressor genes and is one of the chromosomes that are frequently involved in chromosomal aberrations in human malignancies. A paucity of tumors (three) has been reported in the literature to occur in patients with Williams syndrome. We report a case of anaplastic oligodendroglioma that occurred in a 31-year-old man with Williams syndrome. Mutational profiling by loss of heterozygosity analysis using a panel of polymorphic micro-satellite markers indicated combined deletion of chromosome 1p and 19q. We draw attention to this apparently rare or possibly under-reported occurrence of tumors in patients with Williams syndrome and suggest that Central Nervous System [CNS] tumors be considered as differential diagnoses in such patients when they present with unanticipated neurologic symptoms that are not attributable to those commonly associated with Williams syndrome.

  16. Turner Syndrome

    MedlinePlus

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or incomplete ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of skin ...

  17. Alport syndrome

    MedlinePlus

    ... Autosomal dominant Alport syndrome (ADAS) -- This is the rarest type. Males and females have equally severe disease. Symptoms KIDNEYS With all types of Alport syndrome the kidneys are affected. The tiny blood vessels in the glomeruli of the kidneys are ...

  18. Reye syndrome

    MedlinePlus

    ... syndrome has occurred in children who were given aspirin when they had chickenpox or the flu. Reye syndrome has become very rare. This is because aspirin is no longer recommended for routine use in ...

  19. Rett Syndrome

    MedlinePlus

    Rett syndrome is a rare genetic disease that causes developmental and nervous system problems, mostly in girls. It's related to autism spectrum disorder. Babies with Rett syndrome seem to grow and develop normally at first. ...

  20. Tourette Syndrome

    MedlinePlus

    ... will order several other tests like blood tests, EEG, and brain scans. How Is Tourette Syndrome Treated? ... connected to Tourette syndrome, like ADHD and anxiety. Stress or being upset can make the tics worse, ...

  1. LEOPARD syndrome

    MedlinePlus

    LEOPARD syndrome is a very rare inherited disorder in which there are problems with the skin, face, ... LEOPARD syndrome is inherited as an autosomal dominant trait. This means the person only needs the abnormal ...

  2. Myelodysplastic Syndromes

    MedlinePlus

    ... help with blood clotting. If you have a myelodysplastic syndrome, the stem cells do not mature into healthy ... can lead to infection, anemia, or easy bleeding. Myelodysplastic syndromes often do not cause early symptoms and are ...

  3. Marfan Syndrome

    MedlinePlus

    ... Like for Kids With Marfan Syndrome? en español Síndrome de Marfan Evan couldn't wait for school ... for Marfan syndrome runs in families, getting passed down to children from parents who have the disease. ...

  4. Edwards' syndrome.

    PubMed

    Crawford, Doreen; Dearmun, Annette

    2016-12-08

    Edwards' syndrome is a serious genetic condition that affects fetal cellular functions, tissue development and organogenesis. Most infants with the syndrome are female, but there is no race predominance.

  5. Proteus Syndrome

    MedlinePlus

    ... Donate Cash Donation Life Insurance Gift Matching Gift Stock Gift Sunshine Society Contact Privacy Policy Proteus Syndrome ... approved by the Proteus Syndrome Foundation Assessment and management of the orthopedic and other complications of Proteus ...

  6. Apert Syndrome.

    PubMed

    Datta, Saikat; Saha, Sandip; Kar, Arnab; Mondal, Souvonik; Basu, Syamantak

    2014-09-01

    Apert syndrome is one of the craniosynostosis syndromes which, due to its association with other skeletal anomalies, is also known as acrocephalosyndactyly. It is a rare congenital anomaly which stands out from other craniosynostosis due to its characteristic skeletal presentations.

  7. Fraser syndrome.

    PubMed

    Kalpana Kumari, M K; Kamath, Sulata; Mysorekar, Vijaya V; Nandini, G

    2008-01-01

    Fraser syndrome or cryptophthalmos is a rare autosomal recessive disorder characterized by major features such as cryptophthalmos, syndactyly and abnormal genitalia. The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy. We present the autopsy findings of a rare case of Fraser syndrome in a male infant.

  8. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  9. The role of modern imaging techniques in the diagnosis of malposition of the branch pulmonary arteries and possible association with microdeletion 22q11.2.

    PubMed

    Cuturilo, Goran; Drakulic, Danijela; Krstic, Aleksandar; Gradinac, Marija; Ilisic, Tamara; Parezanovic, Vojislav; Milivojevic, Milena; Stevanovic, Milena; Jovanovic, Ida

    2013-04-01

    Malposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients

  10. Common variable immunodeficiency associated with microdeletion of chromosome 1q42.1-q42.3 and inositol 1,4,5-trisphosphate kinase B (ITPKB) deficiency

    PubMed Central

    Louis, Ankmalika G; Yel, Leman; Cao, Jia N; Agrawal, Sudhanshu; Gupta, Sudhir

    2016-01-01

    Common variable immunodeficiency (CVID) is a heterogenous disorder characterized by hypogammaglobulinemia and impaired specific antibody response and increased susceptibility to infections, autoimmunity and malignancies. A number of gene mutations, including ICOS, TACI and BAFF-R, and CD19, CD20, CD21, CD81, MSH5 and LRBA have been described; however, they account for approximately 20–25% of total cases of CVID. In this study, we report a patient with CVID with an intrinsic microdeletion of chromosome 1q42.1-42.3, where gene for inositol 1,3,4, trisphosphate kinase β (ITPKB) is localized. ITPKB has an important role in the development, survival and function of B cells. In this subject, the expression of ITPKB mRNA as well as ITKPB protein was significantly reduced. The sequencing of ITPKB gene revealed three variants, two of them were missense variants and third was a synonymous variant; the significance of each of them in relation to CVID is discussed. This case suggests that a deficiency of ITPKB may have a role in CVID. PMID:26900472

  11. Clinical and molecular characterization of a combined 17p13.3 microdeletion with partial monosomy 21q21.3 in a 26-year-old man.

    PubMed

    Hannachi, H; Mougou-Zerelli, S; BenAbdallah, I; Mama, N; Hamdi, I; Labalme, A; Elghezal, H; Sanlaville, D; Saad, A

    2011-01-01

    We led a clinical and molecular characterization of a patient with mild mental delay and dysmorphic features initially referred for cytogenetic exploration of an azoospermia. We employed FISH and array CGH techniques for a better definition and refinement of a double chromosome aberration associating a 17p microdeletion with partial monosomy 21q due to 1:3 meiotic segregation of a maternal reciprocal translocation t(17;21)(p13.3;q21.2) revealed after banding analysis. Brain MRI depicted partial callosal and mild diffuse cerebral atrophies, but without expected signs of lissencephaly. The patient's karyotype formula was: 45,XY,der(17)t(17;21)(p13.3;q21.2)mat,-21. FISH study confirmed these rearrangements and array CGH analysis estimated the loss sizes to at least 635 kb on chromosome 17 and to 15.6 Mb on chromosome 21. The absence of lissencephaly and major brain malformations often associated with 17p terminal deletions could be attributed to the retention of PAFAH1B1, YWHAE and CRK genes. Dysmorphic features, moderate mental impairment and minor brain malformations could result from the 21q monosomy and particularly the partial deletion of the APP-SOD1 region. Azoospermia should result from gamete apoptosis induced by a control mechanism triggered in response to chromosome imbalances. Our study provides an additional case for better understanding and delineating both 17p and 21q deletions.

  12. Meiotic studies of infertile men in case of non-obstructive azoospermia with normal karyotype and no microdeleted Y-chromosome precise the clinical couple management.

    PubMed

    North, Marie-Odile; Lellei, Ilona; Erdei, Edit; Barbet, Jacques Patrick; Tritto, Joseph

    2004-01-01

    To identify meiotic criteria for infertility management in non-obstructive azoospermic men, a prospective and multicentric study was organized in Andrological Departments of Paris (France), Roma (Italy) and Budapest (Hungary). In 117 non-obstructive azoospermic men with normal karyotype and no Y-chromosome microdeletion, histology and meiotic studies on bilateral bipolar testicular biopsies were done. Histologically, 40 patients (34%) presented spermatocyte or spermatid arrest, 39 (33%) hypospermatogenesis whereas no meiotic cell could be observed in the remaining patients (33%). Cytogenetically, meiotic figures could only be obtained from the two first histological groups. Meiotic abnormalities were observed in a total of 44 patients (37.6%) including nine patients (7.7%) with severe class I and class IIB anomalies and 19 patients (16.2%) with class IIC environmentally linked meiotic abnormalities. These results provided essential clues for an accurate clinical management. For patients with no meiotic figures and patients with class I and class IIB anomalies, an hormonal stimulation is illusory and a sperm gift should be directly proposed. An hormonal stimulation should be proposed to all the other patients, either directly or following the treatment of the testicular microenvironment for the patients presenting class IIC anomalies. The genetic risk and possibility of prenatal chromosomal analysis in case of pregnancy should be clearly exposed to all the couples in all the cases where type IIA, III or IV anomalies are present. This therapeutical strategy has been applied to all the patients in our series.

  13. Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)

    PubMed Central

    Liu, Xiao; Li, Zesong; Su, Zheng; Zhang, Junjie; Li, Honggang; Xie, Jun; Xu, Hanshi; Jiang, Tao; Luo, Liya; Zhang, Ruifang; Zeng, Xiaojing; Xu, Huaiqian; Huang, Yi; Mou, Lisha; Hu, Jingchu; Qian, Weiping; Zeng, Yong; Zhang, Xiuqing; Xiong, Chengliang; Yang, Huanming; Kristiansen, Karsten; Cai, Zhiming; Wang, Jun; Gui, Yaoting

    2016-01-01

    Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome. PMID:26907467

  14. Post vaccine acute disseminated encephalomyelitis as the first manifestation of chromosome 22q11.2 deletion syndrome in a 15-month old baby: a case report.

    PubMed

    Valenzise, Mariella; Cascio, Antonio; Wasniewska, Malgorzata; Zirilli, Giuseppina; Catena, Maria Ausilia; Arasi, Stefania

    2014-09-29

    We describe a case of a 15-month-old female child admitted to our hospital because of fever, rash, neurological signs (oscillation between states of irritability and drowsiness), palpebral edema and drooping eyelid, appeared 10 days after the vaccination for measles, mumps and rubella. Brain MRI images showed multiple bilateral hyperintense lesions in the white matter typical of acute disseminated encephalomyelitis (ADEM), an autoimmune demyelinating disorder with inflammatory lesions of the central nervous system, due to viral antigens or vaccines. In the mean time, because of patient's vague phenotypic manifestations, suggestive of a genetic defect, array comparative genomic hybridization was carried out which showed the presence of a microdeletion 22q11.21, linked to the DiGeorge syndrome. Our case suggests that pediatric cases of post-vaccination ADEM, in which neurological signs persist, should be investigated for genetic phenotypical features, in order to exclude the presence of a genetic syndrome or disease.

  15. Molecular diagnosis of Prader-Willi syndrome: Parent-of-origin dependent methylation sites and non-isotopic detection of (CA){sub n} dinucleotide repeat polymorphisms

    SciTech Connect

    Lerer, I.; Meiner, V.; Pashut-Lavon, I.; Abeliovich, D.

    1994-08-01

    We describe our experience in the molecular diagnosis of 22 patients suspected of Prader-Willi syndrome (PWS) using a DNA probe PW71 (D15S63) which detects a parent-of-origin specific methylated site in the PWS critical region. The cause of the syndrome was determined as deletion or uniparental disomy according to the segregation of (CA){sub n} dinucleotide repeat polymorphisms of the PWS/AS region and more distal markers of chromosome 15. In 10 patients the clinical diagnosis was confirmed by the segregation of (CA){sub n}, probably due to paternal microdeletion in the PWs critical region which did not include the loci D15S97, D15S113, GABRB3, and GABRA5. This case demonstrates the advantage of the DNA probe PW71 in the diagnosis of PWS. 31 refs., 2 figs., 3 tabs.

  16. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH

    PubMed Central

    Vallespín, Elena; Villaverde, Cristina; Martín-Arenas, Rubén; Vélez-Monsalve, Camilo; Lorda-Sánchez, Isabel; Nevado, Julián; Trujillo-Tiebas, María José; Lapunzina, Pablo; Ayuso, Carmen; Corton, Marta

    2017-01-01

    Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening. PMID:28231309

  17. [Autoinflammatory syndrome].

    PubMed

    Ida, Hiroaki; Eguchi, Katsumi

    2009-03-01

    The autoinflammatory syndromes include a group of inherited diseases that are characterized by 1) seemingly unprovoked episodes of systemic inflammations, 2) absence of high titer of autoantibody or auto-reactive T cell, and 3) inborn error of innate immunity. In this article, we will focus on the clinical features, the pathogenesis related the genetic defects, and the therapeutic strategies in the representative disorders including familial Mediterranean fever (FMF), TNF receptor associated periodic syndrome (TRAPS), cryopyrin-associated periodic syndrome (CAPS), hyper-IgD with periodic fever syndrome (HIDS), syndrome of pyogenic arthritis with pyoderma gangrenosum and acne (PAPA), and Blau syndrome. Recent advances in genetics and molecular biology have proceeded our understanding of the pathogenesis of autoinflammatory syndromes.

  18. Chromosome 22q12.1 microdeletions: confirmation of the MN1 gene as a candidate gene for cleft palate

    PubMed Central

    Breckpot, Jeroen; Anderlid, Britt-Marie; Alanay, Yasemin; Blyth, Moira; Brahimi, Afane; Duban-Bedu, Bénédicte; Gozé, Odile; Firth, Helen; Yakicier, Mustafa Cengiz; Hens, Greet; Rayyan, Maissa; Legius, Eric; Vermeesch, Joris Robert; Devriendt, Koen

    2016-01-01

    We report on seven novel patients with a submicroscopic 22q12 deletion. The common phenotype constitutes a contiguous gene deletion syndrome on chromosome 22q12.1q12.2, featuring NF2-related schwannoma of the vestibular nerve, corpus callosum agenesis and palatal defects. Combining our results with the literature, eight patients are recorded with palatal defects in association with haploinsufficiency of 22q12.1, including the MN1 gene. These observations, together with the mouse expression data and the finding of craniofacial malformations including cleft palate in a Mn1-knockout mouse model, suggest that this gene is a candidate gene for cleft palate in humans. PMID:25944382

  19. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype.

    PubMed

    Potocki, Lorraine; Bi, Weimin; Treadwell-Deering, Diane; Carvalho, Claudia M B; Eifert, Anna; Friedman, Ellen M; Glaze, Daniel; Krull, Kevin; Lee, Jennifer A; Lewis, Richard Alan; Mendoza-Londono, Roberto; Robbins-Furman, Patricia; Shaw, Chad; Shi, Xin; Weissenberger, George; Withers, Marjorie; Yatsenko, Svetlana A; Zackai, Elaine H; Stankiewicz, Pawel; Lupski, James R

    2007-04-01

    The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.

  20. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.

    PubMed

    Toritsuka, Michihiro; Kimoto, Sohei; Muraki, Kazue; Landek-Salgado, Melissa A; Yoshida, Atsuhiro; Yamamoto, Norio; Horiuchi, Yasue; Hiyama, Hideki; Tajinda, Katsunori; Keni, Ni; Illingworth, Elizabeth; Iwamoto, Takashi; Kishimoto, Toshifumi; Sawa, Akira; Tanigaki, Kenji

    2013-10-22

    22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate precursor cells. Furthermore, Df1/+ mice show functional defects in Chemokine receptor 4/Chemokine ligand 12 (Cxcr4/Cxcl12; Sdf1) signaling, which reportedly underlie interneuron migration. Notably, the defects in interneuron progenitors are rescued by ectopic expression of Dgcr8, one of the genes in 22q11 microdeletion. Furthermore, heterozygous knockout mice for Dgcr8 show similar neurodevelopmental abnormalities as Df1/+ mice. Thus, Dgcr8-mediated regulation of microRNA is likely to underlie Cxcr4/Cxcl12 signaling and associated neurodevelopmental defects. Finally, we observe that expression of CXCL12 is decreased in olfactory neurons from sporadic cases with schizophrenia compared with normal controls. Given the increased risk of 22q11DS in schizophrenia that frequently shows interneuron abnormalities, the overall study suggests that CXCR4/CXCL12 signaling may represent a common downstream mediator in the pathophysiology of schizophrenia and related mental conditions.

  1. [Autoinflammatory syndromes].

    PubMed

    Lamprecht, P; Gross, W L

    2009-06-01

    In its strict sense, the term "autoinflammatory syndromes" comprises the hereditary periodic fever syndromes (HPF), which are caused by mutations of pattern-recognition receptors (PRR) and perturbations of the cytokine balance. These include the crypyrinopathies, familial Mediterranean fever, TNF-receptor associated periodic fever syndrome (TRAPS), hyper-IgD and periodic syndrome (HIDS), pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA) syndrome, NALP12-HPF, and the Blau syndrome. The diseases are characterized by spontaneous activation of cells of the innate immunity in the absence of ligands. Autoantibodies are usually not found. HPF clinically present with recurrent fever episodes and inflammation, especially of serosal and synovial interfaces and the skin. Intriguingly, PRR-mediated autoinflammtory mechanisms also play a role in a number of chronic inflammatory and autoimmune diseases.

  2. A case of Dravet syndrome with cortical myoclonus indicated by jerk-locked back-averaging of electroencephalogram data.

    PubMed

    Kobayashi, Yoshinori; Hanaoka, Yoshiyuki; Akiayma, Tomoyuki; Ohmori, Iori; Ouchida, Mamoru; Yamamoto, Toshiyuki; Oka, Makio; Yoshinaga, Harumi; Kobayashi, Katsuhiro

    2017-01-01

    We report a female patient with Dravet syndrome (DS) with erratic segmental myoclonus, the origin of which was first identified in the cerebral cortex by the detection of myoclonus-associated cortical discharges. The discharges were disclosed through jerk-locked back-averaging of electroencephalogram (EEG) data using the muscle activity of myoclonus as triggers. The detected spikes on the contralateral parieto-central region preceded myoclonic muscle activity in the forearms by 28-46ms. The patient was six months old at the time of examination, and was developing normally before seizure onset at two months of age. She suffered from recurrent afebrile or febrile generalized tonic-clonic seizures that often developed into status epilepticus. Interictal EEG and brain magnetic resonance imaging (MRI) showed no significant findings. The amplitudes of the somatosensory-evoked potentials were not extremely large. She has a chromosomal microdeletion involving SCN1A and adjacent genes.

  3. Understanding the Role of Tbx1 as a Candidate Gene for 22q11.2 Deletion Syndrome

    PubMed Central

    Gao, Shan; Li, Xiao; Amendt, Brad A.

    2013-01-01

    22q11.2 deletion syndrome (22q11.2DS) is caused by a commonly occurring microdeletion on chromosome 22. Clinical findings include cardiac malformations, thymic and parathyroid hypoplasia, craniofacial dysmorphisms, and dental defects. These phenotypes are due mainly to abnormal development of the pharyngeal apparatus. Targeted deletion studies in mice and analysis of naturally occurring mutations in humans have implicated Tbx1 as a candidate gene for 22q11.2DS. Tbx1 belongs to an evolutionarily conserved T-box family of transcription factors, whose expression is precisely regulated during embryogenesis, and it appears to regulate the proliferation and differentiation of various progenitor cells during organogenesis. In this review, we discuss the mechanisms of Tbx1 during development of the heart, thymus and parathyroid glands, as well as during formation of the palate, teeth, and other craniofacial features. PMID:23996541

  4. Unusual (CGG)n expansion and recombination in a family with fragile X and DiGeorge syndrome.

    PubMed

    Macpherson, J N; Curtis, G; Crolla, J A; Dennis, N; Migeon, B; Grewal, P K; Hirst, M C; Davies, K E; Jacobs, P A

    1995-03-01

    In a fragile X family referred for prenatal diagnosis, the female fetus did not inherit the full fragile X mutation from her mother, but an unexpected expansion within the normal range of CGG repeats from 29 to 39 was observed in the paternal X chromosome. Also, a rare recombination between DXS548 and FRAXAC1 was recorded in the maternal meiosis. Follow up of the neonate confirmed the same DNA genotype as in the CVS, but the child died of DiGeorge syndrome after four days and was subsequently found to carry a microdeletion of chromosome 22 using probe cEO. It is suggested that in this family the deletion of chromosome 22 is likely to be a chance event but the rare recombinant and the fragile X mutation might be causally related.

