Science.gov

Sample records for 16-ary quadrature amplitude

  1. A new 16-ary modulation for super-Nyquist-WDM systems: Dual-polarized quadrature duoquaternary (DP-QDQ) modulation

    NASA Astrophysics Data System (ADS)

    Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin

    2015-12-01

    A partial-response-pulse-shaped 16-ary quadrature amplitude modulation (16QAM) format called quadrature duoquaternary (QDQ) modulation, which can achieve higher spectral efficiency than Nyquist-pulse-shaped 16QAM and realize super-Nyquist wavelength-division-multiplexing (WDM) transmission, is proposed. The dual-polarized QDQ (DP-QDQ) modulation principle and coherent reception based on digital signal processing (DSP) are presented. The performance of the DP-QDQ scheme is investigated in 32-GBaud super-Nyquist-WDM systems by simulation. The simulation results show that DP-QDQ has only a 1.3 dB optical-signal-to-noise-ratio (OSNR) penalty for the 28-GHz-spaced 5-channel super-Nyquist-WDM case relative to the single-channel case. Compared with Nyquist-pulse-shaped 16QAM, DP-QDQ not only has a higher spectral efficiency, but also a lower sensitivity to sampling time error and a better dispersion tolerance. The 28-GHz-spaced 5-channel super-Nyquist-WDM DP-QDQ system can successfully implement 1520-km transmission at the forward-error-correction (FEC) bit-error-rate (BER) requirements.

  2. Influence of signal constellation on the performance of 16-ary DEQAM transmission through a regenerative satellite link

    NASA Astrophysics Data System (ADS)

    Cheung, S. W.

    1990-04-01

    The paper presents the results of a series of computer-simulation tests to determine the effects of nonlinear distortion and adjacent channel interference (ACI), on the tolerance to additive white Gaussian noise (AWGN) of a digital satellite modem. The modem transmits a 16-ary differentially encoded quadrature-amplitude-modulated (16-ary DEQAM) signal over a regenerative satellite link, where the high-power amplifier (HPA) at the transmitter may introduce AM-AM and AM-PM conversion effects into the 16-ary DEQAM signal. Three signal constellations are used at the transmitter, namely (1) a conventional 16-ary DEQAM signal constellation, (2) a predistorted 16-ary DEQAM signal constellation, and (3) a prerotated 16-ary DEQAM signal constellation. An equivalent baseband model of the transmission system is used to determine the performance of the modem under the various conditions studied, and the results are used to select the preferred modem design.

  3. Synchronization techniques for all digital 16-ary QAM receivers operating over land mobile satellite links

    NASA Technical Reports Server (NTRS)

    Fines, P.; Aghvami, A. H.

    1990-01-01

    The performance of a low bit rate (64 Kb/s) all digital 16-ary Differentially Encoded Quadrature Amplitude Modulation (16-DEQAM) demodulator operating over a mobile satellite channel, is considered. The synchronization and detection techniques employed to overcome the Rician channel impairments, are described. The acquisition and steady state performance of this modem, are evaluated by computer simulation over AWGN and RICIAN channels. The results verify the suitability of the 16-DEQAM transmission over slowly faded and/or mildly faded channels.

  4. Amplitude-weighted quadrature phase shift keying using SAW technology

    NASA Astrophysics Data System (ADS)

    Belkerdid, M. A.; Malocha, D. C.

    1985-09-01

    Surface acoustic wave (SAW) convolvers are capable of performing programmable matched filtering with the desirable properties of large processing gain, good dynamic range, broad bandwidth, small size and weight, and low power requirements. Equally powerful are the SAW-based modulators, which produce the desired pseudo-random code sequence for secure transmission in a spread-spectrum system. The SAW filter provides precise reproducible pulse shaping of the coded waveform with the same advantages of the convolver. It is very important as spectrum space becomes more crowded to optimize the spectral efficiency of transmitted information. Quadrature phase (QPSK) and minimum phase shift keying (MSK) are the two more popular quadrature modulation schemes. A new modulation technique that is composed of several amplitude-weighted QPSK signals (AWQPSK) and exhibits better bandwidth efficiency than OPSK or MSK is introduced. System analysis and performance parameters are presented for evaluation. A SAW modulator implementation is discussed and proposed.

  5. Modulator-free quadrature amplitude modulation signal synthesis

    PubMed Central

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O’Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-01-01

    The ability to generate high-speed on–off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s−1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on–off-keyed 10 Gbit s−1 systems and is absolutely prohibitive for today’s (>)100 Gbit s−1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions. PMID:25523757

  6. Quadrature Amplitude Modulation Division for Multiuser MISO Broadcast Channels

    NASA Astrophysics Data System (ADS)

    Dong, Zheng; Zhang, Yan-Yu; Zhang, Jian-Kang; Gao, Xiang-Chuan

    2016-12-01

    This paper considers a discrete-time multiuser multiple-input single-output (MISO) Gaussian broadcast channel~(BC), in which channel state information (CSI) is available at both the transmitter and the receivers. The flexible and explicit design of a uniquely decomposable constellation group (UDCG) is provided based on pulse amplitude modulation (PAM) and rectangular quadrature amplitude modulation (QAM) constellations. With this, a modulation division (MD) transmission scheme is developed for the MISO BC. The proposed MD scheme enables each receiver to uniquely and efficiently detect their desired signals from the superposition of mutually interfering cochannel signals in the absence of noise. In our design, the optimal transmitter beamforming problem is solved in a closed-form for two-user MISO BC using max-min fairness as a design criterion. Then, for a general case with more than two receivers, we develop a user-grouping-based beamforming scheme, where the grouping method, beamforming vector design and power allocation problems are addressed by using weighted max-min fairness. It is shown that our proposed approach has a lower probability of error compared with the zero-forcing (ZF) method when the Hermitian angle between the two channel vectors is small in a two-user case. In addition, simulation results also reveal that for the general channel model with more than two users, our user-grouping-based scheme significantly outperforms the ZF, time division (TD), minimum mean-square error (MMSE) and signal-to-leakage-and-noise ratio (SLNR) based techniques in moderate and high SNR regimes when the number of users approaches to the number of base station (BS) antennas and it degrades into the ZF scheme when the number of users is far less than the number of BS antennas in Rayleigh fading channels.

  7. Inhomogeneous phase-visibility modulating interferometry by space on-off non-quadrature amplitude modulation.

    PubMed

    Rivera-Ortega, Uriel; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo

    2013-07-29

    A new method in interferometry based on on-off non-quadrature amplitude modulation for object phase retrieval is presented. Although the technique introduces inhomogeneous visibility and phase variations in the interferogram, it is shown that the phase retrieval of a given object is still possible. This method is implemented by using three beams and two Mach-Zehnder interferometers in series. One of the arms of the system is used as a probe beam and the other two are used as reference beams, yielding from their sum the conventional reference beam of a two-beam interferometer. We demonstrate that, if there is a phase difference within the range of (0,π) between these two beams, the effect of modulation in both amplitude and phase is generated for the case of on-off non-quadrature amplitude modulation. An analytical discussion is provided to sustain this method. Numerical and experimental results are also shown.

  8. Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation.

    PubMed

    Integlia, Ryan A; Yin, Lianghong; Ding, Duo; Pan, David Z; Gill, Douglas M; Jiang, Wei

    2011-08-01

    A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the "interaction" terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.

  9. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  10. Quantum quadrature amplitude modulation system and its applicability to coherent-state quantum cryptography

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Hirota, Osamu

    2005-08-01

    The quadrature amplitude modulation (QAM) signal of coherent state of light is applied to the quantum stream cipher by Y-00 protocol. We first discuss on the performance of the square-root measurement (SRM) for the QAM signals in comparison with the optimum receiver. It is shown that the quantum stream cipher with the QAM signals is designed by using the SRM, taking account of the ciphertext-only attack and the known/chosen plain attack. Furthermore, the modification of the quantum stream cipher with the QAM signals is considered.

  11. Combined quadrature amplitude modulation and convolutional codes for cross-coupled multidimensional channels

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.; Sundberg, C.-E.; McLane, P. J.

    The performance of cross-coupled, M-ary Quadrature Amplitude Modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two dimensional trellis codes are considered for four dimensional QAM signals. The average probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems and cross-polarized radio systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple trellis codes have coding gains of more than 5 dB in cross-coupling interference compared to 3 dB for a Gaussian channel. This is obtained for schemes compared at equal bandwidth.

  12. Differential Space-Time Coding Scheme Using Star Quadrature Amplitude Modulation Method

    NASA Astrophysics Data System (ADS)

    Yu, Xiangbin; Xu, DaZhuan; Bi, Guangguo

    2006-12-01

    Differential space-time coding (DSTC) has received much interest as it obviates the requirement of the channel state information at the receiver while maintaining the desired properties of space-time coding techniques. In this paper, by introducing star quadrature amplitude modulation (star QAM) method, two kinds of multiple amplitudes DSTC schemes are proposed. One is based on differential unitary space-time coding (DUSTC) scheme, and the other is based on differential orthogonal space-time coding (DOSTC) scheme. Corresponding bit-error-rate (BER) performance and coding-gain analysis are given, respectively. The proposed schemes can avoid the performance loss of conventional DSTC schemes based on phase-shift keying (PSK) modulation in high spectrum efficiency via multiple amplitudes modulation. Compared with conventional PSK-based DSTC schemes, the developed schemes have higher spectrum efficiency via carrying information not only on phases but also on amplitudes, and have higher coding gain. Moreover, the first scheme can implement low-complexity differential modulation and different code rates and be applied to any number of transmit antennas; while the second scheme has simple decoder and high code rate in the case of 3 and 4 antennas. The simulation results show that our schemes have lower BER when compared with conventional DUSTC and DOSTC schemes.

  13. Bit error probability of trellis-coded quadrature amplitude modulation over cross-coupled multidimensional channels

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Sundberg, Carl-Erik W.

    1987-04-01

    Average bit error probabilities for M-ary quadrature amplitude modulation (MQAM) systems are evaluated using a truncated union bound to calculate an approximate upper bound on the average bit error probability. Coded BPSK and QSPK are studied in a dual-polarized channel with and without an interference compensator. Trellis-coded MQAM signals are also examined. A new technique, dual-channel polarization hopping, which provides diversity gains when applied to coded cross-coupled channels is proposed. Average bit error probabilities for convolutionally coded QAM schemes in cross-coupled interference channels are derived. It is concluded that trellis-coded QAM schemes give larger coding gains in cross-coupled interference channels than in Gaussian noise and the choice of optimum code for the trellis-coded QAM scheme depends on the expected interference level.

  14. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  15. Enhanced 16 Spiral quadrature amplitude modulation scheme for coherent optical orthogonal frequency division multiplexing systems

    NASA Astrophysics Data System (ADS)

    He, Jing; Li, Chong; Chen, Lin; Chen, Ming

    2014-09-01

    We propose an enhanced 16 Spiral quadrature amplitude modulation (QAM) (16 E-Spiral QAM) scheme to overcome the laser phase noise in a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Considering both additive white Gaussian noise and large phase noise, 16 E-Spiral QAM schemes have a better transmission performance compared to conventional 16 QAM CO-OFDM systems. The simulated results show that the required optical signal-to-noise ratio (OSNR) of the proposed 16 QAM is, respectively, 0.8 and 2.3 dB less than 16 Spiral and conventional 16 QAM at a bit error rate (BER) of 10-3 in a back-to-back case. After 800-km transmission over a single-mode fiber, the tolerance for the laser linewidth of the 16 E-Spiral QAM can improve about 30 kHz with an OSNR of 18 dB compared to that of a conventional 16 QAM.

  16. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  17. Noise tolerance in optical waveguide circuits for recognition of optical 16 quadrature amplitude modulation codes

    NASA Astrophysics Data System (ADS)

    Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo

    2016-12-01

    In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.

  18. The Effect of Phase and Amplitude Imbalance on the Performance of Offset Quadrature Phase-Shift-Keyed (OQPSK) Communication Systems

    NASA Astrophysics Data System (ADS)

    Tsou, H.

    1998-07-01

    The balanced modulator, which comprises two amplitude-modulation modules, is widely used in phase-modulated communication systems. In practice, the balance between these amplitude-modulation modules is difficult to maintain, and the amplitude and phase imbalances can cause distortion in the signal constellation and introduce undesired interfering tone signal components when such an imperfect modulator is used to modulate the data directly onto the RF carrier. The rendered imperfection inevitably degrades the receiver performance and, in a quadrature phase-shift-keyed (QPSK) system, causes cross talk between the in-phase and quadrature-phase channels. This article summarizes an analysis of the impact of these modulator imbalances on an offset QPSK (OQPSK) communication system in which an OQPSK signal is coherently demodulated by using a carrier reference extracted from a modified QPSK carrier tracking loop. Both carrier-suppression level and bit-error performance are analyzed in this article. The results show that the current Consultative Committee for Space Data Systems (CCSDS) recommendations of 2-deg maximum permissible phase imbalance and 0.2-dB amplitude imbalance are sufficient to provide a 25-dB or more carrier suppression and a system degradation of 1 dB or less at the bit-error probability of 10±4 when the OQPSK system is operated in a reasonable loop SNR region.

  19. Amplitude and Transverse Quadrature Component Squeezing of Coherent Light in High Q Cavity by Injection of Atoms of Two-Photon Transition

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi

    1996-01-01

    The amplitude and transverse quadrature component squeezing of coherent light in high Q cavity by injection of atoms of two-photon transition are studied. The Golubev-Sokolov master equation and generating function approach are utilized to derive the exact variances of photon number and of transverse quadrature component as function of t. The correlation functions and power spectrums of photon number noise and of output photon current noise are also investigated.

  20. Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference.

    PubMed

    Yue, Yang; Zhang, Bo; Wang, Qiang; Lofland, Rob; O'Neil, Jason; Anderson, Jon

    2016-03-21

    Dual-polarization quadrature amplitude modulation (DP-QAM) is one of the feasible paths towards 100-Gb/s, 400-Gb/s and 1-Tb/s optical fiber communications systems. For DP-QAM transmitter, the time mismatch between the in-phase and quadrature (IQ) or x-polarized and y-polarized (XY) tributary channels is known as the IQ or XY skew. Large uncompensated IQ or XY skew can significantly degrade the optical fiber communications system performance. Sometimes, time-interleaved return-to-zero (RZ) DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, detection and alignment of DP-QAM transmitter IQ and XY skews using reconfigurable interference is experimentally demonstrated. For IQ skew detection, a total dynamic range of 26.4 dB is achieved with ~1-dB power change for 0.5-ps skew from well alignment. For XY skew detection, it shows 23.2-dB dynamic range, and ~1.5-dB power change is achieved for 1-ps XY skew. Fast detection algorithm for arbitrary skew is also proposed and experimentally verified. The scheme is compatible with different modulation formats, flexible data sequences, and variable waveforms.

  1. Average symbol error rate for M-ary quadrature amplitude modulation in generalized atmospheric turbulence and misalignment errors

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhat Kumar

    2016-11-01

    A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.

  2. Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage

    NASA Astrophysics Data System (ADS)

    Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi

    2016-09-01

    We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.

  3. Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference

    NASA Astrophysics Data System (ADS)

    Yue, Yang; Zhang, Bo; Wang, Qiang; Lofland, Rob; O'Neil, Jason; Anderson, Jon

    2016-02-01

    DP-QAM is one of the feasible paths towards 100Gbps, 400Gbps and 1Tbps optical communications systems. For DPQAM transmitter, the time mismatch between the XY tributary channels is known as the XY skew. Large uncompensated XY skew can significantly degrade the system performance. Sometimes, time-interleaved return-to-zero DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, XY skew detection and alignment of dual-polarization optical quadrature amplitude transmitter using reconfigurable interference is experimentally demonstrated with >23-dB dynamic range. ~1.5-dB power change is achieved for 1-ps XY skew. Fast detecting scheme for arbitrary skew measurement is also experimentally verified. The scheme is compatible with different modulation formats, data sequences, and waveforms.

  4. Symbol rate identification for auxiliary amplitude modulation optical signal

    NASA Astrophysics Data System (ADS)

    Wei, Junyu; Dong, Zhi; Huang, Zhiping; Zhang, Yimeng

    2016-09-01

    In this paper, we creatively propose and demonstrate a method for symbol rate identification (SRI) of auxiliary amplitude modulation (AAM) optical signal based on asynchronous delay-tap sampling (ADTS) and average magnitude difference function (AMDF). The method can accurately estimate symbol rate and has large transmission impairments tolerance. Furthermore, it can be realized in the digital signal processor (DSP) with low logical resources because of multiplication-free. In order to improve the accuracy of SRI, the peak to valley ratio (PTVR) of AMDF is introduced into our method for blind chromatic dispersion (CD) compensation. The results of the numerical simulations show that the overall maximum SRI error is smaller 0.079% for return-to-zero (RZ) on-off keying (OOK), RZ differential phase-shift keying (DPSK), RZ differential quadrature phase-shift keying (DQPSK) and RZ 16-ary quadrature amplitude modulation (QAM) with 50% duty cycles.

  5. Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-05-01

    We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.

  6. Bounds and Simulation Results of 32-ary and 64-ary Quadrature Amplitude Modulation for Broadband-ISDN via Satellite

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Vanderaar, Mark

    1994-01-01

    Union bounds and Monte Carlo simulation Bit-Error-Rate (BER) performance results are presented for various 32-ary and 64-ary Quadrature Amplitude Modulation (QAM) schemes. Filtered and unfiltered modulation formats are compared for the best packing arrangement in peak power limited systems. It is verified that circular constellations which populate as many symbols as possible at the peak magnitude offer the best performance. For example: a 32-ary QAM scheme based on concentric circles offers about 1.05 dB better peak power improvement at a BER of 10(exp -6) over the scheme optimized for average power using triangular symbol packing. This peak power improvement increases to 1.25 dB for comparable 64-ary QAM schemes. This work serves as a precursor to determine the feasibility of a combined modem/codec that can accommodate Broadband Integrated Services Digital Network (B-ISDN) at a rate of 155.52 Mbps through typical transponder bandwidths of 36 MHz and 54 MHz.

  7. Simultaneous subchannel data updating for multiple channels of 16-quadrature amplitude modulation signals using a single periodically poled lithium niobate waveguide.

    PubMed

    Huang, Hao; Yang, Jeng-Yuan; Wu, Xiaoxia; Khaleghi, Salman; Ziyadi, Morteza; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Paraschis, Loukas; Willner, Alan E

    2012-11-01

    Subchannel data updating of high-order modulation format signals using cascaded sum- and difference-frequency generation in a single periodically poled lithium niobate waveguide is demonstrated. One quadrature phase-shift-keying subchannel of a 16-quadrature amplitude modulation (QAM) signal at 40 Gbit/s is successfully updated, with an optical signal-to-noise ratio (OSNR) penalty of ~2 dB for return-to-zero and ~4 dB for non-return-to-zero at a bit-error rate (BER) of 2×10(-3). Simultaneous processing of four wavelength-multiplexed 16-QAM signals with an average OSNR penalty of 4.5 dB at a BER of 2×10(-3) is also demonstrated.

  8. Efficient frequency-domain channel equalization methods for dual-polarization orthogonal frequency-division multiplexing/offset quadrature amplitude modulation-passive optical network

    NASA Astrophysics Data System (ADS)

    Lin, Bangjiang; Fang, Xi; Tang, Xuan; Lin, Chun; Li, Yiwei; Zhang, Shihao; Wu, Yi; Li, Hui

    2016-10-01

    We present dual-polarization orthogonal frequency-division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) transmission for passive optical network (PON) with intensity modulation and direct detection, which has high spectral efficiency and high robustness against chromatic dispersion (CD) and polarization mode dispersion (PMD). The frequency-domain optical fiber channel transmission model for dual-polarization OFDM/OQAM-PON with the CD- and PMD-induced intrinsic imaginary interference (IMI) effect is systemically deduced. The intrasymbol frequency-domain averaging (ISFA) and minimum mean-squared error (MMSE) with the full loaded (FL) and half loaded (HL) preamble structures are used to mitigate the IMI effect. Compared with the conventional interference approximation method, the ISFA and MMSE offer improved receiver sensitivity. For channel estimation, the FL method is more effective than the HL method in mitigating the IMI effect and optical noise.

  9. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    SciTech Connect

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  10. Performance analysis of 100 Gb/s polarization division multiplexed differential quadrature phase shift keying payload with spectral amplitude code labels

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Yongsheng; Chen, Fushen

    2015-01-01

    We present the performance analysis of a spectral amplitude code labeled system with 100 Gb/s polarization division multiplexed (PDM) differential quadrature phase shift keying payload in simulation. Direct detection is chosen to demodulate the PDM payload by applying a polarization tracker, while 4-bits of the 156 Mb/s spectral amplitude code label is coherently detected with a scheme of frequency-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. For back-to-back system and 96 km transmission, label eye opening factors are 0.95 and 0.94, respectively, while payload optical signal-to-noise ratios are 20.6 dB and 22.0 dB, and the payload received optical powers are -15.0 dBm and -14.5 dBm for a bit error rate value of 10-9. The results show that both the payload and label have good transmission performances after long-haul transmission in a standard single mode fiber and dispersion compensating fiber, and the payload could be well demodulated after 288 km transmission.

  11. Schematic-based 4/16/64 order quadrature amplitude modulation mapper-demapper implementation for 256 subchannel orthogonal frequency division multiplexing model on FPGA Xilinx SPARTAN 3E

    NASA Astrophysics Data System (ADS)

    Imaduddin, .; Setiyanto, Budi; Litasari, .

    2010-05-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation technique which provides higher bit rate and efficient bandwidth. This paper presents an implementation of a 4/16/64 Order Quadrature Amplitude Modulation (QAM) Mapper-Demapper for 256 Sub channel OFDM Model on Xilinx SPARTAN 3E Field-Programmable Gate Array (FPGA) series, using schematic approach. This QAMOFDM model is reconfigurable in term of its QAM order. The result shows that under the clock frequency around 262 MHz, the implementation works well, high precision is achieved at its serial output. A precision process conducted at 20 ns internal clock input period, with the 25 Mbps input bit rate requires 81.94 μs QAM processing-time. The implementation consumes about 80 % of the total FPGA slices (3736 slices).

  12. Quadrature-Quadrature Phase Shift Keying.

    DTIC Science & Technology

    1986-09-01

    Q 2PSK for the data stream a (t) in Figure 3.1 ................................................ 27 3.3. Spectral densities of OQPSK , MSK and Q’PSK...Offset Quadrature Phase Shift Keying ( OQPSK ). Minimum Shift Keying ( vISK ), Quadrature Overlapped taised Cosine ( QOW signalling scheme, Tamed Frequency...orthogonal; hence the name %liniliur ’t Keving (AfSK) . The baseband power spectral densities S~.f) a1nd( o’,,, r QPSlK (or OQPSk . and NLSK are given by

  13. The Quadrature Master Equations

    NASA Astrophysics Data System (ADS)

    Hassan, N. J.; Pourdarvish, A.; Sadeghi, J.; Olaomi, J. O.

    2017-04-01

    In this paper, we derive the non-Markovian stochastic equation of motion (SEM) and master equations (MEs) for the open quantum system by using the non-Markovian stochastic Schrödinger equations (SSEs) for the quadrature unraveling in linear and nonlinear cases. The SSEs for quadrature unraveling arise as a special case of a quantum system. Also we derive the Markovian SEM and ME by using linear and nonlinear Itô SSEs for the measurement probabilities. In linear non-Markovian case, we calculate the convolutionless linear quadrature non-Markovian SEM and ME. We take advantage from example and show that corresponding theory.

  14. Positive quadrature formulas III

    NASA Astrophysics Data System (ADS)

    Peherstorfer, Franz

    2008-12-01

    First we discuss briefly our former characterization theorem for positive interpolation quadrature formulas (abbreviated qf), provide an equivalent characterization in terms of Jacobi matrices, and give links and applications to other qf, in particular to Gauss-Kronrod quadratures and recent rediscoveries. Then for any polynomial t_n which generates a positive qf, a weight function (depending on n ) is given with respect to which t_n is orthogonal to mathbb{P}_{n-1} . With the help of this result an asymptotic representation of the quadrature weights is derived. In general the asymptotic behaviour is different from that of the Gaussian weights. Only under additional conditions do the quadrature weights satisfy the so-called circle law. Corresponding results are obtained for positive qf of Radau and Lobatto type.

  15. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  16. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  17. Quadrature, Interpolation and Observability

    NASA Technical Reports Server (NTRS)

    Hodges, Lucille McDaniel

    1997-01-01

    Methods of interpolation and quadrature have been used for over 300 years. Improvements in the techniques have been made by many, most notably by Gauss, whose technique applied to polynomials is referred to as Gaussian Quadrature. Stieltjes extended Gauss's method to certain non-polynomial functions as early as 1884. Conditions that guarantee the existence of quadrature formulas for certain collections of functions were studied by Tchebycheff, and his work was extended by others. Today, a class of functions which satisfies these conditions is called a Tchebycheff System. This thesis contains the definition of a Tchebycheff System, along with the theorems, proofs, and definitions necessary to guarantee the existence of quadrature formulas for such systems. Solutions of discretely observable linear control systems are of particular interest, and observability with respect to a given output function is defined. The output function is written as a linear combination of a collection of orthonormal functions. Orthonormal functions are defined, and their properties are discussed. The technique for evaluating the coefficients in the output function involves evaluating the definite integral of functions which can be shown to form a Tchebycheff system. Therefore, quadrature formulas for these integrals exist, and in many cases are known. The technique given is useful in cases where the method of direct calculation is unstable. The condition number of a matrix is defined and shown to be an indication of the the degree to which perturbations in data affect the accuracy of the solution. In special cases, the number of data points required for direct calculation is the same as the number required by the method presented in this thesis. But the method is shown to require more data points in other cases. A lower bound for the number of data points required is given.

  18. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  19. Szego-Lobatto quadrature rules

    NASA Astrophysics Data System (ADS)

    Jagels, Carl; Reichel, Lothar

    2007-03-01

    Gauss-type quadrature rules with one or two prescribed nodes are well known and are commonly referred to as Gauss-Radau and Gauss-Lobatto quadrature rules, respectively. Efficient algorithms are available for their computation. Szego quadrature rules are analogs of Gauss quadrature rules for the integration of periodic functions; they integrate exactly trigonometric polynomials of as high degree as possible. Szego quadrature rules have a free parameter, which can be used to prescribe one node. This paper discusses an analog of Gauss-Lobatto rules, i.e., Szego quadrature rules with two prescribed nodes. We refer to these rules as Szego-Lobatto rules. Their properties as well as numerical methods for their computation are discussed.

  20. Discrete observability and numerical quadrature

    NASA Technical Reports Server (NTRS)

    Martin, Clyde F.; Wang, Xiaochang; Stamp, Mark

    1991-01-01

    The authors consider the problem of approximate observability of a one-dimensional diffusion equation on a finite spatial domain with spatial point measurements. The problem of the optimal selection of the measurement points is considered under three conditions: (1) no preassigned measurement nodes; (2) one preassigned node and; (3) two preassigned nodes. The main observation is that the optimal choice is related to three classical procedures in numerical analysis: (1) Gaussian quadrature; (2) Radau quadrature and; (3) Lobatto quadrature. It is shown that the existence of the Radau and Lobatto quadrature is closely related to classical root locus theory.

  1. Using a 1.2 GHz bandwidth reflective semiconductor optical amplifier with seeding light by 64-quadrature amplitude modulation orthogonal frequency division multiplexing modulation to achieve a 10-gbits/s upstream rate in long-reach passive optical network access

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Wu, Yu-Fu

    2012-01-01

    We use a commercially available 1.2 GHz bandwidth reflective semiconductor optical amplifier (RSOA)--based optical network unit (ONU) to achieve 10-gbits/s upstream traffic for an optical orthogonal frequency division multiplexing (OFDM) long-reach passive optical network (LR-PON). This is the first time the 64--quadrature amplitude modulation (QAM) OFDM format has been applied to RSOA-ONU to achieve a 75 km fiber transmission length. In the proposed LR-PON, the upstream power penalty of 5.2 dB at the bit error rate of 3.8×10-3 is measured by using a 64-QAM OFDM modulation after the 75 km fiber transmission without dispersion compensation.

  2. Regenerative Fourier transformation for dual-quadrature regeneration of multilevel rectangular QAM.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Ellis, Andrew; Turitsyn, Sergei

    2015-07-01

    We propose a new nonlinear optical loop mirror based configuration capable of regenerating regular rectangular quadrature amplitude modulated (QAM) signals. The scheme achieves suppression of noise distortion on both signal quadratures through the realization of two orthogonal regenerative Fourier transformations. Numerical simulations show the performance of the scheme for high constellation complexities (including 256-QAM formats).

  3. Digital quadrature phase detection

    DOEpatents

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  4. Digital quadrature phase detection

    DOEpatents

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  5. Quadrature mixture LO suppression via DSW DAC noise dither

    DOEpatents

    Dubbert, Dale F.; Dudley, Peter A.

    2007-08-21

    A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.

  6. Wave-Based Inversion & Imaging for the Optical Quadrature Microscope

    SciTech Connect

    Lehman, S K

    2005-10-27

    The Center for Subsurface Sensing & Imaging System's (CenSSIS) Optical Quadrature Microscope (OQM) is a narrow band visible light microscope capable of measuring both amplitude and phase of a scattered field. We develop a diffraction tomography, that is, wave-based, scattered field inversion and imaging algorithm, for reconstructing the refractive index of the scattering object.

  7. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  8. Refinements of some new efficient quadrature rules

    NASA Astrophysics Data System (ADS)

    Qayyum, A.; Shoaib, M.; Faye, I.; Kashif, A. R.

    2016-11-01

    In the field of Engineering and Applied Mathematical Sciences, minimizing approximation error is very important task and therefore quadrature rules are investigated regularly. In this paper, using some standard results of theoretical inequalities, e.g. Ostrowski type inequality, some new efficient quadrature rules are introduced for n-times differentiable mappings. These quadrature rules are expected to give better results comparing to the conventional quadrature rules.

  9. OFDM-Based Signal Explotation Using Quadrature Mirror Filter Bank (QMFB) Processing

    DTIC Science & Technology

    2012-03-01

    signal duration (Ts), modulation type (AM, FM, BPSK, QAM , etc), frequency content and time allocation. Because of its unique structure, two widely...Power Spectral Density PSDU PLCP Service Data Unit PSK Phase Shift Keying QAM Quadrature Amplitude Modulation QMFB Quadrature Mirror Filter Bank...estimating signal parameters such as bandwidth (W), center frequency (fc), signal duration (Ts), modulation type (AM, FM, BPSK, QAM , etc), frequency

  10. Generation of Arbitrary Quadrature Signals Using One Dual-Drive Modulator

    NASA Astrophysics Data System (ADS)

    Ho, Keang-Po; Cuei, Han-Wei

    2005-02-01

    Regardless of the number of constellation points, all quadrature-amplitude modulation (QAM) signals can be generated using a single dual-drive Mach-Zehnder modulator. When the general method is applied to quadrature-phase-shift-keying (QPSK) signals, three different QPSK transmitters are shown with drive signals having four, three, or two levels. The usage of only one dual-drive modulator greatly simplifies the design of QAM and QPSK transmitters.

  11. Length Scales in Bayesian Automatic Adaptive Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.

    2016-02-01

    Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  12. Radio frequency path characterization for wide band quadrature amplitude modulation

    SciTech Connect

    Bracht, R.