  5. Cloning a balanced translocation associated with DiGeorge syndrome and identification of a disrupted candidate gene.

    PubMed

    Budarf, M L; Collins, J; Gong, W; Roe, B; Wang, Z; Bailey, L C; Sellinger, B; Michaud, D; Driscoll, D A; Emanuel, B S

    1995-07-01

    DiGeorge syndrome (DGS), a developmental defect, is characterized by cardiac defects and aplasia or hypoplasia of the thymus and parathyroid glands. DGS has been associated with visible chromosomal abnormalities and microdeletions of 22q11, but only one balanced translocation--ADU/VDU t(2;22)(q14;q11.21). We now report the cloning of this translocation, the identification of a gene disrupted by the rearrangement and the analysis of other transcripts in its vicinity. Transcripts were identified by direct screening of cDNA libraries, exon amplification, cDNA selection and genomic sequence analysis using GRAIL. Disruption of a gene in 22q11.2 by the breakpoint and haploinsufficiency of this locus in deleted DGS patients make it a strong candidate for the major features associated with this disorder.

  6. A region of mouse chromosome 16 is syntenic to the DiGeorge, velocardiofacial syndrome minimal critical region.

    PubMed

    Galili, N; Baldwin, H S; Lund, J; Reeves, R; Gong, W; Wang, Z; Roe, B A; Emanuel, B S; Nayak, S; Mickanin, C; Budarf, M L; Buck, C A

    1997-01-01

    DGS and VCFS, haploinsufficiencies characterized by multiple craniofacial and cardiac abnormalities, are associated with a microdeletion of chromosome 22q11.2. Here we document synteny between a 150-kb region on mouse chromosome 16 and the most commonly deleted portion of 22q11.2. Seven genes, all of which are transcribed in the early mouse embryo, have been identified. Of particular interest are two serine/threonine kinase genes and a novel goosecoid-like homeobox gene (Gscl). Comparative sequence analysis of a 38-kb segment reveals similarities in gene content, order, exon composition, and transcriptional direction. Therefore, if deletion of these genes results in DGS/VCFS in humans, then haploinsufficiencies involving this region of chromosome 16 should recapitulate the developmental field defects characteristic of this syndrome.

  7. Gorlin syndrome.

    PubMed

    Devi, Basanti; Behera, Binodini; Patro, Sibasish; Pattnaik, Subhransu S; Puhan, Manas R

    2013-05-01

    Gorlin Syndrome, a rare genodermatosis, otherwise known as Nevoid basal cell carcinoma syndrome (NBCCS) is a multisystem disease affecting skin, nervous system, eyes, endocrine glands, and bones. It is characterized by multiple basal cell carcinomas, palmoplantar pits, jaw cysts, and bony deformities like kyphoscoliosis and frontal bossing. We would like to report a case of Gorlin syndrome with classical features, as this is a rare genodermatosis.

  8. Overgrowth Syndromes

    PubMed Central

    Edmondson, Andrew C.; Kalish, Jennifer M.

    2015-01-01

    Numerous multiple malformation syndromes associated with pathologic overgrowth have been described and, for many, their molecular bases elucidated. This review describes the characteristic features of these overgrowth syndromes, as well as the current understanding of their molecular bases, intellectual outcomes, and cancer predispositions. We review syndromes such as Sotos, Malan, Marshall–Smith, Weaver, Simpson–Golabi–Behmel, Perlman, Bannayan–Riley–Ruvalcaba, PI3K-related, Proteus, Beckwith–Wiedemann, fibrous dysplasia, Klippel–Trenaunay–Weber, and Maffucci. PMID:27617124

  9. Proteus Syndrome Foundation

    MedlinePlus

    ... Gift Stock Gift Sunshine Society Contact Privacy Policy Proteus Syndrome Foundation The Proteus Syndrome Foundation , a 501c3 ... 1 Trial with ARQ 092 in Proteus Syndrome Proteus Syndrome Patient Registry The Proteus Syndrome Foundation Contact ...

  10. Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami-Ogata syndrome).

    PubMed

    Kagami, Masayo; Kurosawa, Kenji; Miyazaki, Osamu; Ishino, Fumitoshi; Matsuoka, Kentaro; Ogata, Tsutomu

    2015-11-01

    Paternal uniparental disomy 14 (UPD(14)pat) and epimutations and microdeletions affecting the maternally derived 14q32.2 imprinted region lead to a unique constellation of clinical features such as facial abnormalities, small bell-shaped thorax with a coat-hanger appearance of the ribs, abdominal wall defects, placentomegaly, and polyhydramnios. In this study, we performed comprehensive clinical studies in patients with UPD(14)pat (n=23), epimutations (n=5), and microdeletions (n=6), and revealed several notable findings. First, a unique facial appearance with full cheeks and a protruding philtrum and distinctive chest roentgenograms with increased coat-hanger angles to the ribs constituted the pathognomonic features from infancy through childhood. Second, birth size was well preserved, with a median birth length of ±0 SD (range, -1.7 to +3.0 SD) and a median birth weight of +2.3 SD (range, +0.1 to +8.8 SD). Third, developmental delay and/or intellectual disability was invariably present, with a median developmental/intellectual quotient of 55 (range, 29-70). Fourth, hepatoblastoma was identified in three infantile patients (8.8%), and histological examination in two patients showed a poorly differentiated embryonal hepatoblastoma with focal macrotrabecular lesions and well-differentiated hepatoblastoma, respectively. These findings suggest the necessity of an adequate support for developmental delay and periodical screening for hepatoblastoma in the affected patients, and some phenotypic overlap between UPD(14)pat and related conditions and Beckwith-Wiedemann syndrome. On the basis of our previous and present studies that have made a significant contribution to the clarification of underlying (epi)genetic factors and the definition of clinical findings, we propose the name 'Kagami-Ogata syndrome' for UPD(14)pat and related conditions.

  11. Cognitive, Behavioural and Psychiatric Phenotype in 22q11.2 Deletion Syndrome

    PubMed Central

    Philip, Nicole

    2011-01-01

    22q11.2 Deletion syndrome has become an important model for understanding the pathophysiology of neurodevelopmental conditions, particularly schizophrenia which develops in about 20–25% of individuals with a chromosome 22q11.2 microdeletion. From the initial discovery of the syndrome, associated developmental delays made it clear that changes in brain development were a key part of the expression. Once patients were followed through childhood into adult years, further neurobehavioural phenotypes became apparent, including a changing cognitive profile, anxiety disorders and seizure diathesis. The variability of expression is as wide as for the myriad physical features associated with the syndrome, with the addition of evolving phenotype over the developmental trajectory. Notably, variability appears unrelated to length of the associated deletion. Several mouse models of the deletion have been engineered and are beginning to reveal potential molecular mechanisms for the cognitive and behavioural phenotypes observable in animals. Both animal and human studies hold great promise for further discoveries relevant to neurodevelopment and associated cognitive, behavioural and psychiatric disorders. PMID:21573985

  12. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice.

    PubMed

    Lindsay, E A; Vitelli, F; Su, H; Morishima, M; Huynh, T; Pramparo, T; Jurecic, V; Ogunrinu, G; Sutherland, H F; Scambler, P J; Bradley, A; Baldini, A

    2001-03-01

    DiGeorge syndrome is characterized by cardiovascular, thymus and parathyroid defects and craniofacial anomalies, and is usually caused by a heterozygous deletion of chromosomal region 22q11.2 (del22q11) (ref. 1). A targeted, heterozygous deletion, named Df(16)1, encompassing around 1 megabase of the homologous region in mouse causes cardiovascular abnormalities characteristic of the human disease. Here we have used a combination of chromosome engineering and P1 artificial chromosome transgenesis to localize the haploinsufficient gene in the region, Tbx1. We show that Tbx1, a member of the T-box transcription factor family, is required for normal development of the pharyngeal arch arteries in a gene dosage-dependent manner. Deletion of one copy of Tbx1 affects the development of the fourth pharyngeal arch arteries, whereas homozygous mutation severely disrupts the pharyngeal arch artery system. Our data show that haploinsufficiency of Tbx1 is sufficient to generate at least one important component of the DiGeorge syndrome phenotype in mice, and demonstrate the suitability of the mouse for the genetic dissection of microdeletion syndromes.

  13. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes.

    PubMed

    Neira-Fresneda, Juanita; Potocki, Lorraine

    2015-09-01

    Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid-inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.

  14. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith–Magenis and Potocki–Lupski Syndromes

    PubMed Central

    Neira-Fresneda, Juanita; Potocki, Lorraine

    2015-01-01

    Smith–Magenis syndrome (SMS) and Potocki–Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid–inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome. PMID:27617127

  15. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management.

  16. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders.

    PubMed

    Deutsch, Stephen I; Burket, Jessica A; Benson, Andrew D; Urbano, Maria R

    2016-01-04

    Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation.

  17. Tourette Syndrome.

    ERIC Educational Resources Information Center

    Look, Kathy

    Tourette Syndrome has a history of being misdiagnosed or undiagnosed due to its unusual and complex symptoms. This paper describes: the symptoms of Tourette Syndrome; its etiology; age of onset; therapeutic methods, such as drug therapy, psychotherapy, diet control, and hypnosis; educational implications; and employment prospects. Several…

  18. Cardiorenal syndrome

    PubMed Central

    2009-01-01

    Kidney dysfunction in patients with heart failure and cardiovascular disorders in patients with chronic kidney disease are common. A recently proposed consensus definition of cardiorenal syndrome stresses the bidirectional nature of these heart-kidney interactions. The treatment of cardiorenal syndrome is challenging, however, promising new therapeutic options are currently being investigated in recent and ongoing clinical trials. PMID:20948701

  19. Down syndrome

    MedlinePlus

    ... Parents and caregivers should learn to help a person with Down syndrome deal with frustration. At the same time, it is important to encourage independence. Teen girls and women with Down syndrome are usually able to get pregnant. There is an increased risk of sexual abuse ...

  20. Turner Syndrome

    MedlinePlus

    ... opportunity to exchange ideas, develop coping strategies and locate resources. Peer groups for girls with Turner syndrome can help reinforce your daughter's self-esteem and provide her with a social network of people who understand her experience with Turner syndrome. References ...

  1. Turner syndrome

    MedlinePlus

    ... at birth is often smaller than average. A child with Turner syndrome is much shorter than children who are the ... Growth hormone may help a child with Turner syndrome grow taller. ... started when the girl is 12 or 13 years old. These help trigger ...

  2. Syndromic craniosynostosis.

    PubMed

    Derderian, Christopher; Seaward, James

    2012-05-01

    Although most cases of craniosynostosis are nonsyndromic, craniosynostosis is known to occur in conjunction with other anomalies in well-defined patterns that make up clinically recognized syndromes. Patients with syndromic craniosynostoses are much more complicated to care for, requiring a multidisciplinary approach to address all of their needs effectively. This review describes the most common craniosynostosis syndromes, their characteristic features and syndrome-specific functional issues, and new modalities utilized in their management. General principles including skull development, the risk of developing increased intracranial pressure in craniosynostosis syndromes, and techniques to measure intracranial pressure are discussed. Evolving techniques of the established operative management of craniosynostosis are discussed together with more recent techniques including spring cranioplasty and posterior cranial vault distraction osteogenesis.

  3. Linburg syndrome

    PubMed Central

    Rennie, William R.J.; Muller, Hellmuth

    1998-01-01

    Objective To review the causes and demographics of Linburg syndrome. Design An illustrative case report and a demographic study. Setting Adult and pediatric orthopedic clinics at the Health Sciences Centre in Winnipeg. Patients One patient with Linburg syndrome and 200 patients and relatives presenting to adult and pediatric orthopedic clinics with conditions not involving their hands, wrists or forearms. Outcome measures The presence of the intertendinous anomaly and of carpal tunnel syndrome. Results Tendinous connection(s) between flexor pollicis longus and flexor digitorum profundus muscles were found in 20% of the study population. The anomaly was found in all age groups. No association was found between Linburg syndrome and the presence of carpal tunnel syndrome or previous injury to the hand or forearm. Conclusion Tendinous connection between flexor pollicis longus and flexor digitorum profundus muscles is a common anomaly that rarely causes clinical symptoms. PMID:9711164

  4. Escobar syndrome mimicing congenital patellar syndrome.

    PubMed

    Ezirmik, Naci; Yildiz, Kadri; Can, Cahit Emre

    2012-08-01

    Multiple pterygium syndrome (MPS) is a syndrome that is characterized abnormal face, short length and skin pterygiums on some body legions (servical, antecubital, popliteal, interdigital and on neck). It is also called as Pterygium Colli syndrome, Escobar syndrome or Pterygium syndrome. Escobar (multyple pterygium) syndrome is a rare syndrome. Intrauterin growth reterdation, abnormal face, wide-spead pterygiums that resulted in joint contractures, ptosis, chryptoorchidism, patellar dysplasia and foot deformities are seen on this syndrome. Primarly autosomal resesive crossing are observed; also autosomal dominant and X-linked crossing. This case were presented as it has components of Escobar syndrome and Isolated Patellar Aplasia syndrome in same time.

  5. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome.

    PubMed

    Ben-Shachar, Shay; Ou, Zhishuo; Shaw, Chad A; Belmont, John W; Patel, Millan S; Hummel, Marybeth; Amato, Stephen; Tartaglia, Nicole; Berg, Jonathan; Sutton, V Reid; Lalani, Seema R; Chinault, A Craig; Cheung, Sau W; Lupski, James R; Patel, Ankita

    2008-01-01

    Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent approximately 3 Mb deletion or a smaller, less common, approximately 1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the approximately 3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a approximately 1.4 Mb or approximately 2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.

  6. HERV-Mediated Genomic Rearrangement of EYA1 in an Individual With Branchio-oto-renal Syndrome

    PubMed Central

    Sanchez-Valle, Amarilis; Wang, Xueqing; Potocki, Lorraine; Xia, Zhilian; Kang, Sung-Hae L.; Carlin, Mary E.; Michel, Donnice; Williams, Patricia; Cabrera-Meza, Gerardo; Brundage, Ellen K.; Eifert, Anna L.; Stankiewicz, Pawel; Cheung, Sau Wai; Lalani, Seema R.

    2013-01-01

    Branchio-oto-renal syndrome is characterized by branchial defects, hearing loss, preauricular pits, and renal anomalies. Mutations in EYA1 are the most common cause of branchio-oto-renal and branchio-otic syndromes. Large chromosomal aberrations of 8q13, including complex rearrangements occur in about 20% of these individuals. However, submicroscopic deletions and the molecular characterization of genomic rearrangements involving the EYA1 gene have rarely been reported. Using the array-comparative genomic hybridization, we identified non-recurrent genomic deletions including the EYA1 gene in three patients with branchio-oto-renal syndrome, short stature, and developmental delay. One of these deletions was mediated by two human endogenous retroviral sequence blocks, analogous to the AZFa microdeletion on Yq11, responsible for male infertility. This report describes the expanded phenotype of individuals, resulting from contiguous gene deletion involving the EYA1 gene and provides a molecular description of the genomic rearrangements involving this gene in branchio-oto-renal syndrome. PMID:20979191

  7. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region.

    PubMed

    Shiohama, Aiko; Sasaki, Takashi; Noda, Setsuko; Minoshima, Shinsei; Shimizu, Nobuyoshi

    2003-04-25

    We have identified and cloned a novel gene (DGCR8) from the human chromosome 22q11.2. This gene is located in the DiGeorge syndrome chromosomal region (DGCR). It consists of 14 exons spanning over 35kb and produces transcripts with ORF of 2322bp, encoding a protein of 773 amino acids. We also isolated a mouse ortholog Dgcr8 and found it has 95.3% identity with human DGCR8 at the amino acid sequence level. Northern blot analysis of human and mouse tissues from adult and fetus showed rather ubiquitous expression. However, the in situ hybridization of mouse embryos revealed that mouse Dgcr8 transcripts are localized in neuroepithelium of primary brain, limb bud, vessels, thymus, and around the palate during the developmental stages of embryos. The expression profile of Dgcr8 in developing mouse embryos is consistent with the clinical phenotypes including congenital heart defects and palate clefts associated with DiGeorge syndrome (DGS)/conotruncal anomaly face syndrome (CAFS)/velocardiofacial syndrome (VCFS), which are caused by monoallelic microdeletion of chromosome 22q11.2.

  8. SPAG7 is a candidate gene for the periodic fever, aphthous stomatitis, pharyngitis and adenopathy (PFAPA) syndrome.

    PubMed

    Bens, S; Zichner, T; Stütz, A M; Caliebe, A; Wagener, R; Hoff, K; Korbel, J O; von Bismarck, P; Siebert, R

    2014-01-01

    Periodic fever, aphthous stomatitis, pharyngitis and adenopathy (PFAPA) syndrome is an auto-inflammatory disease for which a genetic basis has been postulated. Nevertheless, in contrast to the other periodic fever syndromes, no candidate genes have yet been identified. By cloning, following long insert size paired-end sequencing, of a de novo chromosomal translocation t(10;17)(q11.2;p13) in a patient with typical PFAPA syndrome lacking mutations in genes associated with other periodic fever syndromes we identified SPAG7 as a candidate gene for PFAPA. SPAG7 protein is expressed in tissues affected by PFAPA and has been functionally linked to antiviral and inflammatory responses. Haploinsufficiency of SPAG7 due to a microdeletion at the translocation breakpoint leading to loss of exons 2-7 from one allele was associated with PFAPA in the index. Sequence analyses of SPAG7 in additional patients with PFAPA point to genetic heterogeneity or alternative mechanisms of SPAG7 deregulation, such as somatic or epigenetic changes.

  9. Prader-Willi syndrome with a long-contiguous stretch of homozygosity not covering the critical region.

    PubMed

    Yingjun, Xie; Yi, Zhou; Jianzhu, Wu; Yunxia, Sun; Yongzhen, Chen; Liangying, Zhong; Xiangyi, Jing; Qun, Fang

    2015-03-01

    Prader-Willi syndrome is a common and complex disorder affecting multiple systems. Its main manifestations are infantile hypotonia with a poor sucking reflex, a characteristic facial appearance, mild mental retardation, hypogonadism and early-onset obesity. Prader-Willi syndrome is due to the absence of paternally expressed imprinted genes at 15q11.2-13, and 3 main mechanisms are known to be involved in its pathogenesis: paternal microdeletions, maternal uniparental disomy events, and imprinting defects. DNA methylation analysis can detect almost all individuals with Prader-Willi syndrome but is unable to distinguish between the molecular classes of the disease. Thus, additional methods are necessary to identify the molecular classes. Here, we employed chromosomal microarray analysis-single nucleotide polymorphism for diagnosis and detected a long-contiguous stretch of homozygosity on chromosome 15, which is highly predictive of maternal uniparental disomy on chromosome 15. Other methods, including fluorescence in situ hybridization, chromosomal microarray analysis-comparative genomic hybridization, genotyping and family linkage analysis, were performed for further validation. In conclusion, our study highlights the use of long-contiguous stretch of homozygosity detection for the diagnosis of Prader-Willi syndrome.