    1998-12-31

    Remote, high speed, high explosive wave front monitoring requires very high bandwidth telemetry to allow transmission of diagnostic data before the explosion destroys the sensor system itself. The main motivation for this study is that no known existing implementation of this sort has been applied to realistic weapons environments. These facts have prompted the research and gathering of data that can be used to extrapolate towards finding the best modulation method for this application. In addition to research of similar existing analysis and testing operations, data was recently captured from a Joint Test Assembly (JTA) Air Launched Cruise Missile (ALCM) flight.

  13. Stable generation of quadrature entanglement using a ring interferometer

    SciTech Connect

    Eto, Yujiro; Nonaka, Akihiro; Hirano, Takuya; Zhang Yun

    2009-05-15

    We propose and demonstrate a scheme to stably generate quadrature-entangled optical pulses using a ring interferometer composed of an optical parametric amplifier and a dispersive media. The entangled light pulses at telecommunication wavelength are generated by combining two squeezed beams. In our scheme, the relative phase between the two beams is kept stable by the ring interferometer and is controllable using dispersive media. The amplitude and phase quadratures of the entangled beams are measured using two time-domain pulsed homodyne detectors. When the relative phase is fixed at {pi}/2, we verify the inseparability of the states by a sufficient criterion <{delta}{sup 2}[X{sub a}({phi}{sub 0})+X{sub b}({pi}-{phi}{sub 0})]>+<{delta}{sup 2}[X{sub a}({phi}{sub 0}{sup '})-X{sub b}(-{phi}{sub 0}{sup '})]>=0.64<1 where {phi}{sub 0}{sup '}-{phi}{sub 0}={pi}/2.

  14. Error Analysis of Quadrature Rules. Classroom Notes

    ERIC Educational Resources Information Center

    Glaister, P.

    2004-01-01

    Approaches to the determination of the error in numerical quadrature rules are discussed and compared. This article considers the problem of the determination of errors in numerical quadrature rules, taking Simpson's rule as the principal example. It suggests an approach based on truncation error analysis of numerical schemes for differential…

  15. Automatic quadrature control and measuring system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.

    1973-01-01

    Quadrature is separated from amplified signal by use of phase detector, with phase shifter providing appropriate reference. Output of phase detector is further amplified and filtered by dc amplifier. Output of dc amplifier provides signal to neutralize quadrature component of transducer signal.

  16. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    SciTech Connect

    Liao, Jie-Qiao; Law, C. K.

    2011-03-15

    We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.

  17. Real-time single analog output for quadrature phase interferometry

    NASA Astrophysics Data System (ADS)

    Barraud, C.; Garcia, L.; Cross, B.; Charlaix, E.

    2017-04-01

    We present a dynamic displacement sensor based on a quadrature phase interferometer, providing a real-time analog output of the differential displacement between two mobile surfaces. The sensor offers a sub-picometer resolution with a sensitivity essentially uniform over a distance range extending to several micrometers, and can be used to measure the amplitude and phase of very small oscillations in nano-mechanical testing. We demonstrate its use in nano-rheology, by studying the flow in nanometric liquid films at very small strain rates.

  18. Gaussian Quadrature Formulae for Arbitrary Positive Measures

    PubMed Central

    Fernandes, Andrew D.; Atchley, William R.

    2007-01-01

    We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inverse-gamma, beta, and Fisher’s F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218

  19. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  20. Angular quadratures for improved transport computations

    SciTech Connect

    Abu-Shumays, I.K.

    1999-07-22

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

  1. Theory of the quadrature elliptic birdcage coil.

    PubMed

    Leifer, M C

    1997-11-01

    This paper presents the theory of the quadrature birdcage coil wound on an elliptic cylindrical former. A conformal transformation of the ellipse to a circular geometry is used to derive the optimal sampling of the continuous surface current distribution to produce uniform magnetic fields within an elliptic cylinder. The analysis is rigorous for ellipses of any aspect ratio and shows how to produce quadrature operation of the elliptic birdcage with a conventional hybrid combiner. Insight gained from the transformation is also used to analyze field homogeneity, find the optimal RF shield shape, and specify component values to produce the correct current distribution in practice. Measurements and images from a 16-leg elliptic birdcage coil at both low and high frequencies show good quadrature performance, homogeneity, and sensitivity.

  2. Summation Paths in Clenshaw-Curtis Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, S.; Adam, Gh.

    2016-02-01

    Two topics concerning the use of Clenshaw-Curtis quadrature within the Bayesian automatic adaptive quadrature approach to the numerical solution of Riemann integrals are considered. First, it is found that the efficient floating point computation of the coefficients of the Chebyshev series expansion of the integrand is to be done within a mathematical structure consisting of the union of coefficient families ordered into complete binary trees. Second, the scrutiny of the decay rates of the involved even and odd rank Chebyshev expansion coefficients with the increase of their rank labels enables the definition of Bayesian decision paths for the advancement to the numerical output.

  3. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  4. Thin-thick quadrature frequency conversion

    SciTech Connect

    Eimerl, D.

    1985-02-07

    The quadrature conversion scheme is a method of generating the second harmonic. The scheme, which uses two crystals in series, has several advantages over single-crystal or other two crystal schemes. The most important is that it is capable of high conversion efficiency over a large dynamic range of drive intensity and detuning angle.

  5. Error Bounds for Quadrature Methods Involving Lower Order Derivatives

    ERIC Educational Resources Information Center

    Engelbrecht, Johann; Fedotov, Igor; Fedotova, Tanya; Harding, Ansie

    2003-01-01

    Quadrature methods for approximating the definite integral of a function f(t) over an interval [a,b] are in common use. Examples of such methods are the Newton-Cotes formulas (midpoint, trapezoidal and Simpson methods etc.) and the Gauss-Legendre quadrature rules, to name two types of quadrature. Error bounds for these approximations involve…

  6. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  7. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  8. Twelfth degree spline with application to quadrature.

    PubMed

    Mohammed, P O; Hamasalh, F K

    2016-01-01

    In this paper existence and uniqueness of twelfth degree spline is proved with application to quadrature. This formula is in the class of splines of degree 12 and continuity order [Formula: see text] that matches the derivatives up to order 6 at the knots of a uniform partition. Some mistakes in the literature are pointed out and corrected. Numerical examples are given to illustrate the applicability and efficiency of the new method.

  9. Numerical quadratures for approximate computation of ERBS

    NASA Astrophysics Data System (ADS)

    Zanaty, Peter

    2013-12-01

    In the ground-laying paper [3] on expo-rational B-splines (ERBS), the default numerical method for approximate computation of the integral with C∞-smooth integrand in the definition of ERBS is Romberg integration. In the present work, a variety of alternative numerical quadrature methods for computation of ERBS and other integrals with smooth integrands are studied, and their performance is compared on several benchmark examples.

  10. Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation.

    PubMed

    Bottrill, K R H; Hesketh, G; Jones, L; Parmigiani, F; Richardson, D J; Petropoulos, P

    2017-01-23

    We demonstrate all-optical regeneration of both the phase and the amplitude of a 10 GBaud quadrature phase shift keying (QPSK) signal using two nonlinear stages. First we regenerate the phase using a wavelength converting phase sensitive amplifier and then we regenerate the amplitude using a saturated single-pump parametric amplifier, returning the signal to its original wavelength at the same time. We exploit the conjugating nature of the two processing stages to eliminate the intrinsic SPM distortion of the system, further improving performance.

  11. Comparison of two Galerkin quadrature methods

    SciTech Connect

    Morel, J. E.; Warsa, J. S.; Franke, B. C.; Prinja, A. K.

    2013-07-01

    We compare two methods for generating Galerkin quadrature for problems with highly forward-peaked scattering. In Method 1, the standard Sn method is used to generate the moment-to-discrete matrix and the discrete-to-moment is generated by inverting the moment-to-discrete matrix. In Method 2, which we introduce here, the standard Sn method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. Method 1 has the advantage that it preserves both N eigenvalues and N eigenvectors (in a pointwise sense) of the scattering operator with an N-point quadrature. Method 2 has the advantage that it generates consistent angular moment equations from the corresponding S{sub N} equations while preserving N eigenvalues of the scattering operator with an N-point quadrature. Our computational results indicate that these two methods are quite comparable for the test problem considered. (authors)

  12. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  13. Correlated quadratures of resonance fluorescence and the generalized uncertainty relation

    NASA Technical Reports Server (NTRS)

    Arnoldus, Henk F.; George, Thomas F.; Gross, Rolf W. F.

    1994-01-01

    Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an unrealistic lower bound. A generalized uncertainty relation, due to Schroedinger, takes into account the possible correlation between the quadrature components of the radiation, and it suggests a modified definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is responsible for the correlation between the quadrature components of the emitted fluorescence, and that the Schrodinger uncertainty limit increases monotonically with the coherence. On the other hand, the fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely when the coherence reaches 1/2, provided that certain phase relations hold.

  14. Low-frequency quadrature mode birdcage resonator.

    PubMed

    Borsboom, H M; Claasen-Vujcić, T; Gaykema, H J; Mehlkopf, T

    1997-03-01

    The birdcage resonator is frequently used in conventional MRI because of its excellent attributes. Its use in low-field MRI is restricted to field strengths higher than, for example, 0.1 T, dependent on the size of the coil. This is because of the intrinsically low inductance value of the birdcage coils. Furthermore, the sensitivity of the birdcage at low field strengths is significantly lower when compared to, for example, the solenoid. Both problems can be overcome with the multiturn technique and a novel wound birdcage coil. The quadrature mode wound birdcage coil presented in this paper can be used at frequencies as low as 100 kHz. Its sensitivity is also increased when compared to the conventional strip-ring birdcage. Homogeneity, effective volume, and methods to increase the resonator bandwidth to match the signal bandwidth are left intact. The latter is a typical low-field problem.

  15. Integrated source of broadband quadrature squeezed light.

    PubMed

    Hoff, Ulrich B; Nielsen, Bo M; Andersen, Ulrik L

    2015-05-04

    An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -6 dB squeezing is predicted for a pump power of only 75 mW.

  16. The May 1997 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, G.; Romoli, M.; Neugebauer, M.; Goldstein, B. E.; Simnett, G.

    2000-01-01

    We present results from the May 1997 SOHO-Ulysses quadrature, near sunspot minimum. Ulysses was at 5.1 AU, 100 north of the solar equator, and off the east limb. It was, by chance, also at the very northern edge of the streamer belt. Nevertheless, SWOOPS detected only slow, relatively smooth wind and there was no direct evidence of fast wind from the northern polar coronal hole or of mixing with fast wind. LASCO images show that the streamer belt at 10 N was narrow and sharp at the beginning and end of the two week observation interval, but broadened in the middle. A corresponding change in density, but not flow speed, occurred at Ulysses. Coronal densities derived from UVCS show that physical parameters in the lower corona are closely related to those in the solar wind, both over quiet intervals and in transient events on the limb. One small transient observed by both LASCO and UVCS is analyzed in detail.

  17. New formalism for two-photon quantum optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation

    NASA Technical Reports Server (NTRS)

    Caves, C. M.; Schumaker, B. L.

    1985-01-01

    A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).

  18. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  19. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Method of differential-phase/absolute-amplitude QAM

    SciTech Connect

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  3. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  4. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    SciTech Connect

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-04-15

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM{sub 10} mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  5. Quadrature conductivity: A quantitative indicator of bacterial abundance in porous media

    SciTech Connect

    Chi Zhang; Andre Revil; Yoshiko Fujita; Junko Munakata-Marr; George Redden

    2014-09-01

    ABSTRACT The abundance and growth stages of bacteria in subsurface porous media affect the concentrations and distributions of charged species within the solid-solution interfaces. Therefore, spectral induced polarization (SIP) measurements can be used to monitor changes in bacterial biomass and growth stage. Our goal was to gain a better understanding of the SIP response of bacteria present in a porous material. Bacterial cell surfaces possess an electric double layer and therefore become polarized in an electric field. We performed SIP measurements over the frequency range of 0.1–1 kHz on cell suspensions alone and cell suspensions mixed with sand at four pore water conductivities. We used Zymomonas mobilis at four different cell densities (in- cluding the background). The quadrature conductivity spectra exhibited two peaks, one around 0.05–0.10 Hz and the other around 1–10 Hz. Because SIP measurements on bacterial suspensions are typically made at frequencies greater than 1 Hz, these peaks have not been previously reported. In the bac-terial suspensions in growth medium, the quadrature conduc-tivity at peak I was linearly proportional to the density of the bacteria. For the case of the suspensions mixed with sands, we observed that peak II presented a smaller increase in the quadrature conductivity with the cell density. A comparison of the experiments with and without sand grains illustrated the effect of the porous medium on the overall quadrature con- ductivity response (decrease in the amplitude and shift of the peaks to the lower frequencies). Our results indicate that for a given porous medium, time-lapse SIP has potential for mon- itoring changes in bacterial abundance within porous media.

  6. Two-step-only quadrature phase-shifting digital holography.

    PubMed

    Liu, Jung-Ping; Poon, Ting-Chung

    2009-02-01

    Conventional methods of quadrature phase-shifting holography require two holograms and either intensity distribution of the reference wave or that of the object wave to reconstruct an original object without the zero order and the twin-image noise in an on-axis holographic recording setup. We present a technique called two-step-only quadrature phase-shifting holography in which solely two quadrature-phase holograms are required. Neither reference-wave intensity nor an object-wave intensity measurement is needed in the technique.

  7. A Comparison of three high-precision quadrature schemes

    SciTech Connect

    Bailey, David H.; Li, Xiaoye S.

    2003-07-01

    The authors have implemented three numerical quadrature schemes, using the new Arbitrary Precision (ARPREC) software package, with the objective of seeking a completely ''automatic'' arbitrary precision quadrature facility, namely one that does not rely on a priori information of the function to be integrated. Such a facility is required, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals to functions with vertical derivatives and integrable singularities at endpoints, as well as several integrals on an infinite interval.

  8. All-optical tunable multilevel amplitude regeneration based on coherent wave mixing using a polarizer.

    PubMed

    Bakhtiari, Zahra; Sawchuk, Alexander A

    2015-04-20

    We describe and demonstrate an all-optical tunable phase- preserving scheme for multilevel amplitude regeneration based on coherent optical wave mixing using a polarizer for optical star 8-quadrature-amplitude modulation (star-8QAM) and star-16QAM signals with a power ratio of 1:5. Amplitude noise can be efficiently suppressed on both amplitude levels. A regeneration factor of nearly 5 for the higher-amplitude level of star-8QAM and 3 for lower-amplitude level are achieved. The system robustness against nonlinear phase noise originating from the Gordon-Mollenauer effect in a 150 km transmission line is investigated using the proposed amplitude regenerator.

  9. Conditional homodyne detection of light with squeezed quadrature fluctuations

    SciTech Connect

    Vines, Justin; Vyas, Reeta; Singh, Surendra

    2006-08-15

    We discuss the detection of field quadrature fluctuations in conditional homodyne detection experiments and possible sources of error in such an experiment. We also present modifications to these experiments to help eliminate such errors and extend their range of applicability.

  10. Aerosol dynamics using the quadrature method of moments: comparing several quadrature schemes with particle-resolved simulation

    NASA Astrophysics Data System (ADS)

    McGraw, R.; Leng, L.; Zhu, W.; Riemer, N.; West, M.

    2008-07-01

    The method of moments (MOM) is a statistically based alternative to sectional and modal methods for aerosol simulation. The MOM is highly efficient as the aerosol distribution is represented by its lower-order moments and only these, not the full distribution itself, are tracked during simulation. Quadrature is introduced to close the moment equations under very general growth laws and to compute aerosol physical and optical properties directly from moments. In this paper the quadrature method of moments (QMOM) is used in a bivariate test tracking of aerosol mixing state. Two aerosol populations, one enriched in soot and the other in sulfate, are allowed to interact through coagulation to form a generally-mixed third particle population. Quadratures of varying complexity (including two candidate schemes for use in climate models) are described and compared with benchmark results obtained by using particle-resolved simulation. Low-order quadratures are found to be highly accurate, and Gauss and Gauss-Radau quadratures appear to give nested lower and upper bounds, respectively, to aerosol mixing rate. These results suggest that the QMOM makes it feasible to represent the generallymixed states of aerosols and track their evolution in climate models.

  11. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    NASA Astrophysics Data System (ADS)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  12. Coherent Detection of Optical Quadrature Phase-Shift Keying Signals With Carrier Phase Estimation

    NASA Astrophysics Data System (ADS)

    Ly-Gagnon, Dany-Sebastien; Tsukamoto, Satoshi; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-01-01

    This paper describes a coherent optical receiver for demodulating optical quadrature phase-shift keying (QPSK) signals. At the receiver, a phase-diversity homodyne detection scheme is employed without locking the phase of the local oscillator (LO). To handle the carrier phase drift, the carrier phase is estimated with digital signal processing (DSP) on the homodyne-detected signal. Such a scheme presents the following major advantages over the conventional optical differential detection. First, its bit error rate (BER) performance is better than that of differential detection. This higher sensitivity can extend the reach of unrepeated transmission systems and reduce crosstalk between multiwavelength channels. Second, the optoelectronic conversion process is linear, so that the whole optical signal information can be postprocessed in the electrical domain. Third, this scheme is applicable to multilevel modulation formats such as M-array PSK and quadrature amplitude modulation (QAM). The performance of the receiver is evaluated through various simulations and experiments. As a result, an unrepeated transmission over 210 km with a 20-Gb/s optical QPSK signal is achieved. Moreover, in wavelength-division multiplexing (WDM) environment, coherent detection allows the filtering of a desired wavelength channel to reside entirely in the electrical domain, taking advantage of the sharp cutoff characteristics of electrical filters. The experiments show the feasibility to transmit polarization-multiplexed 40-Gb/s QPSK signals over 200 km with channel spacing of 16 GHz, leading to a spectral efficiency as high as 2.5 b/s/Hz.

  13. Digital holography with a quadrature phase-shifting interferometer.

    PubMed

    Kiire, Tomohiro; Nakadate, Suezou; Shibuya, Masato

    2009-03-01

    An alternative method for digital holography using a quadrature phase-shifting interferometer for high-speed measurement is presented. We show that it has image quality equal to the four-bucket method. In addition, it requires fewer imaging devices. Two quadrature phase-shifting fringe patterns are acquired in each state of an object changed temporally. The phase calculation method with these four fringe patterns gives the phase distribution of the hologram. This digital phase hologram is reconstructed to yield an object image by the Fresnel transform using digital convolutions with the fast Fourier transform algorithm. Verification results of simulations and experiments are given.

  14. Vibration analysis of structural elements using differential quadrature method

    PubMed Central

    Nassar, Mohamed; Matbuly, Mohamed S.; Ragb, Ola

    2012-01-01

    The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler–Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies. PMID:25685406

  15. An Algorithm to Evaluate Imbalances of Quadrature Mixers

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Arai, Michiaki

    It is essential, as bandwidths of wireless communications get wider, to evaluate the imbalances among quadrature mixer ports, in terms of carrier phase offset, IQ gain imbalance, and IQ skew. Because it is time consuming to separate skew, gain imbalance and carrier phase offset evaluation during test is often performed using a composite value, without separation of the imbalance factors. This paper describes an algorithm for enabling separation among quadrature mixer gain imbalance, carrier phase offset, and skew. Since the test time is reduced by the proposed method, it can be applied during high volume production testing.

  16. A non-uniform grid for triangular differential quadrature

    NASA Astrophysics Data System (ADS)

    Zhong, HongZhi; Xu, Jia

    2016-12-01

    The triangular differential quadrature method based on a non-uniform grid is proposed in the paper. Explicit expressions of the non-uniform grid point coordinates are given and the weighting coefficients of the triangular differential quadrature method are determined with the aid of area coordinates. Two typical examples are presented to testify the effectiveness of the non-uniform grid. It is shown that rapid convergence is achieved under the non-uniform grid in comparison with those from the uniform grid with the same order of approximation.

  17. Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers

    NASA Astrophysics Data System (ADS)

    Borkowski, Robert; Johannisson, Pontus; Wymeersch, Henk; Arlunno, Valeria; Caballero, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-03-01

    We perform an experimental investigation of a maximum likelihood-based (ML-based) algorithm for bulk chromatic dispersion estimation for digital coherent receivers operating in uncompensated optical networks. We demonstrate the robustness of the method at low optical signal-to-noise ratio (OSNR) and against differential group delay (DGD) in an experiment involving 112 Gbit/s polarization-division multiplexed (PDM) 16-ary quadrature amplitude modulation (16 QAM) and quaternary phase-shift keying (QPSK).

  18. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter.

    PubMed

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, Dvgln

    2012-11-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography.

  19. Archimedes Quadrature of the Parabola: A Mechanical View

    ERIC Educational Resources Information Center

    Oster, Thomas J.

    2006-01-01

    In his famous quadrature of the parabola, Archimedes found the area of the region bounded by a parabola and a chord. His method was to fill the region with infinitely many triangles each of whose area he could calculate. In his solution, he stated, without proof, three preliminary propositions about parabolas that were known in his time, but are…

  20. From Lobatto Quadrature to the Euler Constant "e"

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2010-01-01

    Based on the Lobatto quadrature, we develop several new closed form approximations to the mathematical constant "e." For validating effectiveness of our approximations, a comparison of our results to the existing approximations is also presented. Another objective of our work is to inspire students to formulate other better approximations by using…

  1. Optical channel de-aggregation of quadrature-phase-shift-keying and eight-phase-shift-keying data using mapping onto constellation axes.

    PubMed

    Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Almaiman, Ahmed; Cao, Yinwen; Chitgarha, Mohammad Reza; Paraschis, Loukas; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2015-11-01

    An eight-phase-shift-keying signal is experimentally de-aggregated onto two four-pulse amplitude modulation signals using nonlinear processes in optical elements. Quadrature-phase-shift-keying signals are similarly de-multiplexed into two binary phase shift keying signals by mapping the data points onto the constellation axes. De-multiplexing performance is evaluated as a function of the optical signal-to-noise ratio of the incoming signals. The effect of phase noise is also studied.

  2. IQ quadrature demodulation algorithm used in heterodyne detection

    NASA Astrophysics Data System (ADS)

    Wang, Chunhui; Qu, Yang; Tang, Yajun Pang Tiantian

    2015-09-01

    In order to obtain better detection results of heterodyne, we used phase IQ quadrature demodulation algorithm to process the data which detected by laser heterodyne. Based on laser heterodyne interferometer, processing the data in the interferometer phase IQ quadrature demodulation algorithm from the signal to noise ratio, sampling rate, sampling rate, filter order and cutoff frequency, verify the effects of these system parameters to the phase precision, and choose the best parameters to obtain a better phase precision through experiment as: the signal to noise ratio is 25 dB, the IF signal frequency is 98.3 MHz, 98.5 MHz, 99.1 MHz, 99.5 MHz and 100 MHz, the sampling rate is 512-2048, the cutoff frequency and order of the filter are 0.11 and 40, respectively.

  3. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  4. Thin-plate spline quadrature of geodetic integrals

    NASA Technical Reports Server (NTRS)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  5. Testing the Empirical Shock Arrival Model Using Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.; Yashiro, S.

    2013-01-01

    The empirical shock arrival (ESA) model was developed based on quadrature data from Helios (in situ) and P-78 (remote sensing) to predict the Sun-Earth travel time of coronal mass ejections (CMEs). The ESA model requires earthward CME speed as input, which is not directly measurable from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in quadrature during 20102012, so the speeds of Earth-directed CMEs were observed with minimal projection effects. We identified a set of 20 full halo CMEs in the field of view of SOHO that were also observed in quadrature by STEREO. We used the earthward speed from STEREO measurements as input to the ESA model and compared the resulting travel times with the observed ones from L1 monitors. We find that the model predicts the CME travel time within about 7.3 h, which is similar to the predictions by the ENLIL model. We also find that CME-CME and CME-coronal hole interaction can lead to large deviations from model predictions.

  6. Quadrature two-dimensional correlation spectroscopy (Q-2DCOS)

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2016-11-01

    Quadrature 2D correlation spectroscopy (Q-2DCOS) is introduced. The technique incorporates the effect of the perturbation into the traditional 2DCOS analysis by building a multivariate model, merging the information of the perturbation variable and spectral responses. By employing factors which are 90° out of phase with each other, pertinent coincidental and sequential spectral intensity variations are adequately captured for the subsequent 2D correlation analysis. Almost complete replication of the original 2DCOS results based on such a simple rank 2 model of experimental spectra suggests that only the dominant spectral intensity variation patterns in combination with its quadrature counterpart seems to be utilized in 2DCOS analysis. Using the linear perturbation variable itself as the basis for generating the primary score vector is equivalent to the least squares fitting of a quadratic polynomial with spectral intensity variations. Q-2DCOS analysis may be displayed in terms of a graphical plot on a phase plane in the vector space, so that coincidental and sequential matching of the patterns of spectral intensity variations is represented simply by the phase angle difference between two vectors. Q-2DCOS analysis is closely related to other established ideas and practices in the 2D correlation spectroscopy field, such as dynamic 2D IR dichroism, PCA 2D, quadrature orthogonal signal correction (Q-OSC), and perturbation correlation moving window (PCMW) analyses.

  7. An Application of the Quadrature-Free Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Atkins, Harold L.

    2000-01-01

    The process of generating a block-structured mesh with the smoothness required for high-accuracy schemes is still a time-consuming process often measured in weeks or months. Unstructured grids about complex geometries are more easily generated, and for this reason, methods using unstructured grids have gained favor for aerodynamic analyses. The discontinuous Galerkin (DG) method is a compact finite-element projection method that provides a practical framework for the development of a high-order method using unstructured grids. Higher-order accuracy is obtained by representing the solution as a high-degree polynomial whose time evolution is governed by a local Galerkin projection. The traditional implementation of the discontinuous Galerkin uses quadrature for the evaluation of the integral projections and is prohibitively expensive. Atkins and Shu introduced the quadrature-free formulation in which the integrals are evaluated a-priori and exactly for a similarity element. The approach has been demonstrated to possess the accuracy required for acoustics even in cases where the grid is not smooth. Other issues such as boundary conditions and the treatment of non-linear fluxes have also been studied in earlier work This paper describes the application of the quadrature-free discontinuous Galerkin method to a two-dimensional shear layer problem. First, a brief description of the method is given. Next, the problem is described and the solution is presented. Finally, the resources required to perform the calculations are given.

  8. An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Seiyed E.; Hatami, M.; Hatami, J.; Sahebi, S. A. R.; Ganji, D. D.

    2016-02-01

    In this paper, flow analysis for a non-Newtonian third grade blood in coronary and femoral arteries is simulated numerically. Blood is considered as the third grade non-Newtonian fluid under periodic body acceleration motion and pulsatile pressure gradient. Differential Quadrature Method (DQM) and Crank Nicholson Method (CNM) are used to solve the Partial Differential Equation (PDE) governing equation by which a good agreement between them was observed in the results. The influences of some physical parameters such as amplitude, lead angle and body acceleration frequency on non-dimensional velocity and profiles are considered. For instance, the results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, ϕ, make higher velocity profiles in the center line of both arteries.

  9. Quadrature phase interferometer used to calibrate dial indicator calibrators

    NASA Astrophysics Data System (ADS)

    Huang, Shau-Chi; Liou, Huay-Chung; Peng, Gwo-Sheng; Lu, Ming-Feng

    2001-10-01

    To calibrate dial indicators, gage blocks or dial indicator calibrators are usually used. For better accuracy and resolution, interferometers are used to calibrate dial indicator calibrators. Systematic errors of laser interferometers can be classified into three categories of intrinsic errors, environment errors and installation errors. Intrinsic errors include laser wavelength error, electronic error and optics nonlinearity. In order to achieve nanometer accuracy, minimizing intrinsic error is crucial. In this paper, we will address the problems of minimizing the optics nonlinearity error and describe the discrete-time signal processing method to minimize the electronic error, nonlinearity error and drift by simply using quadrature phase interferometer for nanometer accuracy and linearity.

  10. Photoacoustic tomography using a Michelson interferometer with quadrature phase detection

    NASA Astrophysics Data System (ADS)

    Speirs, Rory W.; Bishop, Alexis I.

    2013-07-01

    We present a pressure sensor based on a Michelson interferometer, for use in photoacoustic tomography. Quadrature phase detection is employed allowing measurement at any point on the mirror surface without having to retune the interferometer, as is typically required by Fabry-Perot type detectors. This opens the door to rapid full surface detection, which is necessary for clinical applications. Theory relating acoustic pressure to detected acoustic particle displacements is used to calculate the detector sensitivity, which is validated with measurement. Proof-of-concept tomographic images of blood vessel phantoms have been taken with sub-millimeter resolution at depths of several millimeters.

  11. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A.; King, Robert D.

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  12. Principles and improvements of quadrature-based QKD

    NASA Astrophysics Data System (ADS)

    Hu, Wenhao; Shu, Di; Wang, Daqing; Liu, Yu

    2010-11-01

    An overview of quadrature-based quantum key distribution is provided. Beginning from the comparison between single-photon schema and continuous variable schema, the article focuses on the classical and state-of-art protocols. Protocols' main procedures and security analysis are introduced, which includes the methods under individual attack and collective attack. Then recent development of unconditional security proof is introduced including the optimality of Gaussian attack and de Finetti theorem. Introduction towards discrete modulated schemas' security proof is also made. At last, the article discusses experimental realization of various protocols and the main trend in this field.

  13. Fast convolution quadrature for the wave equation in three dimensions

    NASA Astrophysics Data System (ADS)

    Banjai, L.; Kachanovska, M.

    2014-12-01

    This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N. This system can be solved recursively in an almost linear time (O(Nlog2⁡N)), but requires the construction of O(N) dense spatial discretizations of the single layer boundary operator for the Helmholtz equation. This work introduces an improvement of this algorithm that allows to solve the scattering problem in an almost linear time. The new approach is based on two main ingredients: the near-field reuse and the application of data-sparse techniques. Exponential decay of Runge-Kutta convolution weights wnh(d) outside of a neighborhood of d≈nh (where h is a time step) allows to avoid constructing the near-field (i.e. singular and near-singular integrals) for most of the discretizations of the single layer boundary operators (near-field reuse). The far-field of these matrices is compressed with the help of data-sparse techniques, namely, H-matrices and the high-frequency fast multipole method. Numerical experiments indicate the efficiency of the proposed approach compared to the conventional Runge-Kutta convolution quadrature algorithm.

  14. Quadrature imposition of compatibility conditions in Chebyshev methods

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Streett, C. L.

    1990-01-01

    Often, in solving an elliptic equation with Neumann boundary conditions, a compatibility condition has to be imposed for well-posedness. This condition involves integrals of the forcing function. When pseudospectral Chebyshev methods are used to discretize the partial differential equation, these integrals have to be approximated by an appropriate quadrature formula. The Gauss-Chebyshev (or any variant of it, like the Gauss-Lobatto) formula can not be used here since the integrals under consideration do not include the weight function. A natural candidate to be used in approximating the integrals is the Clenshaw-Curtis formula, however it is shown that this is the wrong choice and it may lead to divergence if time dependent methods are used to march the solution to steady state. The correct quadrature formula is developed for these problems. This formula takes into account the degree of the polynomials involved. It is shown that this formula leads to a well conditioned Chebyshev approximation to the differential equations and that the compatibility condition is automatically satisfied.