  10. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    SciTech Connect

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M.

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  11. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome.

    PubMed

    Cytrynbaum, Cheryl; Chong, Karen; Hannig, Vickie; Choufani, Sanaa; Shuman, Cheryl; Steele, Leslie; Morgan, Thomas; Scherer, Stephen W; Stavropoulos, Dimitri J; Basran, Raveen K; Weksberg, Rosanna

    2016-10-01

    Russell-Silver syndrome is a heterogeneous disorder characterized by intrauterine growth retardation, postnatal growth deficiency, characteristic facial appearance, and other variable features. Genetic and epigenetic alterations are identified in about 60% of individuals with Russell-Silver syndrome. Most frequently, Russell-Silver syndrome is caused by altered gene expression on chromosome 11p15 due to loss of methylation at the telomeric imprinting center. To date there have been a handful of isolated clinical reports implicating the centromeric imprinting center 2 in the etiology of Russell-Silver syndrome. Here we report three new families with genomic imbalances, involving imprinting center 2 resulting in gain of methylation at this center and a Russell-Silver syndrome phenotype, including two families with a maternally inherited microduplication and the first pediatric patient with a paternally derived microdeletion. The findings in our families provide additional evidence of a role for imprinting center 2 in the etiology of Russell-Silver syndrome and suggest that imprinting center 2 imprinting abnormalities may be a more common cause of Russell-Silver syndrome than previously recognized. Furthermore, our findings together with previous clinical reports of genomic imbalances involving imprinting center 2 serve to underscore the complexity of the epigenetic regulation of the 11p15 region making it challenging to predict phenotype on the basis of genotype alone. © 2016 Wiley Periodicals, Inc.

  12. A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency.

    PubMed

    Dubruc, Estelle; Putoux, Audrey; Labalme, Audrey; Rougeot, Christelle; Sanlaville, Damien; Edery, Patrick

    2014-06-01

    A girl patient born to healthy nonconsanguineous parents was referred at age 3 years and 2 months to our genetics department for testing due to developmental delay and postnatal microcephaly. Initial clinical evaluation revealed an overall developmental delay, mildly dysmorphic features, thin, sparse fair hair, and fair skin. Postnatal microcephaly and progressive ataxia and spasticity appeared later. Array CGH karyotyping showed a 333 kb de novo microdeletion on 3p22 covering the entire genomic sequence of a single gene, CTNNB1, which codes for β-catenin. β-catenin is a sub-unit of a multiprotein complex, which is part of the Wnt signaling pathway. In mice, a conditional homozygous β-catenin knockout displays loss of neurons, impaired craniofacial development, and hair follicle defects, which is similar to the phenotype presented by the patient described in this clinical report. Thus, CTNNB1 haploinsufficiency causes neuronal loss, craniofacial anomalies and hair follicle defects in both humans and mice. Point mutations in CTNNB1 in human have recently been reported but this is the first observation of a new recognizable multiple congenital anomaly/mental retardation syndrome caused by CTNNB1 haploinsufficiency. This clinical report should prompt a search for point mutations in CTNNB1 in patients presenting developmental delay, mild hair, skin and facial anomalies, and neurodegeneration characterized by postnatal microcephaly, and progressive ataxia and spasticity. © 2014 Wiley Periodicals, Inc.

  13. [Detection of a Williams Beuren syndrome case by MLPA].

    PubMed

    Laurito, Sergio; Branham, Teresita; Herrero, Gustavo; Marsa, Silvana; Garro, Fernanda; Roqué, María

    2013-01-01

    Williams-Beuren syndrome (WBS) is a rare developmental disorder characterized by distinctive facial, neurobehavioral, and cardiovascular features. WBS is caused by a heterozygous contiguous gene microdeletion of the WBS crítical region on chromosome 7q11.23. Confirmation of clinical suspicion is essential for clinical monitoring of the patient and genetic counseling of the family. Fluorescence in situ hybridization (FISH) is considered the gold standard technique for detecting WBS. Multiplex ligation-dependent probe amplification (MLPA) has been introduced into DNA diagnostic laboratories for the detection of copy number variations in several diseases including WBS. The objective of this study was to confirm, by MLPA, the clinical diagnosis of WBS in a pediatric patient. This technique allowed to detect the deletion of CYLN2, FZD9, STX1A, ELN, LIMK1 and RFC2 genes. In geographic regions were the detection by FISH is not available for this disease, the MLPA methodology allowed to confirm the clinic diagnostic of WBS. To our knowledge this is the first report demonstrating the confirmation of WBS by MLPA in Argentina.

  14. [HELLP syndrome].

    PubMed

    Vigil-De Gracia, Paulino

    2015-01-01

    Hypertensive disorders of pregnancy are one of the most common complications of pregnancy, but one of the most serious expressions of this pathology is HELLP syndrome. The HELLP syndrome is characterized by the presence of hypertension disorder more a triad: microangiopathic hemolysis, elevated liver enzymes and low platelet count. Patient with HELLP syndrome is associated with increased maternal risk complications such as: cerebral hemorrhage, retinal detachment, hematoma/ hepatic rupture, acute renal failure, disseminated intravascular coagulation, placental abruption and therefore a maternal death. For all these reasons it is recommended to search for findings of HELLP syndrome in patients with hypertensive disorder of pregnancy. The main clinical confusion of HELLP syndrome is acute fatty liver of pregnancy, however there are parameters that help correct identification. The presence of HELLP syndrome involves a rapid termination of pregnancy and the administration of corticosteroids does not improve maternal morbidity and mortality but may help raise the platelet count, thus decreasing the need for transfusion and shorten hospital stay. Much of the decline in maternal morbidity and mortality associated with hypertensive disorders of pregnancy is in proper diagnosis and effective management of HELLP syndrome.

  15. Neuroacanthocytosis syndromes.

    PubMed

    Jung, Hans H; Danek, Adrian; Walker, Ruth H

    2011-10-25

    Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis and progressive degeneration of the basal ganglia. NA syndromes are exceptionally rare with an estimated prevalence of less than 1 to 5 per 1'000'000 inhabitants for each disorder. The core NA syndromes include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome which have a Huntington's disease-like phenotype consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. In addition, cardiomyopathy may occur in McLeod syndrome. Acanthocytes are also found in a proportion of patients with autosomal dominant Huntington's disease-like 2, autosomal recessive pantothenate kinase-associated neurodegeneration and several inherited disorders of lipoprotein metabolism, namely abetalipoproteinemia (Bassen-Kornzweig syndrome) and hypobetalipoproteinemia leading to vitamin E malabsorption. The latter disorders are characterized by a peripheral neuropathy and sensory ataxia due to dorsal column degeneration, but movement disorders and cognitive impairment are not present. NA syndromes are caused by disease-specific genetic mutations. The mechanism by which these mutations cause neurodegeneration is not known. The association of the acanthocytic membrane abnormality with selective degeneration of the basal ganglia, however, suggests a common pathogenetic pathway. Laboratory tests include blood smears to detect acanthocytosis and determination of serum creatine kinase. Cerebral magnetic resonance imaging may demonstrate striatal atrophy. Kell and Kx blood group antigens are reduced or absent in McLeod syndrome. Western blot for chorein demonstrates absence of this protein in red blood cells of chorea-acanthocytosis patients. Specific genetic testing is possible in all NA syndromes. Differential diagnoses

  16. Gerstmann's syndrome.

    PubMed

    Benton, A L

    1992-05-01

    Recent case reports describe the occurrence of a more or less pure Gerstmann syndrome in association with a focal lesion in the posterior perisylvian territory of the brain's left hemisphere. In addition, an electrocortical stimulation study reported the Gerstmann symptom combination and a number of other symptom combinations on stimulation of small areas in the left posterior parietotemporal cortex. The neuropsychological implications of these and other recent findings are considered in light of the variety of "syndromes" produced by lesions in this region, the rare occurrence of Gerstmann's syndrome, and its appearance as a consequence of lesions in diverse cerebral areas.

  17. Rapunzel syndrome

    PubMed Central

    Altonbary, Ahmed Youssef; Bahgat, Monir Hussein

    2015-01-01

    Bezoars are concretions of human or vegetable fibers that accumulate in the gastrointestinal tract. Trichobezoars are common in patients with underlying psychiatric disorders who chew and swallow their own hair. Rapunzel syndrome is a rare form of gastric trichobezoar with a long tail extending into the small bowel. This syndrome was first described in 1968 by Vaughan et al. and since then till date just 64 cases have been described in the literature. We present the only documented case with Rapunzel syndrome in Egypt. PMID:27847892

  18. Investigation of TBX1 gene deletion in Iranian children with 22q11.2 deletion syndrome: correlation with conotruncal heart defects

    PubMed Central

    Ganji, Hamid; Salehi, Mansoor; Sedghi, Maryam; Abdali, Hossein; Nouri, Nayereh; Sadri, Leyli; Hosseinzadeh, Majid; Vakili, Bahareh; Lotfi, Mahdi

    2013-01-01

    Background DiGeorge syndrome (DGS) is the result of a microdeletion in chromosome 22q11.2 in over 90% of cases. DGS is the second most frequent syndrome after Down syndrome and has an incidence of 1/4000 births. Unequal crossover between low-copy repeats, on the proximal part of the long arm of chromosome 22, usually results in a 3 Mb deletion in one of the chromosome 22 and a reciprocal and similarly sized duplication on the other one. Several studies have indicated that TBX1 (T-box 1) haploinsufficiency is responsible for many of the phenotypic traits of 22q11.2 deletion syndrome. Conotruncal heart defects (CTDs) are present in 75–85% of patients with 22q11.2 deletion syndrome in Western countries. Methods Among 78 patients fulfilling the criteria for DGS diagnosed by the fluorescence in situ hybridisation test, 24 had 22q11.2 deletion. Screening for TBX1 gene deletion was performed by multiplex ligation-dependent probe amplification (MLPA). Results Our results revealed that of 24 patients with TBX1 gene deletion, 12 had CTDs while 12 did not show any heart defects. Conclusions Our findings indicate that other genes or gene interactions may play a role in penetrance or the severity of heart disease among patients with DGS. PMID:27326128

  19. [Autoinflammatory syndromes/fever syndromes].

    PubMed

    Schedel, J; Bach, B; Kümmerle-Deschner, J B; Kötter, I

    2011-05-01

    Hereditary periodic (fever) syndromes, also called autoinflammatory syndromes, are characterized by relapsing fever and additional manifestations such as skin rashes, mucosal manifestations, or joint symptoms. Some of these disorders present with organ involvement and serological signs of inflammation without fever. There is a strong serological inflammatory response with an elevation of serum amyloid A (SAA), resulting in an increased risk of secondary amyloidosis. There are monogenic disorders (familial mediterranean fever (FMF), hyper-IgD-syndrome (HIDS), cryopyrin-associated periodic syndromes (CAPS), "pyogenic arthritis, acne, pyoderma gangrenosum" (PAPA), and "pediatric granulomatous arthritis (PGA) where mutations in genes have been described, which in part by influencing the function of the inflammasome, in part by other means, lead to the induction of the production of IL-1β. In "early-onset of enterocolitis (IBD)", a functional IL-10 receptor is lacking. Therapeutically, above all, the IL-1 receptor antagonist anakinra is used. In case of TRAPS and PGA, TNF-antagonists (etanercept) may also be used; in FMF colchicine is first choice. As additional possible autoinflammatory syndromes, PFAPA syndrome (periodic fever with aphthous stomatitis, pharyngitis and adenitis), Schnitzler syndrome, Still's disease of adult and pediatric onset, Behçet disease, gout, chronic recurrent multifocal osteomyelitis (CRMO) and Crohn's disease also are mentioned.

  20. Down Syndrome

    MedlinePlus

    ... during the development of the egg, sperm or embryo. Translocation Down syndrome is the only form of ... risk of passing along certain genetic conditions. The embryo is tested for genetic abnormalities before it's implanted ...

  1. Behcet's Syndrome

    MedlinePlus

    Behcet's syndrome is a disease that involves vasculitis, which is inflammation of the blood vessels. It causes problems in many parts of the body. The ... National Institute of Arthritis and Musculoskeletal and Skin Diseases

  2. Hunter syndrome

    MedlinePlus

    Hunter syndrome is a disease in which long chains of sugar molecules (glycosaminoglycans, formerly called mucopolysaccharides ) are ... of the enzyme iduronate sulfatase. Without this enzyme, chains of sugar molecules build up in various body ...

  3. Horner Syndrome

    MedlinePlus

    ... birth Tumor of the hormonal and nervous systems (neuroblastoma) Unknown causes In some cases the cause of ... a tumor of the hormonal and nervous systems (neuroblastoma). There's no specific treatment for Horner syndrome. Often, ...

  4. Tourette Syndrome

    MedlinePlus

    ... a person is concentrating (like working on a computer) or relaxing (like listening to music). The type ... doctor who knows a lot about the nervous system). All kids who have Tourette syndrome have tics — ...

  5. Reye's Syndrome

    MedlinePlus

    ... symptoms such as confusion, seizures and loss of consciousness require emergency treatment. Early diagnosis and treatment of ... which can cause seizures, convulsions or loss of consciousness. The signs and symptoms of Reye's syndrome typically ...

  6. Tourette syndrome

    MedlinePlus

    ... medicines are available to treat Tourette syndrome. The exact medicine that is used depends on the symptoms ... must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get ...

  7. Cushing's Syndrome

    MedlinePlus

    ... occur in different parts of the body) can cause similar problems with cortisol balance. Common symptoms of Cushing's syndrome include upper body obesity, severe fatigue and muscle weakness, high blood pressure, ...

  8. HELLP syndrome

    MedlinePlus

    ... out of 1,000 pregnancies. In women with preeclampsia or eclampsia , the condition develops in 10 to ... have high blood pressure and are diagnosed with preeclampsia before they develop HELLP syndrome. In some cases, ...

  9. Down Syndrome

    MedlinePlus

    ... can help improve skills. They may include speech, physical, occupational, and/or educational therapy. With support and treatment, many people with Down syndrome live happy, productive lives. NIH: National Institute of Child Health and Human Development

  10. Cushing's Syndrome

    MedlinePlus

    ... cause is long-term exposure to too much cortisol, a hormone that your adrenal gland makes. Sometimes, ... can cause your body to make too much cortisol. Cushing's syndrome is rare. Some symptoms are Upper ...

  11. Aase syndrome

    MedlinePlus

    ... make ribosomal proteins) This condition is similar to Diamond-Blackfan anemia, and the 2 conditions should not ... chromosome 19 is found in some people with Diamond-Blackfan anemia. The anemia in Aase syndrome is ...

  12. Rett Syndrome

    MedlinePlus

    ... do before that she or he can no longer do? How severe are your child's signs and ... as children become older — it's usually necessary throughout life. Treating Rett syndrome requires a team approach. Treatments ...

  13. Caplan syndrome

    MedlinePlus

    ... people with rheumatoid arthritis who have breathed in mining dust that contains coal. This lung disease is ... Caplan syndrome is caused by breathing in coal mining dust. This causes inflammation and can lead to ...

  14. Marfan Syndrome

    MedlinePlus

    ... is a condition in which your body's connective tissue is abnormal. Connective tissue helps support all parts of your body. It ... and develops. Marfan syndrome most often affects the connective tissue of the heart and blood vessels, eyes, bones, ...

  15. Marfan Syndrome

    MedlinePlus

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood vessels, and other organs. One of these proteins is fibrillin. A problem with the ...

  16. Marfan syndrome

    MedlinePlus

    ... enable JavaScript. Marfan syndrome is a disorder of connective tissue. This is the tissue that strengthens the body's structures. Disorders of connective tissue affect the skeletal system, cardiovascular system, eyes, and ...

  17. Brown Syndrome

    MedlinePlus

    ... Does Brown syndrome cause eye problems besides abnormal eye movements? In the more severely affected cases of Brown ... acquired and congenital cases. In congenital cases, the eye movement problem is usually constant and unlikely to resolve ...

  18. Carcinoid syndrome

    MedlinePlus

    ... things such as blue cheese, chocolate, or red wine. Exams and Tests Most of these tumors are ... outlook is more favorable thanks to new treatment methods. Possible Complications Complications of carcinoid syndrome may include: ...

  19. Piriformis syndrome

    MedlinePlus

    ... the sciatic nerve. The syndrome, which affects more women than men, is uncommon. But when it occurs, it can cause sciatica . Causes The piriformis muscle is involved in nearly every movement you make with your lower body, from walking ...

  20. Marfan Syndrome

    MedlinePlus

    ... will probably do some painless exams — like taking measurements of the body, including an arm span. You ... doors" inside the heart that help direct the flow of blood). In someone with Marfan syndrome, those ...

  1. Metabolic syndrome

    MedlinePlus

    ... obesity ). This body type may be described as "apple-shaped." Insulin resistance. Insulin is a hormone produced ... Syndrome Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the ...

  2. Duane Syndrome

    MedlinePlus

    ... the eye muscles. In Duane syndrome, the sixth cranial nerve that controls the lateral rectus muscle (the muscle ... abnormal innervation of a branch from the third cranial nerve, which normally controls the medial rectus muscle (the ...

  3. Menkes syndrome

    MedlinePlus

    ... Menkes syndrome, cells in the body can absorb copper, but they are unable to release it. It ... makes it hard for the body to distribute copper in food from the intestines into the bloodstream ...

  4. Marfan syndrome

    PubMed Central

    Jain, Eesha; Pandey, Ramesh Kumar

    2013-01-01

    Marfan syndrome is a rare autosomal dominant disorder of the connective tissue, with skeletal, ligamentous, orooculofacial, pulmonary, abdominal, neurological and the most fatal, cardiovascular manifestations. It has no cure but early diagnosis, regular monitoring and preventive lifestyle regimen ensure a good prognosis. However, the diagnosis can be difficult as it is essentially a clinical one, relying on family history, meticulous physical examination and investigation of involved organ systems. Patients of Marfan syndrome portray very typical physical and orofacial characteristics, suggesting obvious recognition, but due to variable phenotypic expression, cases often go unnoticed unless a full range of attributing features is apparent. Dental practitioners are very likely to encounter patients of Marfan syndrome at an early age as they frequently present for dental treatment. The present case report illustrates the preliminary screening of Marfan syndrome in a dental office followed by timely diagnosis and appropriate referrals. PMID:24336584

  5. Klinefelter syndrome

    MedlinePlus

    Testosterone therapy may be prescribed. This can help: Grow body hair Improve appearance of muscles Improve concentration Improve mood and self esteem Increase energy and sex drive Increase strength Most men with this syndrome are not able to get ...

  6. Sjogren's Syndrome

    MedlinePlus

    ... to developing cavities if your mouth is dry. Yeast infections. People with Sjogren's syndrome are much more likely to develop oral thrush, a yeast infection in the mouth. Vision problems. Dry eyes ...

  7. Beals Syndrome

    MedlinePlus

    ... have many of the skeletal (bone) and aortic enlargement problems as people with Marfan syndrome, and treatments ... appearance to the top of the ear Aortic enlargement and/or mitral valve regurgitation (occasionally) People with ...