  15. Efficient Modified Filon-Type Quadrature for Highly Oscillatory Bessel Transformations

    NASA Astrophysics Data System (ADS)

    Xiang, S.

    2008-10-01

    In this paper, we consider efficient modified Filon-type method for the integration of systems containing Bessel function and gives error analysis for these quadratures. Preliminary numerical results show the effectiveness and accuracy of the quadrature for large arguments of integral systems.

  16. Accurate computation of weights in classical Gauss-Christoffel quadrature rules

    SciTech Connect

    Yakimiw, E.

    1996-12-01

    For many classical Gauss-Christoffel quadrature rules there does not exist a method which guarantees a uniform level of accuracy for the Gaussian quadrature weights at all quadrature nodes unless the nodes are known exactly. More disturbing, some algebraic expressions for these weights exhibit an excessive sensitivity to even the smallest perturbations in the node location. This sensitivity rapidly increases with high order quadrature rules. Current uses of very high order quadratures are common with the advent of more powerful computers, and a loss of accuracy in the weights has become a problem and must be addressed. A simple but efficient and general method for improving the accuracy of the computation of the quadrature weights even though the nodes may carry a significant large error. In addition, a highly efficient root-finding iterative technique with superlinear converging rates for computing the nodes is developed. It uses solely the quadrature polynomials and their first derivatives. A comparison of this method with the eigenvalue method of Golub and Welsh implemented in most standard software libraries is made. The proposed method outperforms the latter from the point of view of both accuracy and efficiency. The Legendre, Lobatto, Radau, Hermite, and Laguerre quadrature rules are examined. 22 refs., 7 figs., 5 tabs.

  17. The Nature of the Nodes, Weights and Degree of Precision in Gaussian Quadrature Rules

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We present a comprehensive proof of the theorem that relates the weights and nodes of a Gaussian quadrature rule to its degree of precision. This level of detail is often absent in modern texts on numerical analysis. We show that the degree of precision is maximal, and that the approximation error in Gaussian quadrature is minimal, in a…

  18. Ultrasonic study of adhesive bond quality at a steel-to-rubber interface by using quadrature phase detection techniques

    NASA Technical Reports Server (NTRS)

    Smith, A. C.; Yang, H.

    1989-01-01

    The quadrature phase detection technique was used to simultaneously monitor the phase and amplitude of a toneburst signal normally reflected from an adhesively bonded steel-to-rubber interface. The measured phase was found to show a positive shift for all bonded samples with respect to the disbonded state - the phase shift being larger for samples with weaker bonds, as manifested by smaller values of applied tensile loads at failure. A model calculation, which incorporates the concept of interfacial strength into the usual problem of wave propagation in multilayered media, was used to deduce a bond-quality parameter from an experimentally measured phase shift. This bond-quality parameter was found to be correlated with the tensile strength of the adhesive bonds at failure loads.

  19. Analysis and applications of quadrature hybrids as RF circulators

    SciTech Connect

    Hanna, S.M.; Keane, J.

    1993-12-31

    The operation of a quadrature hybrid as a power combiner is analyzed. The analytical results are compared with data measured experimentally using a 211 MHz cavity. Graphical solution of the measured cases are in good agreement with analytical predictions. The use of the 90{degree}-hybrid as an RF circulator is also analyzed. The active operation of the harmonic cavity in the NSLS VUV-ring is used to demonstrate this application. This fourth-harmonic cavity is used to change the shape of the bucket potential to lengthen a stored bunch. Thus, a longer stored-beam lifetime can be achieved without compromising the high brightness of the VUV photon beam. If operated actively, the harmonic cavity would present a mismatched load to an RF generator. Thus, a need exists for a circulator. Similarities in operation between the 90{degree}-hybrid and a circulator are discussed.

  20. Convolution quadrature for the wave equation with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Sauter, S. A.; Schanz, M.

    2017-04-01

    We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representations of analytic solutions which allow to investigate the effect of the impedance coefficient on the acoustic pressure analytically. We have performed systematic numerical experiments to study the convergence rates as well as the sensitivity of the acoustic pressure from the impedance coefficients. Finally, we apply this method to simulate the acoustic pressure in a building with a fairly complicated geometry and to study the influence of the impedance coefficient also in this situation.

  1. Terahertz single-shot quadrature phase-shifting interferometry.

    PubMed

    Földesy, Péter

    2012-10-01

    A single-shot quadrature phase-shifting interferometry architecture is presented that is applicable to antenna coupled detector technologies. The method is based on orthogonally polarized object and reference beams and on linear and circular polarization sensitive antennas in space-division multiplexing. The technique can be adapted to two-, three-, and four-step and Gabor holography recordings. It is also demonstrated that the space-division multiplexing does not necessarily cause sparse sampling. A sub-THz detector array is presented containing multiple on-chip antennas and FET plasma wave detectors implemented in a 90 nm complementary metal-oxide semiconductor technology. As an example, two-step phase-shifting reconstruction results are given at 360 GHz.

  2. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  3. Implementation of a Quadrature Mirror Filter Bank on an SRC Reconfigurable Computer for Real-Time Signal Processing

    DTIC Science & Technology

    2006-09-01

    7 A. QUADRATURE MIRROR FILTER BANK AS PART OF AN LPI ELINT DETECTION SYSTEM ...implementation for a real-time Quadrature Mirror Filter Bank on an SRC-6 reconfigurable computer system . A Quadrature Mirror Filter (QMF) Bank is a type...of wavelet decomposition filter system used for Digital Signal Processing (DSP). The use of a Quadrature Mirror Filter Bank as part of a larger

  4. A variant of the method of quadratures for solving integral equations with fractional integral of Weyl in the main part

    NASA Astrophysics Data System (ADS)

    Agachev, J. R.; Galimyanov, A. F.

    2016-11-01

    In this paper the method of mechanical quadrature solutions fractional integral equation. Computational scheme quadrature method is based on the quadrature formula of rectangles with equidistant nodes, which is the formula of the highest trigonometric degree of accuracy, using a regularizing parameter. This decision is taken for the approximate trigonometric interpolation polynomial constructed from the values that make up the solution of the quadrature method. The substantiation of the method in Holder spaces.

  5. Induced polarization of volcanic rocks. 1Surface versus quadrature conductivity

    NASA Astrophysics Data System (ADS)

    Revil, A.; Breton, M. Le; Niu, Q.; Wallin, E.; Haskins, E.; Thomas, D. M.

    2016-11-01

    We performed complex conductivity measurements on 28 core samples from the hole drilled for the Humu´ula Groundwater Research Project (Hawai´i Island, HI, USA). The complex conductivity measurements were performed at 4 different pore water conductivities (0.07, 0.5, 1.0 or 2.0, and 10 S m-1 prepared with NaCl) over the frequency range 1 mHz to 45 kHz at 22 ± 1°C. The in-phase conductivity data are plotted against the pore water conductivity to determine, sample by sample, the intrinsic formation factor and the surface conductivity. The intrinsic formation factor is related to porosity by Archie's law with an average value of the cementation exponent m of 2.45, indicating that only a small fraction of the connected pore space controls the transport properties. Both the surface and quadrature conductivities are found to be linearly related to the cation exchange capacity of the material, which was measured with the cobalt hexamine chloride method. Surface and quadrature conductivities are found to be proportional to each other like for sedimentary siliclastic rocks. A Stern layer polarization model is used to explain these experimental results. Despite the fact that the samples contain some magnetite (up to 5% wt.), we were not able to identify the effect of this mineral on the complex conductivity spectra. These results are very encouraging in showing that galvanometric induced polarization measurements can be used in volcanic areas to separate the bulk from the surface conductivity and therefore to define some alteration attributes. Such a goal cannot be achieved with resistivity alone.

  6. Residual Distribution Schemes for Conservation Laws Via Adaptive Quadrature

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Abgrall, Remi; Biegel, Bryan (Technical Monitor)

    2000-01-01

    This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.

  7. Induced polarization of volcanic rocks - 1. Surface versus quadrature conductivity

    NASA Astrophysics Data System (ADS)

    Revil, A.; Le Breton, M.; Niu, Q.; Wallin, E.; Haskins, E.; Thomas, D. M.

    2017-02-01

    We performed complex conductivity measurements on 28 core samples from the hole drilled for the Humu'ula Groundwater Research Project (Hawai'i Island, HI, USA). The complex conductivity measurements were performed at 4 different pore water conductivities (0.07, 0.5, 1.0 or 2.0, and 10 S m-1 prepared with NaCl) over the frequency range 1 mHz to 45 kHz at 22 ± 1 °C. The in-phase conductivity data are plotted against the pore water conductivity to determine, sample by sample, the intrinsic formation factor and the surface conductivity. The intrinsic formation factor is related to porosity by Archie's law with an average value of the cementation exponent m of 2.45, indicating that only a small fraction of the connected pore space controls the transport properties. Both the surface and quadrature conductivities are found to be linearly related to the cation exchange capacity of the material, which was measured with the cobalt hexamine chloride method. Surface and quadrature conductivities are found to be proportional to each other like for sedimentary siliclastic rocks. A Stern layer polarization model is used to explain these experimental results. Despite the fact that the samples contain some magnetite (up to 5 per cent wt.), we were not able to identify the effect of this mineral on the complex conductivity spectra. These results are very encouraging in showing that galvanometric induced polarization measurements can be used in volcanic areas to separate the bulk from the surface conductivity and therefore to define some alteration attributes. Such a goal cannot be achieved with resistivity alone.

  8. Phase-shifting interferometry by wave amplitude modulation.

    PubMed

    Meneses-Fabian, Cruz; Rivera-Ortega, Uriel

    2011-07-01

    A new method for phase-shifting interferometry based on wave amplitude modulation is proposed and discussed. This proposal is based on the interference of three waves, where two waves attend as two reference waves and the other wave attends as a probe wave. Thereby, three interference terms are obtained, but because a phase difference of π/2 between the two references is kept constant, one of the three terms will be dropped, while the two remaining will be put in quadrature. Under these conditions, the resulting pattern is mathematically modeled by an interferogram of two waves, where an additional phase is given by the amplitude variations of the reference waves. In this Letter, both a theoretical model and some numerical simulations are presented.

  9. A new algorithm for computing multivariate Gauss-like quadrature points.

    SciTech Connect

    Taylor, Mark A.; Bos, Len P.; Wingate, Beth A.

    2004-06-01

    The diagonal-mass-matrix spectral element method has proven very successful in geophysical applications dominated by wave propagation. For these problems, the ability to run fully explicit time stepping schemes at relatively high order makes the method more competitive then finite element methods which require the inversion of a mass matrix. The method relies on Gauss-Lobatto points to be successful, since the grid points used are required to produce well conditioned polynomial interpolants, and be high quality 'Gauss-like' quadrature points that exactly integrate a space of polynomials of higher dimension than the number of quadrature points. These two requirements have traditionally limited the diagonal-mass-matrix spectral element method to use square or quadrilateral elements, where tensor products of Gauss-Lobatto points can be used. In non-tensor product domains such as the triangle, both optimal interpolation points and Gauss-like quadrature points are difficult to construct and there are few analytic results. To extend the diagonal-mass-matrix spectral element method to (for example) triangular elements, one must find appropriate points numerically. One successful approach has been to perform numerical searches for high quality interpolation points, as measured by the Lebesgue constant (Such as minimum energy electrostatic points and Fekete points). However, these points typically do not have any Gauss-like quadrature properties. In this work, we describe a new numerical method to look for Gauss-like quadrature points in the triangle, based on a previous algorithm for computing Fekete points. Performing a brute force search for such points is extremely difficult. A common strategy to increase the numerical efficiency of these searches is to reduce the number of unknowns by imposing symmetry conditions on the quadrature points. Motivated by spectral element methods, we propose a different way to reduce the number of unknowns: We look for quadrature formula

  10. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  11. Real topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  12. Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Mcreynolds, S. R.

    1975-01-01

    A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.

  13. Programs for computing abscissas and weights for classical and nonclassical Gaussian quadrature formulas

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1975-01-01

    Computer programs for computing Gaussian quadrature abscissas and weights are described. For the classical case the programs use Laguerre iteration to compute abscissas as zeros of orthogonal polynomials. The polynomials are evaluated from known recursion coefficients. The nonclassical case is handled similarly except that the recursion coefficients are computed by numerical integration. A sample problem, with input and output, is presented to illustrate the use of the programs. It computes the quadrature abscissas and weights associated with the weight function over the interval (0,1) for quadrature orders from 16 to 96 in increments of 8.

  14. Optimal displacement in apparent motion and quadrature models of motion sensing

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    A grating appears to move if it is displaced by some amount between two brief presentations, or between multiple successive presentations. A number of recent experiments have examined the influence of displacement size upon either the sensitivity to motion, or upon the induced motion aftereffect. Several recent motion models are based upon quadrature filters that respond in opposite quadrants in the spatiotemporal frequency plane. Predictions of the quadrature model are derived for both two-frame and multiframe displays. Quadrature models generally predict an optimal displacement of 1/4 cycle for two-frame displays, but in the multiframe case the prediction depends entirely on the frame rate.

  15. Bandwidth Efficient Wireless Digital Modem Developed

    NASA Technical Reports Server (NTRS)

    Kifle, Muli

    1999-01-01

    NASA Lewis Research Center has developed a digital approach for broadcasting highfidelity audio (nearly compact disk (CD) quality sound) in the commercial frequencymodulated (FM) broadcast band. This digital approach provides a means of achieving high data transmission rates with low hardware complexity--including low mass, size, and power consumption. Lewis has completed the design and prototype development of a bandwidth-efficient digital modem (modulator and demodulator) that uses a spectrally efficient modulation scheme: 16-ary rectangular quadrature amplitude modulation, or 16- ary QAM. The digital implementation is based strictly on inexpensive, commercial off-theshelf digital signal processing (DSP) hardware to perform up and down conversions and pulse shaping. The digital modem transmits data at rates up to 76 kilobits per second (kbps), which is almost 3 times faster than standard 28.8-kbps telephone modems. In addition, the modem offers improved power and spectral performance, flexible operation, and low-cost implementation.

  16. Protostring scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  17. A Cross-Correlated Trellis-Coded Quadrature Modulation Representation of MIL-STD Shaped Offset Quadrature Phase-Shift Keying

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Li, L.

    2003-08-01

    We show that MIL-STD shaped offset quadrature phase-shift keying (SOQPSK), a highly bandwidth-efficient constant-envelope modulation, can be represented in the form of a cross-correlated trellis-coded quadrature modulation, a generic structure containing both memory and cross-correlation between the in-phase and quadrature-phase channels. Such a representation allows identification of the optimum form of receiver for MIL-STD SOQPSK and at the same time, through modification of the equivalent I and Q encoders to recursive types, allows for it to be embedded as the inner code of a serial or parallel (turbo-like) concatenated coding structure together with iterative decoding.

  18. Velocity envelope of vector flow estimation with spatial quadrature

    NASA Astrophysics Data System (ADS)

    Kerr, Richard F.; Anderson, Martin E.

    2003-05-01

    We present the results of two studies investigating the optimal aperture configuration for maximized lateral blood flow velocity estimation using Heterodyned Spatial Quadrature. Our objective was to determine the maximum velocities that can be estimated at Doppler angles of 90 degrees and 60 degrees with a bias of less than 5% for both uniform scatterer motion in a tissue-mimicking phantom and blood-mimicking fluid circulated through a wall-less vessel flow phantom. Constant flow rates ranging from 3.0 to 18.0 ml/sec were applied in the flow phantom, producing expected peak velocities of 15.0 to 89.8 cm/sec under laminar flow conditions. Velocity estimates were obtained at each flow rate using 256 trials, with each trial consisting of an ensemble of 32 vectors. For an f/1 receive geometry with bi-lobed Hamming apodization, all peak flow velocities tested were estimated to within 5% of their expected values for both 90 degree and 60 degree Doppler angles. An f/2 receive geometry featuring bi-lobed Blackman apodization generally provided accurate lateral velocity estimates up to 71.9 cm/sec for a Doppler angle of 90 degrees, and accurate lateral component estimates up to 50.1 cm/sec for a 60 degree Doppler angle. The implications of these findings will be discussed.

  19. A Quadrature Free Discontinuous Galerkin Conservative Level Set Scheme

    NASA Astrophysics Data System (ADS)

    Czajkowski, Mark; Desjardins, Olivier

    2010-11-01

    In an effort to improve the scalability and accuracy of the Accurate Conservative Level Set (ACLS) scheme [Desjardins et al., J COMPUT PHYS 227 (2008)], a scheme based on the quadrature free discontinuous Galerkin (DG) methodology has been developed. ACLS relies on a hyperbolic tangent level set function that is transported and reinitialized using conservative schemes in order to alleviate mass conservation issues known to plague level set methods. DG allows for an arbitrarily high order representation of the interface by using a basis of high order polynomials while only using data from the faces of neighboring cells. The small stencil allows DG to have excellent parallel scalability. The diffusion term present in the conservative reinitialization equation is handled using local DG method [Cockburn et al., SIAM J NUMER ANAL 39, (2001)] while the normals are computed from a limited form of the level set function in order to avoid spurious oscillations. The resulting scheme is shown to be both robust, accurate, and highly scalable, making it a method of choice for large-scale simulations of multiphase flows with complex interfacial topology.

  20. Carrier Synchronization of Offset Quadrature Phase-Shift Keying

    NASA Astrophysics Data System (ADS)

    Simon, M. K.

    1998-01-01

    This article contains analyses of the performance of various carrier synchronization loops for offset quadrature phase-shift-keying (OQPSK) modulation, all motivated in one form or another by the maximum a posteriori (MAP) estimation of carrier phase. When they are implemented as either high or low signal-to-noise ratio (SNR) approximations to the generic implementation suggested by the MAP estimation of carrier phase for an OQPSK signal, it is shown that the loops behave more like biphase than quadriphase loops in that they only exhibit a 180-deg phase ambiguity rather than the 90-deg phase ambiguity typical of the latter. This phase ambiguity advantage coupled with the mean-square tracking-error performance advantage that results and its ultimate effect on average error probability performance offer a potentially significant justification for using OQPSK rather than QPSK even on a linear transmission channel, where it often is reasoned (based on the assumption of an ideal environment) that the two modulation schemes perform identically.

  1. Efficient Implementations of the Quadrature-Free Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Atkins, Harold L.

    1999-01-01

    The efficiency of the quadrature-free form of the dis- continuous Galerkin method in two dimensions, and briefly in three dimensions, is examined. Most of the work for constant-coefficient, linear problems involves the volume and edge integrations, and the transformation of information from the volume to the edges. These operations can be viewed as matrix-vector multiplications. Many of the matrices are sparse as a result of symmetry, and blocking and specialized multiplication routines are used to account for the sparsity. By optimizing these operations, a 35% reduction in total CPU time is achieved. For nonlinear problems, the calculation of the flux becomes dominant because of the cost associated with polynomial products and inversion. This component of the work can be reduced by up to 75% when the products are approximated by truncating terms. Because the cost is high for nonlinear problems on general elements, it is suggested that simplified physics and the most efficient element types be used over most of the domain.

  2. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.

    PubMed

    Dwyer, S; Barsotti, L; Chua, S S Y; Evans, M; Factourovich, M; Gustafson, D; Isogai, T; Kawabe, K; Khalaidovski, A; Lam, P K; Landry, M; Mavalvala, N; McClelland, D E; Meadors, G D; Mow-Lowry, C M; Schnabel, R; Schofield, R M S; Smith-Lefebvre, N; Stefszky, M; Vorvick, C; Sigg, D

    2013-08-12

    Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative fluctuations between the squeezed quadrature angle and the measured quadrature (sometimes called squeezing angle jitter or phase noise) are one limit to the noise reduction that can be achieved. We present calculations of several effects that lead to quadrature fluctuations, and use these estimates to account for the observed quadrature fluctuations in a LIGO gravitational wave detector. We discuss the implications of this work for quantum enhanced advanced detectors and even more sensitive third generation detectors.

  3. Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature

    SciTech Connect

    Brito, K. D.; Sprague, M. A.

    2012-10-01

    Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for a given model size or total computation time.

  4. The Combined Effect of Modulator Imbalances and Amplifier Nonlinearity on the Performance of Offset Quadrature-Phase-Shift-Keyed (OQPSK) Systems

    NASA Astrophysics Data System (ADS)

    Tsou, H.

    1999-01-01

    Imbalances from imperfect phase modulators can cause distorted signal constellations and interfering tone signals at the carrier frequency in phase-modulated communication systems. The rendered imperfection in the modulated signal inevitably degrades the receiver's carrier-tracking performance and, for quadrature-phase- shift-keyed (QPSK) systems in particular, causes cross-talk between the inphase and quadrature-phase channels. Previous studies have analyzed the impact from the amplitude and phase imbalances on an offset QPSK (OQPSK) communication system with the assumption of a linear channel. This article extends such efforts by including a fully saturated radio-frequency (RF) amplifier in the analytical model. Both carrier-suppression level and bit-error performance are addressed in this article, showing that the amplifier nonlinearity greatly alleviates the impact from modulator imbalances. With current Consultative Committee for Space Data Systems (CCSDS) recommendations of a 2-deg-maximum permissible phase imbalance and a 0.2-dB-maximum permissible amplitude imbalance, a 34-dB or more carrier suppression and a system degradation of 0.27 dB or less at an uncoded bit-error probability of 10^(-4) are achievable when the OQPSK system is operated in a reasonable loop signal-to-noise ratio (SNR) region. These results are 9-dB better in terms of carrier suppression and 0.6-dB better in terms of system degradation than those with linear amplifiers at the aforementioned bit-error probability.

  5. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    PubMed

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  6. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    PubMed Central

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  7. Calculation method for a quadrature phase-shifting interferometer and its applications.

    PubMed

    Nakadate, Suezou; Sawada, Shinya; Kiire, Tomohiro; Shibuya, Masato; Yatagai, Toyohiko

    2013-01-01

    A calculation method for a quadrature phase-shifting interferometer is presented, and its applications to specular and speckle interferometers and digital holography are described. Two sets of quadrature phase-shifted interferograms are acquired, and the calculation method proposed gives the phase distribution of the interferograms. The principle of the calculation method with error analysis and experimental results for specular and speckle interferometers and digital holography are also given.

  8. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  9. Amplitudes of Field Theories

    SciTech Connect

    Feng Bo

    2007-11-20

    In this talk, we will present recent progresses in perturbative calculations of scattering amplitudes at tree and one-loop levels. At tree level, we will discuss MHV-diagram method and on-shell recursion relation. At one-loop level, we will establish the framework of Unitarity cut method.

  10. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  11. Planar amplitude ammonia sensor

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Rogozinski, Roman

    2004-09-01

    The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.

  12. Weak boson production amplitude zeros; equalities of the helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Mamedov, Fizuli

    2002-08-01

    We investigate the radiation amplitude zeros exhibited by many standard model amplitudes for triple weak gauge boson production processes. We show that WZγ production amplitudes have an especially rich structure in terms of zeros; these amplitudes have zeros originating from several different sources. It is also shown that the type-I current null zone is the special case of the equality of the specific helicity amplitudes.

  13. Syzygies probing scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao

    2016-09-01

    We propose a new efficient algorithm to obtain the locally minimal generating set of the syzygies for an ideal, i.e. a generating set whose proper subsets cannot be generating sets. Syzygy is a concept widely used in the current study of scattering amplitudes. This new algorithm can deal with more syzygies effectively because a new generation of syzygies is obtained in each step and the irreducibility of this generation is also verified in the process. This efficient algorithm can also be applied in getting the syzygies for the modules. We also show a typical example to illustrate the potential application of this method in scattering amplitudes, especially the Integral-By-Part(IBP) relations of the characteristic two-loop diagrams in the Yang-Mills theory.

  14. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  15. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  16. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  17. Extended Gaussian quadratures for functions with an end-point singularity of logarithmic type

    NASA Astrophysics Data System (ADS)

    Pachucki, K.; Puchalski, M.; Yerokhin, V. A.

    2014-11-01

    The extended Gaussian quadrature rules are shown to be an efficient tool for numerical integration of wide class of functions with singularities of logarithmic type. The quadratures are exact for the functions pol1n-1(x)+lnx pol2n-1(x), where pol1n-1(x) and pol2n-1(x) are two arbitrary polynomials of degree n-1 and n is the order of the quadrature formula. We present an implementation of numerical algorithm that calculates the nodes and the weights of the quadrature formulas, provide a Fortran code for numerical integration, and test the performance of different kinds of Gaussian quadratures for functions with logarithmic singularities. Catalogue identifier: AETP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2535 No. of bytes in distributed program, including test data, etc.: 39 963 Distribution format: tar.gz Programming language: Mathematica, Fortran. Computer: PCs or higher performance computers. Operating system: Linux, Windows, MacOS. RAM: Kilobytes. Classification: 4.11. Nature of problem: Quadrature formulas for numerical integration, effective for a wide class of functions with end-point singularities of logarithmic type. Solution method: The method of solution is based on the algorithm developed in Ref. [1] with some modifications. Running time: Milliseconds to minutes. J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, Soc. Indust. Appl. Math. J. Numer. Anal. 33 (3) (1996) 971-996.

  18. The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications

    SciTech Connect

    Spence, Peter J.

    2015-09-01

    A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent

  19. Design and Application of Quadrature Compensation Patterns in Bulk Silicon Micro-Gyroscopes

    PubMed Central

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-01-01

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose. PMID:25356646

  20. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-10-29

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.

  1. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  2. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    PubMed Central

    Li, Shuhui; Wang, Jian

    2017-01-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076

  3. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    NASA Astrophysics Data System (ADS)

    Li, Shuhui; Wang, Jian

    2017-02-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions.

  4. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide.

    PubMed

    Long, Yun; Liu, Jun; Hu, Xiao; Wang, Andong; Zhou, Linjie; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Wang, Jian

    2015-12-01

    We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2  dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide.

  5. Performance of Low-Density Parity-Check Coded Modulation

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  6. Performance comparison of single carrier and OFDM in coherent optical long-haul communication systems

    NASA Astrophysics Data System (ADS)

    Lobato, Adriana; Kuschnerov, Maxim; Diaz, Alberto; Napoli, Antonio; Spinnler, Bernhard; Lankl, Berthold

    2011-12-01

    We investigate the nonlinear tolerance of coherent detected 50 Gbit/s dual-polarization binary-phase-shift-keying (DPBPSK), 100 Gbit/s dual-polarization quaternary-phase-shift-keying (DP-QPSK), and 200 Gbit/s dual-polarization 16-ary quadrature amplitude modulation (DP-16-QAM) for single carrier with pulse shaping and orthogonal frequency division multiplexing (OFDM). The performance of these systems is compared and tested in two different scenarios: dispersion managed and unmanaged links. The results show that employing return-to-zero with 50 % of duty cycle (RZ50) as pulse shaping has a superior performance, especially in dispersion unmanaged links.

  7. On the Computation of High Order Rys Quadrature Weights and Nodes

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2014-01-01

    Since its introduction in 1976, the Rys Quadrature method has proven a very attractive method for evaluating electron repulsion integrals for calculations using Gaussian type orbitals. Since then, there have been considerable refinements of the method, but at it's core, Gaussian weights and nodes are used to exactly evaluate using a numerical approach to the transform integral. One of the powers of the Rys Quadrature method is the relative ease in evaluating integrals involving functions of high angular momentum. In this work we report on the complete resolution of these numerical difficulties, and we have easily computed accurate quadrature weights and nodes up to order 101. All calculations were carried out using 128-bit precision.

  8. Discrete variable representation in electronic structure theory: Quadrature grids for least-squares tensor hypercontraction

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2013-05-01

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  9. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  10. On the remainder term of Gauss-Radau quadratures for analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.

    2008-09-01

    For analytic functions the remainder term of Gauss-Radau quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours with foci at the points ±1 and a sum of semi-axes [varrho]>1 for the Chebyshev weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum modulus on ellipses is determined. The corresponding Gautschi's conjecture from [On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209-226] is proved.

  11. Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity

    NASA Astrophysics Data System (ADS)

    Bultheel, Adhemar; Daruis, Leyla; González-Vera, Pablo

    2009-09-01

    In this paper we investigate the Szego-Radau and Szego-Lobatto quadrature formulas on the unit circle. These are (n+m)-point formulas for which m nodes are fixed in advance, with m=1 and m=2 respectively, and which have a maximal domain of validity in the space of Laurent polynomials. This means that the free parameters (free nodes and positive weights) are chosen such that the quadrature formula is exact for all powers zj, -p<=j<=p, with p=p(n,m) as large as possible.

  12. Dual-quadrature coherent receiver for 100G Ethernet applications based on polymer planar lightwave circuit.

    PubMed

    Wang, Jin; Kroh, Marcel; Theurer, Abongwa; Zawadzki, Crispin; Schmidt, Detlef; Ludwig, Reinhold; Lauermann, Matthias; Zhang, Ziyang; Beling, Andreas; Matiss, Andreas; Schubert, Colja; Steffan, Andreas; Keil, Norbert; Grote, Norbert

    2011-12-12

    A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments. In back-to-back configuration the OSNR requirement for a BER value of 10(-3) was 15.1 dB which has to be compared to a theoretical limit of 13.8 dB.

  13. A method to design tunable quadrature filters in phase shifting interferometry.

    PubMed

    Mosiño, J F; Doblado, D Malacara; Hernández, D Malacara

    2009-08-31

    The main purpose of this paper is to present a method to design tunable quadrature filters in phase shifting interferometry. The algorithm is obtained from a generalized Fourier transform of a symmetrical quadrature filter. This formalism allows us to represent the detuning phase shift error and bias modulation as geometrical conditions. Therefore, the design of the filter becomes a set of solvable linear equations. Hence, to prove our method, several general tunable filters, like three and four frame algorithms, are obtained. Finally, from our results we reproduce particular symmetrical four frame algorithms reported in literature.

  14. Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability.

    PubMed

    Rashidinejad, Amir; Leaird, Daniel E; Weiner, Andrew M

    2015-05-04

    We introduce a novel photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation setup capable of high-speed phase and amplitude modulation of the individual arbitrary waveforms. The waveform generator is based on an optical interferometer, within which a high-resolution optical pulse shaper and integrated optic phase and intensity modulators are placed, followed by frequency-to-time mapping. The phase and amplitude of each ultrabroadband waveform within the generated sequence can be continuously tuned by adjusting the driving voltages applied to the phase and intensity modulator pair, hence overcoming the slow update speed of conventional spatial light modulator-based pulse shapers. Moreover, this data modulation is completely independent from and does not interfere with RF waveform design. Programmable ultrabroadband RF sequences, spanning more than 4.7 octaves from 2 to 52 GHz, are modulated with real-time data in up to 16 level, M-ary phase-shift keying and quadrature amplitude modulation formats.

  15. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    PubMed

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.

  16. Miniaturized silicon photonic integrated swept source OCT receiver with dual polarization, dual balanced, in-phase and quadrature detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Lee, Hsiang-Chieh; Chen, Long; Vermeulen, Diedrik; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2016-03-01

    Miniaturization and cost reduction of OCT systems are important for enabling many new clinical applications as well as accelerating the development of existing applications. Silicon photonics is an important low-cost, high-volume, multi-functional platform for integrated optics because it can benefit from existing semiconductor fabrication techniques to integrate many advanced optical functions onto a single microchip. We present a miniaturized silicon photonic integrated swept source OCT receiver, measuring 3×4mm2, with advanced functionalities including dual polarization, dual balanced, in-phase and quadrature detection, essentially enabling the detection of the full vector field (amplitude, phase, and polarization) of the optical signal. With this integrated receiver, we demonstrate full-range OCT for complex conjugate artifact suppression, polarization diversity detection for removing polarization fading artifact, and polarization sensitive OCT for tissue birefringence imaging. The silicon photonic integrated receiver is a key advance towards developing a miniaturized, multi-functional swept source OCT system.

  17. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  18. Saturation dependence of the quadrature conductivity of oil-bearing sands

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Blondel, A.; Revil, A.

    2012-02-01

    We have investigated the complex conductivity of oil-bearing sands with six distinct oil types including sunflower oil, silicone oil, gum rosin, paraffin, engine oil, and an industrial oil of complex composition. In all these experiments, the oil was the non-wetting phase. The in-phase (real) conductivity follows a power law relationship with the saturation (also known as the second Archie's law) but with a saturation exponent n raging from 1.1 to 3.1. In most experiments, the quadrature conductivity follows also a power law relationship with the water saturation but with a power law exponent p can be either positive or negative. For some samples, the quadrature conductivity first increases with saturation and then decreases indicating that two processes compete in controlling the quadrature conductivity. One is related to the insulating nature of the oil phase and a second could be associated with the surface area of the oil / water interface. The quadrature conductivity seems to be influenced not only by the value of the saturation exponent n (according to the Vinegar and Waxman model, p = n - 1), but also by the surface area between the oil phase and the water phase especially for very water-repellent oil having a fractal oil-water interface.

  19. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  20. Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2014-01-01

    Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.

  1. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.

    PubMed

    Krishnamoorthi, Shankarjee; Sarkar, Mainak; Klug, William S

    2013-11-01

    We study the numerical accuracy and computational efficiency of alternative formulations of the finite element solution procedure for the monodomain equations of cardiac electrophysiology, focusing on the interaction of spatial quadrature implementations with operator splitting and examining both nodal and Gauss quadrature methods and implementations that mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all possible combinations of 'lumped' approximations of consistent capacitance and mass matrices. Most generally, we find that quadrature schemes and lumped approximations that produce decoupled nodal ionic equations allow for the greatest computational efficiency, this being afforded through the use of asynchronous adaptive time-stepping of the ionic state variable ODEs. We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the most expensive variationally consistent implementations. Finally, we illustrate some of the physiological consequences of discretization error in electrophysiological simulation relevant to cardiac arrhythmia and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral and hexahedral meshing algorithms available in most commercially available meshing software, which produce nonuniform meshes having a large distribution of element sizes.

  2. Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver.

    PubMed

    Kikuchi, Kazuro

    2008-01-21

    We demonstrate electronic post-compensation for nonlinear phase fluctuation in a 1000-km 20-Gbit/s optical quadrature phase-shift keying (QPSK) transmission system, where group-velocity dispersion is well managed. The inter-symbol interference (ISI) at the transmitter induces the nonlinear phase fluctuation through self-phase modulation (SPM) of the signal transmitted through a fiber. However, when the optimized phase shift proportional to the intensity fluctuation is given to the complex amplitude of the signal electric field by using a digital coherent receiver, the nonlinear phase fluctuation can be reduced effectively.

  3. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1997-01-01

    This paper is concerned with two important elements in the high-order accurate spatial discretization of finite volume equations over arbitrary grids. One element is the integration of basis functions over arbitrary domains, which is used in expressing various spatial integrals in terms of discrete unknowns. The other consists of quadrature approximations to those integrals. Only polynomial basis functions applied to polyhedral and polygonal grids are treated here. Non-triangular polygonal faces are subdivided into a union of planar triangular facets, and the resulting triangulated polyhedron is subdivided into a union of tetrahedra. The straight line segment, triangle, and tetrahedron are thus the fundamental shapes that are the building blocks for all integrations and quadrature approximations. Integrals of products up to the fifth order are derived in a unified manner for the three fundamental shapes in terms of the position vectors of vertices. Results are given both in terms of tensor products and products of Cartesian coordinates. The exact polynomial integrals are used to obtain symmetric quadrature approximations of any degree of precision up to five for arbitrary integrals over the three fundamental domains. Using a coordinate-free formulation, simple and rational procedures are developed to derive virtually all quadrature formulas, including some previously unpublished. Four symmetry groups of quadrature points are introduced to derive Gauss formulas, while their limiting forms are used to derive Lobatto formulas. Representative Gauss and Lobatto formulas are tabulated. The relative efficiency of their application to polyhedral and polygonal grids is detailed. The extension to higher degrees of precision is discussed.

  4. A Two Color Quadrature Interferometer for the TCS Experiment

    NASA Astrophysics Data System (ADS)

    Crawford, Edward; Euripides, Peter; Votroubek, George

    1999-11-01

    The TCS experiment at the Redmond Plasma Physics Labotatory (RPPL) is designed to demonstrate current sustainment and heating of a pre-formed FRC plasma using a rotating magnetic field (RMF)at 150 kHz. NE must be accurately measured between 10^19 and 10^21 m-3. We have constructed a two-color, double pass interferometer for the TCS sustainment chamber. CO2 and HeNe lasers at 10.6 and 0.63 microns are used with separate Bragg modulators to generate reference beams shifted by 40 MHz. A unique design uses a single large spherical mirror to focus all beams. We find this technique greatly facilitates alignment. The scene beams may be switched from a single table mode of operation to a through-plasma mode by insertion of a single right angle mirror. Scene beams return to the main table from a hollow corner-cube reflector insuring good signal amplitude stability even though the supporting structure is quite flexible.

  5. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging

    PubMed Central

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B.

    2014-01-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than –35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla. PMID:24649430

  6. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.

    PubMed

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-02-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.

  7. A high precision method for mapping phase to amplitude in direct digital synthesis and its hardware implementation.

    PubMed

    Cao, Zhang; Song, Wei; Peng, Zhicong; Xu, Lijun

    2014-11-01

    There exist a number of algorithms to map the phase to amplitude in direct digital synthesis (DDS). For DDS with more than 14 output bits, the Coordinate Rotation Digital Computer (CORDIC) algorithm is well known for its high precision. Also, it is effective in solutions where there is the need of in-phase and quadrature components simultaneously because the algorithm calculates both. In this paper, a Taylor expansion based method was proposed to calculate both in-phase and quadrature at the same time. Numerical simulations for different data format, e.g., double and finite bits, were carried out in Matlab and Quartus, which were followed by the hardware implementation in Field Programmable Gate Array. The results demonstrated that the proposed method possessed higher precision and exhausted less logic elements than the CORDIC algorithm.

  8. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  9. On the implementation of a modified Sag-Szekeres quadrature method

    SciTech Connect

    Lyness, J.N.; Delves, L.M.

    1997-07-01

    The authors describe a modified Sag-Szekeres multidimensional quadrature algorithm and discuss its implementation as a general-purpose library procedure on serial and parallel architectures. Examples illustrate its effectiveness for both smooth and singular integrands. The procedure has been implemented as a parallel library routine, running on transputer-based systems, as part of Esprit project P2528: Supernode II; (see Plowman (1992)). This routine is scheduled to appear in the quadrature section of the Liverpool-NAG Transputer Software Library. The authors give here some results obtained using this routine, to demonstrate the rapid convergence obtained with both smooth and singular integrands, and to demonstrate the routine`s effectiveness on a parallel NIMD architecture.

  10. Analysis of V-cycle multigrid algorithms for forms defined by numerical quadrature

    SciTech Connect

    Bramble, J.H. . Dept. of Mathematics); Goldstein, C.I.; Pasciak, J.E. . Applied Mathematics Dept.)

    1994-05-01

    The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R[sup 2] with a crack.

  11. Solution of stochastic media transport problems using a numerical quadrature-based method

    SciTech Connect

    Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.

    2013-07-01

    We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)

  12. Simultaneous experimental generation of vacuum squeezing and bright amplitude squeezing from a frequency doubler.

    PubMed

    Luo, Yu; Li, Ying; Xie, Changde; Pan, Qing; Peng, Kunchi

    2005-06-15

    Both vacuum-squeezed and bright amplitude-squeezed states of light are experimentally generated from a frequency doubler with a semimonolithic Fabry-Perot configuration consisting of a type II nonlinear crystal and a concave mirror. Vacuum squeezing of 3.2 +/- 0.1 dB and amplitude squeezing of 1.3 +/- 0.2 dB are obtained simultaneously at a pump power of 8 mW. The two quadrature-squeezed optical fields that are generated are of identical frequency at 1080-nm wavelength and orthogonal polarization. Optimizing the input pump power by 19 mW yields as much as 5.0 +/- 0.2 dB of maximum vacuum squeezing. The advantages of the system are its simplicity and multiple utility.

  13. CHY formula and MHV amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-05-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an arbitrary number of external gluons/gravitons. This is achieved by developing techniques, in a manifestly Möbius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other ( n - 3)! - 1 solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving only external momenta, somehow know about the configuration of external polarizations of the scattering amplitudes.

  14. Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components

    SciTech Connect

    Pozar, Tomaz; Gregorcic, Peter; Mozina, Janez

    2011-03-20

    We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

  15. Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components.

    PubMed

    Požar, Tomaž; Gregorčič, Peter; Možina, Janez

    2011-03-20

    We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

  16. Multiple bit differential detection of offset quadrature phase-shift-keying

    NASA Technical Reports Server (NTRS)

    Simon, M.

    2003-01-01

    Analogous to multiple symbol differential detectionof quadrature phase-shift-keying (QPSK), a multiple bit differential detection scheme is described for offset QPSK that also exhibits continuous improvement in performance with increasing observation interval. Being derived from maximum-likelihood (ML) considerations, the proposed scheme is purported to be the most power efficient scheme for such a modulation and detection method. Extension of the results to shaped offset QPSK is also possible.

  17. Off-shell CHY amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-06-01

    The Cachazo-He-Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  18. Adaptive Gaussian quadrature detection for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, L.; Imre, S.

    2016-03-01

    We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the subchannel conditions using a corresponding statistics which is provided by our sophisticated sub-channel estimation procedure. The sub-channel estimation phase determines the transmittance coefficients of the sub-channels, which information are used further in the adaptive quadrature decoding process. We define a technique to estimate the transmittance conditions of the sub-channels. We introduce the terms of single and collective adaptive quadrature detection. We prove the achievable error probabilities, the signal-to-noise ratios, and quantify the attributes of the framework. The adaptive detection scheme allows to utilize the extra resources of multicarrier CVQKD and to maximize the amount of transmittable valuable information in diverse measurement and transmission conditions. The framework is particularly convenient for experimental CVQKD scenarios.

  19. A unified quadrature-based superconvergent finite element formulation for eigenvalue computation of wave equations

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Xiwei; Pan, Feixu

    2016-11-01

    A simple and unified finite element formulation is presented for superconvergent eigenvalue computation of wave equations ranging from 1D to 3D. In this framework, a general method based upon the so called α mass matrix formulation is first proposed to effectively construct 1D higher order mass matrices for arbitrary order elements. The finite elements discussed herein refer to the Lagrangian type of Lobatto elements that take the Lobatto points as nodes. Subsequently a set of quadrature rules that exactly integrate the 1D higher order mass matrices are rationally derived, which are termed as the superconvergent quadrature rules. More importantly, in 2D and 3D cases, it is found that the employment of these quadrature rules via tensor product simultaneously for the mass and stiffness matrix integrations of Lobatto elements produces a unified superconvergent formulation for the eigenvalue or frequency computation without wave propagation direction dependence, which usually is a critical issue for the multidimensional higher order mass matrix formulation. Consequently the proposed approach is capable of computing arbitrary frequencies in a superconvergent fashion. Meanwhile, numerical implementation of the proposed method for multidimensional problems is trivial. The effectiveness of the proposed methodology is systematically demonstrated by a series of numerical examples. Numerical results revealed that a superconvergence with 2(p+1)th order of frequency accuracy is achieved by the present unified formulation for the pth order Lobatto element.

  20. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  1. Spectral Quadrature method for accurate O(N) electronic structure calculations of metals and insulators

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-02

    We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order tomore » exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N3) planewave results. In conclusion, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.« less

  2. Spectral Quadrature method for accurate O(N) electronic structure calculations of metals and insulators

    NASA Astrophysics Data System (ADS)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2016-03-01

    We present the Clenshaw-Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw-Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order to exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N3) planewave results. Finally, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.

  3. A unified quadrature-based superconvergent finite element formulation for eigenvalue computation of wave equations

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Xiwei; Pan, Feixu

    2017-01-01

    A simple and unified finite element formulation is presented for superconvergent eigenvalue computation of wave equations ranging from 1D to 3D. In this framework, a general method based upon the so called α mass matrix formulation is first proposed to effectively construct 1D higher order mass matrices for arbitrary order elements. The finite elements discussed herein refer to the Lagrangian type of Lobatto elements that take the Lobatto points as nodes. Subsequently a set of quadrature rules that exactly integrate the 1D higher order mass matrices are rationally derived, which are termed as the superconvergent quadrature rules. More importantly, in 2D and 3D cases, it is found that the employment of these quadrature rules via tensor product simultaneously for the mass and stiffness matrix integrations of Lobatto elements produces a unified superconvergent formulation for the eigenvalue or frequency computation without wave propagation direction dependence, which usually is a critical issue for the multidimensional higher order mass matrix formulation. Consequently the proposed approach is capable of computing arbitrary frequencies in a superconvergent fashion. Meanwhile, numerical implementation of the proposed method for multidimensional problems is trivial. The effectiveness of the proposed methodology is systematically demonstrated by a series of numerical examples. Numerical results revealed that a superconvergence with 2(p+1)th order of frequency accuracy is achieved by the present unified formulation for the pth order Lobatto element.

  4. 622-Mbps Orthogonal Frequency Division Multiplexing Modulator Developed

    NASA Technical Reports Server (NTRS)

    Nguyen, Na T.

    1999-01-01

    The Communications Technology Division at the NASA Lewis Research Center is developing advanced electronic technologies for the space communications and remote sensing systems of tomorrow. As part of the continuing effort to advance the state-of-the art in satellite communications and remote sensing systems, Lewis is developing a programmable Orthogonal Frequency Division Multiplexing (OFDM) modulator card for high-data-rate communication links. The OFDM modulator is particularly suited to high data-rate downlinks to ground terminals or direct data downlinks from near-Earth science platforms. It can support data rates up to 622 megabits per second (Mbps) and high-order modulation schemes such as 16-ary quadrature amplitude modulation (16-ary QAM) or 8- phase shift keying (8PSK). High order modulations can obtain the bandwidth efficiency over the traditional binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulator schemes. The OFDM modulator architecture can also be precompensated for channel disturbances and alleviate amplitude degradations caused by nonlinear transponder characteristics.

  5. Small amplitude quasibreathers and oscillons

    SciTech Connect

    Fodor, Gyula; Lukacs, Arpad; Forgacs, Peter; Horvath, Zalan

    2008-07-15

    Quasibreathers (QB) are time-periodic solutions with weak spatial localization introduced in G. Fodor et al. in [Phys. Rev. D 74, 124003 (2006)]. QB's provide a simple description of oscillons (very long-living spatially localized time dependent solutions). The small amplitude limit of QB's is worked out in a large class of scalar theories with a general self-interaction potential, in D spatial dimensions. It is shown that the problem of small amplitude QB's is reduced to a universal elliptic partial differential equation. It is also found that there is the critical dimension, D{sub crit}=4, above which no small amplitude QB's exist. The QB's obtained this way are shown to provide very good initial data for oscillons. Thus these QB's provide the solution of the complicated, nonlinear time dependent problem of small amplitude oscillons in scalar theories.

  6. Tempo and amplitude in growth.

    PubMed

    Hermanussen, Michael

    2011-01-01

    Growth is defined as an increase of size over time with time usually defined as physical time. Yet, the rigid metric of physical time is not directly relevant to the internal dynamics of growth. Growth is linked to maturation. Children and adolescents differ in the tempo at which they mature. One calendar year differs in its meaning in a fast maturing, and in a slow maturing child. The slow child needs more calendar years for completing the same stage of maturity. Many characteristics in the human growth curve are tempo characteristics. Tempo - being fast or slow maturing - has to be carefully separated from amplitude - being tall or short. Several characteristic phenomena such as catch-up growth after periods of illness and starvation are largely tempo phenomena, and do usually not affect the amplitude component of growth. Applying Functional Data Analysis and Principal Component Analysis, the two main sources of height variance: tempo and amplitude can statistically be separate and quantified. Tempo appears to be more sensitive than amplitude to nutrition, health and environmental stress. An appropriate analysis of growth requires disentangling its two major components: amplitude and tempo. The assessment of the developmental tempo thus is an integral part of assessing child and adolescent growth. Though an Internet portal is currently available to process small amounts of height data (www.willi-will-wachsen.com) for separately determining amplitude and tempo in growth, there is urgent need of better and practical solutions for analyzing individual growth.

  7. Transmission of mixed 260-Gb/s PDM-16QAM and 130-Gb/s PDM-QPSK over 960-km and 4160-km dispersion-managed SSMF spans.

    PubMed

    Xie, Chongjin; Raybon, Gregory

    2012-12-10

    We transmit a mix of 260-Gb/s polarization-division-multiplexed 16-ary quadrature-amplitude modulation (PDM-16QAM) and 130-Gb/s polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) channels at a 50-GHz channel spacing in a dispersion-managed (DM) system with standard single-mode-fiber (SSMF) spans. We study the impact of pulse shaping, time interleaving of polarizations and maximum likelihood (ML) detection techniques on the performance of the system. We show that the pulse shaping and ML detection can increase the transmission distances of the PDM-16QAM channels and PDM-QPSK channels by 50% and 10%, respectively. With 20% overhead hard-decision forward-error-correction (FEC) coding, we successfully transmit the 260-Gb/s PDM-16QAM and 130-Gb/s PDM-QPSK channels over 960-km and 4,160-km, respectively, in the DM system.

  8. Simple and reconfigured single-sideband OFDM RoF system.

    PubMed

    Xu, Yuming; Li, Xinying; Yu, Jianjun; Chang, Gee-Kung

    2016-10-03

    We propose a simple and reconfigured dispersion-tolerant single sideband (SSB) orthogonal frequency division multiplexing (OFDM) radio over fiber (RoF) system enabled by digital signal processing (DSP), one in-phase/quadrature (I/Q) modulator and direct-detection. The generated radio frequency (RF) is based on DSP and the frequency can be flexibly adjusted, which can be employed in the future software-defined radio access network (RAN). Based on our proposed system, we have experimentally demonstrated 16-ary quadrature amplitude modulation (16QAM) 21.87-Gb/s 21-GHz and 38-GHz SSB-OFDM RoF signal generation and transmission over 80-km single-mode fiber (SMF), respectively.

  9. Transmission and reception of PDM dual-subcarrier coherent 16QAM-OFDM signals

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2015-12-01

    In this paper, 16-Gbaud polarization-division-multiplexed (PDM) dual-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception are successfully demonstrated without overhead. The in-phase and quadrature (I/Q) components of dual-subcarrier 16-ary quadrature amplitude modulation (QAM) OFDM signal are both seven-level signals in time domain, and thus can be equalized like a 49 QAM signal in time domain with cascaded multi-modulus algorithm (CMMA) equalization method. The experimental results show that there is no power penalty observed between optical back to back (OBTB) and after 80-km single-mode fiber-28 (SMF-28) with time domain CMMA equalization method. A 0.4 dB optical signal to noise ratio (OSNR) penalty in OBTB is observed when the bandwidth of channel is set at 26 GHz at the BER of 2.0 × 10-2.

  10. Computing Maximally Supersymmetric Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  11. Lorentzian proper vertex amplitude: Asymptotics

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan; Vilensky, Ilya; Zipfel, Antonia

    2016-09-01

    In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semiclassical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the Engle-Pereira-Rovelli-Livine (EPRL) case by an extra "projector" term. This extra term scales linearly with spins only in the asymptotic limit, and is discontinuous on a (lower dimensional) submanifold of the integration domain in the sense that its value at each such point depends on the direction of approach. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a nondegenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.

  12. Factorization of chiral string amplitudes

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  13. Quadrature-Free Implementation of the Discontinuous Galerkin Method for Hyperbolic Equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Shu, Chi-Wang

    1996-01-01

    A discontinuous Galerkin formulation that avoids the use of discrete quadrature formulas is described and applied to linear and nonlinear test problems in one and two space dimensions. This approach requires less computational time and storage than conventional implementations but preserves the compactness and robustness inherent to the discontinuous Galerkin method. Test problems include both linear and nonlinear one-dimensional scalar advection of botH smooth and discontinuous initial value problems, two-dimensional scalar advection of smooth initial value problems discretized by using unstructured grids with varying degrees of smoothness and regularity, and two-dimensional linear Euler solutions on unstructured grids.

  14. Improving noiseless linear amplification for optical quantum communication with quadrature squeezing

    NASA Astrophysics Data System (ADS)

    Yang, Song; Zhang, ShengLi; Zou, XuBo; Bi, SiWen; Lin, XuLing

    2013-02-01

    Quantum noiseless linear amplification (NLA) is an important tool for long-distance optical quantum communication. In this paper, we show that NLA with linear optics and photon counts can be further improved by applying quadrature squeezing. Moreover, we find that such enhancement through squeezing can be observed even when a photon dichotic on-off detector and a pseudo-single-photon state are applied to the amplification process. Such a result could find more applications in already-known NLA-related quantum information tasks.

  15. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  16. Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations

    NASA Astrophysics Data System (ADS)

    Pekmen, B.; Tezer-Sezgin, M.

    2012-08-01

    Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in space intervals, and GCL grid points in each equally divided time blocks.

  17. Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Konishi, Yohei; Takada, Jun-Ichi; Gao, Boxin

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11GHz are presented for verification.

  18. Optimization of quadrature signal processing for laser interferometers for demanding applications

    NASA Astrophysics Data System (ADS)

    PodŻorny, Tomasz; Budzyń, Grzegorz; Tkaczyk, Jakub

    2016-06-01

    Presented paper performs an analysis of quadrature signal processing algorithms for high demanding laser interferometry applications. Careful signal processing is required to minimize nonlinearities which come from optical path and components' imperfections, and reduce overall instrumental error. Paper focuses on algebraic fits, because implementation for real time systems was a main requirement. The most demanding applications are stationary measurements where the position slightly fluctuates in the range below one fringe period. Therefore, analysis was performed for samples that were spread along a few milliradians of a full circle.

  19. Toward complete pion nucleon amplitudes

    DOE PAGES

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  20. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  1. Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy

    PubMed Central

    Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.

    2010-01-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667

  2. Stieltjes polynomials and Gauss-Kronrod quadrature formulae for measures induced by Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Notaris, Sotirios

    1995-03-01

    Given a fixed n≥1, and a (monic) orthogonal polynomial πn(·)Dπn(·;dσ) relative to a positive measuredσ on the interval [a, b], one can define the nonnegative measure , to which correspond the (monic) orthogonal polynomials . The coefficients in the three-term recurrence relation for , whendσ is a Chebyshev measure of any of the four kinds, were obtained analytically in closed form by Gautschi and Li. Here, we give explicit formulae for the Stieltjes polynomials whendσ is any of the four Chebyshev measures. In addition, we show that the corresponding Gauss-Kronrod quadrature formulae for each of these , based on the zeros of and , have all the desirable properties of the interlacing of nodes, their inclusion in [-1, 1], and the positivity of all quadrature weights. Exceptions occur only for the Chebyshev measuredσ of the third or fourth kind andn even, in which case the inclusion property fails. The precise degree of exactness for each of these formulae is also determined.

  3. 'EXTREME ULTRAVIOLET WAVES' ARE WAVES: FIRST QUADRATURE OBSERVATIONS OF AN EXTREME ULTRAVIOLET WAVE FROM STEREO

    SciTech Connect

    Patsourakos, Spiros; Vourlidas, Angelos E-mail: vourlidas@nrl.navy.mil

    2009-08-01

    The nature of coronal mass ejection (CME)-associated low corona propagating disturbances, 'extreme ultraviolet (EUV) waves', has been controversial since their discovery by EIT on SOHO. The low-cadence, single-viewpoint EUV images and the lack of simultaneous inner corona white-light observations have hindered the resolution of the debate on whether they are true waves or just projections of the expanding CME. The operation of the twin EUV imagers and inner corona coronagraphs aboard STEREO has improved the situation dramatically. During early 2009, the STEREO Ahead (STA) and Behind (STB) spacecrafts observed the Sun in quadrature having a {approx}90 deg. angular separation. An EUV wave and CME erupted from active region 11012, on February 13, when the region was exactly at the limb for STA and hence at disk center for STB. The STEREO observations capture the development of a CME and its accompanying EUV wave not only with high cadence but also in quadrature. The resulting unprecedented data set allowed us to separate the CME structures from the EUV wave signatures and to determine without doubt the true nature of the wave. It is a fast-mode MHD wave after all.

  4. Compressive optical image encryption with two-step-only quadrature phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Hongbing; Li, Jiaosheng; Pan, Yangyang; Li, Rong

    2015-06-01

    An image encryption method which combines two-step-only quadrature phase-shifting digital holography with compressive sensing (CS) has been proposed in the fully optical domain. An object image is firstly encrypted to two on-axis quadrature-phase holograms using the two random phase masks in the Mach-Zehnder interferometer. Then, the two encrypted images are highly compressed to a one-dimensional signal using the single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the two compressive encrypted holograms are exactly reconstructed from much less than the Nyquist sampling number of observations by solving an optimization problem, and the original image can be decrypted with only two reconstructed holograms and the correct keys. This method largely decreases holograms data volume for the current optical image encryption system, and it is also suitable for some special optical imaging cases such as different wavelengths imaging and weak light imaging. Numerical simulation is performed to demonstrate the feasibility and validity of this novel image encryption method.

  5. Application of Quadrature Methods for Re-Weighting in Lattice QCD

    SciTech Connect

    Abdou Abdel-Rehim, William Detmold, Kostas Orginos

    2011-12-01

    Re-weighting is a useful tool that has been employed in Lattice QCD in different contexts including, tuning the strange quark mass, approaching the light quark mass regime, and simulating electromagnetic fields on top of QCD gauge configurations. In case of re-weighting the sea quark mass, the re-weighting factor is given by the ratio of the determinants of two Dirac operators D{sub a} and D{sub b}. A popular approach for computing this ratio is to use a pseudofermion representation of the determinant of the composite operator {Omega} = D{sub a}(D{sub b}{sup {dagger}}D{sub b}){sup -1} D{sub a}{sup {dagger}}. Here, we study using quadrature methods together with noise vectors to compute the ratio of determinants. We show that, with quadrature methods each determinant can be computed separately using the operators {Omega}{sub a} = D{sub a}{sup {dagger}}D{sub a} and {Omega}{sub b} = D{sub b}{sup {dagger}} D{sub b}. We also discuss using bootstrap re-sampling to remove the bias from the determinant estimator.

  6. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  7. Methods to Prescribe Particle Motion to Minimize Quadrature Error in Meshfree Methods

    NASA Astrophysics Data System (ADS)

    Templeton, Jeremy; Erickson, Lindsay; Morris, Karla; Poliakoff, David

    2015-11-01

    Meshfree methods are an attractive approach for simulating material systems undergoing large-scale deformation, such as spray break up, free surface flows, and droplets. Particles, which can be easily moved, are used as nodes and/or quadrature points rather than a relying on a fixed mesh. Most methods move particles according to the local fluid velocity that allows for the convection terms in the Navier-Stokes equations to be easily accounted for. However, this is a trade-off against numerical accuracy as the flow can often move particles to configurations with high quadrature error, and artificial compressibility is often required to prevent particles from forming undesirable regions of high and low concentrations. In this work, we consider the other side of the trade-off: moving particles based on reducing numerical error. Methods derived from molecular dynamics show that particles can be moved to minimize a surrogate for the solution error, resulting in substantially more accurate simulations at a fixed cost. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  9. A quadrature based method of moments for nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin L.; Vedula, Prakash

    2011-09-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.

  10. Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.

    PubMed

    Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C

    2010-12-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration.

  11. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  12. Genus dependence of superstring amplitudes

    SciTech Connect

    Davis, Simon

    2006-11-15

    The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.

  13. Phase variation of hadronic amplitudes

    SciTech Connect

    Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz

    2008-04-15

    The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.

  14. Study of error correcting codes for Hertzian channels with a large number of states. Application to Quadrature Amplitude Modulation (QAM) 64

    NASA Astrophysics Data System (ADS)

    Kamanou, Pierre-Francois

    1988-05-01

    Error correcting codes applicable to high reliability systems are studied. The main statistical characteristics of these codes are discussed. The analysis includes Ungerboeck, self orthogonal convolutive and Lee Nakamura block coding procedures. In all cases the choice of code and their parameters is guided by the available band width and by the conditions imposed by the frame structure.

  15. Crisis in Amplitude Control Hides in Multistability

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-12-01

    A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.

  16. Calculation of multi-loop superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Danilov, G. S.

    2016-12-01

    The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.

  17. Calculation of Scattering Amplitude Without Partial Analysis. II; Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Temkin, Aaron; Shertzer, J.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    There was a method for calculating the whole scattering amplitude, f(Omega(sub k)), directly. The idea was to calculate the complete wave function Psi numerically, and use it in an integral expression for f, which can be reduced to a 2 dimensional quadrature. The original application was for e-H scattering without exchange. There the Schrodinger reduces a 2-d partial differential equation (pde), which was solved using the finite element method (FEM). Here we extend the method to the exchange approximation. The S.E. can be reduced to a pair of coupled pde's, which are again solved by the FEM. The formal expression for f(Omega(sub k)) consists two integrals, f+/- = f(sub d) +/- f(sub e); f(sub d) is formally the same integral as the no-exchange f. We have also succeeded in reducing f(sub e) to a 2-d integral. Results will be presented at the meeting.

  18. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals

    PubMed Central

    Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    The use of multiple synchronized outputs from an AWG provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A arbitrary waveform generator (AWG), one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5 kHz and the scan frequency was 40 kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2 mM trityl OX63 in water, 15N perdeuterated tempone, and a nitroxide with a 0.5 G partially

  19. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals

    NASA Astrophysics Data System (ADS)

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5 kHz and the scan frequency was 40 kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2 mM trityl OX63 in water, 15N perdeuterated tempone, and a nitroxide with a 0.5 G partially

  20. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    PubMed

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-10-30

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, (15)N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  1. A novel chromatic dispersion monitoring technique for 16/64-QAM system based on asynchronous amplitude histogram

    NASA Astrophysics Data System (ADS)

    Yan, Li-juan; Zhu, Bo; Liu, Guo-qing; Hu, Fang-ren

    2013-05-01

    A novel chromatic dispersion (CD) monitoring technique based on asynchronous amplitude histogram (AAH) for higher order modulation formats is proposed in this paper. Without demodulating the signal, in the monitoring scheme, the received signal is sampled asynchronously, and thus clock information and high-speed sampling units are unnecessary, resulting in low cost and high reliability. Simulations of CD monitoring technique for non-return-to-zero/return-to-zero (NRZ/RZ) 16- and 64-quadrature amplitude modulation (QAM) systems with different optical signal-to-noise ratios (OSNRs) and duty cycles are investigated, and the tolerance of the scheme is also discussed. Simulation results show that the presented CD monitoring technique with high sensitivity can be applied to monitor the residual CD of a transmission link in the next-generation optical networks.