  8. Autoinflammatory syndromes.

    PubMed

    Galeazzi, M; Gasbarrini, G; Ghirardello, A; Grandemange, S; Hoffman, H M; Manna, R; Podswiadek, M; Punzi, L; Sebastiani, G D; Touitou, I; Doria, A

    2006-01-01

    The autoinflammatory disorders are a new and expanding classification of inflammatory diseases characterized by recurrent episodes of systemic inflammation in the absence of pathogens, autoantibodies or antigen specific T cells. These disorders are caused by primary dysfunction of the innate immune system, without evidence of adaptive immune dysregulation. Innate immune abnormalities include aberrant responses to pathogen associated molecular patterns (PAMPs) like lipopolysaccharide and peptidoglycan, prominent neutrophilia in blood and tissues, and dysregulation of inflammatory cytokines (IL-1beta, TNF-alpha) or their receptors. The autoinflammatory diseases comprise both hereditary (Familial Mediterranean Fever, FMF; Mevalonate Kinase Deficiency, MKD; TNF Receptor Associated Periodic Syndrome, TRAPS; Cryopyrin Associated Periodic Syndrome, CAPS; Blau syndrome; Pyogenic sterile Arthritis, Pyoderma gangrenosum and Acne syndrome, PAPA; Chronic Recurrent Multifocal Osteomyelitis, CRMO) and multifactorial (Crohn's and Behçet's diseases) disorders. Mutations responsible for FMF, TRAPS, CAPS, PAPA are in proteins involved in modulation of inflammation and apoptosis.

  9. [Mobius syndrome].

    PubMed

    Vladuţiu, Cristina; Duma, Ionela

    2012-01-01

    Mobius syndrom, an anomaly in cranial nerve developement, presents with a remarkable clinical polymorphism. The rare occurence of this pathology and the questions raised by the diagnosis and treatment determined us to make this presentation.

  10. Turner Syndrome

    MedlinePlus

    ... turnersyndrome. html • Eunice Kennedy Shriver National Institutes of Child Health & Human Development (NIH): www. nichd. nih. gov/ health/ topics/ Turner_ Syndrome. cfm • Mayo Clinic: www. mayoclinic. com/ health/ turner- ...

  11. Cushing syndrome

    MedlinePlus

    ... with Cushing syndrome have: Round, red, full face ( moon face ) Slow growth rate (in children) Weight gain ... constitute endorsements of those other sites. Copyright 1997-2017, A.D.A.M., Inc. Duplication for commercial ...

  12. [HELLP syndrome].

    PubMed

    Filipowicz, Ewa; Staszków, Monika

    2015-01-01

    HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count) is a relatively rare complication of pregnancy. It usually develops in the IIId trimester or after delivery. HELLP syndrome is associated with increased maternal (placental abruption, disseminated intravascular coagulation, hepatic hematomas and rupture, and acute kidney injury) and neonatal (prematurity, low birth weight) risk complications. In this article the diagnosis, clinical picture and treatment of this disease have been shortly reviewed.

  13. SAPHO syndrome.

    PubMed

    Carneiro, Sueli; Sampaio-Barros, Percival D

    2013-05-01

    SAPHO syndrome is a disorder characterized by Synovitis, Acne, Pustulosis, Hyperostosis, and Osteitis. As the osteoarticular and skin manifestations often do not occur simultaneously and there are no validated diagnostic criteria, the diagnosis can be difficult. Clinical and imaging investigation is necessary to establish the many differential diagnoses of SAPHO syndrome. The etiopathogenesis involves infectious (probably Propionibacterium acnes), immunologic, and genetic factors. Treatment is based on information gathered from case reports and small series, and is related to specific skin or articular symptoms.

  14. Noonan syndrome.

    PubMed

    Roberts, Amy E; Allanson, Judith E; Tartaglia, Marco; Gelb, Bruce D

    2013-01-26

    Noonan syndrome is a genetic multisystem disorder characterised by distinctive facial features, developmental delay, learning difficulties, short stature, congenital heart disease, renal anomalies, lymphatic malformations, and bleeding difficulties. Mutations that cause Noonan syndrome alter genes encoding proteins with roles in the RAS-MAPK pathway, leading to pathway dysregulation. Management guidelines have been developed. Several clinically relevant genotype-phenotype correlations aid risk assessment and patient management. Increased understanding of the pathophysiology of the disease could help development of pharmacogenetic treatments.

  15. Clinical, pathological, and genetic evaluations of Chinese patient with otodental syndrome and multiple complex odontoma

    PubMed Central

    Liu, Anqi; Wu, Meiling; Guo, Xiaohe; Guo, Hao; Zhou, Zhifei; Wei, Kewen; Xuan, Kun

    2017-01-01

    Abstract Otodental syndrome is a rare autosomal-dominant disease characterized by globodontia, associated with sensorineural, high-frequency hearing loss. Here, we describe the clinical, pathological, and genetic evaluations of a 9-year-old girl with otodental syndrome and multiple complex odontoma. The patient presented with a draining sinus tract in her left cheek, globodontia, and hearing loss. The odontomas which caused the cutaneous sinus tracts were extracted because of the odontogenic infection. The extracted odontoma and primary tooth was studied by micro-CT and further observed histopathologically. The micro-CT findings revealed that the primary tooth had three crowns with two separated pulp chambers, and their root canals were partially fused. The histological findings showed abnormal morphologies of odontoblasts and dentin, hyperplasia of enamel, and malformation of odontogenic epithelium. Furthermore, DNA sequencing and analyze of deafness associated gene GJB2, GJB3, and PDS had not revealed any SNP or mutation; but exon 3 of the causative gene FGF3 could not be amplified, which may be associated with the microdeletion at chromosome 11q13.3. Three month after surgery, the patient was found to be asymptomatic and even the evidence of the extra-oral sinus had disappeared. The dental abnormality of otodental syndrome included congenital missing teeth, globodontia, and multiple complex odontoma. Globodontia exhibited characteristic features of fusion teeth. In addition, gene FGF3 haploinsufficiency was likely to be the cause of otodental syndrome. The report provides some new information in the field of otodental syndrome, which would make dentists more familiar with this disease. PMID:28151902

  16. Cardiac Syndrome X

    MedlinePlus

    ... Kawasaki Disease Long Q-T Syndrome Marfan Syndrome Metabolic Syndrome Mitral Valve Prolapse Myocardial Bridge Myocarditis Obstructive Sleep Apnea Pericarditis Peripheral Vascular Disease Rheumatic Fever Sick Sinus Syndrome Silent Ischemia Stroke Sudden ...

  17. Russell-Silver syndrome

    MedlinePlus

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... Organization for Rare Disorders -- rarediseases.org/rare-diseases/russell-silver-syndrome NIH/NLM Genetics Home Reference -- ghr. ...

  18. Wernicke-Korsakoff Syndrome

    MedlinePlus

    ... syndrome) is a memory disorder that results from vitamin B1 deficiency and is associated with alcoholism. Korsakoff's syndrome damages ... syndrome) is a memory disorder that results from vitamin B1 deficiency and is associated with alcoholism. Korsakoff's syndrome damages ...

  19. What is Metabolic Syndrome?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Metabolic Syndrome? Metabolic syndrome is the name for a group of ... that may play a role in causing metabolic syndrome. Outlook Metabolic syndrome is becoming more common due to a ...

  20. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2

    SciTech Connect

    Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji

    1997-03-31

    Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISH ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.

  1. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    PubMed

    Vilboux, Thierry; Ciccone, Carla; Blancato, Jan K; Cox, Gerald F; Deshpande, Charu; Introne, Wendy J; Gahl, William A; Smith, Ann C M; Huizing, Marjan

    2011-01-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  2. Imprinting-mutation mechanisms in Prader-Willi syndrome.

    PubMed Central

    Ohta, T; Gray, T A; Rogan, P K; Buiting, K; Gabriel, J M; Saitoh, S; Muralidhar, B; Bilienska, B; Krajewska-Walasek, M; Driscoll, D J; Horsthemke, B; Butler, M G; Nicholls, R D

    1999-01-01

    Microdeletions of a region termed the "imprinting center" (IC) in chromosome 15q11-q13 have been identified in several families with Prader-Willi syndrome (PWS) or Angelman syndrome who show epigenetic inheritance for this region that is consistent with a mutation in the imprinting process. The IC controls resetting of parental imprints in 15q11-q13 during gametogenesis. We have identified a larger series of cases of familial PWS, including one case with a deletion of only 7.5 kb, that narrows the PWS critical region to <4. 3 kb spanning the SNRPN gene CpG island and exon 1. Identification of a strong DNase I hypersensitive site, specific for the paternal allele, and six evolutionarily conserved (human-mouse) sequences that are potential transcription-factor binding sites is consistent with this region defining the SNRPN gene promoter. These findings suggest that promoter elements at SNRPN play a key role in the initiation of imprint switching during spermatogenesis. We also identified three patients with sporadic PWS who have an imprinting mutation (IM) and no detectable mutation in the IC. An inherited 15q11-q13 mutation or a trans-factor gene mutation are unlikely; thus, the disease in these patients may arise from a developmental or stochastic failure to switch the maternal-to-paternal imprint during parental spermatogenesis. These studies allow a better understanding of a novel mechanism of human disease, since the epigenetic effect of an IM in the parental germ line determines the phenotypic effect in the patient. PMID:9973278

  3. Can Myelodysplastic Syndromes Be Prevented?

    MedlinePlus

    ... Myelodysplastic Syndromes Causes, Risk Factors, and Prevention Can Myelodysplastic Syndromes Be Prevented? Since smoking is linked to the ... Syndromes? Can Myelodysplastic Syndromes Be Prevented? More In Myelodysplastic Syndromes About Myelodysplastic Syndromes Causes, Risk Factors, and Prevention ...

  4. Nevoid basal cell carcinoma syndrome

    MedlinePlus

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic condition. The gene linked to the syndrome is known as PTCH (" ...

  5. Pfeiffer syndrome.

    PubMed

    Vogels, Annick; Fryns, Jean-Pierre

    2006-06-01

    Pfeiffer syndrome is a rare autosomal dominantly inherited disorder that associates craniosynostosis, broad and deviated thumbs and big toes, and partial syndactyly on hands and feet. Hydrocephaly may be found occasionally, along with severe ocular proptosis, ankylosed elbows, abnormal viscera, and slow development. Based on the severity of the phenotype, Pfeiffer syndrome is divided into three clinical subtypes. Type 1 "classic" Pfeiffer syndrome involves individuals with mild manifestations including brachycephaly, midface hypoplasia and finger and toe abnormalities; it is associated with normal intelligence and generally good outcome. Type 2 consists of cloverleaf skull, extreme proptosis, finger and toe abnormalities, elbow ankylosis or synostosis, developmental delay and neurological complications. Type 3 is similar to type 2 but without a cloverleaf skull. Clinical overlap between the three types may occur. Pfeiffer syndrome affects about 1 in 100,000 individuals. The disorder can be caused by mutations in the fibroblast growth factor receptor genes FGFR-1 or FGFR-2. Pfeiffer syndrome can be diagnosed prenatally by sonography showing craniosynostosis, hypertelorism with proptosis, and broad thumb, or molecularly if it concerns a recurrence and the causative mutation was found. Molecular genetic testing is important to confirm the diagnosis. Management includes multiple-staged surgery of craniosynostosis. Midfacial surgery is performed to reduce the exophthalmos and the midfacial hypoplasia.

  6. Preexcitation Syndromes.

    PubMed

    Bhatia, Atul; Sra, Jasbir; Akhtar, Masood

    2016-03-01

    The classic electrocardiogram in Wolff-Parkinson-White (WPW) syndrome is characterized by a short PR interval and prolonged QRS duration in the presence of sinus rhythm with initial slurring. The clinical syndrome associated with above electrocardiogram finding and the history of paroxysmal supraventricular tachycardia is referred to as Wolff-Parkinson-White syndrome. Various eponyms describing accessory or anomalous conduction pathways in addition to the normal pathway are collectively referred to as preexcitation syndromes. The latter form and associated eponyms are frequently used in literature despite controversy and disagreements over their actual anatomical existence and electrophysiological significance. This communication highlights inherent deficiencies in the knowledge that has existed since the use of such eponyms began. With the advent of curative ablation, initially surgical, and then catheter based, the knowledge gaps have been mostly filled with better delineation of the anatomic and electrophysiological properties of anomalous atrioventricular pathways. It seems reasonable, therefore, to revisit the clinical and electrophysiologic role of preexcitation syndromes in current practice.

  7. Sheehan's syndrome.

    PubMed

    Keleştimur, Fahrettin

    2003-01-01

    Sheehan's syndrome occurs as a result of ischemic pituitary necrosis due to severe postpartum hemorrhage. It may be rarely seen without massive bleeding or after normal delivery. Improvement in obstetric care and availability of rapid blood transfusion coincided with a remarkable reduction in the frequency of Sheehan's syndrome particularly in western society. But it has recently been reported more often from well-developed countries. It is one of the most common causes of hypopituitarism in underdeveloped or developing countries. Enlargement of pituitary gland, small sella size, disseminated intravascular coagulation and autoimmunity have been suggested to play a role in the pathogenesis of Sheehan's syndrome in women who suffer from severe postpartum hemorrhage. The patients may seek medical advice because of various presentations ranging from non-specific symptoms to coma and the clinical manifestation may change from one patient to another. Failure of postpartum lactation and failure to resume menses after delivery are the most common presenting symptoms. Although a small percentage of patients with Sheehan's syndrome may cause abrupt onset severe hypopituitarism immediately after delivery, most patients have a mild disease and go undiagnosed and untreated for a long time. It may result in partial or panhypopituitarism and GH is one of the hormones lost earliest. The great majority of the patients has empty sella on CT or MRI. Lymphocytic hypophysitis should be kept in mind in differential diagnosis. In this review, the old and recent data regarding Sheehan's syndrome are presented.

  8. Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants.

    PubMed

    Berger, Seth I; Ciccone, Carla; Simon, Karen L; Malicdan, May Christine; Vilboux, Thierry; Billington, Charles; Fischer, Roxanne; Introne, Wendy J; Gropman, Andrea; Blancato, Jan K; Mullikin, James C; Gahl, William A; Huizing, Marjan; Smith, Ann C M

    2017-04-01

    Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.

  9. SRY-positive 46, XY male with vanishing testis syndrome, feminization and gynecomastia.

    PubMed

    Ambulkar, P S; Waghmare, J E; Tarnekar, A M; Shende, M R; Ghosh, S K; Pal, A K

    2012-03-01

    The vanishing testis with maleness is a rare syndrome with frequency of 1 in 20,000 males. Here, we report about a 30 years old male subject with vanishing testis syndrome, feminization and gynecomastia. Follicle stimulating hormone (FSH) and Leutinizing hormone (LH) levels were elevated whereas testosterone was below normal and anti-mullerian-hormone level was undetectable in the patient. The chromosomal analysis and DNA analysis of SRY and ZFY, DAX-I, AZFa, AZFb, AZFc and heterochromatic region of Y chromosome with STS primer (sY160) were done to detect any genetic changes at specified sites (both at chromosomal and molecular level). Karyotyping confirmed patient as 46, XY male, with no evidence of mosaicism in blood cells. PCR amplification of SRY gene indicated that the SRY gene of the patient was normal. PCR amplification of SRY, ZFY, DAX-I, AZFa, AZFb, AZFc gene and Y chromosome heterochromatic region using STS primer sY(160) did not reveal any microdeletions. The anti-mullerian-hormone level was undetectable indicating that the patient didn't have any testicular tissue in scrotum. Increased levels of FSH, LH and reversed androgen: estrogen ratio might have given rise to gynecomastia in the patient. SRY-positive 46,XY male with vanishing testis might be due to torsion of testis during descent in fetal period. The torsion of testis might have caused vascular occlusion and thereby regression of testicular tissue occurred, but the exact genetic condition yet to understand.

  10. Rubinstein-Taybi syndrome caused by submicroscopic deletions within 16p13.3

    PubMed Central

    Breuning, Martijn H.; Dauwerse, Hans G.; Fugazza, Gluseppina; Saris, Jasper J.; Spruit, Lia; Wijnen, Herman; Tommerup, Niels; van der Hagen, C. B.; Imaizumi, Kiyoshi; Kuroki, Yoshikazu; van den Boogaard, Marie-Jose; de Pater, Joke M.; Mariman, Edwin C. M.; Hamel, Ben C. J.; Himmelbauer, Heinz; Frischauf, Anne-Marie; Stallings, Raymond L.; Beverstock, Geoffrey C.; van Ommen, Gert-Jan B.; Hennekam, Raoul C. M.

    1993-01-01

    The Rubinstein-Taybi syndrome (RTS) is a well-defined complex of congenital malformations characterized by facial abnormalities, broad thumbs and big toes, and mental retardation. The breakpoint of two distinct reciprocal translocations occurring in patients with a clinical diagnosis of RTS was located to the same interval on chromosome 16, between the cosmids N2 and RT1, in band 16p13.3. By using two-color fluorescence in situ hybridization, the signal from RT1 was found to be missing from one chromosome 16 in 6 of 24 patients with RTS. The parents of five of these patients did not show a deletion of RT1, indicating a de novo rearrangement. RTS is caused by submicroscopic interstitial deletions within 16pl3.3 in approximately 25% of the patients. The detection of microdeletions will allow the objective confirmation of the clinical diagnosis in new patients and provides an excellent tool for the isolation of the gene causally related to the syndrome. ImagesFigure 2 PMID:8430691

  11. Malformations of the middle and inner ear on CT imaging in 22q11 deletion syndrome.

    PubMed

    Loos, Elke; Verhaert, Nicolas; Willaert, Annelore; Devriendt, Koenraad; Swillen, Ann; Hermans, Robert; Op de Beeck, Katya; Hens, Greet

    2016-11-01

    The 22q11 deletion syndrome (22q11DS), the most frequent microdeletion syndrome in humans, presents with a large variety of abnormalities. A common abnormality is hearing impairment. The exact pathophysiological explanation of the observed hearing loss remains largely unknown. The aim of this study was to analyze the middle and inner ear malformations as seen on computer tomographic imaging in patients with 22q11DS. We retrospectively reviewed the charts of 11 22q11DS patients who had undergone a CT of the temporal bone in the past. Of the 22 examined ears, two showed an abnormal malleus and incus, 10 presented with a dense stapes superstructure, and three ears had an abnormal orientation of the stapes. With regard to the inner ear, 12 ears showed an incomplete partition type II with a normal vestibular aqueduct. In four ears the vestibule and lateral semicircular canal were composed of a single cavity, in 14 ears the vestibule was too wide, and three ears had a broadened lateral semicircular canal. These findings suggest that malformations of the stapes, cochlea, vestibule, and lateral semicircular canal are frequent in 22q11DS. To our knowledge, the current study involves the largest case series describing middle and inner ear malformations in 22q11DS. © 2016 Wiley Periodicals, Inc.

  12. Health supervision and anticipatory guidance of individuals with Wolf-Hirschhorn syndrome.

    PubMed

    Battaglia, A; Carey, J C

    1999-06-25

    Wolf-Hirschhorn syndrome (WHS) is a well-known malformation syndrome due to microdeletion of the short arm of chromosome 4 (4p-). Almost 120 cases have been reported so far, yet there is still limited information on its natural history. It is generally thought that these children have severe developmental disabilities and tend to be mere survivors devoid of personality. It is evident to us [Battaglia et al., 1999a, 1999b], however, that individuals with WHS are capable of greater psychomotor development than previously suggested [Guthrie et al., 1971]. Thus, it is even more important to establish guidelines for health supervision and anticipatory guidance of such patients. This would help professionals and families in developing the most appropriate individualized plan for each child, in order to allow the maximum achievement possible. In the present article we propose guidelines for health supervision and anticipatory guidance of individuals with WHS. These guidelines derive from our experience with the natural history of several children, adolescents, and adults with WHS, gained through the literature, personal observation, and contacts with the national support groups in North America and Italy.

  13. [DiGeorge syndrome and vascular ring. An unusual association with multidisciplinary approach].