  2. Stress fields around two pores in an elastic body: exact quadrature domain solutions.

    PubMed

    Crowdy, Darren

    2015-08-08

    Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.

  3. Fast numerical solution for fractional diffusion equations by exponential quadrature rule

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Sun, Hai-Wei; Pang, Hong-Kui

    2015-10-01

    After spatial discretization to the fractional diffusion equation by the shifted Grünwald formula, it leads to a system of ordinary differential equations, where the resulting coefficient matrix possesses the Toeplitz-like structure. An exponential quadrature rule is employed to solve such a system of ordinary differential equations. The convergence by the proposed method is theoretically studied. In practical computation, the product of a Toeplitz-like matrix exponential and a vector is calculated by the shift-invert Arnoldi method. Meanwhile, the coefficient matrix satisfies a condition that guarantees the fast approximation by the shift-invert Arnoldi method. Numerical results are given to demonstrate the efficiency of the proposed method.

  4. Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method

    NASA Astrophysics Data System (ADS)

    Cigeroglu, Ender; Samandari, Hamed

    2014-11-01

    Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.

  5. Electrostatic stiffness correction for quadrature error in decoupled dual-mass MEMS gyroscope

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Cao, Huiliang; Ni, Yunfang

    2014-07-01

    This paper proposes an electrostatic stiffness correction method for the quadrature error (QUER) in a decoupled dual-mass gyroscope structure. The QUER is caused by the imperfections during the structure manufacturing process, and the two masses usually have different QUERs. The harm contribution to the Coriolis signal is analyzed and quantified. The generating forms of QUER motion in both masses are analyzed, the correction electrodes' working principle is introduced, and a single mass individual correction method is proposed. The QUER stiffness correction system is designed based on a PI controller, and the experiments are arranged to verify the theoretical analysis. The bias stability decreases from 2.06 to 0.64 deg/h after the QUER correction, and the parameters of scale factor such as nonlinearly, asymmetry, and repeatability, reduce from 143, 557, and 210 ppm to 84, 242, and 175 ppm, respectively.

  6. Performance of quadrature overlapped raised-cosine modulation over nonlinear satellite channels

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1981-01-01

    This paper considers the performance evaluation of Staggered Quadrature Overlapped Raised Cosine (SQORC) signal transmission through wideband nonlinear satellite channels in the presence of uplink and downlink additive Gaussian noise. Expressions for the bit error rate are derived for a general transponder model with AM-AM and AM-PM conversion. It is shown that the bit error rate of SQORC is one-half of the sum of the bit error rate of MSK at 2/3 of the uplink signal-to-noise ratio and the bit error rate of Quadriphase Phase-Shift Keying QPSK at 4/3 of the uplink signal-to-noise ratio, whereas the spectrum of SQROC is the product of MSK and QPSK spectra. Numerical results are presented for a transponder which is modelled as a hard limiter.

  7. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  8. Numerical Study of Two-Dimensional Reaction-Diffusion Brusselator System by Differential Quadrature Method

    NASA Astrophysics Data System (ADS)

    Mittal, R. C.; Jiwari, Ram

    2011-01-01

    In this paper, a rapid, convergent and accurate differential quadrature method (DQM) is employed for numerical study of a two-dimensional reaction-diffusion Brusselator system. In the Brusselator system the reaction terms arise from the mathematical modeling of chemical systems such as in enzymatic reactions, and in plasma and laser physics in multiple coupling between modes. By employing DQM, accurate results can be obtained using fewer grid points in spatial domain for a large value of T = 50. We also found that Chebyshev-Gauss-Lobatto grid points give excellent results in comparison to other grid points such as uniform grid points. Three examples are solved to illustrate the accuracy and efficiency of the DQM. Convergence and stability of the method is also examined.

  9. Mixed-precision evaluation of two-electron integrals by Rys quadrature

    NASA Astrophysics Data System (ADS)

    Asadchev, Andrey; Gordon, Mark S.

    2012-08-01

    A mixed precision implementation of two-electron integrals is demonstrated to have two benefits: (a) computations can be performed reliably in 32-bit precision on architectures for which 32-bit precision is significantly faster than 64-bit precision (e.g. graphical processing units), and (b) numerical results that match those using higher than 64-bit precision can be recovered without a significant penalty associated with performing the entire computation in higher precision. A justification is presented for using mixed precision in the Rys two-electron integral quadrature algorithm, together with timings and numerical results using a variety of floating-point types. The code discussed here presents a systematic way to control the accuracy of the Rys algorithm, regardless of the types and numbers of integrals.

  10. Atom-assisted quadrature squeezing of a mechanical oscillator inside a dispersive cavity

    NASA Astrophysics Data System (ADS)

    Chauhan, Anil Kumar; Biswas, Asoka

    2016-08-01

    We present a hybrid optomechanical scheme to achieve dynamical squeezing of position quadrature of a mesoscopic mechanical oscillator, that can be externally controlled by classical fields. A membrane-in-the-middle setup is employed, in which an atom in Λ configuration is considered to be trapped on either side of the membrane inside the cavity. We show that a considerable amount of squeezing (beyond the 3-dB limit) can be achieved and maintained at a transient time scale that is not affected by the spontaneous emission of the atom. Squeezing depends upon the initial preparation of atomic states. Further, a strong effective coupling (larger than the relevant decay rates) between the atom and the oscillator can be attained by using large control fields that pump the atom and the cavity. The effects of cavity decay and the phononic bath on squeezing are studied. The results are supported by the detailed analytical calculations.

  11. Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry.

    PubMed

    Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej

    2012-10-19

    We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).

  12. Stress fields around two pores in an elastic body: exact quadrature domain solutions

    PubMed Central

    Crowdy, Darren

    2015-01-01

    Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky–Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores. PMID:26339198

  13. Preservation of quadrature Doppler signals from bidirectional slow blood flow close to the vessel wall using an adaptive decomposition algorithm.

    PubMed

    Zhang, Yufeng; Shi, Xinling; Zhang, Kexin; Chen, Jianhua

    2009-03-01

    A novel approach based on the phasing-filter (PF) technique and the empirical mode decomposition (EMD) algorithm is proposed to preserve quadrature Doppler signal components from bidirectional slow blood flow close to the vessel wall. Bidirectional mixed Doppler ultrasound signals, which were echoed from the forward and reverse moving blood and vessel wall, were initially separated to avoid the phase distortion of quadrature Doppler signals (which is induced from direct decomposition by the nonlinear EMD processing). Separated unidirectional mixed Doppler signals were decomposed into intrinsic mode functions (IMFs) using the EMD algorithm and the relevant IMFs that contribute to blood flow components were identified and summed to give the blood flow signals, whereby only the components from the bidirectional slow blood flow close to the vessel wall were retained independently. The complex quadrature Doppler blood flow signal was reconstructed from a combination of the extracted unidirectional Doppler blood flow signals. The proposed approach was applied to simulated and clinical Doppler signals. It is concluded from the experimental results that this approach is practical for the preservation of quadrature Doppler signal components from the bidirectional slow blood flow close to the vessel wall, and may provide more diagnostic information for the diagnosis and treatment of vascular diseases.

  14. Quasidistribution amplitude of heavy quarkonia

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Xiong, Xiaonu

    2016-11-01

    The recently proposed quasidistributions point out a promising direction for lattice QCD to investigate the light-cone correlators, such as parton distribution functions and distribution amplitudes (DAs), directly in the x space. Owing to its excessive simplicity, heavy quarkonium can serve as an ideal theoretical laboratory to ascertain certain features of quasi-DAs. In the framework of nonrelativistic QCD factorization, we compute the order-αs correction to both light-cone distribution amplitudes (LCDAs) and quasi-DAs associated with the lowest-lying quarkonia, with the transverse-momentum UV cutoff interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the LCDAs to a decent level. These results might provide some useful guidance for the future lattice study of quasidistributions.

  15. Quadrature mechatronic actuator (QMA) drives for heavy ship doors and machinery

    NASA Astrophysics Data System (ADS)

    Knowles, Gareth J.; Bird, Ross W.; Goehrig, Michael J.; Knoll, William C.; Hoffman, Heath; Park, Jaedo

    2004-07-01

    An important part of the Navy objectives is to be both more efficient and enable manpower reduction is to reduce maintenance, reduce manpower, and eliminate pollutants through creating a more all-electric ship environment. However, placement of both non-centralized and centralized hydraulic systems for control of heavy machinery, large bay doors, articulated systems such as rudders for controlling air flow to the skirt system (such as in Landing Craft Air Cushion (LCAC) is extremely challenging. At the base of the design approach to a Mechatronic Motion System is the fact that such applications do not require high precision. What is required is that the actuator delivers sufficient thrust power without increasing the existing actuator weight and be a self-contained unit. To address this need, QorTek and PSU have been developing a new concept of an entirely new kind of motion system actuator that has few parts, enormous thrust capability for its compact size, and is amenable to affordable manufacture. The new Quadrature Mechatronic Actuator (QMA) is a hydraulic replacement that will match hydraulic force-displacement capabilities in a fully solid-state design. Quadrature Mechatronic Actuators will look very similar to the existing hydraulic actuators currently used on LCAC. These compact self-contained units represent a one-for-one substitute for existing equipment. The Mechatronic Actuator itself will be lighter and slightly smaller than its hydraulic actuator equivalent and use one or more internal hybrid solid-state drivers that are internally coupled to a linear translator.

  16. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  17. Constructing Amplitudes from Their Soft Limits

    SciTech Connect

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  18. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    NASA Astrophysics Data System (ADS)

    Gorbachev, D. V.; Ivanov, V. I.

    2015-08-01

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.

  19. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  20. Thermally induced parametric instability in back-action evading measurement of micromechanical quadrature near the zero-point level

    NASA Astrophysics Data System (ADS)

    Suh, Junho; Shaw, Matt; Weinstein, Aaron; Schwab, Keith

    2012-02-01

    Back-action evading (BAE) measurement of mechanical resonators allows, in principle, detection of a single quadrature of motion with sensitivity far below the standard quantum limit, limited in practice only by the non-idealities in the measurement. We report the results of experiments utilizing two-tone BAE in a tightly coupled cavity quantum electro-mechanical system (φc=7.1GHz, φm=10MHz, g=14MHz/nm). Due to excess dissipation in the microwave cavity, we observe a parametric instability induced by the thermal shift of mechanical resonance frequency. This bounds the minimum position imprecision on one quadrature and we measure the imprecision reaching twice the zero-point motion. We discuss the device requirements to avoid this thermal mechanism and perform measurements below the zero-point level.

  1. Error analysis in some Gauss-Turan-Radau and Gauss-Turan-Lobatto quadratures for analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2004-03-01

    We consider the generalized Gauss-Turan quadrature formulae of Radau and Lobatto type for approximating . The aim of this paper is to analyze the remainder term in the case when f is an analytic function in some region of the complex plane containing the interval [-1,1] in its interior. The remainder term is presented in the form of a contour integral over confocal ellipses (cf. SIAM J. Numer. Anal. 80 (1983) 1170). Sufficient conditions on the convergence for some of such quadratures, associated with the generalized Chebyshev weight functions, are found. Using some ideas from Hunter (BIT 35 (1995) 64) we obtain new estimates of the remainder term, which are very exact. Some numerical results and illustrations are shown.

  2. Silicon Micromachined Waveguide Quadrature-Hybrid Coupler at Terahertz Frequency Band

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Jiang; Zhang, Yong; Li, Li; Zhao, Wei; Xu, Ruimin; Xue, Quan

    2015-08-01

    A waveguide quadrature-hybrid coupler operating from 350 to 410 GHz is designed and fabricated using the deep reactive ion etching (DRIE) silicon micromachining technique. The four-port branch-line coupling configuration with five branches is used as the basic structure of the coupler. The size of the coupler is about 6.3 mm × 6.3 mm × 1 mm, which is much smaller than the flange used in the vector network analyzer (VNA). Because it is difficult to measure all the characteristics of a four-port coupler with a small size using the two-port VNA with big-size flanges, four testing topologies with different bended input/output waveguide ports are designed for measurements. The terahertz (THz) wedged-type absorbing material is adopted as the replacement of the conventional waveguide matching load because the size of the conventional waveguide matching load is too large to use. Measured results of the proposed coupler are in good agreement with simulated results, indicating that the average insertion loss is 0.9 dB and the isolation is better than 20 dB. Effects of the DRIE process on the coupler's performance are discussed in detail.

  3. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  4. Real-space quadrature: A convenient, efficient representation for multipole expansions

    SciTech Connect

    Rogers, David M.

    2015-02-21

    Multipoles are central to the theory and modeling of polarizable and nonpolarizable molecular electrostatics. This has made a representation in terms of point charges a highly sought after goal, since rotation of multipoles is a bottleneck in molecular dynamics implementations. All known point charge representations are orders of magnitude less efficient than spherical harmonics due to either using too many fixed charge locations or due to nonlinear fitting of fewer charge locations. We present the first complete solution to this problem—completely replacing spherical harmonic basis functions by a dramatically simpler set of weights associated to fixed, discrete points on a sphere. This representation is shown to be space optimal. It reduces the spherical harmonic decomposition of Poisson’s operator to pairwise summations over the point set. As a corollary, we also shows exact quadrature-based formulas for contraction over trace-free supersymmetric 3D tensors. Moreover, multiplication of spherical harmonic basis functions translates to a direct product in this representation.

  5. Comparison of two-, three-, and four-exposure quadrature phase-shifting holography.

    PubMed

    Liu, Jung-Ping; Poon, Ting-Chung; Jhou, Gui-Syu; Chen, Po-Jung

    2011-06-01

    In standard (four-exposure) quadrature phase-shifting holography (QPSH), two holograms and two intensity maps are acquired for zero-order-free and twin-image-free reconstruction. The measurement of the intensity map of the object light can be omitted in three-exposure QPSH. Furthermore, the measurements of the two intensity maps can be omitted in two-exposure QPSH, and the acquisition time of the overall holographic recording process is reduced. In this paper we examine the quality of the reconstructed images in two-, three-, and four-exposure QPSH, in simulations as well as in optical experiments. Various intensity ratios of the object light and the reference light are taken into account. Simulations show that two- and three-exposure QPSH can provide reconstructed images with quality comparable to that of four-exposure QPSH at a low intensity ratio. In practice the intensity ratio is limited by visibility, and thus four-exposure QPSH exhibits the best quality of the reconstructed image. The uniformity and the phase error of the reference light are also discussed. We found in most cases there is no significant difference between the reconstructed images in two- and three-exposure QPSH, and the quality of the reconstructed images is acceptable for visual applications such as the acquisition of three-dimensional scene for display or particle tracking.

  6. A Quadrature-Free Conservative Level Set RKDG for Simulating Atomization

    NASA Astrophysics Data System (ADS)

    Jibben, Zechariah; Herrmann, Marcus

    2012-11-01

    We present an arbitrary high-order, quadrature-free, Runge-Kutta discontinuous Galerkin (RKDG) method for the solution of the conservative level set equation (Olsson et al., 2007), used for capturing phase interfaces in atomizing multiphase flows. Special care is taken to maintain high-order accuracy in the reinitialization equation, using appropriate slope limiters when necessary and a shared basis across cell interfaces for the diffusive flux. For efficiency, we implement the method in the context of the dual narrow band overset mesh approach of the Refined Level Set Grid method (Herrmann, 2008). The accuracy, consistency, and convergence of the resulting method is demonstrated using the method of manufactured solutions (MMS) and several standard test cases, including Zalesak's disk and columns and spheres in prescribed deformation fields. Using MMS, we demonstrate k + 1 order spatial convergence for k-th order orthonormal Legendre polynomial basis functions. We furthermore show several orders of magnitude improvement in shape and volume errors over traditional WENO based distance function level set methods, and k - 1 order spatial convergence of interfacial curvature using direct neighbor cells only. Supported by Stanford's 2012 CTR Summer Program and NSF grant CBET-1054272.

  7. A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru

    2016-11-01

    A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ˜ 1-2, k⊥ ˜ 2-9 cm-1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.

  8. Algorithm for the Time-Propagation of the Radial Diffusion Equation Based on a Gaussian Quadrature.

    PubMed

    Gillespie, Dirk

    2015-01-01

    The numerical integration of the time-dependent spherically-symmetric radial diffusion equation from a point source is considered. The flux through the source can vary in time, possibly stochastically based on the concentration produced by the source itself. Fick's one-dimensional diffusion equation is integrated over a time interval by considering a source term and a propagation term. The source term adds new particles during the time interval, while the propagation term diffuses the concentration profile of the previous time step. The integral in the propagation term is evaluated numerically using a combination of a new diffusion-specific Gaussian quadrature and interpolation on a diffusion-specific grid. This attempts to balance accuracy with the least number of points for both integration and interpolation. The theory can also be extended to include a simple reaction-diffusion equation in the limit of high buffer concentrations. The method is unconditionally stable. In fact, not only does it converge for any time step Δt, the method offers one advantage over other methods because Δt can be arbitrarily large; it is solely defined by the timescale on which the flux source turns on and off.

  9. SOHO-Ulysses Spring 2000 Quadrature: Coronal Diagnostic Spectrometer and SUMER Results

    NASA Astrophysics Data System (ADS)

    Parenti, S.; Landi, E.; Bromage, B. J. I.

    2003-06-01

    We present results from SOHO/CDS and SOHO/SUMER coordinated observations of coronal streamers made during the spring 2000 quadrature of SOHO, the Sun, and Ulysses. These observations form part of the JOP 112, which is primarily aimed at investigating the composition of the regions of the corona and the solar wind observed by both SOHO and Ulysses. SUMER and CDS observed the low corona from the limb up to about 1.3 Rsolar from the Sun center. The physical parameters of the plasma, such as electron density, temperature, emission measure, and composition, are measured along the radial direction, toward Ulysses. The variation in these parameters over the 6 day series of observations was examined, and no significant change was seen. The dependence of these parameters on the solar latitude was also investigated. The results indicate that the observed streamers are homogeneous, of coronal composition, and nearly in hydrostatic equilibrium. The structures remained almost stable during the whole period of the observations.

  10. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  11. An efficient quadrature for 2.5D boundary element calculations

    NASA Astrophysics Data System (ADS)

    Kasess, Christian H.; Kreuzer, Wolfgang; Waubke, Holger

    2016-11-01

    In recent years, the boundary element method has become a widely used tool for calculating the mitigation effects of noise barriers. However, since for large structures calculations in 3D become very inefficient, most of the standard implementations are only in 2D. This means that the noise source is implicitly assumed to be given by a coherent line source, which is not realistic in most cases. By using a Fourier transform with respect to a spatial coordinate along the length of the structure it is possible to reduce the 3D problem to several 2D problems with distinct wavenumbers which allows the simulation of more realistic noise sources and which is typically referred to as 2.5D BEM. To that end, it is necessary to numerically calculate a Fourier-like integral over all the 2D solutions. In this work, an efficient way to calculate this integral is given building on existing approaches using Clenshaw-Curtis-Filon quadrature and demodulation combined with an adaptive order-selection scheme. As BEM calculations are costly, the main focus of the method introduced lies on avoiding too many of these calculations. The efficiency of the method is illustrated using two different examples: a reflecting cylinder and an L-shaped noise barrier.

  12. Round-robin differential quadrature phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Zhang, Ying-Ying; Bao, Wan-Su; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2017-02-01

    Recently, a round-robin differential phase-shift (RRDPS) protocol was proposed [Nature 509, 475 (2014)], in which the amount of leakage is bounded without monitoring the signal disturbance. Introducing states of the phase-encoded Bennett–Brassard 1984 protocol (PE-BB84) to the RRDPS, this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift (RRDQPS) quantum key distribution. Regarding a train of many pulses as a single packet, the sender modulates the phase of each pulse by one of {0, π/2, π, 3π/2}, then the receiver measures each packet with a Mach–Zehnder interferometer having a phase basis of 0 or π/2. The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84, so it has great compatibility with the current quantum system. Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack. Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261 and 11304397) and the National Basic Research Program of China (Grant No. 2013CB338002)

  13. Algorithm for the Time-Propagation of the Radial Diffusion Equation Based on a Gaussian Quadrature

    PubMed Central

    Gillespie, Dirk

    2015-01-01

    The numerical integration of the time-dependent spherically-symmetric radial diffusion equation from a point source is considered. The flux through the source can vary in time, possibly stochastically based on the concentration produced by the source itself. Fick’s one-dimensional diffusion equation is integrated over a time interval by considering a source term and a propagation term. The source term adds new particles during the time interval, while the propagation term diffuses the concentration profile of the previous time step. The integral in the propagation term is evaluated numerically using a combination of a new diffusion-specific Gaussian quadrature and interpolation on a diffusion-specific grid. This attempts to balance accuracy with the least number of points for both integration and interpolation. The theory can also be extended to include a simple reaction-diffusion equation in the limit of high buffer concentrations. The method is unconditionally stable. In fact, not only does it converge for any time step Δt, the method offers one advantage over other methods because Δt can be arbitrarily large; it is solely defined by the timescale on which the flux source turns on and off. PMID:26208111

  14. A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak.

    PubMed

    Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru

    2016-11-01

    A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ∼ 1-2, k⊥ ∼ 2-9 cm(-1)) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.

  15. Multipole-preserving quadratures for the discretization of functions in real-space electronic structure calculations.

    PubMed

    Genovese, Luigi; Deutsch, Thierry

    2015-12-21

    Discretizing an analytic function on a uniform real-space grid is often done via a straightforward collocation method. This is ubiquitous in all areas of computational physics and quantum chemistry. An example in density functional theory (DFT) is given by the external potential or the pseudo-potential describing the interaction between ions and electrons. The accuracy of the collocation method used is therefore very important for the reliability of subsequent treatments like self-consistent field solutions of the electronic structure problems. By construction, the collocation method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box error, which may spoil the numerical stability of the description when the real-space grid is too coarse. As the external potential is an input of the problem, even a highly precise computational treatment cannot cope this inconvenience. We present in this paper a new quadrature scheme that is able to exactly preserve the moments of a given analytic function even for large grid spacings, while reconciling with the traditional collocation method when the grid spacing is small enough. In the context of real-space electronic structure calculations, we show that this method improves considerably the stability of the results for large grid spacings, opening up the path towards reliable low-accuracy DFT calculations with a reduced number of degrees of freedom.

  16. Security of the differential-quadrature-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2016-08-01

    One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer. Using essentially the same setup and by regarding a train of many pulses as a single block, one can carry out the so-called differential-quadrature-phase-shift (DQPS) protocol, which is a variant of differential-phase-shift (DPS) protocols. Here we prove the security of the DQPS protocol based on an adaptation of proof techniques for the BB84 protocol, which inherits the advantages arising from the simplicity of the protocol, such as accommodating the use of threshold detectors and simple off-line calibration methods for the light source. We show that the secure key rate of the DQPS protocol in the proof is eight-thirds as high as the rate of the PE-BB84 protocol.

  17. SOHO-Ulysses Coordinated Studies During the Two Extended Quadratures and the Radial Alignment of 2007-2008

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2007-01-01

    During quadrature, plasma seen on the limb of the Sun, along the radi al direction to Ulysses, by SOHO or STEREO can be sampled in situ as lt later passes Ulysses. A figure shows a coronagraph image, the rad ial towards Ulysses at 58 deg. S. and the SOHO/UVCS slit positions d uring one set of observations. A CME subsequently occurred and passed Ulysses (at 3/4 AU) 15 days later.

  18. Performance of Coded Offset Quadrature Phase-Shift Keying (OQPSK) and MIL-STD Shaped OQPSK (SOQPSK) with Iterative Decoding

    NASA Astrophysics Data System (ADS)

    Li, L.; Simon, M. K.

    2004-02-01

    We show that, similar to the trellis-coded modulation representation of MIL-STD shaped offset quadrature phase-shift keying (SOQPSK), offset quadrature phase-shift keying (OQPSK) can be decomposed into a "degraded" trellis encoder and a memoryless mapper. Based on the representations of OQPSK and MIL-STD SOQPSK as trellis-coded modulations, we investigate the potential coding gains achievable from the application of simple outer codes to form a concatenated coding structure with iterative decoding. For MIL-STD SOQPSK, we describe the optimum receiver corresponding to its trellis-coded modulation form and then propose a simplified receiver. The bit-error-rate (BER) performances of both receivers for uncoded and coded MIL-STD SOQPSK are simulated and compared to those of OQPSK and Feher-patented quadrature phase-shift keying (FQPSK). The asymptotic BER performance of MIL-STD SOQPSK also is analyzed and compared to that of OQPSK and FQPSK. Simulation results show that, compared to their uncoded systems, both OQPSK and MIL-STD SOQPSK obtain significant coding gains by applying iterative decoding to either the parallel concatenated coding scheme or the serial one, even when very simple outer codes are used.

  19. Discontinuities of multi-Regge amplitudes

    NASA Astrophysics Data System (ADS)

    Fadin, V. S.

    2015-04-01

    In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for n-gluon amplitudes in the planar N = 4 SYM at n ≥ 6. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.

  20. Minimal Basis for Gauge Theory Amplitudes

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Vanhove, Pierre

    2009-10-16

    Identities based on monodromy for integrations in string theory are used to derive relations between different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)exclamation amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.

  1. Gravity and Yang-Mills amplitude relations

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo

    2010-11-15

    Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.

  2. DVCS amplitude with kinematical twist-3 terms

    SciTech Connect

    Radyushkin, A.V.; Weiss, C.

    2000-08-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.

  3. An amplitude modulated laser system for distance and displacement measurement

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.; Holben, Milford S., Jr.

    1986-01-01

    A laser distance and displacement measurement system is being developed to monitor small displacements in large space structures for strain analysis and structural control. The reflected laser beam is focused on a detector and the detected signal is mixed with the reference. Small displacements are indicated by a change in modulation frequency which is adjusted to maintain quadrature between the received signal and the reference signal from the voltage-controlled oscillator in a phase-locked loop. Measurement of absolute distance is accomplished by sweeping the modulation frequency from a quadrature lock point to an adjacent lock point.

  4. Magnetospheric chorus - Amplitude and growth rate

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.; Helliwell, R. A.

    1975-01-01

    A new study of the amplitude of magnetospheric chorus with 1966-1967 data from the Stanford University/Stanford Research Institute VLF receivers on Ogo 1 and Ogo 3 has confirmed the band-limited character of magnetospheric chorus in general and the double-banding of near-equatorial chorus. Chorus amplitude tended to be inversely correlated with frequency, implying lower intensities at lower L values. Individual chorus emissions often showed a characteristic amplitude variation, with rise times of 10 to 300 ms, a short duration at peak amplitude, and decay times of 100 to 3000 msec. Growth was often approximately exponential, with rates from 200 to nearly 2000 dB/sec. Rate of change of frequency was found in many cases to be independent of emission amplitude, in agreement with the cyclotron feedback theory of chorus (Helliwell, 1967, 1970).

  5. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  6. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    PubMed

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  7. Amplitude-Squared Squeezing in the m-PHOTON Jaynes-Cummings Model with Squeezed Field Input

    NASA Astrophysics Data System (ADS)

    Mir, Mubeen A.; Razmi, M. S. K.

    Amplitude-squared (AS) squeezing has been investigated for the m-photon Jaynes-Cummings model assuming the field to be initially in the squeezed states. The role played by intensity-dependent coupling has also been discussed. It has been shown that for the large initial average photon number (bar {n}) with odd values of m, AS squeezing revokes permanently whereas with even values it recurs periodically. As m increases the revocation is hastened and the duration of occurrence decreases. Higher values of m for the initial field in a squeezed vacuum state can make one of the quadrature permanently squeezed. The AS squeezing behavior for two initial states of the atom, i.e., ground state versus excited state is also compared.

  8. Programmable digital modem

    NASA Astrophysics Data System (ADS)

    Poklemba, John J.

    1991-11-01

    The design of the Programmable Digital Modem (PDM) is outlined. The PDM will be capable of operating with numerous modulation techniques including: 2-, 4-, 8- and 16-ary phase shift keying (PSK), minimum shift keying (MSK), and 16-ary quadrature amplitude modulation (QAM), with spectral occupancy from 1.2x to 2x the data symbol rate. It will also be programmable for transmission rates ranging from 2.34 to 300 Mbit/s, where the maximum symbol rate is 75 Msymbol/s. Furthermore, these parameters will be executable in independent burst, dependent burst, or continuous mode. In dependent burst mode the carrier and clock oscillator sources are common from burst to burst. To achieve as broad a set of requirements as these, it is clear that the essential signal processing must be digital. In addition, to avoid hardware changes when the operational parameters are changed, a fixed interface to an analog intermediate frequency (IF) is necessary for transmission; and, common system level architectures are necessary for the modulator and demodulator. Lastly, to minimize size and power, as much of the design as possible will be implemented with application specific integrated circuit (ASIC) chips.

  9. Programmable digital modem

    NASA Technical Reports Server (NTRS)

    Poklemba, John J.

    1991-01-01

    The design of the Programmable Digital Modem (PDM) is outlined. The PDM will be capable of operating with numerous modulation techniques including: 2-, 4-, 8- and 16-ary phase shift keying (PSK), minimum shift keying (MSK), and 16-ary quadrature amplitude modulation (QAM), with spectral occupancy from 1.2x to 2x the data symbol rate. It will also be programmable for transmission rates ranging from 2.34 to 300 Mbit/s, where the maximum symbol rate is 75 Msymbol/s. Furthermore, these parameters will be executable in independent burst, dependent burst, or continuous mode. In dependent burst mode the carrier and clock oscillator sources are common from burst to burst. To achieve as broad a set of requirements as these, it is clear that the essential signal processing must be digital. In addition, to avoid hardware changes when the operational parameters are changed, a fixed interface to an analog intermediate frequency (IF) is necessary for transmission; and, common system level architectures are necessary for the modulator and demodulator. Lastly, to minimize size and power, as much of the design as possible will be implemented with application specific integrated circuit (ASIC) chips.

  10. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  11. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  12. Nonlinear impairment compensation for DFT-S OFDM signal transmission with directly modulated laser and direct detection

    NASA Astrophysics Data System (ADS)

    Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun

    2017-03-01

    We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.

  13. Gigabit polarization division multiplexing in visible light communication.

    PubMed

    Wang, Yuanquan; Yang, Chao; Wang, Yiguang; Chi, Nan

    2014-04-01

    In this Letter, polarization division multiplexing is proposed and experimentally demonstrated for the first time that we know of, in visible light communication systems based on incoherent light emitting diodes and two orthogonal groups of linear polarizers. Spectrally efficient 16-ary quadrature amplitude modulation Nyquist single carrier frequency domain equalization is employed to obtain a maximum spectral efficiency. We achieve an aggregate data rate of 1  Gb/s, with bit error rate results for two polarization directions both below the 7% pre-forward-error-correction threshold of 3.8×10(-3) after 80 cm free-space transmission. Moreover, the cross talk between x and y polarization is also discussed and analyzed.

  14. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  15. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-02

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  16. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations That Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + definite integral of g(x, t)F(t,y(t))dt with limits between 0 and 1,0 less than or equal to x les than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integral equations arise, e.g., when one applied Green's function techniques to nonlinear two-point boundary value problems of the form y "(x) =f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and y(l) = y(sub l), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trepezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal rule, thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  17. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations that Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + integral(0 to 1) g(x,t) F(t, y(t)) dt, 0 less than or equal to x less than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integrals equations arise, e.g., when one applies Green's function techniques to nonlinear two-point boundary value problems of the form U''(x) = f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and g(l) = y(sub 1), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trapezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  18. Phase and amplitude errors in FM radars

    NASA Astrophysics Data System (ADS)

    Griffiths, Hugh D.