    PubMed

    Garcia, Pedro; Anjos, Rui; Abecassis, Miguel; Santos, José A Oliveira; Martins, F Maymone

    2009-01-01

    Velo-cardio-facial syndrome/DiGeorge/CATCH 22 is a spectrum of association, characterized by unusual face, cleft or incompetent palate, congenital heart disease with defects of the outflow tracts, absence of the thymus and parathyroid glands, often associated with developmental and behavioral disorders. This association is caused by a microdeletion in chromosome band 22q11.2. In a 4-month-old infant, with obstructive lower respiratory distress and poor weight gain since 2 months of age, truncus arteriosus was diagnosed and surgically corrected. On the postoperative period maintained dependency on mechanical ventilation, with persistent hypoventilation of the left lung. Fiberoptic bronchoscopy revealed complete obstruction of the left main bronchus by an extrinsic compression due to a vascular ring diagnosed by cardiac catheterization that showed a common anomalous origin of both right and left subclavian arteries and the ligamentum arteriosum. A second surgery by left lateral thoracotomy corrected the vascular ring. The maintenance of the collapse of the left main bronchus led to selective endobronchial stenting. The migration of the stent to the trachea, with acute respiratory distress, required emergent endoscopic removal of the stent. Thereafter, the evolution was uneventful. The association of DiGeorge syndrome with vascular ring is unusual. Unexpected evolution in these patients require a multidisciplinary technical approach for diagnosis and eventual emergent intervention.

  14. DiGeorge Syndrome Presenting as Hypocalcaemia-Induced Seizures in Adulthood.

    PubMed

    Zammit, Adrian; Grech Marguerat, Deborah; Psaila, Josephine; Attard, Alexander

    2013-01-01

    Introduction. DiGeorge syndrome is a developmental defect commonly caused by a microdeletion on the long arm of chromosome 22 or less frequently by a deletion of the short arm of chromosome 10. Case report. We report a case of a gentleman with mild dysmorphic features who presented with hypocalcaemia-induced seizures and an associated thyroid mass with a background of learning difficulties and abnormal immune function. Discussion. DiGeorge syndrome was initially described in 1967 by Angelo DiGeorge. The majority of cases are due to a novel mutation. The resulting learning difficulties, congenital heart disease, palatal abnormalities, hypoplasia/aplasia of the parathyroid and thymus glands, and immune deficiency generally lead to diagnosis in childhood. Presentation in adulthood is rare but must be borne in mind when dealing with cases of hypocalcaemia even in the absence of florid phenotypic features. A link with malignant disease has also been reported and should lead to prompt investigation of concerning masses.

  15. Systematic review of the clinical and genetic aspects of Prader-Willi syndrome

    PubMed Central

    2011-01-01

    Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder that is caused by the lack of expression of paternally inherited imprinted genes on chromosome 15q11-q13. This syndrome has a characteristic phenotype including severe neonatal hypotonia, early-onset hyperphagia, development of morbid obesity, short stature, hypogonadism, learning disabilities, behavioral problems, and psychiatric problems. PWS is an example of a genetic condition caused by genomic imprinting. It can occur via 3 main mechanisms that lead to the absence of expression of paternally inherited genes in the 15q11.2-q13 region: paternal microdeletion, maternal uniparental disomy, and an imprinting defect. Over 99% of PWS cases can be diagnosed using DNA methylation analysis. Early diagnosis of PWS is important for effective long-term management. Growth hormone (GH) treatment improves the growth, physical phenotype, and body composition of patients with PWS. In recent years, GH treatment in infants has been shown to have beneficial effects on the growth and neurological development of patients diagnosed during infancy. There is a clear need for an integrated multidisciplinary approach to facilitate early diagnosis and optimize management to improve quality of life, prevent complications, and prolong life expectancy in patients with PWS. PMID:21503198

  16. A case report of monozygotic twins with Smith-Magenis syndrome.

    PubMed

    Hicks, Matthew; Ferguson, Susan; Bernier, Francois; Lemay, Jean-François

    2008-02-01

    Monozygotic 3.5-year-old twin boys presented for developmental assessment with a history of global developmental delay, behavioral issues including self-harm, and severe receptive and expressive language delays. Chromosome testing confirmed for both a 17p11.2 interstitial microdeletion commonly seen in Smith-Magenis syndrome (SMS), which is characterized by developmental delay, cognitive impairment, and facial and behavioral phenotype. To our knowledge, this is the first description in the literature of monozygotic twins with SMS. Despite their zygosity, the twins had marked differences in presentation including cardiac and renal anomalies, language development, and behavioral phenotype. Both twins displayed disordered speech development, impairments in social interaction, and stereotyped behaviors consistent with autism spectrum disorder, common in the vast majority of cases of SMS. Examining the differences in behavioral and clinical phenotype in monozygotic twins may lead to a better understanding of the cause of the clinical variability seen in SMS, as well as the natural history of this syndrome.

  17. [General cognitive functioning and psycholinguistic abilities in children with Smith-Magenis Syndrome].

    PubMed

    Garayzábal Heinze, Elena; Lens Villaverde, María; Moruno López, Esther; Conde Magro, Tatiana; Moura, Luis Felipe; Fernández, Montserrat; Sampaio, Adriana

    2011-11-01

    This study is a neuropsycholinguistic research of a rare genetic syndrome with microdeletion that co-occurs with intellectual disabilities and relatively good language abilities, the Smith-Magenis Syndrome (SMS). Nevertheless, there are no cognitive and psycholinguistic profile analyses performed with Spanish population. In this sense, we characterized the cognitive and psycholinguistic profile of a sample with 9 participants with SMS (7 to 11 years of age). The cognitive and psychological profile was assessed with diverse standardized tests: Wechsler Intelligence Scale for Children - IV version, Illinois Test of Psycholinguistic Abilities and Peabody Picture Vocabulary Test. Results suggest a specific cognitive and psychological profile characterized by a low IQ and relative good abilities in integrating information, whereas attention problems and hyperactive behaviors were displayed when interacting with the child during the assessment. This work is the first evidence of the cognitive and psycholinguistic profile characterization in patients with SMS in Spain, and will help to guide a more accurate diagnosis and differential intervention in rare genetic diseases with similar cognitive and psycholinguistic profiles.

  18. Smith-Magenis syndrome and its circadian influence on development, behavior, and obesity - own experience.

    PubMed

    Chen, Li; Mullegama, Sureni V; Alaimo, Joseph T; Elsea, Sarah H

    2015-01-01

    Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by sleep disturbance, multiple developmental anomalies, psychiatric behavior, and obesity. It is caused by a heterozygous 17p11.2 microdeletion containing the retinoic acid-induced 1 (RAI1) gene or mutation within RAI1. Sleep disorder is one of the most penetrant features of SMS. Molecular genetic studies indicate that RAI1 regulates circadian rhythm genes and when haploinsucient, causes a distorted molecular circadian network that may be the cause of the sleep disturbance and the inverted rhythm of melatonin present in most individuals with SMS. RAI1 also regulates genes involved in development, neurobehavior, and lipid metabolism. Sleep debt, daytime melatonin secretion, and environmental stress often contribute to negative behavior in persons with SMS, and food entrained circadian rhythm also influences food intake behavior and humoral signals, which also affect development and neurobehavior. The cross-talk between circadian rhythm, development, metabolism and behaviors affect the multiple phenotypic outcomes in Smith-Magenis syndrome. These findings shed light on possible effective and personalized drug treatments for SMS patients in the future.

  19. Congenital scoliosis in Smith-Magenis syndrome: a case report and review of the literature.

    PubMed

    Li, Zheng; Shen, Jianxiong; Liang, Jinqian; Sheng, Lin

    2015-05-01

    The Smith-Magenis syndrome (SMS) is a complex and rare congenital condition that is characterized by minor craniofacial anomalies, short stature, sleep disturbances, behavioral, and neurocognitive abnormalities, as well as variable multisystemic manifestations. Little is reported about spinal deformity associated with this syndrome.This study is to present a case of scoliosis occurring in the setting of SMS and explore the possible mechanisms between the 2 diseases.The patient is a 13-year-old Chinese female with congenital scoliosis and Tetralogy of Fallot, mental retardation, obstructive sleep apnea, hypertrophy of tonsil, conductive hearing loss, and agenesis of the epiglottis. An interphase fluorescent in situ hybridization at chromosome 17p11.2 revealed a heterozygous deletion, confirming a molecular diagnosis of SMS. She underwent a posterior correction at thoracic 1-lumbar 1 (T1-L1) levels, using the Moss-SI spinal system. At 6-month follow-up, the patient was clinically pain free and well balanced. Plain radiographs showed solid spine fusion with no loss of correction.Congenital cardiac disease, immunodeficiency, and severe behavioral problems can affect the surgical outcome following spine fusion and need to be taken into consideration for the surgeon and anesthesiologist. Scoliosis is not uncommon among patients with SMS, and there is a potential association between congenital scoliosis and SMS. The potential mechanisms in the pathogenesis of congenital scoliosis of SMS included retinoic acid-induced 1 (RAI1) microdeletion and RAI1 gene point mutation.

  20. Cognitive functioning in children and adults with Smith-Magenis syndrome.

    PubMed

    Osório, Ana; Cruz, Raquel; Sampaio, Adriana; Garayzábal, Elena; Carracedo, Angel; Fernández-Prieto, Montse

    2012-06-01

    Smith-Magenis Syndrome (SMS) is a genetic neurodevelopmental disorder caused by a microdeletion on chromosome 17p11.2. This syndrome is characterized by a distinctive profile of physical, medical and neuropsychological characteristics. The latter include general mental disability, with the majority of individuals falling within the mild to moderate range. This study reports a detailed cognitive assessment of children and adults with SMS with the use of the Wechsler intelligence scales at three distinct levels of analysis: full scale IQ, factorial indices, and subtests. Child and adult samples were each compared to samples of age and gender-matched typically developing individuals. To our knowledge, this is the first study to systematically analyse the cognitive profile of individuals with SMS in Southern Europe. The present study confirmed mental disability, particularly within the moderate category, as a consistent feature of children and adults with SMS. Furthermore, both child and adult samples evidenced significant impairments in all four indices when compared with their typically developing counterparts. A specific pattern of strengths and weaknesses was discernible for both samples, with Verbal Comprehension emerging as a relative strength, whereas Working Memory appeared as a relative weakness. Finally, with the exception of two subtests in the perceptual domain, we found no evidence for a general cognitive decline with age.

  1. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome.

    PubMed

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology.

  2. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome

    PubMed Central

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    ABSTRACT The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology. PMID:27500073

  3. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome

    PubMed Central

    Mlynarski, Elisabeth E.; Xie, Michael; Taylor, Deanne; Sheridan, Molly B.; Guo, Tingwei; Racedo, Silvia E.; McDonald-McGinn, Donna M.; Chow, Eva W. C.; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J.; Roberts, Amy E.; Piotrowicz, Małgorzata; Bearden, Carrie E.; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R.; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Goldmuntz, Elizabeth; Bassett, Anne S.; Morrow, Bernice E.

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60–75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients. PMID:26742502

  4. Epilepsy and Other Neuropsychiatric Manifestations in Children and Adolescents with 22q11.2 Deletion Syndrome

    PubMed Central

    Kim, Eun-Hee; Yum, Mi-Sun; Lee, Beom-Hee; Kim, Hyo-Won; Lee, Hyun-Jeoung; Kim, Gu-Hwan; Lee, Yun-Jeong; Yoo, Han-Wook

    2016-01-01

    Background and Purpose 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome. Epilepsy and other neuropsychiatric (NP) manifestations of this genetic syndrome are not uncommon, but they are also not well-understood. We sought to identify the characteristics of epilepsy and other associated NP manifestations in patients with 22q11.2DS. Methods We retrospectively analyzed the medical records of 145 child and adolescent patients (72 males and 73 females) with genetically diagnosed 22q11.2DS. The clinical data included seizures, growth chart, psychological reports, development characteristics, school performance, other clinical manifestations, and laboratory findings. Results Of the 145 patients with 22q11.2DS, 22 (15.2%) had epileptic seizures, 15 (10.3%) had developmental delay, and 5 (3.4%) had a psychiatric illness. Twelve patients with epilepsy were classified as genetic epilepsy whereas the remaining were classified as structural, including three with malformations of cortical development. Patients with epilepsy were more likely to display developmental delay (odds ratio=3.98; 95% confidence interval=1.5-10.5; p=0.005), and developmental delay was more common in patients with structural epilepsy than in those with genetic epilepsy. Conclusions Patients with 22q11.2DS have a high risk of epilepsy, which in these cases is closely related to other NP manifestations. This implies that this specific genetic locus is critically linked to neurodevelopment and epileptogenesis. PMID:26754781

  5. Detection of submicroscopic deletions in band 17p13 in patients with the Miller-Dieker syndrome

    PubMed Central

    Schwartz, Charles E.; Johnson, John P.; Holycross, Bridget; Mandeville, Tracy M.; Sears, Tena S.; Graul, Elizabeth A.; Carey, John C.; Schroer, Richard J.; Phelan, Mary C.; Szollar, Judith; Flannery, David B.; Stevenson, Roger E.

    1988-01-01

    The Miller-Dieker syndrome (MDS), a syndrome with lissencephaly, distinctive craniofacial features, growth impairment, and profound developmental failure, has been associated with a deletion of the distal part of chromosome band 17p13. A minority of patients with the syndrome do not have a deletion detectable with current cytogenetic techniques. Using three highly polymorphic DNA probes (pYNZ22, pYNH37.3, and p144D6) we have detected microdeletions in three MDS patients, two of whom had no visible abnormalities of chromosome 17. Loci defined by two of the DNA probes, pYNZ22 and pYNH37.3, were deleted in all three patients. The most distal locus, defined by p144D6, was present in one MDS patient, possibly defining the distal limits of the MDS region in band 17pl3.3. None of these loci were absent in one case of lissencephaly without MDS. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:2903661

  6. Apert's Syndrome

    PubMed Central

    Jyothsna, Mandapati; Ahmed, Syed Basheer; Sree Lakshmi, Ketham Reddy

    2014-01-01

    ABSTRACT Apert's syndrome (acrocephalosyndactyly) is a rare congenital disorder characterized by craniosynostosis, midfacial malforma­tion and symmetrical syndactyly of hands and feet. Craniofacial deformities include cone-shaped calvarium, fat forehead, prop-tosis, hypertelorism and short nose with a bulbous tip. Intraoral findings include high arched palate with pseudocleft, maxillary transverse and sagittal hypoplasia with concomitant dental crowding, skeletal and dental anterior open bite and several retained primary teeth. We report one such case of 14-year-old boy having all the classical features of Apert's syndrome with particular emphasis on brief review of genetic features. How to cite this article: Kumar GR, Jyothsna M, Ahmed SB, Lakshmi KRS. Apert's Syndrome. Int J Clin Pediatr Dent 2014;7(1):69-72. PMID:25206244

  7. Compartment syndromes

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  8. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  9. Flammer syndrome

    PubMed Central

    2014-01-01

    The new term Flammer syndrome describes a phenotype characterized by the presence of primary vascular dysregulation together with a cluster of symptoms and signs that may occur in healthy people as well as people with disease. Typically, the blood vessels of the subjects with Flammer syndrome react differently to a number of stimuli, such as cold and physical or emotional stress. Nearly all organs, particularly the eye, can be involved. Although the syndrome has some advantages, such as protection against the development of atherosclerosis, Flammer syndrome also contributes to certain diseases, such as normal tension glaucoma. The syndrome occurs more often in women than in men, in slender people than in obese subjects, in people with indoor rather than outdoor jobs, and in academics than in blue collar workers. Affected subjects tend to have cold extremities, low blood pressure, prolonged sleep onset time, shifted circadian rhythm, reduced feeling of thirst, altered drug sensitivity, and increased general sensitivity, including pain sensitivity. The plasma level of endothelin-1 is slightly increased, and the gene expression in lymphocytes is changed. In the eye, the retinal vessels are stiffer and their spatial variability larger; the autoregulation of ocular blood flow is decreased. Glaucoma patients with Flammer syndrome have an increased frequency of the following: optic disc hemorrhages, activated retinal astrocytes, elevated retinal venous pressure, optic nerve compartmentalization, fluctuating diffuse visual field defects, and elevated oxidative stress. Further research should lead to a more concise definition, a precise diagnosis, and tools for recognizing people at risk. This may ultimately lead to more efficient and more personalized treatment. PMID:25075228

  10. [Wilkie's syndrome].

    PubMed

    Bognár, Gábor; Ledniczky, György; Palik, Eva; Zubek, László; Sugár, István; Ondrejka, Pál

    2008-10-01

    Loss of retroperitoneal fatty tissue as a result of a variety of debilitating conditions and noxa is believed to be the etiologic factor of superior mesenteric artery syndrome. A case of a 35 years old female patient with severe malnutrition and weight loss is presented, who developed superior mesenteric artery syndrome. Various theories of etiology, clinical course and treatment options of this uncommon disease are discussed. In our case, conservative management was inefficient, while surgical treatment aiming to bypass the obstruction by an anastomosis between the jejunum and the proximal duodenum (duodenojejunostomy) was successful. An interdisciplinary teamwork provides the most beneficial diagnostic and therapeutic result in this often underestimated disease.

  11. Morbihan syndrome

    PubMed Central

    Veraldi, Stefano; Persico, Maria Chiara; Francia, Claudia

    2013-01-01

    We report a case of severe Morbihan syndrome (chronic erythematous edema of the upper portion of the face) in a 60-year-old man. The syndrome was characterized clinically by erythematous edema involving the forehead, glabella, and both eyelids, because of which the patient was not able to open completely his eyes. Furthermore, erythema and telangiectasiae were visible on the nose and cheeks. Laboratory and instrumental examinations were within normal ranges or negative. Histopathological examination showed dermal edema, perivascular and periadnexal lympho-histiocytic infiltrate, and sebaceous gland hyperplasia. Oral isotretinoin was ineffective despite the relatively long duration of the therapy (26 weeks). PMID:23741671

  12. [PFAPA syndrome].

    PubMed

    André, Suzete Costa Anjos; Vales, Fernando; Cardoso, Eduardo; Santos, Margarida

    2009-01-01

    PFAPA syndrome is characterized by periodic fever, pharyngitis, cervical adenitis and aphthous stomatitis. The bouts of fever can last for days or even weeks. Between crises, patients remain asymptomatic for variable periods. It appears before the age of five and has limited duration (4-8 years). Its aetiopathogeny is unknown. Corticoids are the treatment of choice. Tonsillectomy has been proposed as a solution but remains controversial. We present the case of a 4-year-old girl with PFAPA syndrome who underwent tonsillectomy in January, 2008, and we review the literature.

  13. Isolation of a novel gene from the DiGeorge syndrome critical region with homology to Drosophila gdl and to human LAMC1 genes.

    PubMed

    Demczuk, S; Thomas, G; Aurias, A

    1996-05-01

    DiGeorge syndrome, and more widely the CATCH 22 syndrome, are associated with microdeletions in chromosomal region 22q11.2. A critical region of 500 kb has been delimited within which maps the breakpoint of a balanced translocation associated with mild CATCH 22 phenotypes. We report the isolation from this critical region of a novel gene, DGCR6, which maps 115 kb centromeric to the balanced translocation breakpoint. The DGCR6 gene product shares homology with the Drosophila melanogaster gonadal protein, which participates in gonadal and germ-line cells development, and with the human laminin. gamma-1 chain, which upon polymerization with alpha- and beta- chains forms the laminin molecule. Laminin binds to cells through interaction with a receptor and has functions in cell attachment, migration and tissue organization during development. DGCR6 could be a candidate for involvement in the DiGeorge syndrome pathology by playing a role in neural crest cell migration into the third and fourth pharyngeal pouches, the structures from which derive the organs affected in DiGeorge syndrome.

  14. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome.

    PubMed

    Lopez-Rivera, Esther; Liu, Yangfan P; Verbitsky, Miguel; Anderson, Blair R; Capone, Valentina P; Otto, Edgar A; Yan, Zhonghai; Mitrotti, Adele; Martino, Jeremiah; Steers, Nicholas J; Fasel, David A; Vukojevic, Katarina; Deng, Rong; Racedo, Silvia E; Liu, Qingxue; Werth, Max; Westland, Rik; Vivante, Asaf; Makar, Gabriel S; Bodria, Monica; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Maiorana, Mariarosa; Petrey, Donald S; Honig, Barry; Lozanovski, Vladimir J; Salomon, Rémi; Heidet, Laurence; Carpentier, Wassila; Gaillard, Dominique; Carrea, Alba; Gesualdo, Loreto; Cusi, Daniele; Izzi, Claudia; Scolari, Francesco; van Wijk, Joanna A E; Arapovic, Adela; Saraga-Babic, Mirna; Saraga, Marijan; Kunac, Nenad; Samii, Ali; McDonald-McGinn, Donna M; Crowley, Terrence B; Zackai, Elaine H; Drozdz, Dorota; Miklaszewska, Monika; Tkaczyk, Marcin; Sikora, Przemyslaw; Szczepanska, Maria; Mizerska-Wasiak, Malgorzata; Krzemien, Grazyna; Szmigielska, Agnieszka; Zaniew, Marcin; Darlow, John M; Puri, Prem; Barton, David; Casolari, Emilio; Furth, Susan L; Warady, Bradley A; Gucev, Zoran; Hakonarson, Hakon; Flogelova, Hana; Tasic, Velibor; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Allegri, Landino; Wong, Craig S; Drummond, Iain A; D'Agati, Vivette; Imamoto, Akira; Barasch, Jonathan M; Hildebrandt, Friedhelm; Kiryluk, Krzysztof; Lifton, Richard P; Morrow, Bernice E; Jeanpierre, Cecile; Papaioannou, Virginia E; Ghiggeri, Gian Marco; Gharavi, Ali G; Katsanis, Nicholas; Sanna-Cherchi, Simone

    2017-02-23

    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).

  15. Juvenile rheumatoid arthritis and del(22q11) syndrome: a non-random association.

    PubMed Central

    Verloes, A; Curry, C; Jamar, M; Herens, C; O'Lague, P; Marks, J; Sarda, P; Blanchet, P

    1998-01-01

    Del(22q11) is a common microdeletion syndrome with an extremely variable phenotype. Besides classical manifestations, such as velocardiofacial (Shprintzen) or DiGeorge syndromes, del(22q11) syndrome may be associated with unusual but probably causally related anomalies that expand its phenotype and complicate its recognition. We report here three children with the deletion and a chronic, erosive polyarthritis resembling idiopathic cases of juvenile rheumatoid arthritis (JRA). Patient 1, born in 1983, initially presented with developmental delay, facial dysmorphism, velopharyngeal insufficiency, and severe gastro-oesophageal reflux requiring G tube feeding. From the age of 3 years, he developed JRA, which resulted in severe restrictive joint disease, osteopenia, and platyspondyly. Patient 2, born in 1976, had tetralogy of Fallot and peripheral pulmonary artery stenosis. She developed slowly, had mild dysmorphic facial features, an abnormal voice, and borderline intelligence. JRA was diagnosed at the age of 5 years. The disorder followed a subacute course, with relatively mild inflammatory phenomena, but an extremely severe skeletal involvement with major osteopenia, restrictive joint disease (bilateral hip replacement), and almost complete osteolysis of the carpal and tarsal bones with phalangeal synostoses, leading to major motor impairment and confinement to a wheelchair. Patient 3, born in 1990, has VSD, right embryo-toxon, bifid uvula, and facial dysmorphism. She developed JRA at the age of 1 year. She is not mentally retarded but has major speech delay secondary to congenital deafness inherited from her mother. In the three patients, a del(22q11) was shown by FISH analysis. These observations, and five other recently published cases, indicate that a JRA-like syndrome is a component of the del(22q11) spectrum. The deletion may be overlooked in those children with severe, chronic inflammatory disorder. Images PMID:9832043

  16. HELLP Syndrome.

    PubMed

    Sandvoß, Mareike; Potthast, Arne Björn; von Versen-Höynck, Frauke; Das, Anibh Martin

    2017-04-01

    The hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome is frequently observed in mothers whose offspring have long-chain fatty acid oxidation defects. We previously found that fatty acid oxidation is compromised not only in these inborn errors of metabolism but also in human umbilical vein endothelial cells (HUVECs) from all pregnancies complicated by the HELLP syndrome. Sirtuins are oxidized nicotinamide adenine dinucleotide (NAD(+))dependent deacetylases linked to the metabolic status of the cell. SIRT 4 is known to have regulatory functions in fatty acid oxidation. The HELLP syndrome is often associated with short-term hypoxia. We studied sirtuins (SIRT 1, SIRT 3, and SIRT 4) in HUVECs from pregnancies complicated by the HELLP syndrome and uncomplicated pregnancies exposed to hypoxia (n = 7 controls, 7 HELLP; 0, 10, 60, or 120 minutes of 2% O2). Protein levels of SIRT 4 were significantly higher in HUVECs from HELLP compared to control after 60 and 120 minutes of hypoxia. The NAD(+) levels increased in a time-dependent manner.

  17. [SAPHO syndrome].

    PubMed

    Heldmann, F; Kiltz, U; Baraliakos, X; Braun, J

    2014-10-01

    The SAPHO syndrome, an acronym for synovitis, acne, pustulosis, hyperostosis and osteitis, is a rare disease which affects bones, joints and the skin. The main osteoarticular features are hyperostosis and osteitis. Osteoarticular symptoms predominantly occur on the anterior chest wall but the spine and the peripheral skeleton can also be involved. The most important skin affections are palmoplantar pustulosis and severe acne. The etiology of this syndrome remains unclear but infectious, immunological and genetic factors are involved. The diagnostic features of SAPHO syndrome are clinical and radiological. The most important diagnostic procedure is Tc-99 m bone scintigraphy but conventional x-rays as well as computed tomography (CT) and magnetic resonance imaging (MRI) can also contribute to the final diagnosis. Bone histology and positron emission tomography CT (PET-CT) may help to differentiate SAPHO syndrome from malignancies and infectious osteomyelitis. Nonsteroidal anti-inflammatory drugs (NSAIDs) are the cornerstone of treatment. The results obtained using antibiotics and disease-modifying antirheumatic drugs (DMARDs), such as sulfasalazine and methotrexate are inconsistent. Bisphosphonates and anti-tumor necrosis factor (anti-TNF) drugs have shown promising results in small studies but further research is still necessary.

  18. Waardenburg syndrome.

    PubMed Central

    Read, A P; Newton, V E

    1997-01-01

    Auditory-pigmentary syndromes are caused by physical absence of melanocytes from the skin, hair, eyes, or the stria vascularis of the cochlea. Dominantly inherited examples with patchy depigmentation are usually labelled Waardenburg syndrome (WS). Type I WS, characterised by dystopia canthorum, is caused by loss of function mutations in the PAX3 gene. Type III WS (Klein-Waardenburg syndrome, with abnormalities of the arms) is an extreme presentation of type I; some but not all patients are homozygotes. Type IV WS (Shah-Waardenburg syndrome with Hirschsprung disease) can be caused by mutations in the genes for endothelin-3 or one of its receptors, EDNRB. Type II WS is a heterogeneous group, about 15% of whom are heterozygous for mutations in the MITF (microphthalmia associated transcription factor) gene. All these forms show marked variability even within families, and at present it is not possible to predict the severity, even when a mutation is detected. Characterising the genes is helping to unravel important developmental pathways in the neural crest and its derivatives. Images PMID:9279758

  19. Cushing's Syndrome

    MedlinePlus

    ... sometimes found in people who have depression or anxiety disorders, drink excess alcohol, have poorly controlled diabetes, or are severely obese. Pseudo-Cushing’s does not have the same long-term effects on health as Cushing's syndrome and does not ...

  20. Aicardi syndrome

    MedlinePlus

    ... 20th ed. Philadelphia, PA: Elsevier; 2016:chap 591. US National Library of Medicine. Aicardi syndrome. Updated September 20, 2016. ghr.nlm. ... Support Get email updates Subscribe to RSS Follow us ... Developers U.S. National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department ...

  1. Dumping Syndrome

    MedlinePlus

    ... stomach move to your small intestine in an uncontrolled, abnormally fast manner. This is most often related to changes in your stomach associated with surgery. Dumping syndrome can occur after any stomach operation or removal of the esophagus (esophagectomy). Gastric bypass surgery for ...

  2. Rett Syndrome.

    ERIC Educational Resources Information Center

    Culbert, Linda A.

    This pamphlet reviews the historical process involved in initially recognizing Rett Syndrome as a specific disorder in girls. Its etiology is unknown, but studies have considered factors as hyperammonemia, a two-step mutation, a fragile X chromosome, metabolic disorder, environmental causation, dopamine deficiency, and an inactive X chromosome.…

  3. Nephrotic Syndrome

    MedlinePlus

    ... child will have a relapse — where the nephrotic syndrome comes back after going away. In that case, treatment would begin again until the child outgrows the condition or it improves on its own./p> Reviewed by: Robert S. Mathias, MD Date reviewed: March 2014 previous 1 • ...

  4. Metabolic Syndrome

    MedlinePlus

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions are High blood pressure High blood glucose, or blood sugar, levels High levels of triglycerides, a type of fat, in your blood Low levels ...

  5. Waardenburg's syndrome.

    PubMed

    Yesudian, D P; Jayaraman, M; Janaki, V R; Yesudian, P

    1995-01-01

    Three children in a family of five presented with heterochromia iridis, lateral displacement of inner canthi and varying degrees of sensorineural deafness. All the 3 showed iris atrophy. The father of the children had only heterochromia iridis. A diagnosis of Waardenburg's syndrome Type I was made in the children with the father probably representing a forme fruste of the condition.

  6. [Waardenburg's syndrome].

    PubMed

    Gimñenez, F; Carbonell, R; Pérez, F; Lozano, I

    1994-01-01

    Reporting one case of this condition type-2 with heterochromia iridis and cochlear deafness. The AA. review the syndrome's components and it nomenclature as well. They discuss about the convenience of including this deviation in the chapter of "diseases of the embryonic neural crest". The specific place of the gene responsibly in the chromosome-2 and the possibilities of genetic counselling are considered.

  7. [Locomotive syndrome and metabolic syndrome].

    PubMed

    Fukushi, Jun-ichi; Iwamoto, Yukihide

    2014-10-01

    The Japanese Orthopedic Association coined the term locomotive syndrome (LS) to designate a condition of elderly people in high risk groups of requiring nursing care because of problems with their musculoskeletal diseases. LS is a socioeconomic concept, and closely associated with osteoporosis, osteoarthritis, and sarcopenia. Recent studies have revealed that metabolic syndrome (MS), a clustering of cardiovascular risk factors, has been related with LS. For example, individuals with MS have a greater risk of osteoarthritis and sarcopenia. Secreted factors from adipose tissue and skeletal muscles, namely, adipokines and myokines, are involved in the association of LS and MS.

  8. The Source for Syndromes.

    ERIC Educational Resources Information Center

    Richard, Gail J.; Hoge, Debra Reichert

    Designed for practicing speech-language pathologists, this book discusses different syndrome disabilities, pertinent speech-language characteristics, and goals and strategies to begin intervention efforts at a preschool level. Chapters address: (1) Angelman syndrome; (2) Asperger syndrome; (3) Down syndrome; (4) fetal alcohol syndrome; (5) fetal…

  9. Fluency Disorders in Genetic Syndromes

    ERIC Educational Resources Information Center

    Van Borsel, John; Tetnowski, John A.

    2007-01-01

    The characteristics of various genetic syndromes have included "stuttering" as a primary symptom associated with that syndrome. Specifically, Down syndrome, fragile X syndrome, Prader-Willi syndrome, Tourette syndrome, Neurofibromatosis type I, and Turner syndrome all list "stuttering" as a characteristic of that syndrome. An extensive review of…

  10. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development

    PubMed Central

    Meechan, Daniel W.; Maynard, Thomas M.; Fernandez, Alejandra; Karpinski, Beverly A.; Rothblat, Lawrence A.; LaMantia, Anthony S.

    2015-01-01

    Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development. PMID:25866365

  11. Molecular analysis of DiGeorge Syndrome-related translocation breakpoints in 22q11.2

    SciTech Connect

    Chieffo, C.; Barnoski, B.L.; Emanuel, B.S.

    1994-09-01

    22q11 demonstrates a high frequency of disease-specific rearrangements. Several of the rearrangements are associated with developmental abnormalities such as DiGeorge Syndrome (DGS), Velocardiofacial Syndrome (VCFS), Cat Eye Syndrome (CES) and Supernumerary der(22)t(11;22) Syndrome. DGS and VCFS involve deletions of 22q11.2 resulting from unbalanced translocations or microdeletions. In contrast, CES and Supernumerary der(22)t(11;22) Syndrome result from duplications of this region via inter- or intra- chromosomal exchange. Although the molecular mechanism giving rise to these rearrangements has yet to be elucidated, the presence of known 22q11 repetitive elements are likely to be involved. GM5878 is a 46,XY,t(10;22) cell line from a balanced translocation carrier father of an unbalanced DGS patient. GM0980 is a cell line from a patient with features of DGS/VCFS with an unbalanced karyotype. Using FISH cosmids, we have localized these translocation breakpoints near pH160b (D22S66) which maps to the center of the DiGeorge chromosomal region (DGCR). To further localize the breakpoint of GM5878, overlapping cosmids spanning this region were used as probes for FISH. Use of additional overlapping cosmids allowed the sublocalization of the breakpoint to a 10kb region. A 4.8 kb BglII fragment predicted to cross the breakpoint was isolated. When this fragment was used as a probe to normal and GM5878 DNA, novel bands were detected in GM5878 DNA digested with EcoRI and BglII. Similar analysis of the GM0980 breakpoint is being pursued. Full molecular characterization of these translocations is in progress using inverse PCR to clone the junctional fragments for sequencing. Detailed analysis of the region may reveal molecular features which make this a rearrangement prone area of the genome and help elucidate its relationship to human cytogenetic disease.

  12. Clinical, pathological, and genetic evaluations of Chinese patient with otodental syndrome and multiple complex odontoma: Case report.

    PubMed

    Liu, Anqi; Wu, Meiling; Guo, Xiaohe; Guo, Hao; Zhou, Zhifei; Wei, Kewen; Xuan, Kun

    2017-02-01

    Otodental syndrome is a rare autosomal-dominant disease characterized by globodontia, associated with sensorineural, high-frequency hearing loss. Here, we describe the clinical, pathological, and genetic evaluations of a 9-year-old girl with otodental syndrome and multiple complex odontoma.The patient presented with a draining sinus tract in her left cheek, globodontia, and hearing loss. The odontomas which caused the cutaneous sinus tracts were extracted because of the odontogenic infection. The extracted odontoma and primary tooth was studied by micro-CT and further observed histopathologically. The micro-CT findings revealed that the primary tooth had three crowns with two separated pulp chambers, and their root canals were partially fused. The histological findings showed abnormal morphologies of odontoblasts and dentin, hyperplasia of enamel, and malformation of odontogenic epithelium. Furthermore, DNA sequencing and analyze of deafness associated gene GJB2, GJB3, and PDS had not revealed any SNP or mutation; but exon 3 of the causative gene FGF3 could not be amplified, which may be associated with the microdeletion at chromosome 11q13.3. Three month after surgery, the patient was found to be asymptomatic and even the evidence of the extra-oral sinus had disappeared.The dental abnormality of otodental syndrome included congenital missing teeth, globodontia, and multiple complex odontoma. Globodontia exhibited characteristic features of fusion teeth. In addition, gene FGF3 haploinsufficiency was likely to be the cause of otodental syndrome. The report provides some new information in the field of otodental syndrome, which would make dentists more familiar with this disease.

  13. [Fryns syndrome].

    PubMed

    Heljić, Suada; Terzić, Sabina; Dzinović, Amra; Mackić, Mirela

    2006-01-01

    Fryns syndrome is an extremely rare developmental disorder associated with deletion of long arm of chromosome 16. Characteristics of the Fyns syndrome are: craniofacial dysmorfism, diaphragmatic defects with lung hypoplasia, distal digital hypoplasia, brain and urogenital abnormalities and other developmental disturbances. After the first description in two stillborn sisters by Fryns (1971), new reports appeared with descriptions included disorders which have not described previously. We described a case of female live born with deletion of long arm of chromosome 16. Our patient had a typical craniofacial dysmorfism, brain abnormalities (Dandy Walker malformation), cardiac defects (artial septal defect and persistent ductus arteriosus), renal hypoplasia, gastrointestinal problems, hypotonia and feeding difficulties. Our patient had no diaphragmatic hernia and he survived neonatal period with severe neurological impairment.

  14. Parinaud's syndrome.

    PubMed

    Moffie, D; Ongerboer de Visser, B W; Stefanko, S Z

    1983-02-01

    Five cases of a tumour in the quadrigeminal area have been described, 4 of which could be verified by autopsy. In 2 cases with a metastasis in the tegmentum of the mesencephalon, a Parinaud syndrome was present. In 2 other cases, however, with extensive destruction of the quadrigeminal plate and of the posterior commissure this syndrome was not present. In the 5th case, with a big vascular tumour of the pineal area, disturbances of eye movements and pupils were also lacking. From these observations we may conclude that (1) destruction of the quadrigeminal plate has no influence upon vertical eye movements. (2) destruction of the posterior commissure, in combination with the quadrigeminal plate, is not always followed by disturbances of vertical eye movements. In man it is still not clear which structures are responsible for the performance of vertical eye movements.

  15. [Kartagener syndrome].

    PubMed

    Naves, Kattia Cristina; Santos, João Paulo Vieira dos; Santana, José Henrique; Lopes, Gesner Pereira

    2005-01-01

    A white, 48-year-old woman, natural from Uberaba-MG, presented herself to hospital. She had a picture of rest dyspnea, fever, productive cough, greenish catarrh and ventilatory-dependent thoracic pain, for 3 days. During investigation, through radiogram and thoracic tomography, it was visualized the presence of dextrocardia and consolidation in low right lobe by bronchopneumonic process. It was opted for hospitalization and antibiotic therapy. Investigation was carried on with tomography of mastoids and paranasal cavities which showed bilateral chronic otomastoiditis and images of chronic sinusopathy allowing the diagnosis of a case of Kartagener Syndrome. Our purpose in this case report is to include new informations for who search about this syndrome.

  16. Kartagener syndrome.

    PubMed

    Skeik, Nedaa; Jabr, Fadi I

    2011-01-12

    Kartagener syndrome is a rare, ciliopathic, autosomal recessive genetic disorder that causes a defect in the action of the cilia lining the respiratory tract and fallopian tube. Patients usually present with chronic recurrent rhinosinusitis, otitis media, pneumonia, and bronchiectasis caused by pseudomonal infection. Situs inversus can be seen in about 50% of cases. Diagnosis can be made by tests to prove impaired cilia function, biopsy, and genetic studies. Treatment is supportive. In severe cases, the prognosis can be fatal if bilateral lung transplantation is delayed. We present a case of a 66-year-old woman with chronic recurrent upper respiratory infections, pseudomonal pneumonia, and chronic bronchiectasis who presented with acute respiratory failure. She was diagnosed with Kartagener syndrome based on her clinical presentation and genetic studies. She expired on ventilator with refractory respiratory and multiorgan failure.

  17. Paraneoplastic syndromes

    SciTech Connect

    Weller, R.E.