    The constraints on phase and amplitude errors are determined for various types of FM radar by calculating the range sidelobe levels on the point target response due to the phase and amplitude modulation of the target echo. It is shown that under certain circumstances the constraints on phase linearity appropriate for conventional pulse compression radars are unnecessarily stringent, and quite large phase errors can be tolerated provided the relative delay of the local oscillator with respect to the target echo is small compared with the periodicity of the phase error characteristic. The constraints on amplitude flatness, however, are severe under almost all circumstances.

  19. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  20. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  1. SOHO-Ulysses Coordinated Studies During the Two Extended Quadratures and the Alignment of 2007-2008

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2007-01-01

    During SOHO-Sun-Ulysses quadratures the geometry of the configuration makes it possible to sample "in situ" the plasma parcels that are remotely observed in the corona. Although the quadrature position occurs at a well defined instant in time, we typically take data while Ulysses is within +/- 5 degrees of the limb, with the understanding that plasma sampled by Ulysses over this time interval can all be traced to its source in the corona. The relative positions of SOHO and Ulysses in winter 2007 (19 Dec 2006-28 May 2007) are unusual: the SOHO-Sun-Ulysses included angle is always between 85 and 95 degrees - the quadrature lasts for 5 months! This provides an opportunity for extended observations of specific observing objectives. In addition, in summer 2007, Ulysses (at 1.34 AU) is in near-radial alignment with Earth/ACE/Wind and SOHO, allowing us to analyze radial gradients and propagation in the solar wind and inner heliosphere. Our own quadrature campaigns rely heavily on LASCO and UVCS coronal observations: LASCO giving the overall context above 2 solar radii while the UVCS spectrograph acquired data from - 1.5 to, typically, 4-5 solar radii. In the past, coronal parameters have been derived from data acquired by these two experiments and compared with "in situ" data of Ulysses' SWOOPS and SWICS. Data from other experiments like EIT, CDS, SUMER, Sac Peak Fe XIV maps, magnetic field maps from the Wilcox solar magnetograph, MLSO, from MDI, and from the Ulysses magnetograph experiment have been, and will be, used to complement LASCO/UVCS/SWOOPS and SWICS data. We anticipate that observations by ACE/WIND/STEREO/Hinode and other missions will be relevant as well. During the IHY campaigns, Ulysses will be 52-80 degrees south in winter 2007, near sunspot minimum. Hence, our own scientific objective will be to sample high speed wind or regions of transition between slow and fast wind. This might be a very interesting situation - not met in previous quadratures - allowing

  2. Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor.

    PubMed

    Levesque, Philippe; Sawan, Mohamad

    2009-08-01

    A fully hardware-based real-time digital wideband quadrature demodulation processor based on the Hilbert transform is proposed to process ultrasound radio frequency signals. The presented architecture combines 2 finite impulse response (FIR) filters to process in-phase and quadrature signals and includes a piecewise linear approximation architecture that performs the required square root operations. The proposed implementation enables flexibility to support different transducers with its ability to load on-the-fly different FIR filter coefficient sets. The complexity and accuracy of the demodulator processor are analyzed with simulated RF data; a normalized residual sum-of-squares cost function is used for comparison with the Matlab Hilbert function. Three implementations are integrated into a hand-held ultrasound system for experimental accuracy and performance evaluation. Real-time images were acquired from a reference phantom, demonstrating the feasibility of using the presented architecture to perform real-time digital quadrature demodulation of ultrasonic signal echoes. Experimental results show that the implementation, using only 2942 slices and 3 dedicated digital multipliers of a low-cost and low-power field-programmable gate array (FPGA) is accurate relative to a comparable software- based system; axial and lateral resolution of 1 mm and 2 mm, respectively, were obtained with a 12-mm piezoelectric transducer without postprocessing. Because the processing and sampling rates are the same, high-frequency ultrasound signals can be processed as well. For a 15-frame-per-second display, the hand-held ultrasonic imaging-processing core (FPGA, memory) requires only 45 mW (dynamic) when using a 5-MHz single-element piezoelectric transducer.

  3. Interpretation of Quadrature and In-Phase Terrain Electrical Conductivity Responses Observed in Siting and Monitoring Surveys in Glaciolacustrine Soils

    NASA Astrophysics Data System (ADS)

    Hayles, J. G.; Ferguson, I. J.

    2004-05-01

    Terrain electrical conductivity (TEC) surveys can assist in the siting and monitoring of landfills and wastewater lagoons. Results of TEC surveys in glaciolacustrine clay-rich soils in southern Manitoba, Canada show how these surveys have successfully mapped sub-surface geology, identified heterogeneity in the sub-surface, and identified areas of leakage from such facilities. TEC instruments provide a quadrature response, from which the electrical conductivity of the ground is usually determined, and an in-phase response. In areas of low to moderate electrical conductivity (less than several hundred mS/m) the quadrature and in-phase responses both increase with increasing electrical conductivity. The relationship between the two responses over a uniform half-space is well approximated by a second-order power law. Results from many sites in Manitoba indicate that in some areas this power law is followed whereas in other areas a roughly linear relationship is observed. At some survey sites, TEC in-phase responses that are spatially uncorrelated with the quadrature response are observed. These observations occur in soils with relatively low electrical conductivity and relatively low magnetization. Results from a number of sites suggest the effect occurs in areas of plowed agricultural land that have undergone long-term exposure to wastewater seepage. We hypothesize that positive in-phase shifts indicate an increase in the electrical polarization in the glaciolacustrine soils caused by their interaction with wastewater. Laboratory studies have shown that the complex conductivity response at the frequency of the TEC measurements is affected by the clay mineralogy; groundwater salinity, acidity, and cation chemistry; and the presence of organic contaminants. In this study we examine a site with enhanced in-phase response in detail. The results reveal increased concentrations of heavy-metals and some variations in soil mineralogy that correlate with the in-phase response

  4. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    NASA Astrophysics Data System (ADS)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  5. Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature

    NASA Astrophysics Data System (ADS)

    Roussel, C.; Verdun, J.; Cali, J.; Masson, F.

    2015-12-01

    The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or `tesseroids' have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss-Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling

  6. I/Q reversal phenomena in 4-phase modified Costas Loops. [in-phase and quadrature outputs of unbalanced QPSK

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1985-01-01

    A method for predicting the occurrence of I/Q reversals in unbalanced QPSK 4-phase modified Costas Loops is discussed. Potential causes for the reversal of in-phase and quadrature outputs of the unbalanced QPSK demodulator during acquisition and tracking are studied. The design of the unbalance QPSK demodulator and loop characteristics are described. The effect of an anomalous condition during a transient interval or demod/remod operation on data source output is examined. Filtering and hard-limiting effects, and the demodulator loop S-curve stability during tracking are evaluated.

  7. Tables of Lobatto quadrature sets for S/sub N/ calculations in one-dimensional cylindrical geometry

    SciTech Connect

    Morel, J.E.

    1981-01-01

    Tables of Lobatto quadrature sets for S/sub N/ calculations in one-dimensional cylindrical geometry are presented. The order of the sets varies from S/sub 2/ to S/sub 10/. Each S/sub N/ set is sufficiently accurate to be used in conjunction with Legendre cross-section expansions of degree N-1. These sets are particularly useful for calculations with normally incident sources and line sources and for adjoint calculations with plane-incident forward sources. 3 figures, 1 table.

  8. Shaped offset quadrature phase shift keying (SOQPSK) modulation scheme and its application in optical wavelength-division multiplexed (DWDM) transmission

    NASA Astrophysics Data System (ADS)

    Zou, Ning; Huang, Benxiong; Xu, Zhengguang

    2013-10-01

    This paper presents a new quaternary modulation scheme called SOQPSK. The principle on the optical SOQPSK generation is derived and analyzed, which is implemented by traditional Mach-Zehnder modulators. The performance of the optical SOQPSK modulated system is evaluated and compared with those of quadrature phase shift keying (QPSK) and offset QPSK (OQPSK) modulation systems via simulation, in terms of spectral efficiency, receiver sensitivity and density DWDM transmission performance. Simulations show that the novel modulation scheme improves spectral efficiency for DWDM transmission and provides better transmission performance than QPSK.

  9. Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach

    SciTech Connect

    Woods, M. P.; Plenio, M. B.

    2016-02-15

    Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.

  10. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  11. Large Amplitude Oscillations of a Double Pendulum

    NASA Astrophysics Data System (ADS)

    Gerres, Jeffrey M.; Jacobs, Robert M.; Kasun, Sara F.; Bacon, Margaret E.; Nagolu, Chakravarthi M.; Owens, Erin L.; Siehl, Kevin F.; Thomsen, Marshall; Troyer, Jon S.

    2008-03-01

    The nature of the normal modes of oscillation in the small angle regime of a double pendulum is well established. However, for large amplitude oscillations, a closed form solution of the differential equations of motion does not exist. Using Lagrange formalism, we explore both the in-phase and out-of-phase normal modes of oscillation of a double pendulum as a function of the mass ratio of the two bobs and their initial angular positions. We conduct the analysis using MatLab, where we initially verify our code in the known small amplitude limit. Among our results we find that certain symmetries between the in-phase and out-of-phase normal modes that exist in the small amplitude limit are no longer present at large amplitudes.

  12. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  13. Feynman amplitudes and limits of heights

    NASA Astrophysics Data System (ADS)

    Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.

    2016-10-01

    We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.

  14. Amplitude Metrics for Cellular Circadian Bioluminescence Reporters

    PubMed Central

    St. John, Peter C.; Taylor, Stephanie R.; Abel, John H.; Doyle, Francis J.

    2014-01-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  15. Bootstrapping One-Loop QCD Amplitudes

    SciTech Connect

    Berger, Carola F.; /SLAC

    2006-09-08

    We review the recently developed bootstrap method for the computation of high-multiplicity QCD amplitudes at one loop. We illustrate the general algorithm step by step with a six-point example. The method combines (generalized) unitarity with on-shell recursion relations to determine the not cut-constructible, rational terms of these amplitudes. Our bootstrap approach works for arbitrary configurations of gluon helicities and arbitrary numbers of external legs.

  16. Amplitude metrics for cellular circadian bioluminescence reporters.

    PubMed

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-02

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  17. Quartic Amplitudes for Minkowski Higher Spin

    NASA Astrophysics Data System (ADS)

    Bengtsson, Anders K. H.

    The old problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.

  18. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  19. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  20. A 2 to 5GHz-Band Self Frequency Dividing Quadrature Mixer Using Current Re-Use Configuration

    NASA Astrophysics Data System (ADS)

    Taniguchi, Eiji; Shimozawa, Mitsuhiro; Suematsu, Noriharu

    A 2 to 5GHz-band self frequency dividing quadrature mixer utilizing current re-use configuration with small size and broad band operation is proposed for a direct conversion receiver and a low-IF receiver of cognitive radio. The proposed mixer operates at twice the LO frequency by directly using a static type flip-flop frequency divider as the LO switching circuit for quadrature signal generation. The current re-use configuration is realized because the dc current of the frequency divider and the RF common-emitter amplifier share the same current flow path. Simulations and experiments verify that the proposed mixer offers broad band operation, miniaturization, and low power consumption. The mixer IC fabricated by 0.35μm SiGe-BiCMOS technology achieved the conversion gain of 20.6dB, noise figure of 11.9dB and EVM for π/4-shift QPSK signal of 4.4% at 2.1GHz with power consumption of 15mW and size of 0.22×0.31mm2. For the confirmation of broad band operation, the characteristics of conversion gain and noise figure were measured at 5.2GHz. The proposed mixer could operate at 5.2GHz with enough conversion gain, but the noise figure was inferior to that of 2.1GHz. Therefore the further investigation and improvement about the noise figure will be needed for higher frequency.

  1. Performance of coherent detection for FTN-DFTs-OFDM signal using receiver-side quadrature duobinary shaping

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie

    2016-12-01

    In this paper we investigate Faster-than-Nyquist Discrete-Fourier-Transform spread Orthogonal Frequency Division Multiplexing (FTN-DFTs-OFDM) signaling which combines the features of both single carrier FTN and OFDM system. By introducing the quadrature duo-binary (QDB) filtering at the receiver side, the transmitted OFDM signal can be packed in a sub-Nyquist spacing, which improves the spectral efficiency (SE) compared to conventional detection schemes. Maximum a posteriori (MAP) and maximum likelihood sequence estimation (MLSE) criteria have been both used and compared to find an optimal equalization scheme for combating FTN multiplexing at transmitter side and QDB filtering at receiver side. The simulations result show that by applying QDB filtering at the receiver side, the back-to-back (BTB) required optical signal noise ratio (OSNR) at bit error rate (BER) of 1 × 10-2 is reduced by 1.5-dB for 20-GHz spaced 128-Gb/s polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signal, achieving a SE of 6.4-b/s/Hz.

  2. Quadrature RF Coil for In Vivo Brain MRI of a Macaque Monkey in a Stereotaxic Head Frame

    PubMed Central

    ROOPNARIANE, COLIN A.; RYU, YEUN-CHUL; TOFIGHI, MOHAMMAD-REZA; MILLER, PATTI A.; OH, SUKHOON; WANG, JIANLI; PARK, BU SIK; ANSEL, LUKAS; LIEU, CHRISTOPHER A.; SUBRAMANIAN, THYAGARAJAN; YANG, QING X.; COLLINS, CHRISTOPHER M.

    2012-01-01

    We present a quadrature volume coil designed for brain imaging of a macaque monkey fixed in a sphinx position (facing down the bore) within a stereotactic frame at 3 T, where the position of the monkey and presence of the frame preclude use of existing coils. Requirements include the ability to position and remove the coil without disturbing the position of the monkey in the frame. A saddle coil and a solenoid were combined on a modified cylindrical former and connected in quadrature as to produce a homogeneous circularly polarized field throughout the brain. To allow the loops of the saddle coil to encompass the ear posts, partial disassembly and reassembly were facilitated by embedding pin and socket contacts into separate pieces of the former. Coil design included simulation of the electromagnetic fields for the coil containing a 3D model of a monkey’s head. The resulting coil produced adequate homogeneity and signal-to-noise ratio throughout the brain. PMID:22611340

  3. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.

    PubMed

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  4. Planar Quadrature RF Transceiver Design Using Common-Mode Differential-Mode (CMDM) Transmission Line Method for 7T MR Imaging

    PubMed Central

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B.; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays. PMID:24265823

  5. Application of a quadrature-based moments method to the modeling of volcanic plumes

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Barsotti, Sara; Neri, Augusto

    2014-05-01

    (namely the moments) are then derived and their transport equations formulated. For this work we extended, by adopting the method of moments, the Eulerian steady-state volcanic plume model presented in Barsotti et al. (2008). Differently from the original works where pyroclastic particles were partitioned in a finite number of classes with different size and properties, the new model is able to consider a continuous size distribution function of pyroclasts, f(D), representing the particles (for unit volume) with diameter between D and D+dD. Accordingly, transport equations for the moments of the ash particles size distribution are derived and the equations of the plume are expressed in terms of the moments. Here we present the new multiphase model formulation based on the implementation of the quadrature method of moments together with its advantages and drawbacks with respect to previous approaches. Results of a sensitivity analysis of the model with respect to the parameters of the continuous distribution describing the grain sizes at the vent (lognormal or beta distributions) are also shown and discussed. Barsotti, S., Neri, A., and Scire, J.: The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation, Journal of Geophysical Research, 113, 2008.

  6. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  7. Cut-constructible part of QCD amplitudes

    SciTech Connect

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-05-15

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.

  8. Analytic representations of Yang-Mills amplitudes

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo

    2016-12-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  9. A description of seismic amplitude techniques

    NASA Astrophysics Data System (ADS)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  10. Modified π π amplitude with σ pole

    NASA Astrophysics Data System (ADS)

    Bydžovský, P.; Kamiński, R.; Nazari, V.

    2014-12-01

    A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.

  11. Singularity structure of maximally supersymmetric scattering amplitudes.

    PubMed

    Arkani-Hamed, Nima; Bourjaily, Jacob L; Cachazo, Freddy; Trnka, Jaroslav

    2014-12-31

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic singularities and is free of any poles at infinity--properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA).

  12. Topographic quantitative EEG amplitude in recovered alcoholics.

    PubMed

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  13. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  14. Amplitude Models for Discrimination and Yield Estimation

    SciTech Connect

    Phillips, William Scott

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  15. Amplitude for N-gluon superstring scattering.

    PubMed

    Stieberger, Stephan; Taylor, Tomasz R

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope alpha'. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in alpha', for the so-called maximally helicity violating configurations, with N = 4, 5 and N = 6. We also obtain the leading O(alpha '2) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  16. Amplitude for N-Gluon Superstring Scattering

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  17. Coherent quantum states from classical oscillator amplitudes

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Eisfeld, Alexander

    2012-05-01

    In the first days of quantum mechanics Dirac pointed out an analogy between the time-dependent coefficients of an expansion of the Schrödinger equation and the classical position and momentum variables solving Hamilton's equations. Here it is shown that the analogy can be made an equivalence in that, in principle, systems of classical oscillators can be constructed whose position and momenta variables form time-dependent amplitudes which are identical to the complex quantum amplitudes of the coupled wave function of an N-level quantum system with real coupling matrix elements. Hence classical motion can reproduce quantum coherence.

  18. Nonlinear (super)symmetries and amplitudes

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata

    2017-03-01

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E 7(7) scalar sector symmetries as well as the fermionic goldstino symmetries.

  19. Fiber nonlinear tolerance comparison between 112 Gb/s coherent transmission systems using quadrature-phase-shift-keying, offset quadrature-phase-shift-keying, and minimum-shift-keying formats

    NASA Astrophysics Data System (ADS)

    Zhang, Fangzheng; Wu, Jian; Li, Yan; Lin, Jintong

    2012-10-01

    We numerically investigate the nonlinear transmission performance of 112 Gb/s coherent transmission systems using polarization multiplexed quadrature-phase-shift-keying (QPSK), offset QPSK (OQPSK) and minimum-shift-keying (MSK) formats, and compare the fiber nonlinear tolerances of the three modulation formats. Simulation results show that in both single channel and wavelength-division-multiplexed (WDM) systems, OQPSK is slightly more resistant to fiber nonlinearities than QPSK, and MSK has the best fiber nonlinear tolerance. The advantage of MSK format over QPSK and OQPSK is particularly notable in WDM systems. When digital back propagation (DBP) is used in the digital coherent receiver for intra-channel fiber nonlinearity compensation, system performance is improved with better Q-factor, enlarged input optical power range and extended transmission distance. It is found that the use of DBP brings the largest performance improvement in QPSK system and the least performance improvement in MSK system although MSK system has better fiber nonlinear tolerance.

  20. Wide and Narrow CMEs and Their Source Explosions Observed at the Spring 2003 SOHO-Sun-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Suess, Steven; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.

    2006-01-01

    At the time of the spring 2003 Ulysses-SOHO-Sun quadrature, Ulysses was off the East limb of the Sun at 14.5 degrees north latitude and 4.91 AU. LASCO/C2 images show small transient events that originated from near the limb on May 25, 26 and 27 in the north-east quadrant, along with a large Coronal Mass Ejection (CME) that originated from an active region near disk center on May 26. Ulysses data bear clear signatures of the large CME, specifically including an enhanced abundance of highly ionized Fe. SOHO/UVCS spectra at 1.75 solar radii, near the radial direction to Ulysses, give no evidence of emission from high temperature lines, even for the large CME: instead, for the small events, occasional transient high emission in cool lines was observed, such as the CIII 977 Angstrom line usually absent at coronal levels. Each of these events lasted ca. 1 hour or less and never affected lines from ions forming above ca. 106K. Compact eruptions in Helium 304 Angstrom EIT images, related to the small UVCS transients, were observed at the limb of the Sun over the same period. At least one of these surge events produced a narrow CME observed in LASCO/C2. Most probably all these events are compact magnetic explosions (surges/jets, from around a small island of included polarity) which ejected cool material from lower levels. Ulysses data have been analyzed to find evidence of the cool, narrow CME events, but none or little was found. This puzzling scenario, where events seen by UVCS have no in situ counterparts and vice versa, can be partially explained once the region where the large CME originated is recognized as being at the center of the solar disk so that the CME material was actually much further from the Sun than the 1.7 Rsun height of the UVCS slit off the limb. Conversely, the narrow events may simply have missed Ulysses or been too brief for reliable signatures in composition and ionization state. A basic feature demonstrated by these observations is that large

  1. Particle Distribution Modification by Low Amplitude Modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  2. The CMU Baryon Amplitude Analysis Program

    NASA Astrophysics Data System (ADS)

    Bellis, Matt

    2007-05-01

    The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.

  3. Audio steganography by amplitude or phase modification

    NASA Astrophysics Data System (ADS)

    Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.

    2003-06-01

    This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.

  4. Travel-Time and Amplitude Sensitivity Kernels

    DTIC Science & Technology

    2011-09-01

    amplitude sensitivity kernels shown in the lower panels concentrate about the corresponding eigenrays . Each 3D kernel exhibits a broad negative...in 2 and 3 dimensions have similar 11 shapes to corresponding travel-time sensitivity kernels (TSKs), centered about the respective eigenrays

  5. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  6. Connected formulas for amplitudes in standard model

    NASA Astrophysics Data System (ADS)

    He, Song; Zhang, Yong

    2017-03-01

    Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  7. ABJM amplitudes and the positive orthogonal Grassmannian

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Wen, CongKao

    2014-02-01

    A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG2 orthogonal Grassmannian to form a larger OG k , where 2 k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG k that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of d log forms, over the positive orthogonal Grassmannian.

  8. Optical encryption of parallel quadrature phase shift keying signals based on nondegenerate four-wave mixing in highly nonlinear fiber

    NASA Astrophysics Data System (ADS)

    Cui, Yue; Zhang, Min; Zhan, Yueying; Wang, Danshi; Huang, Shanguo

    2016-08-01

    A scheme for optical parallel encryption/decryption of quadrature phase shift keying (QPSK) signals is proposed, in which three QPSK signals at 10 Gb/s are encrypted and decrypted simultaneously in the optical domain through nondegenerate four-wave mixing in a highly nonlinear fiber. The results of theoretical analysis and simulations show that the scheme can perform high-speed wiretapping against the encryption of parallel signals and receiver sensitivities of encrypted signal and the decrypted signal are -25.9 and -23.8 dBm, respectively, at the forward error correction threshold. The results are useful for designing high-speed encryption/decryption of advanced modulated signals and thus enhancing the physical layer security of optical networks.

  9. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian Quadrature Grid (GQG) approach

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Stewart; Zhou, Bing; Maurer, Hansruedi

    2010-05-01

    We have developed a modified version of the spectral element method (SEM), called the Gaussian Quadrature Grid (GQG) approach, for frequency domain 3D seismic modelling in arbitrary heterogeneous, anisotropic media. The model may incorporate an arbitrary free-surface topography and irregular subsurface interfaces. Unlike the SEM ,it does not require a powerful mesh generator such as the Delauney Triangular or TetGen. Rather, the GQG approach replaces the element mesh with Gaussian quadrature abscissae to directly sample the physical properties of the model parameters and compute the weighted residual or variational integral. This renders the model discretisation simple and easily matched to the model topography, as well as direct control of the model paramterisation for subsequent inversion. In addition, it offers high accuracy in numerical modelling provided that an appropriate density of the Gaussian quadrature abscissae is employed. The second innovation of the GQG is the incorporation of a new implementation of perfectly matched layers to suppress artificial reflections from the domain margins. We employ PML model parameters (specified complex valued density and elastic moduli) rather than explicitly solving the governing wave equation with a complex co-ordinate system as in conventional approaches. Such an implementation is simple, general, effective and easily extendable to any class of anisotropy and other numerical modelling methods. The accuracy of the GQG approach is controlled by the number of Gaussian quadrature points per minimum wavelength, the so-called sampling density. The optimal sampling density should be the one which enables high definition of geological characteristics and high precision of the variational integral evaluation and spatial differentiation. Our experiments show that satisfactory results can be obtained using sampling densities of 5 points per minimum wavelength. Efficiency of the GQG approach mainly depends on the linear

  10. Quadrature Rotating-Frame Gradient Fields for Ultra-Low FieldNuclear Magnetic Resonance and Imaging

    SciTech Connect

    Bouchard, Louis-Serge

    2005-12-30

    Magnetic resonance imaging (MRI) in very low fields isfundamentally limited by untruncated concomitant gradients which causesevere distortions in image acquisition and volume selection if thegradient fields are strong compared to the static field. In this paper,it is shown that gradient fields oscillating in quadrature can be usedfor spatial encoding in low fields and provide substantial improvementsover conventional encoding methods using static gradients. In particular,cases where the gradient field is comparable to or higher than theexternal field, Gmax/B0>1, are examined. It is shown thatundistorted slice selection and image encoding is possible because ofsmaller geometric phase errors introduced during cyclic motions of theHamiltonian. In the low field limit (Gmax/B_0 ->infinity) sliceselection is achieved with a combination of soft pulse segments and acoherent train of hard pulses to average out concomitant fields over thefast scale of the rf Hamiltonian.

  11. High-precision tilt sensor using a folded Mach-Zehnder geometry in-phase and quadrature interferometer.

    PubMed

    Park, June Gyu; Cho, Kyuman

    2016-03-20

    A new high-sensitivity homodyne in-phase and quadrature (I/Q) -interferometer scheme for measuring the tilt change of a target is presented. The new tilt sensor is a Mach-Zehnder interferometer folded by the target, in which the phase change is induced by the in-plane tilt change of the target but is not sensitive to any other motions. The interferometer is specially designed to minimize interferences caused by environmental perturbations. The induced phase is directly measured by using the I/Q-demodulation scheme. The tilt sensor exhibits an excellent sensitivity 10  prad/Hz1/2 at a frequency slightly above 1 Hz and a 0.4  prad/Hz1/2 at a frequency higher than 30 Hz.

  12. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping.

    PubMed

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi

    2016-11-14

    We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

  13. Validity of Using Two Numerical Analysis Techniques To Estimate Item and Ability Parameters via MMLE: Gauss-Hermite Quadrature Formula and Mislevy's Histogram Solution.

    ERIC Educational Resources Information Center

    Seong, Tae-Je

    The similarity of item and ability parameter estimations was investigated using two numerical analysis techniques via marginal maximum likelihood estimation (MMLE) with a large simulated data set (n=1,000 examinees) and changing the number of quadrature points. MMLE estimation uses a numerical analysis technique to integrate examinees' abilities…

  14. A robust two-node, 13 moment quadrature method of moments for dilute particle flows including wall bouncing

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Garmory, Andrew; Page, Gary J.

    2017-02-01

    For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.

  15. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy

    NASA Astrophysics Data System (ADS)

    Paulo, Álvaro San; García, Ricardo

    2001-11-01

    Amplitude-modulation (tapping mode) atomic force microscopy is a technique for high resolution imaging of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift, and average tip-surface forces. We find that the average value of the interaction force and oscillation and the average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction. The agreement obtained between analytical and numerical results supports the analytical method.

  16. Constructing QCD one-loop amplitudes

    SciTech Connect

    Forde, Darren; /SLAC /UCLA

    2008-02-22

    In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 {var_epsilon}. The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally

  17. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  18. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  19. Large Amplitude Oscillatory Shear near Jamming

    NASA Astrophysics Data System (ADS)

    Tighe, Brian; Dagois-Bohy, Simon; Somfai, Ellak; van Hecke, Martin

    2014-11-01

    Jammed solids such as foams and emulsions can be driven with oscillatory shear at finite strain amplitude and frequency. On a macro scale, this induces nonlinearities such as strain softening and shear thinning. On the micro scale one observes the onset of irreversibility, caging, and long-time diffusion. Using simulations of soft viscous spheres, we systematically vary the distance to the jamming transition. We correlate crossovers in the microscopic and macroscopic response, and construct scaling arguments to explain their relationships.

  20. Amplitude calibration experiment for SIR-B

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Ulaby, F. T.

    1984-01-01

    The objectives, approach, and expected results of the amplitude calibration experiment for the Shuttle Imaging Radar-B (SIR-B) are outlined. Specific objectives include: (1) the determination of the repeatability (stability) of the SIR-B; (2) the absolute and relative calibration of the system; and (3) the ground truth verification of the calibration accuracy using measurements made by a ground spectrometer and an airborne synthetic aperture radar.

  1. Photon Counting Chirped Amplitude Modulation Ladar

    DTIC Science & Technology

    2008-03-01

    22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to...135 S. Taylor Ave., Room 103, Louisville, CO 80027-3025 14. ABSTRACT This work developed a method using Geiger -mode avalanche photodiode (GM-APD...architecture are discussed. 15. SUBJECT TERMS laser radar, ladar, avalanche photo-detectors, Geiger mode detectors, chirped amplitude modulation

  2. Chiral extrapolation of SU(3) amplitudes

    SciTech Connect

    Ecker, Gerhard

    2011-05-23

    Approximations of chiral SU(3) amplitudes at NNLO are proposed to facilitate the extrapolation of lattice data to the physical meson masses. Inclusion of NNLO terms is essential for investigating convergence properties of chiral SU(3) and for determining low-energy constants in a controllable fashion. The approximations are tested with recent lattice data for the ratio of decay constants F{sub K}/F{sub {pi}}.

  3. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  4. Zeroing in on Supersymmetric Radiation Amplitude Zeros

    SciTech Connect

    Hewett, JoAnne L.; Ismail, Ahmed; Rizzo, Thomas G.; /SLAC

    2012-02-15

    Radiation amplitude zeros have long been used to test the Standard Model. Here, we consider the supersymmetric radiation amplitude zero in chargino-neutralino associated production, which can be observed at the luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino has a large wino fraction and hence this observable can be used to determine the neutralino eigenstate content. We find that this observable can be measured by comparing the p{sub T} spectrum of the softest lepton in the trilepton {tilde {chi}}{sub 1}{sup {+-}} {tilde {chi}}{sub 2}{sup 0} decay channel to that of a control process such as {tilde {chi}}{sub 1}{sup +} {tilde {chi}}{sub 1}{sup -} or {tilde {chi}}{sub 2}{sup 0} {tilde {chi}}{sub 2}{sup 0}. We test this technique on a previously generated model sample of the 19 dimensional parameter space of the phenomenological MSSM, and find that it is effective in determining the wino content of the neutralino.

  5. Continuous phase and amplitude holographic elements

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor)

    1995-01-01

    A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to m x m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm, and aggressive development using pure acetone for an empirically determined time (about 6 s) controlled to within 1/10 s to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.

  6. [Amplitude modulation in sound signals by mammals].

    PubMed

    Nikol'skiĭ, A A

    2012-01-01

    Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.

  7. Nonlinear amplitude approximation for bilinear systems

    NASA Astrophysics Data System (ADS)

    Jung, Chulwoo; D'Souza, Kiran; Epureanu, Bogdan I.

    2014-06-01

    An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.