    1994-03-01

    Paraneoplastic syndromes (PNS) comprise a diverse group of disorders that are associated with cancer but unrelated to the size, location, metastases, or physiologic activities of the mature tissue of origin. They are remote effects of tumors that may appear as signs, symptoms, or syndromes which can mimic other disease conditions encountered in veterinary medicine. Recognition of PNS is valuable for several reasons: the observed abnormalities may represent tumor cell markers and facilitate early diagnosis of the tumor; they may allow assessment of premalignant states; they may aid in the search metastases; they may help quantify and monitor response to therapy; and, they may provide insight into the study of malignant transformation and oncogene expression. This review will concentrate on the pathophysiology, diagnosis, and treatment of some of the common PNS encountered in veterinary medicine.

  18. [Fibromyalgia syndrome].

    PubMed

    Naranjo Hernández, A; Rodríguez Lozano, C; Ojeda Bruno, S

    1992-02-01

    The Fibromialgia Syndrome (FS) is a common clinical entity which may produce symtoms and signs related to multiple fields of Medicine. Typical clinical characteristics of FS include extensive pain, presence of sensitive points during exploration, morning stiffness, asthenia and non-refresing sleep. Frequently, associated rheumatologic diseases are observed, as rheumatoid arthritis, osteoarthrosis and vertebral disorders. In FS, complementary tests are usually normal. The most widely accepted hypothesis suggests that this is a disorder affecting modulation of pain sensitivity.

  19. Gerstmann's syndrome.

    PubMed

    Sukumar, S; Ferguson, G C

    1996-05-01

    Although Gerstmann's syndrome has been well documented since it was characterised in the latter half of last century, there has not been much literature on it in the last few years. We present a classical case in a patient who was admitted into hospital for an unrelated problem. We conclude that clinical examination still has a valuable role in neurology, despite the availability of excellent imaging techniques.

  20. Fetal Alcohol Syndrome

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Fetal Alcohol Syndrome Read in Chinese What is Fetal Alcohol Syndrome (FAS)? Fetal Alcohol Syndrome (FAS) describes changes in ...

  1. What is Down Syndrome?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Down Syndrome: Condition Information Skip sharing on social media links Share this: Page Content What is Down syndrome? Down syndrome describes a set of cognitive and ...

  2. Down Syndrome: Eye Problems

    MedlinePlus

    ... life expectancy. Do children with Down syndrome have eye problems? Individuals with Down syndrome are at increased ... When should children with Down syndrome receive an eye exam? The American Academy of Pediatrics recommends that ...

  3. Reye syndrome - resources

    MedlinePlus

    Resources - Reye syndrome ... The following organizations are good resources for information on Reye Syndrome : National Reye's Syndrome Foundation, Inc. -- www.reyessyndrome.org National Institute of Neurologic Disorders and Stroke -- www. ...

  4. Acrodysostosis syndromes

    PubMed Central

    Silve, C; Le-Stunff, C; Motte, E; Gunes, Y; Linglart, A; Clauser, E

    2012-01-01

    Acrodysostosis (ADO) refers to a heterogeneous group of rare skeletal dysplasia that share characteristic features including severe brachydactyly, facial dysostosis and nasal hypoplasia. The literature describing acrodysostosis cases has been confusing because some reported patients may have had other phenotypically related diseases presenting with Albright Hereditary Osteodystrophy (AHO) such as pseudohypoparathyroidism type 1a (PHP1a) or pseudopseudohypoparathyroidism (PPHP). A question has been whether patients display or not abnormal mineral metabolism associated with resistance to PTH and/or resistance to other hormones that bind G-protein coupled receptors (GPCR) linked to Gsα, as observed in PHP1a. The recent identification in patients affected with acrodysostosis of defects in two genes, PRKAR1A and PDE4D, both important players in the GPCR–Gsα–cAMP–PKA signaling, has helped clarify some issues regarding the heterogeneity of acrodysostosis, in particular the presence of hormonal resistance. Two different genetic and phenotypic syndromes are now identified, both with a similar bone dysplasia: ADOHR, due to PRKAR1A defects, and ADOP4 (our denomination), due to PDE4D defects. The existence of GPCR-hormone resistance is typical of the ADOHR syndrome. We review here the PRKAR1A and PDE4D gene defects and phenotypes identified in acrodysostosis syndromes, and discuss them in view of phenotypically related diseases caused by defects in the same signaling pathway. PMID:24363928

  5. Acrodysostosis syndromes.

    PubMed

    Silve, C; Le-Stunff, C; Motte, E; Gunes, Y; Linglart, A; Clauser, E

    2012-11-21

    Acrodysostosis (ADO) refers to a heterogeneous group of rare skeletal dysplasia that share characteristic features including severe brachydactyly, facial dysostosis and nasal hypoplasia. The literature describing acrodysostosis cases has been confusing because some reported patients may have had other phenotypically related diseases presenting with Albright Hereditary Osteodystrophy (AHO) such as pseudohypoparathyroidism type 1a (PHP1a) or pseudopseudohypoparathyroidism (PPHP). A question has been whether patients display or not abnormal mineral metabolism associated with resistance to PTH and/or resistance to other hormones that bind G-protein coupled receptors (GPCR) linked to Gsα, as observed in PHP1a. The recent identification in patients affected with acrodysostosis of defects in two genes, PRKAR1A and PDE4D, both important players in the GPCR-Gsα-cAMP-PKA signaling, has helped clarify some issues regarding the heterogeneity of acrodysostosis, in particular the presence of hormonal resistance. Two different genetic and phenotypic syndromes are now identified, both with a similar bone dysplasia: ADOHR, due to PRKAR1A defects, and ADOP4 (our denomination), due to PDE4D defects. The existence of GPCR-hormone resistance is typical of the ADOHR syndrome. We review here the PRKAR1A and PDE4D gene defects and phenotypes identified in acrodysostosis syndromes, and discuss them in view of phenotypically related diseases caused by defects in the same signaling pathway.

  6. Gitelman syndrome.

    PubMed

    Cotovio, Patricia; Silva, Cristina; Oliveira, Nuno; Costa, Fátima

    2013-04-11

    Hypokalaemia is a common clinical disorder, the cause of which can usually be determined by the patient's clinical history. Gitelman syndrome is an inherited tubulopathy that must be considered in some settings of hypokalaemia. We present the case of a 60-year-old male patient referred to our nephrology department for persistent hypokalaemia. Clinical history was positive for symptoms of orthostatic hypotension and polyuria. There was no history of drugs consumption other than potassium supplements. Complementary evaluation revealed hypokalaemia (2.15 mmol/l), hypomagnesaemia (0.29 mmol/l), metabolic alkalosis (pH 7.535, bicarbonate 34.1 mmol/l), hypereninaemia (281.7 U/ml), increased chloride (160 mmol/l) and sodium (126 mmol/l) urinary excretion and reduced urinary calcium excretion (0.73 mmol/l). Renal function, remainder serum and urinary ionogram, and renal ultrasound were normal. A diagnosis of Gitelman syndrome was established. We reinforced oral supplementation with potassium chloride and magnesium sulfate. Serum potassium stabilised around 3 mmol/l. The aim of our article is to remind Gitelman syndrome in the differential diagnosis of persistent hypokalaemia.

  7. Paraneoplastic syndromes

    SciTech Connect

    Weller, R.E.

    1986-10-01

    Paraneoplastic syndromes (PNS) comprise a diverse group of disorders that are associated with cancer but unrelated to the size, location, metastases, or physiologic activities of the mature tissue of origin. They are remote effects of tumors that may appear as signs, symptoms or syndromes which can mimic other disease conditions encountered in veterinary medicine. Various types of PNS, singly or in multiples, may be associated with either benign or malignant tumors and may involve almost every organ system, directly or indirectly. These disorders can precede the discovery of the tumor by weeks, months, or even years, and many are good diagnostic and prognostic indicators. The true incidence of PNS in animal cancer patients is unknown, although approximately 75% of all human cancer patients, at some time during the tumor-bearing part of their lives, suffer from one or more of these disorders. Recognition of PNS is valuable because the observed abnormalities may represent tumor cell markers and facilitate early diagnosis of the tumor, because they may allow assessment of premalignant states, because they may aid in the search for metastases, because they may help quantify and monitor response to therapy, and because they may provide insight into the study of malignant transformations and oncogene expression. Recognition of these syndromes is relevant to the diagnosis and treatment of many problems in veterinary cancer medicine. 22 refs., 2 tabs.

  8. Hepatorenal syndrome

    PubMed Central

    Lata, Jan

    2012-01-01

    Hepatorenal syndrome (HRS) is defined as a functional renal failure in patients with liver disease with portal hypertension and it constitutes the climax of systemic circulatory changes associated with portal hypertension. This term refers to a precisely specified syndrome featuring in particular morphologically intact kidneys, where regulatory mechanisms have minimised glomerular filtration and maximised tubular resorption and urine concentration, which ultimately results in uraemia. The syndrome occurs almost exclusively in patients with ascites. Type 1 HRS develops as a consequence of a severe reduction of effective circulating volume due to both an extreme splanchnic arterial vasodilatation and a reduction of cardiac output. Type 2 HRS is characterised by a stable or slowly progressive renal failure so that its main clinical consequence is not acute renal failure, but refractory ascites, and its impact on prognosis is less negative. Liver transplantation is the most appropriate therapeutic method, nevertheless, only a few patients can receive it. The most suitable “bridge treatments” or treatment for patients ineligible for a liver transplant include terlipressin plus albumin. Terlipressin is at an initial dose of 0.5-1 mg every 4 h by intravenous bolus to 3 mg every 4 h in cases when there is no response. Renal function recovery can be achieved in less than 50% of patients and a considerable decrease in renal function may reoccur even in patients who have been responding to therapy over the short term. Transjugular intrahepatic portosystemic shunt plays only a marginal role in the treatment of HRS. PMID:23049205

  9. [Crush syndrome].

    PubMed

    Scapellato, S; Maria, S; Castorina, G; Sciuto, G

    2007-08-01

    Crush injuries and crush syndrome are common after natural (e.g. earthquake, land-slide, tornadoes, tsunami) or man-made catastrophes (e.g. wars, terrorist attacks), in fact the history of this disease is well reported both in earthquake rescue reviews and in military literature. However, there are instances due to conventional causes, such as building collapses, road traffic accident, accident at work or altered level of consciousness after stroke or drug overdose. These situations of ''big or small'' catastrophes can occur at any time and anywhere, for this reason every clinician should be prepared to address issues of crush syndrome quickly and aggressively. The treatment has to manage and to predict clinical conditions before they present themselves. In particular, acute renal failure is one of the few life-threatening complications that can be reversed. This article reviews the various evidences and summarizes the treatment strategies available. Fundamental targets in crush syndrome management are early aggressive hydration, urine alkalinization and, when possible, forced diuresis. Since electrolyte imbalance may be fatal due to arrhythmias secondary to hyperkalemia (especially associated with hypocalcemia), it's necessary to correct these abnormalities using insulin-glucose solution and/or potassium binders, and if nevertheless serum potassium levels remain high this serious disease will necessitate dialysis, which is often a vital procedure.

  10. [Sanfilippo Syndrome].

    PubMed

    Osipova, L A; Kuzenkova, L M; Namazova-Baranova, L S; Gevorkyan, A K; Podkletnova, T V; Vashakmadze, N D

    2015-01-01

    Sanfilippo syndrome (mucopolysaccharidosis type III) is a lysosomal disorder caused by a defect in the catabolism of heparan sulfate. Mucopolysaccharidosis type III is the most common type of all mucopolysaccharidoses. The pathogenic basis of the disease consists of the storage of undegraded substrate in the central nervous system. Progressive cognitive decline resulting in dementia and behavioural abnormalities are the main clinical characteristics of Sanfilippo syndrome. Mucopolysaccharidosis type III may be misdiagnosed as otherforms of developmental delay, attention deficit/hyperactivity disorder and autistic spectrum disorders because of lack of somatic symptoms, presence of mild and atypical forms of the disease. Patients with Sanfilippo syndrome may have comparatively low urinary glycosaminoglycans levels resulting in false negative urinary assay. Definitive diagnosis is made by enzyme assay on leucocytes and cultured fibroblasts. There is currently no effective treatment of mucopolysaccharidosis type III, though ongoing researches of gene, substrate reduction and intrathecal enzyme replacement therapies expect getting curative method to alter devasting damage of central nervous system in near future.

  11. Sheehan syndrome.

    PubMed

    Karaca, Züleyha; Laway, Bashir A; Dokmetas, Hatice S; Atmaca, Hulusi; Kelestimur, Fahrettin

    2016-12-22

    Sheehan syndrome or postpartum hypopituitarism is a condition characterized by hypopituitarism due to necrosis of the pituitary gland. The initial insult is caused by massive postpartum haemorrhage (PPH), leading to impaired blood supply to the pituitary gland, which has become enlarged during pregnancy. Small sella turcica size, vasospasms (caused by PPH) and/or thrombosis (associated with pregnancy or coagulation disorders) are predisposing factors; autoimmunity might be involved in the progressive worsening of pituitary functions. Symptoms are caused by a decrease or absence of one or more of the pituitary hormones, and vary, among others, from failure to lactate and nonspecific symptoms (such as fatigue) to severe adrenal crisis. In accordance with the location of hormone-secreting cells relative to the vasculature, the secretion of growth hormone and prolactin is most commonly affected, followed by follicle-stimulating hormone and luteinizing hormone; severe necrosis of the pituitary gland also affects the secretion of thyroid-stimulating hormone and adrenocorticotropic hormone. Symptoms usually become evident years after delivery, but can, in rare cases, develop acutely. The incidence of Sheehan syndrome depends, to a large extent, on the occurrence and management of PPH. Sheehan syndrome is an important cause of hypopituitarism in developing countries, but has become rare in developed countries. Diagnosis is based on clinical manifestations combined with a history of severe PPH; hormone levels and/or stimulation tests can confirm clinical suspicion. Hormone replacement therapy is the only available management option so far.

  12. How Are Myelodysplastic Syndromes Staged?

    MedlinePlus

    ... Syndromes Early Detection, Diagnosis, and Staging How Are Myelodysplastic Syndromes Scored? Doctors often group cancers into different stages ... Ask Your Doctor About Myelodysplastic Syndromes? More In Myelodysplastic Syndromes About Myelodysplastic Syndromes Causes, Risk Factors, and Prevention ...

  13. Waterhouse-Friderichsen syndrome

    MedlinePlus

    ... Friderichsen syndrome; Fulminant meningococcal sepsis - Waterhouse-Friderichsen syndrome; Hemorrhagic adrenalitis ... bacteria growing (multiplying) inside the body. Symptoms include: Fever and chills Joint and muscle pain Headache Vomiting ...

  14. Unmasking of a Recessive SCARF2 Mutation by a 22q11.12 de novo Deletion in a Patient with Van den Ende-Gupta Syndrome

    PubMed Central

    Bedeschi, M.F.; Colombo, L.; Mari, F.; Hofmann, K.; Rauch, A.; Gentilin, B.; Renieri, A.; Clerici, D.

    2011-01-01

    Van den Ende-Gupta syndrome (VDEGS) is a congenital condition characterized by craniofacial and skeletal manifestations, specifically blepharophimosis, malar and maxillary hypoplasia, distinctive nose, arachnocamptodactyly, and long slender bones of the hands and feet. To date, only 24 patients have been described. It is generally thought that the syndrome is transmitted by an autosomal recessive mode of inheritance, although evidence for genetic heterogeneity has recently been presented. We report on a girl followed from birth up to 3 years of life with a set of peculiar minor anomalies, arachnocamptodactyly of hands and feet, characteristic of VDEGS in association with a 22q11.12 deletion. Recently, the VDEGS gene was mapped to the DiGeorge syndrome region on 22q11.2, and homozygous mutations in the SCARF2 gene were identified. We now report the first patient with VDEGS due to compound heterozygosity for the common 22q11.2 microdeletion and a hemizygous SCARF2 splice site mutation. PMID:22140376

  15. Molecular analysis of 24 Alagille syndrome families identifies a single submicroscopic deletion and further localizes the Alagille region within 20p12

    SciTech Connect

    Rand, E.B.; Piccoli, D.A.; Spinner, N.B.

    1995-11-01

    Alagille syndrome (AGS) is a clinically defined disorder characterized by cholestatic liver disease with bile duct paucity, peculiar facies, structural heart defects, vertebral anomalies, and ocular abnormalities. Multiple patients with various cytogenetic abnormalities involving 20p12 have been identified, allowing the assignment of AGS to this region. The presence of interstitial deletions of varying size led to the hypothesis that AGS is a contiguous gene deletion syndrome. This molecular analysis of cytogenetically normal AGS patients was performed in order to test this hypothesis and to refine the localization of the known AGS region. Investigation of inheritance of simple tandem repeat polymorphism alleles in 67 members of 24 cytogenetically normal Alagille families led to the identification of a single submicroscopic deletion. The deletion included loci D20S61, D20S41, D20S186, and D20S188 and presumably intervening uninformative loci D20S189 and D20S27. The six deleted loci are contained in a single YAC of 1.9 Mb. The additional finding of multiple unrelated probands who are heterozygous at each locus demonstrates that microdeletions at known loci within the AGS region are rare in cytogenetically normal patients with this disorder. This suggests that the majority of cases of AGS may be the result of a single gene defect rather than a contiguous gene deletion syndrome. 29 refs., 4 figs., 1 tab.

  16. Exonic Deletions in AUTS2 Cause a Syndromic Form of Intellectual Disability and Suggest a Critical Role for the C Terminus

    PubMed Central

    Beunders, Gea; Voorhoeve, Els; Golzio, Christelle; Pardo, Luba M.; Rosenfeld, Jill A.; Talkowski, Michael E.; Simonic, Ingrid; Lionel, Anath C.; Vergult, Sarah; Pyatt, Robert E.; van de Kamp, Jiddeke; Nieuwint, Aggie; Weiss, Marjan M.; Rizzu, Patrizia; Verwer, Lucilla E.N.I.; van Spaendonk, Rosalina M.L.; Shen, Yiping; Wu, Bai-lin; Yu, Tingting; Yu, Yongguo; Chiang, Colby; Gusella, James F.; Lindgren, Amelia M.; Morton, Cynthia C.; van Binsbergen, Ellen; Bulk, Saskia; van Rossem, Els; Vanakker, Olivier; Armstrong, Ruth; Park, Soo-Mi; Greenhalgh, Lynn; Maye, Una; Neill, Nicholas J.; Abbott, Kristin M.; Sell, Susan; Ladda, Roger; Farber, Darren M.; Bader, Patricia I.; Cushing, Tom; Drautz, Joanne M.; Konczal, Laura; Nash, Patricia; de Los Reyes, Emily; Carter, Melissa T.; Hopkins, Elizabeth; Marshall, Christian R.; Osborne, Lucy R.; Gripp, Karen W.; Thrush, Devon Lamb; Hashimoto, Sayaka; Gastier-Foster, Julie M.; Astbury, Caroline; Ylstra, Bauke; Meijers-Heijboer, Hanne; Posthuma, Danielle; Menten, Björn; Mortier, Geert; Scherer, Stephen W.; Eichler, Evan E.; Girirajan, Santhosh; Katsanis, Nicholas; Groffen, Alexander J.; Sistermans, Erik A.

    2013-01-01

    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3′ AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future. PMID:23332918

  17. Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus.