  8. Phase amplitude conformal symmetry in Fourier transforms

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2015-04-01

    For the Fourier transform ℑ : L2(R) → L2(R) of a complex-valued even or odd function ψ, it is found that the amplitude invariance |ℑψ| = |ψ| leads to a phase invariance or inversion as arg(ℑψ) = ±argψ + θ (θ = constant). The converse holds unless arg ψ = constant. The condition |ψ| = |ℑψ| is required in dealing with, for example, the minimum uncertainty relation between position and momentum. Without the evenness or oddness of ψ, |ℑψ| = |ψ| does not necessarily imply arg(ℑψ) = ±argψ + θ, nor is the converse.

  9. In-Medium Pion Valence Distribution Amplitude

    NASA Astrophysics Data System (ADS)

    Tsushima, K.; de Melo, J. P. B. C.

    2017-03-01

    After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  10. Fatigue damage analysis under variable amplitude cycling

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Forte, T. P.

    1983-01-01

    This paper explores the suitability of a recently proposed mean stress parameter and introduces a nonlinear damage accumulation procedure. Data covering a range of positive and negative stress ratios from +0.6 to -2.66, for several aluminum alloys and steels, are assembled and shown to be well correlated by a simple damage parameter. A nonlinear damage accumulation postulate is advanced to replace the usual linear procedure. Results of critical experiments performed to assess the suitability of the postulate are introduced and shown to support a non-linear criterion. The implications of this work related to variable amplitude life prediction are discussed.

  11. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  12. Stochastic aspects of nuclear large amplitude motion

    SciTech Connect

    Kolomietz, V.M.

    1995-08-01

    A consistent description of the macroscopic large amplitude dynamics and processes of internal excitation of a nucleus is suggested. The cranking model approach is used for the calculation of the response function of the nucleus in a moving frame. Using spectral statistics smearing, the collective mass, friction, and diffusion coefficients are derived. The relation of the response function in a moving frame to the correlation function in a classical chaotic system is established. The rate of dissipation due to the Landau-Zener transitions and through the Kubo mechanism is considered.

  13. Fatigue crack growth under variable amplitude loading

    NASA Technical Reports Server (NTRS)

    Sidawi, Jihad A.

    1994-01-01

    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  14. Relationship Between the Expansion Speed and Radial Speed of CMEs Confirmed Using Quadrature Observations from SOHO and STEREO

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Makela, Pertti; Yashiro, Seiji

    2011-01-01

    It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009, CEAB, 33, 115,2009). The STEREO spacecraft were in quadrature with SOHO (STEREO-A ahead of Earth by 87 and STEREO-B 94 behind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp ) and radial speed (Vrad ) derived previously from geometrical considerations (Gopalswamy et al. 2009): Vrad = 1/2 (1 + cot w) Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 75 degrees, so w = 37.5 degrees. This gives the relation as Vrad = 1.15 Vexp. From LASCO observations, we measured Vexp = 897 km/s, so we get the radial speed as 1033 km/s. Direct measurement of radial speed from STEREO gives 945 km/s (STEREO-A) and 1057 km/s (STEREO-B). These numbers are different only by 2.3% and 8.5% (for STEREO-A and STEREO-B, respectively) from the computed value.

  15. Comparison of maximum entropy and quadrature-based moment closures for shock transitions prediction in one-dimensional gaskinetic theory

    NASA Astrophysics Data System (ADS)

    Laplante, Jérémie; Groth, Clinton P. T.

    2016-11-01

    The Navier-Stokes-Fourier (NSF) equations are conventionally used to model continuum flow near local thermodynamic equilibrium. In the presence of more rarefied flows, there exists a transitional regime in which the NSF equations no longer hold, and where particle-based methods become too expensive for practical problems. To close this gap, moment closure techniques having the potential of being both valid and computationally tractable for these applications are sought. In this study, a number of five-moment closures for a model one-dimensional kinetic equation are assessed and compared. In particular, four different moment closures are applied to the solution of stationary shocks. The first of these is a Grad-type moment closure, which is known to fail for moderate departures from equilibrium. The second is an interpolative closure based on maximization of thermodynamic entropy which has previously been shown to provide excellent results for 1D gaskinetic theory. Additionally, two quadrature methods of moments (QMOM) are considered. One method is based on the representation of the distribution function in terms of a combination of three Dirac delta functions. The second method, an extended QMOM (EQMOM), extends the quadrature-based approach by assuming a bi-Maxwellian representation of the distribution function. The closing fluxes are analyzed in each case and the region of physical realizability is examined for the closures. Numerical simulations of stationary shock structures as predicted by each moment closure are compared to reference kinetic and the corresponding NSF-like equation solutions. It is shown that the bi-Maxwellian and interpolative maximum-entropy-based moment closures are able to closely reproduce the results of the true maximum-entropy distribution closure for this case very well, whereas the other methods do not. For moderate departures from local thermodynamic equilibrium, the Grad-type and QMOM closures produced unphysical subshocks and were

  16. Wrist Proprioception: Amplitude or Position Coding?

    PubMed Central

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Masia, Lorenzo

    2016-01-01

    This work examines physiological mechanisms underlying the position sense of the wrist, namely, the codification of proprioceptive information related to pointing movements of the wrist toward kinesthetic targets. Twenty-four healthy subjects participated to a robot-aided assessment of their wrist proprioceptive acuity to investigate if the sensorimotor transformation involved in matching targets located by proprioceptive receptors relies on amplitude or positional cues. A joint position matching test was performed in order to explore such dichotomy. In this test, the wrist of a blindfolded participant is passively moved by a robotic device to a preset target position and, after a removal movement from this position, the participant has to actively replicate and match it as accurately as possible. The test involved two separate conditions: in the first, the matching movements started from the same initial location; in the second one, the initial location was randomly assigned. Target matching accuracy, precision, and bias in the two conditions were then compared. Overall results showed a consistent higher performance in the former condition than in the latter, thus supporting the hypothesis that the joint position sense is based on vectorial or amplitude coding rather than positional. PMID:27807417

  17. Small-amplitude synchrotron tune near transition

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-05-01

    The separatrices of the rf buckets near transition are mapped when the synchronous phase is neither 0 or {pi}. The small-amplitude synchronous tune is derived when the rf frequency is changed. Synchrotron radiation is present in all electron storage ring. As a result, the synchronous phase is always offset from {phi}{sub s} = {pi} to compensate for the power loss. Even for proton storage rings with negligible synchrotron radiation, the synchronous phase is also required to be offset from {phi}{sub s} = 0 or {pi} slightly to compensate for beam loading. Thus for all storage rings operating near transition, beam particles reside in accelerating buckets instead of stationary bucket. It is of interest to map these buckets and see how they evolve near transition. When the rf frequency is varied, the closed orbit is pushed radially inward or outward. The momentum of the particle synchronous with the rf is thus changed. By measuring the small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three orders of the slip factor when the particle velocity is not ultra-relativistic.

  18. Amplitude enhancement by a gold dimer

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Wang, Jingxin; Jin, Zheng

    2016-10-01

    The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.

  19. Color-kinematic duality in ABJM theory without amplitude relations

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Allic

    2017-01-01

    We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) × SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.

  20. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  1. Explicit and implicit forms of differential quadrature method for advection-diffusion equation with variable coefficients in semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Amin

    2016-10-01

    In this paper, a numerical solution of one-dimensional time-dependent advection-diffusion equation with variable coefficients in semi-infinite domain is presented by using the differential quadrature method. Both the explicit and implicit approaches are provided. Totally, two solute dispersion problems are employed to simulate various conditions. The inhomogeneity of the domain is supplied by the spatially dependent flow. The problem domains are modeled with Chebyshev-Gauss-Lobatto grid points. In order to examine the accuracy and the efficiency of the suggested explicit and implicit approaches, analytical solutions, which are presented in the literature, are employed. In addition, the results of the above-mentioned method are compared with outcomes of the finite difference method. The results show that both of the explicit and implicit forms of the differential quadrature method are efficient, robust and reliable. But between these two forms, numerical predictions of implicit form are more accurate than explicit form.

  2. Tensor Green's function evaluation in arbitrarily anisotropic, layered media using complex-plane Gauss-Laguerre quadrature.

    PubMed

    Sainath, Kamalesh; Teixeira, Fernando L

    2014-05-01

    We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (nonzero) frequency, and (nonzero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein we develop the mathematical treatment to rigorously evaluate the tail integrals using CGLQ, as well as discuss and address the specific issues posed to the CGLQ method when anisotropic, layered media are present. To empirically demonstrate the CGLQ algorithm's computational efficiency, versatility, and accuracy, we perform a convergence analysis along with two case studies related to modeling of electromagnetic resistivity tools employed in geophysical prospection of layered, anisotropic Earth media and validating the ability of isoimpedance substrates to enhance the radiation performance of planar antennas placed in close proximity to metallic ground planes.

  3. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  4. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  5. Speech recognition with amplitude and frequency modulations

    NASA Astrophysics Data System (ADS)

    Zeng, Fan-Gang; Nie, Kaibao; Stickney, Ginger S.; Kong, Ying-Yee; Vongphoe, Michael; Bhargave, Ashish; Wei, Chaogang; Cao, Keli

    2005-02-01

    Amplitude modulation (AM) and frequency modulation (FM) are commonly used in communication, but their relative contributions to speech recognition have not been fully explored. To bridge this gap, we derived slowly varying AM and FM from speech sounds and conducted listening tests using stimuli with different modulations in normal-hearing and cochlear-implant subjects. We found that although AM from a limited number of spectral bands may be sufficient for speech recognition in quiet, FM significantly enhances speech recognition in noise, as well as speaker and tone recognition. Additional speech reception threshold measures revealed that FM is particularly critical for speech recognition with a competing voice and is independent of spectral resolution and similarity. These results suggest that AM and FM provide independent yet complementary contributions to support robust speech recognition under realistic listening situations. Encoding FM may improve auditory scene analysis, cochlear-implant, and audiocoding performance. auditory analysis | cochlear implant | neural code | phase | scene analysis

  6. Evaluation of new spin foam vertex amplitudes

    NASA Astrophysics Data System (ADS)

    Khavkine, Igor

    2009-06-01

    The Christensen-Egan algorithm is extended and generalized to efficiently evaluate new spin foam vertex amplitudes proposed by Engle, Pereira and Rovelli and Freidel and Krasnov, with or without (factored) boundary states. A concrete pragmatic proposal is made for comparing the different models using uniform methodologies, applicable to the behavior of large spin asymptotics and of expectation values of specific semiclassical observables. The asymptotics of the new models exhibit non-oscillatory, power-law decay similar to that of the Barrett-Crane model, though with different exponents. Also, an analysis of the semiclassical wave packet propagation problem indicates that the Magliaro, Rovelli and Perini's conjecture of good semiclassical behavior of the new models does not hold for generic factored states, which neglect spin-spin correlations.

  7. Low Amplitude Impact of Damaged PBX 9501

    NASA Astrophysics Data System (ADS)

    Idar, Deanne

    1999-06-01

    Low amplitude impact tests on damaged, baseline and aged, PBX 9501 specimens have been performed to determine the critical impact-velocity threshold for violent reaction. Tests were performed using 3.0-in. diameter, 2 kg. mild-steel projectiles launched from a spigot gun at lightly confined modified Steven targets. Prior damage on the seven targets was induced by a single impact ranging in velocity from 36.9 to 52.7 m/s. External blast gauge data were coupled with ballistic pendulum data to evaluate the level of reaction violence relative to a steady-state detonation. Strain gage data were used to evaluate the response of the explosive to impact and characterize subsequent reaction profiles. The effect of PBX 9501 lots, age, and prior level of damage on threshold behavior will be discussed and compared to single impact test results.

  8. Presynaptic spike broadening reduces junctional potential amplitude.

    PubMed

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  9. Bootstrapping an NMHV amplitude through three loops

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; von Hippel, Matt

    2014-10-01

    We extend the hexagon function bootstrap to the next-to-maximally-helicity-violating (NMHV) configuration for six-point scattering in planar = 4 super-Yang-Mills theory at three loops. Constraints from the differential equation, from the operator product expansion (OPE) for Wilson loops with operator insertions, and from multi-Regge factorization, lead to a unique answer for the three-loop ratio function. The three-loop result also predicts additional terms in the OPE expansion, as well as the behavior of NMHV amplitudes in the multi-Regge limit at one higher logarithmic accuracy (NNLL) than was used as input. Both predictions are in agreement with recent results from the flux-tube approach. We also study the multi-particle factorization of multi-loop amplitudes for the first time. We find that the function controlling this factorization is purely logarithmic through three loops. We show that a function U , which is closely related to the parity-even part of the ratio function V , is remarkably simple; only five of the nine possible final entries in its symbol are non-vanishing. We study the analytic and numerical behavior of both the parity-even and parity-odd parts of the ratio function on simple lines traversing the space of cross ratios ( u, v, w), as well as on a few two-dimensional planes. Finally, we present an empirical formula for V in terms of elements of the coproduct of the six-gluon MHV remainder function R 6 at one higher loop, which works through three loops for V (four loops for R 6).

  10. Compositions of bosonic string amplitudes with cylinder topology

    SciTech Connect

    Trisnadi, J.I.

    1989-01-01

    Many issues in string theory are conveniently addressed and handled in a quantum fleld theoretical framework, from which Feynman rules can then be derived. Although at present a generally acceptable quantum field theory of closed strings does not yet exist, the Feynman rules are known. This is due to another development in string theory, namely, the Polyakov path integral approach. In this approach, scattering amplitudes are calculated directly without appealing to the quantum fleld theoretical description. It is therefore important to examine if the scattering amplitude can be reconstructed by composing propagators and vertices. In general, the author is interested in knowing if Polyakov amplitudes can be consistently composed. Composition of amplitudes in general has been studied formally. Explicit composition, however, is limited to amplitudes that have been calculated explicitly. Among them is the amplitude with cylinder topology. In this dissertation, the author will rederive this cylinder amplitude. The author uses the action principle in the evaluation of the path integral. This way, the contributions of the ghost zero modes, which are usually introduced by hand, come out automatically. Then, the author studies three compositions of the cylinder amplitude: two cylinder amplitudes into one, a single cylinder amplitude into a torus amplitude, and a cylinder amplitude into a Klein-bottle amplitude. The author shows that the resulting amplitudes agree with known results. Using the cylinder amplitude, the author also demonstrates the derivation of the (imaginary time) Schrodinger equation for the free closed bosonic string. Finally, the author applies the techniques to derive the composable transition amplitude of gravity in a Friedmann-RobertsonWalker cosmology.

  11. Chiral closed strings: four massless states scattering amplitude

    NASA Astrophysics Data System (ADS)

    Leite, Marcelo M.; Siegel, Warren

    2017-01-01

    We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.

  12. Leading Wave Amplitude of a Tsunami

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  13. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  14. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  15. Amplitude interpretation and visualization of three-dimensional reflection data

    SciTech Connect

    Enachescu, M.E. )

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.

  16. Efficient reverse time migration with amplitude encoding

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are

    2015-08-01

    Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.

  17. Baseline blood oxygenation modulates response amplitude

    PubMed Central

    Lu, Hanzhang; Zhao, Chenguang; Ge, Yulin; Lewis-Amezcua, Kelly

    2008-01-01

    Although BOLD fMRI provides a useful tool for probing neuronal activities, large inter-subject variations in signal amplitude are commonly observed. Understanding the physiologic basis for these variations will have a significant impact on many fMRI studies. First, the physiologic modulator can be used as a regressor to reduce variations across subjects, thereby improving statistical power for detecting group differences. Second, if a pathologic condition or a drug treatment is shown to change fMRI responses, monitoring this modulatory parameter is useful in correctly interpreting the fMRI changes to neuronal deficits/recruitments. Here we present evidence that the task-evoked fMRI signals are modulated by baseline blood oxygenation. To measure global blood oxygenation, we used a recently developed technique, T2-Relaxation-Under-Spin-Tagging MRI, yielding baseline oxygenation of 63.7±7.2% in sagittal sinus with an estimation error of 1.3%. It was found that individuals with higher baseline oxygenation tend to have a smaller fMRI signal and vice versa. For every 10% difference in baseline oxygenation across subjects, the BOLD and cerebral blood flow signal differ by -0.4% and -30.0%, respectively, when using visual stimulation. TRUST MRI is a useful measurement for fMRI studies to control for the modulatory effects of baseline oxygenation that are unique to each subject. PMID:18666103

  18. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  19. Sensitivity to changes in amplitude envelope

    NASA Astrophysics Data System (ADS)

    Gallun, Erick; Hafter, Ervin R.; Bonnel, Anne-Marie

    2002-05-01

    Detection of a brief increment in a tonal pedestal is less well predicted by energy-detection (e.g., Macmillan, 1973; Bonnel and Hafter, 1997) than by sensitivity to changes in the stimulus envelope. As this implies a mechanism similar to an envelope extractor (Viemeister, 1979), sinusoidal amplitude modulation was used to mask a single ramped increment (10, 45, or 70 ms) added to a 1000-ms pedestal with carrier frequency (cf)=477 Hz. As in informational masking (Neff, 1994) and ``modulation-detection interference'' (Yost and Sheft, 1989), interference occurred with masker cfs of 477 and 2013 Hz. While slight masking was found with modulation frequencies (mfs) from 16 to 96 Hz, masking grew inversely with still lower mfs, being greatest for mf=4 Hz. This division is reminiscent of that said to separate sensations of ``roughness'' and ``beats,'' respectively (Terhardt, 1974), with the latter also being related to durations associated with auditory groupings in music and speech. Importantly, this result held for all of the signal durations and onset-offset ramps tested, suggesting that an increment on a pedestal is treated as a single auditory object whose detection is most difficult in the presence of other objects (in this case, ``beats'').

  20. The pulsed amplitude unit for the SLC

    SciTech Connect

    Rolfe, J.; Browne, M.J.; Jobe, R.K.

    1987-02-01

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed.

  1. Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery

    NASA Astrophysics Data System (ADS)

    Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed

    2011-01-01

    Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.

  2. A 400G optical wireless integration delivery system.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Li, Fan; Chi, Nan

    2013-08-12

    We experimentally demonstrate a record 400G optical wireless integration system simultaneously delivering 2 × 112 Gb/s two-channel polarization-division-multiplexing 16-ary quadrature amplitude modulation (PDM-16QAM) signal at 37.5 GHz wireless carrier and 2 × 108 Gb/s two-channel PDM quadrature phase shift keying (PDM-QPSK) signal at 100 GHz wireless carrier, adopting two millimeter-wave (mm-wave) frequency bands, two orthogonal antenna polarizations, multiple-input multiple-output (MIMO), photonic mm-wave generation and advanced digital signal processing (DSP). In the case of no fiber transmission, the bit error ratios (BERs) for both the 112 Gb/s PDM-16QAM signal after 1.5 m wireless delivery at 37.5 GHz and the 108 Gb/s PDM-QPSK signal after 0.7 m wireless delivery at 100 GHz are below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10(-3). To our knowledge, this is the first demonstration of a 400G optical wireless integration system in mm-wave frequency bands and also a capacity record of wireless delivery.

  3. Image measurement technique on vibration amplitude of ultrasonic horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-bin; Wu, Zhi-qun; Zhu, Jian-ping; He, Jian-guo; Liu, Guang-min

    2013-10-01

    The paper proposes a method to measure vibration amplitude of ultrasonic horn which is a very important component in the spindle for micro-electrical-chemical discharging machining. The method of image measuring amplitude on high frequency vibration is introduced. Non-contact measurement system based on vision technology is constructed. High precision location algorithm on image centroid, quadratic location algorithm, is presented to find the center of little light spot. Measurement experiments have been done to show the effect of image measurement technique on vibration amplitude of ultrasonic horn. In the experiments, precise calibration of the vision system is implemented using a normal graticule to obtain the scale factor between image pixel and real distance. The vibration amplitude of ultrasonic horn is changed by modifying the voltage amplitude of pulse power supply. The image of feature on ultrasonic horn is captured and image processing is carried out. The vibration amplitudes are got at different voltages.

  4. Performance analysis of 112 Gb/s×4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels

    NASA Astrophysics Data System (ADS)

    Aboagye, Isaac Adjaye; Chen, Fushen; Cao, Yongsheng

    2017-03-01

    We present the performance analysis of 112 Gb/s×4 wavelength division multiplexing (WDM) 100 GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156 Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10-9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10‒3 using forward error correction (FEC).

  5. Performance analysis of 112 Gb/s×4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels

    NASA Astrophysics Data System (ADS)

    Aboagye, Isaac Adjaye; Chen, Fushen; Cao, Yongsheng

    2016-10-01

    We present the performance analysis of 112 Gb/s×4 wavelength division multiplexing (WDM) 100 GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156 Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10-9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10‒3 using forward error correction (FEC).

  6. Detection of combined frequency and amplitude modulation.

    PubMed

    Moore, B C; Sek, A

    1992-12-01

    This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a

  7. Amplitude-modulated circular-harmonic filter for pattern recognition.

    PubMed

    Chen, X W; Chen, Z P

    1995-02-10

    An amplitude-modulated circular-harmonic filter is proposed for rotation-invariant pattern recognition. We investigate the filter characteristics by varying two design parameters, A(ρ) and B(ρ), and select optimum values to design an amplitude-modulated circular-harmonic filter. When compared with the phase-only circular-harmonic filter, the amplitude-modulated circular-harmonic filter is found to yield a sharper correlation peak, a better noise tolerance, and an improved correlation discrimination.

  8. N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop

    SciTech Connect

    Bern, Z.; Boucher-Veronneau, C.; Johansson, H.; /Saclay

    2011-08-19

    We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N {ge} 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.

  9. Mass of nonrelativistic meson from leading twist distribution amplitudes

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.

    2011-01-01

    In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.

  10. Calculation and modular properties of multiloop superstring amplitudes

    SciTech Connect

    Danilov, G. S.

    2013-06-15

    Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.

  11. Log-periodic Critical Amplitudes: A Perturbative Approach

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Giacomin, Giambattista

    2013-06-01

    Log-periodic amplitudes appear in the critical behavior of a large class of systems, in particular when a discrete scale invariance is present. Here we show how to compute these critical amplitudes perturbatively when they originate from a renormalization map which is close to a monomial. In this case, the log-periodic amplitudes of the subdominant corrections to the leading critical behavior can also be calculated.

  12. Phase and amplitude control system for Stanford Linear Accelerator

    SciTech Connect

    Yoo, S.J.

    1983-09-26

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

  13. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    PubMed Central

    Zobay, Oliver; Adjamian, Peyman

    2015-01-01

    The thalamocortical dysrhythmia (TCD) model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz). The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz) oscillations (“edge effect”) giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC) was computed within the auditory cortices for frequencies (f1, f2) between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1, f2 < 30 Hz) and high (f1, f2 > 30 Hz) frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL), tinnitus handicap and duration, and HL at tinnitus frequency), we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus. PMID:26665004

  14. Scattering amplitudes in gauge theories: progress and outlook Scattering amplitudes in gauge theories: progress and outlook

    NASA Astrophysics Data System (ADS)

    Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia

    2011-11-01

    This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic

  15. Amplitudes in N = 4 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Spradlin, Marcus

    These lecture notes provide a lightning introduction to some aspects of scattering amplitudes in maximally supersymmetric theory, aimed at the audience of students attending the 2014 TASI summer school "Journeys Through the Precision Frontier: Amplitudes for Colliders". Emphasis is placed on explaining modern terminology so that students needing to delve further may more easily access the available literature.

  16. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD

    ERIC Educational Resources Information Center

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman

    2006-01-01

    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  17. Proof of a new colour decomposition for QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Melia, Tom

    2015-12-01

    Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on `Mario World' Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.

  18. Miracles in Scattering Amplitudes: from QCD to Gravity

    SciTech Connect

    Volovich, Anastasia

    2016-10-09

    The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.

  19. PDM-16QAM vector signal generation and detection based on intensity modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Chen, Long; Yu, Jianjun; Li, Xinying

    2016-07-01

    We experimentally demonstrate a novel and simple method to generate and detect high speed polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) vector signal enabled by Mach-Zehnder modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. Due to the adoption of OCS intensity modulation, carrier beating can be avoided at the receiver, and thus polarization de-multiplexing can be implemented by digital-signal-processing-based (DSP-based) cascaded multi-modulus algorithm (CMMA) equalization instead of a polarization tracking system. The change of both amplitude and phase information due to the adoption of OCS modulation can be equalized by DSP-based amplitude and phase precoding at the transmitter. Up to 64-Gb/s PDM-16QAM vector signal is generated and detected after 2-km single-mode fiber-28 (SMF-28) or 20-km large-effective-area fiber (LEAF) transmission with a bit-error-ratio (BER) less than the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3.

  20. New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4

    NASA Astrophysics Data System (ADS)

    Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.

    2004-11-01

    A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and

  1. Design and test of a new multi-amplifier system with phase and amplitude control.

    PubMed

    Wust, P; Fähling, H; Helzel, T; Kniephoff, M; Wlodarczyk, W; Mönich, G; Felix, R

    1998-01-01

    The clinical relevance of the radiofrequency regional hyperthermia (RF-RHT) as an adjuvant cancer therapy grows continuously. Simulation studies for optimization of RF-RHT based on the annular phased array systems have shown a significant improvement of power deposition patterns with increasing number of channels. However, this probably requires higher phase accuracy and amplitude stability than are provided by presently used clinical systems, e.g. BSD-2000. Measurements performed on the BSD-200 electronic revealed phase inaccuracies up to +/- 20 degrees and errors in the power registration of +/- 20 W (up to +/- 50 W in the low power range). These errors are further enhanced by the mismatching of the external load (antenna applicator) and thermal instabilities. To achieve the required phase accuracy and long-term stability in the prototype of a new amplifier system, single-sideband (SSB) mixing in combination with direct digital synthesizers (DDS), in-phase and quadrature-phase (IQ) processing and phase-lock loop (PLL) were used. In the DDS's the actual phase of the output signal of each channel is calculated in real-time. No analogue control loop is involved that may cause thermal offset or drift problems. Each DDS operates at a low intermediate frequency (IF) of 1 MHz. To transform the phase information of this IF signal into the desired RF band, SSB mixing-up is performed. A second frequency source, operating as a local oscillator (LO) in the RF band, is required for this technique. Also, the frequency adjustment of the desired RF signal is performed in the LO. These phase and frequency adjustment units are followed by the high efficiency AB-class solid state amplifier unit. The phase and power level stability of the amplifier are controlled by means of digital PLL structures in conjunction with look-up tables. For this control test signals are coupled out by means of directional couplers. The phase control is based on very sensitive phase comparison. These

  2. Discontinuities of BFKL amplitudes and the BDS ansatz

    NASA Astrophysics Data System (ADS)

    Fadin, V. S.; Fiore, R.

    2015-12-01

    We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.

  3. Effective Field Theories from Soft Limits of Scattering Amplitudes.

    PubMed

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2015-06-05

    We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.

  4. Amplitude transitions of swimmers and flexors in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Guy, Robert; Thomases, Becca

    2015-11-01

    In both theoretical and experimental studies of the effect of fluid elasticity on micro-organism swimming, very different behavior has been observed for small and large amplitude strokes. We present simulations of an undulatory swimmer in an Oldroyd-B fluid and show that the resulting viscoelastic stresses are a nonlinear function of the amplitude. Specifically, there appears to be an amplitude dependent transition that is key to obtaining a speed-up over the Newtonian swimming speed. To understand the physical mechanism of the transition, we examine the stresses in a time-symmetric oscillatory bending beam, or flexor. We compare the flow in a neighborhood of the flexor tips with a large-amplitude oscillatory extensional flow, and we see similar amplitude dependent transitions. We relate these transitions to observed speed-ups in viscoelastic swimmers.

  5. New formulas for amplitudes from higher-dimensional operators

    NASA Astrophysics Data System (ADS)

    He, Song; Zhang, Yong

    2017-02-01

    In this paper we study tree-level amplitudes from higher-dimensional operators, including F 3 operator of gauge theory, and R 2, R 3 operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F 3, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R 2 term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F 3 and R 3 amplitudes.

  6. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4

    NASA Astrophysics Data System (ADS)

    Avila, Gustavo; Carrington, Tucker

    2011-08-01

    In this paper we propose and test a method for computing numerically exact vibrational energy levels of a molecule with six atoms. We use a pruned product basis, a non-product quadrature, the Lanczos algorithm, and the exact normal-coordinate kinetic energy operator (KEO) with the πtμπ term. The Lanczos algorithm is applied to a Hamiltonian with a KEO for which μ is evaluated at equilibrium. Eigenvalues and eigenvectors obtained from this calculation are used as a basis to obtain the final energy levels. The quadrature scheme is designed, so that integrals for the most important terms in the potential will be exact. The procedure is tested on C2H4. All 12 coordinates are treated explicitly. We need only ˜1.52 × 108 quadrature points. A product Gauss grid with which one could calculate the same energy levels has at least 5.67 × 1013 points.

  7. Amplitude path corrections for regional phases in China

    SciTech Connect

    Phillips, W.S.; Velasco, A.A.; Taylor, S.R.; Randall, G.E.

    1998-12-31

    The authors investigate the effectiveness of amplitude path corrections for regional phases on seismic event discrimination and magnitude estimation. Waveform data from digital stations in China for regional, shallow (< 50 km) events were obtained from the IRIS Data Management Center (DMC) for years 1986 to 1996 using the USGS Preliminary Determination of Epicenters (PDE) and the Chinese State Seismological Bureau (SSB) catalogs. For each event, the amplitudes for each regional phase (P{sub n}, P{sub g}, S{sub n}, L{sub g}) were measured, as well as the P{sub g} and L{sub g} coda. Measured amplitudes were corrected for source scaling using estimates of m{sub b} and for distance using a power law that accounts for attenuation and spreading. The amplitude residuals were interpolated and mapped as 2-D amplitude correction surfaces. The authors employ several methods to create the amplitude correction surfaces: a waveguide method, and two interpolation methods (Baysian kriging and a circular moving window mean smoother). They explore the sensitivities of the surfaces to the method and to regional propagation, and apply these surfaces to correct amplitude data to reduce scatter in discrimination ratios and magnitude estimates.

  8. Amplitude Dispersion Compensation for Damage Detection Using Ultrasonic Guided Waves.

    PubMed

    Zeng, Liang; Lin, Jing; Huang, Liping; Zhao, Ming

    2016-09-30

    Besides the phase and group velocities, the amplitude of guided wave mode is also frequency dependent. This amplitude dispersion also influences the performance of guided wave methods in nondestructive evaluation (NDE) and structural health monitoring (SHM). In this paper, the effects of amplitude dispersion to the spectrum and waveform of a propagating wave-packet are investigated. It is shown that the amplitude dispersion results in distortion in the spectrum of guided wave response, and thus influences the waveform of the wave-packet. To remove these effects, an amplitude dispersion compensation method is established on the basis of Vold-Kalman filter and Taylor series expansion. The performance of that method is then investigated by experimental examples. The results show that with the application of the amplitude dispersion compensation, the time reversibility could be preserved, which ensures the applicability of the time reversal method for damage detection. Besides, through amplitude dispersion compensation, the testing resolution of guided waves could be improved, so that the structural features located in the close proximity may be separately identified.