    PubMed

    Beunders, Gea; Voorhoeve, Els; Golzio, Christelle; Pardo, Luba M; Rosenfeld, Jill A; Talkowski, Michael E; Simonic, Ingrid; Lionel, Anath C; Vergult, Sarah; Pyatt, Robert E; van de Kamp, Jiddeke; Nieuwint, Aggie; Weiss, Marjan M; Rizzu, Patrizia; Verwer, Lucilla E N I; van Spaendonk, Rosalina M L; Shen, Yiping; Wu, Bai-lin; Yu, Tingting; Yu, Yongguo; Chiang, Colby; Gusella, James F; Lindgren, Amelia M; Morton, Cynthia C; van Binsbergen, Ellen; Bulk, Saskia; van Rossem, Els; Vanakker, Olivier; Armstrong, Ruth; Park, Soo-Mi; Greenhalgh, Lynn; Maye, Una; Neill, Nicholas J; Abbott, Kristin M; Sell, Susan; Ladda, Roger; Farber, Darren M; Bader, Patricia I; Cushing, Tom; Drautz, Joanne M; Konczal, Laura; Nash, Patricia; de Los Reyes, Emily; Carter, Melissa T; Hopkins, Elizabeth; Marshall, Christian R; Osborne, Lucy R; Gripp, Karen W; Thrush, Devon Lamb; Hashimoto, Sayaka; Gastier-Foster, Julie M; Astbury, Caroline; Ylstra, Bauke; Meijers-Heijboer, Hanne; Posthuma, Danielle; Menten, Björn; Mortier, Geert; Scherer, Stephen W; Eichler, Evan E; Girirajan, Santhosh; Katsanis, Nicholas; Groffen, Alexander J; Sistermans, Erik A

    2013-02-07

    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future.

  18. Kagami-Ogata syndrome: a clinically recognizable upd(14)pat and related disorder affecting the chromosome 14q32.2 imprinted region.

    PubMed

    Ogata, Tsutomu; Kagami, Masayo

    2016-02-01

    Human chromosome 14q32.2 carries paternally expressed genes including DLK1 and RTL1, and maternally expressed genes including MEG3 and RTL1as, along with the germline-derived DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived MEG3-DMR. Consistent with this, paternal uniparental disomy 14 (upd(14)pat), and epimutations (hypermethylations) and microdeletions affecting the IG-DMR and/or the MEG3-DMR of maternal origin, result in a unique phenotype associated with characteristic face, a small bell-shaped thorax with coat-hanger appearance of the ribs, abdominal wall defects, placentomegaly and polyhydramnios. Recently, the name 'Kagami-Ogata syndrome' (KOS) has been approved for this clinically recognizable disorder. Here, we review the current knowledge about KOS. Important findings include the following: (1) the facial 'gestalt' and the increased coat-hanger angle constitute pathognomonic features from infancy through childhood/puberty; (2) the unmethylated IG-DMR and MEG3-DMR of maternal origin function as the imprinting control centers in the placenta and body respectively, with a hierarchical interaction regulated by the IG-DMR for the methylation pattern of the MEG3-DMR in the body; (3) RTL1 expression level becomes ~2.5 times increased in the absence of functional RTL1as-encoded microRNAs that act as a trans-acting repressor for RTL1; (4) excessive RTL1 expression and absent MEG expression constitute the primary underlying factor for the phenotypic development; and (5) upd(14)pat accounts for approximately two-thirds of KOS patients, and epimutations and microdeletions are identified with a similar frequency. Furthermore, we refer to diagnostic and therapeutic implications.

  19. DNA damage response defect in Williams-Beuren syndrome

    PubMed Central

    Guenat, David; Merla, Giuseppe; Deconinck, Eric; Borg, Christophe; Rohrlich, Pierre-Simon

    2017-01-01

    Williams-Beuren syndrome (WBS, no. OMIM 194050) is a rare multisystem genetic disorder caused by a microdeletion on chromosome 7q11.23 and characterized by cardiovascular malformations, mental retardation, and a specific facial dysmorphism. Recently, we reported that a series of non-Hodgkin's lymphoma occurs in children with WBS and thus hypothesized that a predisposition to cancer may be associated with this genetic disorder. The aim of the present study was to ascertain the role played by three genes hemizygously deleted in WBS (RFC2, GTF2I and BAZ1B) in DNA damage response pathways. Cell proliferation, cell cycle analysis, γ-H2A.X induction, and expression of DNA damage response proteins were investigated upon exposure to genotoxic treatments in WBS patient-derived primary fibroblasts and in the 293T cell line treated with specific siRNAs targeting RFC2, GTF2I and BAZ1B. An impaired hydroxyurea-induced phosphorylation of CHK1 was observed in the WBS cells. However, this defective DNA damage response was not associated with an increased sensitivity to genotoxic agents. In addition, depletion of RFC2, GTF2I and BAZ1B using specific siRNAs did not have a significant impact on the DNA damage response in 293T cells. Our results highlight that the ATR-dependent DNA damage response is impaired in WBS patient cells but is also dispensable for viability when these cells undergo a genotoxic stress. The mechanism by which the ATR pathway is impaired in WBS warrants elucidation through further investigation. PMID:28098859

  20. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    PubMed Central

    Squarcione, Chiara; Torti, Maria Chiara; Di Fabio, Fabio; Biondi, Massimo

    2013-01-01

    The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. PMID:24353423

  1. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients

    SciTech Connect

    Juyal, R.C.; Figuera, L.E.; Hauge, X.

    1996-05-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.

  2. [SAPHO syndrome].

    PubMed

    Gharsallah, I; Souissi, A; Dhahri, R; Boussetta, N; Sayeh, S; Métoui, L; Ajili, F; Louzir, B; Othmani, S

    2014-09-01

    SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome is a rare entity characterized by the association of heterogeneous osteoarticular and cutaneous manifestations that have for common denominator an aseptic inflammatory process. The etiopathogeny of this disease is still a matter of debate. Although it has been related to the spondylarthritis family, an infectious origin is suggested. Diagnosis is based on the presence of at least one of the three diagnostic criteria proposed by Kahn. The treatment includes NSAIDs, antibiotics, corticosteroids, methotrexate and more recently the bisphosphonates and the TNFα inhibitors.

  3. Postmenopausal syndrome

    PubMed Central

    Dalal, Pronob K.; Agarwal, Manu

    2015-01-01

    Menopause is one of the most significant events in a woman's life and brings in a number of physiological changes that affect the life of a woman permanently. There have been a lot of speculations about the symptoms that appear before, during and after the onset of menopause. These symptoms constitute the postmenopausal syndrome; they are impairing to a great extent to the woman and management of these symptoms has become an important field of research lately. This chapter attempts to understand these symptoms, the underlying pathophysiology and the management options available. PMID:26330639

  4. Jacobsen syndrome.

    PubMed

    Mattina, Teresa; Perrotta, Concetta Simona; Grossfeld, Paul

    2009-03-07

    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from approximately 7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe

  5. Kartagener syndrome.

    PubMed

    Casanova, M S; Tuji, F M; Yoo, H J; Haiter-Neto, F

    2006-09-01

    Kartagener syndrome (KS), an autosomal recessively inherited disease, is characterized by the triad of situs inversus, bronchiectasis and sinusitis. This disorder affects the activity of proteins important to the movement of cilia, especially in the respiratory tract and the spermatozoa, developing a series of systemic alterations, which can be diagnosed through radiographic examination. The aim of this paper is to describe a clinical case of this unusual pathology, including a brief literature review, emphasising the radiographic aspects of this pathology and stressing the importance of early diagnosis, which could be determined by an oral radiologist.

  6. [Metabolic syndrome].

    PubMed

    Takata, Hiroshi; Fujimoto, Shimpei

    2013-02-01

    Metabolic syndrome (Mets) is a combination of disorders including abdominal obesity, impaired glucose tolerance, dyslipidemia and hypertension, which increases risk for cardiovascular disease (CVD) and type 2 diabetes when occurring together. In Japan, diagnosis criteria of Mets consists of an increased waist circumference and 2 or more of CVD risk factors. Annual health checkups and health guidance using Mets criteria were established in 2008 for the prevention of life-style related diseases in Japan. In this issue, history and diagnostic criteria of Mets and concerns for Mets concept were described.

  7. A patient with DiGeorge syndrome with spina bifida and sacral myelomeningocele, who developed both hypocalcemia-induced seizure and epilepsy.

    PubMed

    Kinoshita, Hiroyuki; Kokudo, Takashi; Ide, Takafumi; Kondo, Yasushi; Mori, Tokuo; Homma, Yasunobu; Yasuda, Mutsuko; Tomiyama, Junji; Yakushiji, Fumiatsu

    2010-06-01

    DiGeorge syndrome - a component of the 22q11 deletion syndrome - causes a disturbance in cervical neural crest migration that results in parathyroid hypoplasia. Patients can develop hypocalcemia-induced seizures. Spina bifida is caused by failure of neurulation, including a disturbance in the adhesion processes at the neurula stage. Spina bifida has been reported as a risk factor for epilepsy. We report, for the first time, the case of a patient with DiGeorge syndrome with spina bifida and sacral myelomeningocele, who developed both hypocalcemia-induced seizures and epilepsy. The patient had spina bifida and sacral myelomeningocele at birth. At the age of 13 years, he experienced a seizure for the first time. At this time, the calcium concentration was normal. An electroencephalogram (EEG) proved that the seizure was due to epilepsy. Antiepileptic medications controlled the seizure. At the age of 29, the patient's calcium concentration began to reduce. At the age of 40, hypocalcemia-induced seizure occurred. At this time, the calcium concentration was 5.5mg/dL (reference range, 8.7-10.1mg/dL). The level of intact parathyroid hormone (PTH) was 6 pg/mL (reference range, 10-65 pg/mL). Chromosomal and genetic examinations revealed a deletion of TUP-like enhancer of split gene 1 (tuple1)-the diagnostic marker of DiGeorge syndrome. Many patients with DiGeorge syndrome have cardiac anomalies; however, our patient had none. We propose that the association among DiGeorge syndrome, spina bifida, epilepsy, cardiac anomaly, 22q11, tuple1, and microdeletion inheritance should be clarified for appropriate diagnosis and treatment.

  8. Toxic Shock Syndrome

    MedlinePlus

    ... burn to avoid getting a staph infection. Toxic shock syndrome treatment Because toxic shock syndrome gets worse quickly, you may be seriously ... toxic shock syndrome in a wound? Resources Toxic Shock Syndrome ... treatment, women's health Family Health, Women January 2017 Copyright © ...

  9. Facts about Down Syndrome

    MedlinePlus

    ... Us Information For... Media Policy Makers Facts about Down Syndrome Language: English Español (Spanish) Recommend on Facebook Tweet ... with Down syndrome. View charts » What is Down Syndrome? Down syndrome is a condition in which a ...

  10. Down Syndrome (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Down Syndrome KidsHealth > For Parents > Down Syndrome Print A A ... Help en español El síndrome de Down About Down Syndrome Down syndrome (DS), also called Trisomy 21, is ...

  11. KBG syndrome.

    PubMed

    Brancati, Francesco; Sarkozy, Anna; Dallapiccola, Bruno

    2006-12-12

    KBG syndrome is a rare condition characterised by a typical facial dysmorphism, macrodontia of the upper central incisors, skeletal (mainly costovertebral) anomalies and developmental delay. To date, KBG syndrome has been reported in 45 patients. Clinical features observed in more than half of patients that may support the diagnosis are short stature, electroencephalogram (EEG) anomalies (with or without seizures) and abnormal hair implantation. Cutaneous syndactyly, webbed short neck, cryptorchidism, hearing loss, palatal defects, strabismus and congenital heart defects are less common findings. Autosomal dominant transmission has been observed in some families, and it is predominantly the mother, often showing a milder clinical picture, that transmits the disease. The diagnosis is currently based solely on clinical findings as the aetiology is unknown. The final diagnosis is generally achieved after the eruption of upper permanent central incisors at 7-8 years of age when the management of possible congenital anomalies should have been already planned. A full developmental assessment should be done at diagnosis and, if delays are noted, an infant stimulation program should be initiated. Subsequent management and follow-up should include an EEG, complete orthodontic evaluation, skeletal investigation with particular regard to spine curvatures and limb asymmetry, hearing testing and ophthalmologic assessment.

  12. KBG syndrome

    PubMed Central

    Brancati, Francesco; Sarkozy, Anna; Dallapiccola, Bruno

    2006-01-01

    KBG syndrome is a rare condition characterised by a typical facial dysmorphism, macrodontia of the upper central incisors, skeletal (mainly costovertebral) anomalies and developmental delay. To date, KBG syndrome has been reported in 45 patients. Clinical features observed in more than half of patients that may support the diagnosis are short stature, electroencephalogram (EEG) anomalies (with or without seizures) and abnormal hair implantation. Cutaneous syndactyly, webbed short neck, cryptorchidism, hearing loss, palatal defects, strabismus and congenital heart defects are less common findings. Autosomal dominant transmission has been observed in some families, and it is predominantly the mother, often showing a milder clinical picture, that transmits the disease. The diagnosis is currently based solely on clinical findings as the aetiology is unknown. The final diagnosis is generally achieved after the eruption of upper permanent central incisors at 7–8 years of age when the management of possible congenital anomalies should have been already planned. A full developmental assessment should be done at diagnosis and, if delays are noted, an infant stimulation program should be initiated. Subsequent management and follow-up should include an EEG, complete orthodontic evaluation, skeletal investigation with particular regard to spine curvatures and limb asymmetry, hearing testing and ophthalmologic assessment. PMID:17163996

  13. Klinefelter syndrome.

    PubMed

    Smyth, C M; Bremner, W J

    1998-06-22

    Klinefelter syndrome is the most common sex chromosome disorder. Affected males carry an additional X chromosome, which results in male hypogonadism, androgen deficiency, and impaired spermatogenesis. Some patients may exhibit all of the classic signs of this disorder, including gynecomastia, small testes, sparse body hair, tallness, and infertility, whereas others, because of the wide variability in clinical expression, lack many of these features. Treatment consists of testosterone replacement therapy to correct the androgen deficiency and to provide patients with appropriate virilization. This therapy also has positive effects on mood and self-esteem and has been shown to protect against osteoporosis, although it will not reverse infertility. Although the diagnosis of Klinefelter syndrome is now made definitively using chromosomal karyotyping, revealing in most instances a 47,XXY genotype, the diagnosis also can be made using a careful history and results of a physical examination, with the hallmark being small, firm testes. As it affects 1 in 500 male patients and presents with a variety of clinical features, primary care physicians should be familiar with this condition.

  14. Sheehan's syndrome.

    PubMed

    Kilicli, Fatih; Dokmetas, Hatice Sebila; Acibucu, Fettah

    2013-04-01

    Sheehan's syndrome (SS) is characterized by various degrees of hypopituitarism, and develops as a result of ischemic pituitary necrosis due to severe postpartum hemorrhage. Increased pituitary volume, small sella size, disseminated intravascular coagulation and autoimmunity are the proposed factors in the pathogenesis of SS. Hormonal insufficiencies, ranging from single pituitary hormone insufficiency to total hypopituitarism, are observed in patients. The first most important issue in the diagnosis is being aware of the syndrome. Lack of lactation and failure of menstrual resumption after delivery that complicated with severe hemorrhage are the most important clues in diagnosing SS. The most frequent endocrine disorders are the deficiencies of growth hormone and prolactin. In patients with typical obstetric history, prolactin response to TRH seems to be the most sensitive screening test in diagnosing SS. Other than typical pituitary deficiency, symptoms such as anemia, pancytopenia, osteoporosis, impairment in cognitive functions and impairment in the quality of life are also present in these patients. Treatment of SS is based on the appropriate replacement of deficient hormones. Growth hormone replacement has been found to have positive effects; however, risk to benefit ratio, side effects and cost of the treatment should be taken into account.

  15. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome

    PubMed Central

    Burnett, Lisa C.; LeDuc, Charles A.; Sulsona, Carlos R.; Paull, Daniel; Rausch, Richard; Eddiry, Sanaa; Carli, Jayne F. Martin; Morabito, Michael V.; Skowronski, Alicja A.; Hubner, Gabriela; Zimmer, Matthew; Wang, Liheng; Day, Robert; Levy, Brynn; Dubern, Beatrice; Poitou, Christine; Clement, Karine; Rosenbaum, Michael; Salles, Jean Pierre; Tauber, Maithe; Egli, Dieter

    2016-01-01

    Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell–derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p–/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p–/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p–/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH–releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency. PMID:27941249

  16. Childhood apraxia of speech without intellectual deficit in a patient with cri du chat syndrome.

    PubMed

    Marignier, Stéphanie; Lesca, Gaetan; Marguin, Jessica; Bussy, Gérald; Sanlaville, Damien; des Portes, Vincent

    2012-06-01

    We report an 11-year-old girl for whom the diagnosis of cri du chat syndrome (CdCS) was made during a genetic investigation of childhood apraxia of speech. The patient presented with the classic chromosome 5 short arm deletion found in CdCS. The microdeletion, characterised using aCGH (array Comparative Genomic Hybridisation), was 12.85 Mb, overlapping the 5p15.2 and 5p15.3 critical regions. CdCS is typically associated with severe mental retardation while this patient had normal intellectual performance, confirmed by normal results from categorisation tasks. This mild phenotype was assessed using a comprehensive cognitive battery. Language evaluation showed normal receptive vocabulary scores, in contrast with obvious oro-facial dyspraxia. Disabled fine motor skills were confirmed as well as weak visuo-spatial reasoning abilities. In conclusion, fine cognitive assessment may be worthwhile for patients with CdCS since good intellectual functioning may be masked by severe speech and gestural dyspraxia, thus requiring specific teaching and rehabilitation strategies.

  17. Atypical neuropsychological profile in a boy with 22q11.2 Deletion Syndrome.

    PubMed

    Stiers, Peter; Swillen, Ann; De Smedt, Bert; Lagae, Lieven; Devriendt, Koen; D'Agostino, Emiliano; Sunaert, Stefan; Fryns, Andjean-Pierre

    2005-02-01

    In this article the general and specific cognitive impairments of the boy R.H. with a de novo deletion 22q11.2 are described. His full-scale IQ was 73, and he obtained only slightly better verbal than non-verbal subtest scores. Neuropsychological assessment revealed specific impairments in perceptual categorization of objects presented suboptimal, matching of unfamiliar faces, and verbal learning and memory. In contrast, he performed in accordance with his intelligence level on other visual perceptual tasks, on non-verbal learning and memory tasks, and on attention tasks. Voxel-wise statistical comparison of a high-resolution T1-weighted magnetic resonance image of R.H's brain with similar images obtained from 14 normal control children revealed as major abnormalities a reduction of the right inferior parietal and superior occipital lobe, and a bilateral reduction of deep white matter behind the inferior frontal gyrus. These cognitive impairments and MRI abnormalities are not commonly described in 22q11.2 Deletion Syndrome and may indicate a larger heterogeneity in the neurocognitive phenotype than currently evidenced. At least in this boy the microdeletion seems to have interfered with the development and functioning of particular neural subsystems, while the structure and functioning of other subsystems was left intact.

  18. Dominant Mutations in KAT6A Cause Intellectual Disability with Recognizable Syndromic Features

    PubMed Central

    Tham, Emma; Lindstrand, Anna; Santani, Avni; Malmgren, Helena; Nesbitt, Addie; Dubbs, Holly A.; Zackai, Elaine H.; Parker, Michael J.; Millan, Francisca; Rosenbaum, Kenneth; Wilson, Golder N.; Nordgren, Ann

    2015-01-01

    Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects. PMID:25728777

  19. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  20. Allergic acute coronary syndrome (Kounis syndrome)

    PubMed Central

    Chhabra, Lovely; Masrur, Shihab; Parker, Matthew W.

    2015-01-01

    Anaphylaxis rarely manifests as a vasospastic acute coronary syndrome with or without the presence of underlying coronary artery disease. The variability in the underlying pathogenesis produces a wide clinical spectrum of this syndrome. We present three cases of anaphylactic acute coronary syndrome that display different clinical variants of this phenomenon. The main pathophysiological mechanism of the allergic anginal syndromes is the inflammatory mediators released during a hypersensitivity reaction triggered by food, insect bites, or drugs. It is important to appropriately recognize and treat Kounis syndrome in patients with exposure to a documented allergen. PMID:26130889