  9. Broadband metasurface holograms: toward complete phase and amplitude engineering

    NASA Astrophysics Data System (ADS)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  10. Broadband metasurface holograms: toward complete phase and amplitude engineering

    PubMed Central

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  11. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  12. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  13. Amplitude Dispersion Compensation for Damage Detection Using Ultrasonic Guided Waves

    PubMed Central

    Zeng, Liang; Lin, Jing; Huang, Liping; Zhao, Ming

    2016-01-01

    Besides the phase and group velocities, the amplitude of guided wave mode is also frequency dependent. This amplitude dispersion also influences the performance of guided wave methods in nondestructive evaluation (NDE) and structural health monitoring (SHM). In this paper, the effects of amplitude dispersion to the spectrum and waveform of a propagating wave-packet are investigated. It is shown that the amplitude dispersion results in distortion in the spectrum of guided wave response, and thus influences the waveform of the wave-packet. To remove these effects, an amplitude dispersion compensation method is established on the basis of Vold–Kalman filter and Taylor series expansion. The performance of that method is then investigated by experimental examples. The results show that with the application of the amplitude dispersion compensation, the time reversibility could be preserved, which ensures the applicability of the time reversal method for damage detection. Besides, through amplitude dispersion compensation, the testing resolution of guided waves could be improved, so that the structural features located in the close proximity may be separately identified. PMID:27706067

  14. Scattering Amplitudes: The Most Perfect Microscopic Structures in the Universe

    SciTech Connect

    Dixon, Lance J.; /CERN /SLAC

    2011-11-04

    This article gives an overview of many of the recent developments in understanding the structure of relativistic scattering amplitudes in gauge theories ranging from QCD to N = 4 super-Yang-Mills theory, as well as (super)gravity. I also provide a pedagogical introduction to some of the basic tools used to organize and illuminate the color and kinematic structure of amplitudes. This article is an invited review introducing a special issue of Journal of Physics A devoted to 'Scattering Amplitudes in Gauge Theories'.

  15. One-loop amplitudes of gluons in supersymmetric QCD

    SciTech Connect

    Britto, Ruth; Buchbinder, Evgeny; Cachazo, Freddy; Feng Bo

    2005-09-15

    One-loop amplitudes of gluons in supersymmetric Yang-Mills are four-dimensional cut-constructible. This means that they can be determined from their unitarity cuts. We present a new systematic procedure to explicitly carry out any finite unitarity cut integral. The procedure naturally separates the contributions from bubble, triangle and box scalar integrals. This technique allows the systematic calculation of N=1 amplitudes of gluons. As an application we compute all next-to-MHV six-gluon amplitudes in N=1 super-Yang-Mills.

  16. Direct numerical approach to one-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Duplančić, G.; Klajn, B.

    2017-01-01

    We present a completely numerical method of calculating one-loop amplitudes. Our approach is built upon two different existing methods: the contour deformation and the extrapolation methods. Taking the best features of each of them, we devise an intuitive, stable and robust procedure which circumvents the problem of large cancellations and related numerical instabilities by calculating the complete amplitude at once. As a proof of concept, we use our method to calculate the 2 γ →(N -2 )γ benchmark process, as well as the Higgs decay amplitude H →γ γ .

  17. Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Zheng, Zhi-Gang

    2007-02-01

    Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated, and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.

  18. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  19. Coronagraphic Amplitude and Phase Correction for Detecting Planets

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Bowers, Charles W.

    2003-01-01

    Detection of earth-like planets around other stars using coronagraphy requires the optical beam into the coronagraph to be extremely uniform in both phase and amplitude. Errors in phase can be corrected using a deformable mirror, and error in amplitude can be corrected using a spatial light modulator, both in the pupil plan,a. These corrections can be combined using a Michelson interferometer. If amplitude corrections of only a few percent range are needed, the required accuracy of 10 (circumflex) -4 can be obtained with spatial light modulators with the modest dynamic range of 8 bits.

  20. Analytical formula for three points sinusoidal signals amplitude estimation errors

    NASA Astrophysics Data System (ADS)

    Nicolae Vizireanu, Dragos; Viorica Halunga, Simona

    2012-01-01

    In this note, we show that the amplitude estimation of sinusoidal signals proposed in Wu and Hong [Wu, S.T., and Hong, J.L. (2010), 'Five-point Amplitude Estimation of Sinusoidal Signals: With Application to LVDT Signal Conditioning', IEEE Transactions on Instrumentation and Measurement, 59, 623-630] is a particular case of Vizireanu and Halunga [Vizireanu, D.N, and Halunga, S.V. (2011), 'Single Sine Wave Parameters Estimation Method Based on Four Equally Spaced Samples', International Journal of Electronics, 98(7), pp. 941-948]. An analytical formula for amplitude estimation errors as effects of sampling period deviation is obtained.

  1. Segmentation Of Multifrequency Complex-Amplitude SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Chellappa, Ramalingam

    1994-01-01

    Several mathematical models and associated algorithms implement method of segmenting multifrequency, highly speckled, high-resolution, complex-amplitude (amplitude and phase) synthetic-aperture-radar (SAR) digitized image into regions, within each of which radar backscattering characteristics are similar or homogeneous from place to place. Typically, each region represents different type of terrain or other surface; e.g., forest, agricultural land, sea ice, or water. Method of segmentation of SAR scene into regions is product of generalization, to multifrequency case, of single-frequency method described in "Algorithms for Segmentation of Complex-Amplitude SAR Data" (NPO-18524).

  2. Two-color pyrometry for low amplitude periodic heating

    NASA Astrophysics Data System (ADS)

    Bennett, T. D.; Silveira, V. B.; Valdes, R.

    2017-02-01

    Specimens subject to periodic heating must be probed for a calibrated temperature response if standard measurements of thermal diffusivity are to be extended to determine thermal conductivity. A variation on two-color pyrometry is developed to measure both the offset and harmonic amplitudes of temperature fluctuations caused by periodic heating. The requisite pyrometric formulae are derived for low amplitude heating using an expansion of the nonlinear thermal emission. Well-defined uncertainties in the temperature values are determined from experimental uncertainties in radiometric measurements. The accuracy demonstrated in this work is better than 2% for the temperature offset and 3%-8% for the fluctuating temperature amplitude.

  3. 1D Current Source Density (CSD) Estimation in Inverse Theory: A Unified Framework for Higher-Order Spectral Regularization of Quadrature and Expansion-Type CSD Methods.

    PubMed

    Kropf, Pascal; Shmuel, Amir

    2016-07-01

    Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested

  4. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  5. Some tree-level string amplitudes in the NSR formalism

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Melnikov, Ilarion V.; Robbins, Daniel; Royston, Andrew B.

    2015-12-01

    We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric F 4 effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.

  6. Amplitude analysis of the charmed decay D0 to KKpipi

    NASA Astrophysics Data System (ADS)

    Skidmore, Nicola

    2017-01-01

    An amplitude analysis of the 4-body charmed decay D0 -> KKππ is presented using data collected from electron-positron collisions at the CLEO experiment. Both flavour tagged and CP tagged data are utilized in the analysis making it unique from amplitude analyses performed at other colliders and providing extra sensitivity to the phases of the amplitude components. The amplitude model is used to search for CP violation in the D0 decay by analysing D0 and D0 decays separately. The model is also crucial input for a model-dependent measurement of the CP-violating phase γ using B+/- ->D0(-> KKππ) K+/- decays, which remains one of the least constrained parameters of the Standard Model. Forum on International Physics Distinguished Student Seminar Program, and European Research Council

  7. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  8. N >= 4 Supergravity Amplitudes from Gauge Theory at Two Loops

    SciTech Connect

    Boucher-Veronneau, C.; Dixon, L.J.; /SLAC

    2012-02-15

    We present the full two-loop four-graviton amplitudes in N = 4, 5, 6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N = 0, 1, 2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N = 8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.

  9. Amplitude-modulation detection by gerbils in reverberant sound fields.

    PubMed

    Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz

    2013-08-01

    Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing.

  10. Non-perturbative QCD amplitudes in quenched and eikonal approximations

    SciTech Connect

    Fried, H.M.; Grandou, T.; Sheu, Y.-M.

    2014-05-15

    Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.

  11. Properties of scattering amplitudes at very high energies

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1975-01-01

    The research is reported concerning the (1) total cross sections as the energy becomes infinite, (2) elastic scattering amplitude for nonforward directions, and (3) upper bound of neutrino scattering cross sections.

  12. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  13. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  14. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    NASA Astrophysics Data System (ADS)

    Carbonell, J.; Frederico, T.; Karmanov, V. A.

    2017-01-01

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function.

  15. Amplitude chimeras and chimera death in dynamical networks

    NASA Astrophysics Data System (ADS)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-06-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions.

  16. Amplitude and phase chimeras in an ensemble of chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Bogomolov, S. A.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S.

    2016-07-01

    The transition from coherence to incoherence in an ensemble of nonlocally coupled logistic maps is considered. Chimera states of two types (amplitude and phase) are found. The mechanism and conditions of their appearance are determined.

  17. The Last of the Finite Loop Amplitudes in QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2005-05-31

    We use on-shell recursion relations to determine the one-loop QCD scattering amplitudes with a massless external quark pair and an arbitrary number (n - 2) of positive-helicity gluons. These amplitudes are the last of the unknown infrared- and ultraviolet-finite loop amplitudes of QCD. The recursion relations are similar to ones applied at tree level, but contain new non-trivial features corresponding to poles present for complex momentum arguments but absent for real momenta. We present the relations and the compact solutions to them, valid for all n. We also present compact forms for the previously-computed one-loop n-gluon amplitudes with a single negative helicity and the rest positive helicity.

  18. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    SciTech Connect

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  19. Bootstrapping a Five-Loop Amplitude Using Steinmann Relations.

    PubMed

    Caron-Huot, Simon; Dixon, Lance J; McLeod, Andrew; von Hippel, Matt

    2016-12-09

    The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  20. Bekki-Nozaki Amplitude Holes in Hydrothermal Nonlinear Waves

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Chaté, Hugues; Daviaud, François; Mukolobwiez, Nathalie

    1999-04-01

    We present and analyze experimental results on the dynamics of hydrothermal waves occurring in a laterally heated fluid layer. We argue that the large-scale modulations of the waves are governed by a one-dimensional complex Ginzburg-Landau equation (CGLE). We determine quantitatively all the coefficients of this amplitude equation using the localized amplitude holes observed in the experiment, which we show to be well described as Bekki-Nozaki hole solutions of the CGLE.

  1. A cluster bootstrap for two-loop MHV amplitudes

    NASA Astrophysics Data System (ADS)

    Golden, John; Spradlin, Marcus

    2015-02-01

    We apply a bootstrap procedure to two-loop MHV amplitudes in planar super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). We present a concise, closed-form expression which manifests these properties for all n.

  2. Three-point disc amplitudes in the RNS formalism

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel; Su, Ning

    2016-06-01

    We calculate all tree level string theory vacuum to Dp-brane disc amplitudes involving an arbitrary RR-state and two NS-NS vertex operators. This computation was earlier performed by K. Becker, Guo, and Robbins for the simplest case of a RR-state of type C (p - 3). Here we use the aid of a computer to calculate all possible three-point amplitudes involving a RR-vertex operator of type C (p + 1 + 2 k).

  3. A Pn Spreading Model Constrained with Observed Amplitudes in Asia

    DTIC Science & Technology

    2011-09-01

    of observed Pn amplitudes from the tectonically active regions of Asia to evaluate the performance of Y2007 and to develop new, observation-based...a set of observed Pn amplitudes from the tectonically active regions of Asia to evaluate the performance of Y2007 and to develop new observation-based...tomographic inversions to map the lateral Pn attenuation variation. RESEARCH ACCOMPLISHED Introduction It has long been recognized that the

  4. A proposed physical analog for a quantum probability amplitude

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  5. Ball bearing vibrations amplitude modeling and test comparisons

    NASA Technical Reports Server (NTRS)

    Hightower, Richard A., III; Bailey, Dave

    1995-01-01

    Bearings generate disturbances that, when combined with structural gains of a momentum wheel, contribute to induced vibration in the wheel. The frequencies generated by a ball bearing are defined by the bearing's geometry and defects. The amplitudes at these frequencies are dependent upon the actual geometry variations from perfection; therefore, a geometrically perfect bearing will produce no amplitudes at the kinematic frequencies that the design generates. Because perfect geometry can only be approached, emitted vibrations do occur. The most significant vibration is at the spin frequency and can be balanced out in the build process. Other frequencies' amplitudes, however, cannot be balanced out. Momentum wheels are usually the single largest source of vibrations in a spacecraft and can contribute to pointing inaccuracies if emitted vibrations ring the structure or are in the high-gain bandwidth of a sensitive pointing control loop. It is therefore important to be able to provide an a priori knowledge of possible amplitudes that are singular in source or are a result of interacting defects that do not reveal themselves in normal frequency prediction equations. This paper will describe the computer model that provides for the incorporation of bearing geometry errors and then develops an estimation of actual amplitudes and frequencies. Test results were correlated with the model. A momentum wheel was producing an unacceptable 74 Hz amplitude. The model was used to simulate geometry errors and proved successful in identifying a cause that was verified when the parts were inspected.

  6. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    NASA Technical Reports Server (NTRS)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  7. Amplitude relations in non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Du, Yi-Jian

    2014-01-01

    In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.

  8. Scattering amplitudes and Wilson loops in twistor space

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David

    2011-11-01

    This paper reviews the recent progress in twistor approaches to Wilson loops, amplitudes and their duality for {N}=4 super-Yang-Mills. Wilson loops and amplitudes are derived from first principles using the twistor action for maximally supersymmetric Yang-Mills theory. We start by deriving the MHV rules for gauge theory amplitudes from the twistor action in an axial gauge in twistor space, and show that this gives rise to the original momentum space version given by Cachazo, Svrček and Witten. We then go on to obtain from these the construction of the momentum twistor space loop integrand using (planar) MHV rules and show how it arises as the expectation value of a holomorphic Wilson loop in twistor space. We explain the connection between the holomorphic Wilson loop and certain light-cone limits of correlation functions. We give a brief review of other ideas in connection with amplitudes in twistor space: twistor-strings, recursion in twistor space, the Grassmannian residue formula for leading singularities and amplitudes as polytopes. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Scattering amplitudes in gauge theories’.

  9. Wilson loops and QCD/string scattering amplitudes

    SciTech Connect

    Makeenko, Yuri; Olesen, Poul

    2009-07-15

    We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant when the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.

  10. Composite representation invariants and unoriented topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Paul, Chandrima; Borhade, Pravina; Ramadevi, P.

    2010-12-01

    Sinha and Vafa [1] had conjectured that the SO Chern-Simons gauge theory on S must be dual to the closed A-model topological string on the orientifold of a resolved conifold. Though the Chern-Simons free energy could be rewritten in terms of the topological string amplitudes providing evidence for the conjecture, we needed a novel idea in the context of Wilson loop observables to extract cross-cap c=0,1,2 topological amplitudes. Recent paper of Marino [2] based on the work of Morton and Ryder [3] has clearly shown that the composite representation placed on the knots and links plays a crucial role to rewrite the topological string cross-cap c=0 amplitude. This enables extracting the unoriented cross-cap c=2 topological amplitude. In this paper, we have explicitly worked out the composite invariants for some framed knots and links carrying composite representations in U(N) Chern-Simons theory. We have verified generalised Rudolph's theorem, which relates composite invariants to the invariants in SO(N) Chern-Simons theory, and also verified Marino's conjectures on the integrality properties of the topological string amplitudes. For some framed knots and links, we have tabulated the BPS integer invariants for cross-cap c=0 and c=2 giving the open-string topological amplitude on the orientifold of the resolved conifold.

  11. Mapping Pn amplitude spreading and attenuation in Asia

    SciTech Connect

    Yang, Xiaoning; Phillips, William S; Stead, Richard J

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  12. An in-building network based on community access television integration with quadrature phase-shift keying orthogonal frequency-division multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yi; Lin, Ying-Pyng; Lu, Hai-Han; Wu, Po-Yi; Lin, Huang-Chang; Wu, Hsiao-Wen

    2012-07-01

    An in-building network based on cable television (CATV) integration with quadrature phase-shift keying (QPSK) orthogonal frequency-division multiplexing (OFDM) transport over a combination of single-mode fibers (SMF) and perfluorinated graded-index plastic optical fibers (GI-POF) is proposed and experimentally demonstrated. In this system, a 1558.5 nm optical signal is directly transmitted along two fiber spans (20 km SMF + 25 m GI-POF). An optimum guard band is carefully established to ensure that no very substantial signal interference is induced between the CATV and QPSK OFDM bands. Error free transmission with sufficiently low bit error rate values was achieved for 1.25 Gbps/771.5 MHz QPSK OFDM signals; also, acceptable carrier-to-noise ratio, composite second-order, and composite triple-beat performances were obtained for CATV signals. This proposed network is significant because it is economical and convenient to install.

  13. A Comparison of the Performances of Coherent Binary-Phase-Shift Keying (BPSK) and Offset Quadrature-Phase-Shift Keying (OQPSK) in the Presence of Interference

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Darden, S.

    1999-10-01

    The performance of offset quadrature-phase-shift keying (OQPSK) in the presence of narrowband and wideband interference signals is considered, assuming perfect carrier synchronization. Narrowband interference is modeled as an unmodulated tone at a given frequency offset and random phase with respect to the desired OQPSK signal. Wideband interference is modeled as another OQPSK signal at a given frequency offset, random phase, and random timing with respect to the desired OQPSK signal, but having the identical data rate. This model is more typical of co-channel interference than that considered in other studies of this subject, where a wideband Gaussian noise was assumed. The results obtained here for OQPSK are compared with analogous results obtained previously by one of the authors for binary-phase-shift-keyed (BPSK) modulation.

  14. Design and evaluation of a detunable water-based quadrature HEM11 mode dielectric resonator as a new type of volume coil for high field MRI.

    PubMed

    Aussenhofer, Sebastian A; Webb, Andrew G

    2012-10-01

    An annular dielectric resonator made from distilled water has been designed to operate in degenerate quadrature HEM11 modes at 298.1 MHz (7 Tesla). The circularly polarized B1+ field has a high degree of homogeneity throughout a sample placed within the annulus. The sensitivity of the resonator was measured to be essentially identical to that of an eight-rung high-pass birdcage resonator with the same physical dimensions. High resolution in vivo images have been obtained from the human wrist. A new method of electronically detuning the resonator has also been evaluated. The design is extremely simple and rapid to build, with direct applicability to very high field imaging and also potential integration into human and animal hybrid position emission tomography (PET)/MRI and single-photon emission computed tomography (SPECT)/MRI systems due to the lack of conductor attenuation-induced artifacts in the reconstructed nuclear medicine images.

  15. Pulse-grouping transmission of optical quadrature phase-shift keying signals with time diversity multiple-input and multiple-output detection and processing

    NASA Astrophysics Data System (ADS)

    Gao, Guanjun; Chen, Sai; Zhang, Jie

    2016-08-01

    We investigate an optical pulse-overlap transmission scheme where the orthogonal condition between neighbor pulses is violated. The interferences between the grouped optical pulses are mitigated at the optical coherent receiver with time diversity multiple-input and multiple-output-based digital signal processing. Numerical simulation investigates the performance of 50% return-to-zero (RZ)-quadrature phase-shift keying (QPSK) signals, where up to four pulses are overlapped and grouped for per pulse period. In the experiment demonstration, two 50% RZ-QPSK signals are combined with different time offset between neighbor pulses, and the Q-performance as a function of optical-signal-to-noise ratio (OSNR) is compared on each pulse channel basis, with minimum OSNR penalty of only 1-dB compared to the single pulse transmission.

  16. Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Jiwari, Ram

    2015-08-01

    In this article, the author proposed two differential quadrature methods to find the approximate solution of one and two dimensional hyperbolic partial differential equations with Dirichlet and Neumann's boundary conditions. The methods are based on Lagrange interpolation and modified cubic B-splines respectively. The proposed methods reduced the hyperbolic problem into a system of second order ordinary differential equations in time variable. Then, the obtained system is changed into a system of first order ordinary differential equations and finally, SSP-RK3 scheme is used to solve the obtained system. The well known hyperbolic equations such as telegraph, Klein-Gordon, sine-Gordon, Dissipative non-linear wave, and Vander Pol type non-linear wave equations are solved to check the accuracy and efficiency of the proposed methods. The numerical results are shown in L∞ , RMS andL2 errors form.

  17. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  18. Joint amplitude and frequency analysis of tremor activity.

    PubMed

    Foerster, F; Smeja, M

    1999-01-01

    Clinical tremor analysis mostly is used for the measurement of tremor frequency. The analysis is based on short segments of EMG recordings and on clinical ratings of tremor intensity. Accelerometry appears to have some practical advantages. The present study was concerned with the development of a methodology for assessing tremor activity using the three parameters, frequency (Hz), amplitude (g), and occurrence of tremor (in per cent of time). These parameters were derived from joint amplitude frequency analysis of the calibrated accelerometer raw signal and from appropriate decision rules. This methodology was used in connection with 27 patients with Parkinson's disease, to investigate the aforesaid parameters of tremor activity. Postural tremor had a higher occurrence time (right-hand only) and higher frequency (left-hand only) than resting tremor, however, the average amplitudes did not differ. The correlations between right-hand and left-hand measures were higher during postural tremor test. Frequency was not correlated to amplitude or occurrence time, however, moderate correlations did exist between amplitude and occurrence time. In addition to the assessment of tremor activity, multi-channel accelerometry may be used for the detection of posture and motion. Further applications of this methodology, for example, in 24 hr ambulatory monitoring of tremor, are discussed.

  19. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  20. Amplitude death of coupled hair bundles with stochastic channel noise

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2014-04-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles (stereocilia) can be spontaneously oscillating or quiescent. Recently an amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, 10, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between nonidentical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as interbundle coupling strength increases. In its stochastic dynamics, the formation of the amplitude death state of coupled hair bundles can be seen as a sudden suppression of the displacement fluctuation of the hair bundles as the coupling strength increases. The enhancement of the signal-to-noise ratio through the amplitude death phenomenon is clearly seen in the stochastic dynamics. Our numerical results demonstrate that the multiple number of transduction channels per hair bundle is an important factor to the amplitude death phenomenon, because the phenomenon may disappear for a small number of transduction channels due to strong gating noise.

  1. All Tree-level Amplitudes in Massless QCD

    SciTech Connect

    Dixon, Lance J.; Henn, Johannes M.; Plefka, Jan; Schuster, Theodor; /Humboldt U., Berlin

    2010-10-25

    We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to three massless quark-anti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric Yang-Mills theory (N = 4 SYM) onto the relevant components yielding all gluon-gluino tree amplitudes in N = 4 SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different flavors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all N = 4 SYM gluon-gluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark-pairs.

  2. Brain and human pain: topographic EEG amplitude and coherence mapping.

    PubMed

    Chen, A C; Rappelsberger, P

    1994-01-01

    Nineteen young healthy volunteers (8 males and 11 females) participated in an experimental ice-cube cold pressor test to study topographic changes of EEG parameters in response to painful stimulation. EEG was recorded with 19 electrodes and quantified by amplitude and coherence analyses. Mean amplitudes and values for local (between adjacent electrodes) and interhemispheric (between electrodes on homologous sites of both hemispheres) coherences were computed for six frequency bands. For the evaluation of changes between EEG at rest (baseline) and EEG during painful stimulation (right or left hand), non-parametric paired Wilcoxon tests were performed. The obtained descriptive error probabilities were presented in probability maps. In the behavioural pain tolerance and subjective pain ratings, no difference in gender or stimulation condition was observed. Under painful stimulation the results showed: (A) most pronounced decrease of Alpha amplitude in the central areas and some increase of high Beta amplitude; (B) increase of local coherence for Alpha and Beta 2 mainly in central regions and centro-frontal leads; and (C) increase of interhemispheric coherence for Alpha and Beta 2 in the central areas. The results of this study indicate clearly that peripheral painful stimulation is reflected by EEG changes. Decrease of EEG amplitude and simultaneous increase of EEG coherence in the central regions can be cortical correlates of human pain.

  3. Name that percussive tune: Associative memory and amplitude envelope.

    PubMed

    Schutz, Michael; Stefanucci, Jeanine K; H Baum, Sarah; Roth, Amber

    2017-07-01

    A series of experiments demonstrated novel effects of amplitude envelope on associative memory, with tones exhibiting naturally decaying amplitude envelopes (e.g., those made by two wine glasses clinking) better associated with target objects than amplitude-invariant tones. In Experiment 1 participants learned associations between household objects and 4-note tone sequences constructed of spectrally matched pure tones with either "flat" or "percussive" amplitude envelopes. Those hearing percussive tones correctly recalled significantly more sequence-object associations. Experiment 2 demonstrated that participants hearing percussive tones learned the associations more quickly. Experiment 3 used "reverse percussive" tones (percussive tones played backwards) to test whether differences in overall energy might account for this effect, finding they did not lead to the same level of performance as percussive tones. Experiment 4 varied the envelope at encoding and retrieval to determine which stage of the task was most affected by the envelope manipulation. Participants hearing percussive tones at both encoding and retrieval performed significantly better than the other three groups (i.e., flat at encoding/percussive at retrieval, etc.). We conclude that amplitude envelope plays an important role in learning and memory, a finding with relevance to psychological research on audition and associative memory, as well as practical relevance for improving human-computer interface design.

  4. Forecasting Wave Amplitudes after the Arrival of a Tsunami

    NASA Astrophysics Data System (ADS)

    Nyland, David; Huang, Paul

    2014-12-01

    The destructive Pacific Ocean tsunami generated off the east coast of Honshu, Japan, on 11 March 2011 prompted the West Coast and Alaska Tsunami Warning Center (WCATWC) to issue a tsunami warning and advisory for the coastal regions of Alaska, British Columbia, Washington, Oregon, and California. Estimating the length of time the warning or advisory would remain in effect proved difficult. To address this problem, the WCATWC developed a technique to estimate the amplitude decay of a tsunami recorded at tide stations within the Warning Center's Area of Responsibly (AOR). At many sites along the West Coast of North America, the tsunami wave amplitudes will decay exponentially following the arrival of the maximum wave ( Mofjeld et al., Nat Hazards 22:71-89, 2000). To estimate the time it will take before wave amplitudes drop to safe levels, the real-time tide gauge data are filtered to remove the effects of tidal variations. The analytic envelope is computed and a 2 h sequence of amplitude values following the tsunami peak is used to obtain a least squares fit to an exponential function. This yields a decay curve which is then combined with an average West Coast decay function to provide an initial tsunami amplitude-duration forecast. This information may then be provided to emergency managers to assist with response planning.

  5. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  6. Propagation and amplitude decay mechanisms of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Wang, Ling-ling; Wang, Chun-ling; Tang, Hong-wu; Chen, Hong

    2016-12-01

    In this paper, a modified dynamic coherent eddy model (DCEM) of large eddy simulation is applied to study internal solitary waves in a numerical flume. The model was verified by physical experiment and applied to investigate the potential influence factors on internal wave amplitude. In addition, we discussed the energy loss of internal solitary wave as well as hydrodynamics in the propagation. The results of our study show that (1) Step-depth is the most sensitive factor on wave amplitude for the "step-pool" internal wave generation method and the wave amplitudes obey a linear increase with step depth, and the increase rate is about 0.4. (2) Wave energy loss obeys a linear decrease with the propagation distance and its loss rate of large amplitude waves is smaller than that of small amplitude waves. (3) Loss of kinetic energy in wave valley is larger than that near the interface due to relative high fluctuating frequency. (4) Discovered boundary jet-flow can intensify the bottom shear, which might be one of the mechanisms of substance transportation, and the boundary layers of jet flows are easily influenced by the adjacent waves.

  7. Amplitudes of solar-like oscillations: a new scaling relation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, H.; Bedding, T. R.

    2011-05-01

    Solar-like oscillations are excited by near-surface convection and are being observed in growing numbers of stars using ground- and space-based telescopes. We have previously suggested an empirical scaling relation to predict their amplitudes. This relation has found widespread use but it predicts amplitudes in F-type stars that are higher than observed. Here we present a new scaling relation that is based on the postulate that the power in velocity fluctuations due to p-mode oscillations scales with stellar parameters in the same way as the power in velocity fluctuations due to granulation. The new relation includes a dependence on the damping rate via the mode lifetime and should be testable using observations from the CoRoT and Kepler missions. We also suggest scaling relations for the properties of the background power due to granulation and argue that both these and the amplitude relations should be applicable to red giant stars.

  8. Amplitude-dependent Lamb wave dispersion in nonlinear plates.

    PubMed

    Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J

    2016-08-01

    The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching.

  9. Kernel phase and kernel amplitude in Fizeau imaging

    NASA Astrophysics Data System (ADS)

    Pope, Benjamin J. S.

    2016-12-01

    Kernel phase interferometry is an approach to high angular resolution imaging which enhances the performance of speckle imaging with adaptive optics. Kernel phases are self-calibrating observables that generalize the idea of closure phases from non-redundant arrays to telescopes with arbitrarily shaped pupils, by considering a matrix-based approximation to the diffraction problem. In this paper I discuss the recent history of kernel phase, in particular in the matrix-based study of sparse arrays, and propose an analogous generalization of the closure amplitude to kernel amplitudes. This new approach can self-calibrate throughput and scintillation errors in optical imaging, which extends the power of kernel phase-like methods to symmetric targets where amplitude and not phase calibration can be a significant limitation, and will enable further developments in high angular resolution astronomy.

  10. Phase and amplitude stabilization of beam-loaded superconducting resonators

    SciTech Connect

    Delayen, J.R.

    1992-01-01

    A model has been developed to analyze the static and dynamic behavior of superconducting accelerating cavities operated in self-excited loops in the presence of phase and amplitude feedback, ponderomotive effects, and beam loading. This is an extension of an earlier analysis of the stabilization of superconducting cavities which has been the basis of the control system of several superconducting accelerators but did not include beam loading. Conditions have been derived to ensure static and dynamic stability in the presence of ponderomotive effects (coupling between the mechanical and electromagnetic modes of the cavity through the radiation pressure). Expressions for the effect of fluctuations of cavity frequency and beam amplitude and phase on the cavity-field amplitude and phase and beam-energy gain have been obtained.

  11. Phase and amplitude stabilization of beam-loaded superconducting resonators

    SciTech Connect

    Delayen, J.R.

    1992-10-01

    A model has been developed to analyze the static and dynamic behavior of superconducting accelerating cavities operated in self-excited loops in the presence of phase and amplitude feedback, ponderomotive effects, and beam loading. This is an extension of an earlier analysis of the stabilization of superconducting cavities which has been the basis of the control system of several superconducting accelerators but did not include beam loading. Conditions have been derived to ensure static and dynamic stability in the presence of ponderomotive effects (coupling between the mechanical and electromagnetic modes of the cavity through the radiation pressure). Expressions for the effect of fluctuations of cavity frequency and beam amplitude and phase on the cavity-field amplitude and phase and beam-energy gain have been obtained.

  12. Top Quark Amplitudes with an Anomolous Magnetic Moment

    SciTech Connect

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-23

    The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with t{bar t} and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.

  13. Chronotaxic systems with separable amplitude and phase dynamics

    NASA Astrophysics Data System (ADS)

    Suprunenko, Yevhen F.; Clemson, Philip T.; Stefanovska, Aneta

    2014-01-01

    Until recently, deterministic nonautonomous oscillatory systems with stable amplitudes and time-varying frequencies were not recognized as such and have often been mistreated as stochastic. These systems, named chronotaxic, were introduced in Phys. Rev. Lett. 111, 024101 (2013), 10.1103/PhysRevLett.111.024101. In contrast to conventional limit cycle models of self-sustained oscillators, these systems posses a time-dependent point attractor or steady state. This allows oscillations with time-varying frequencies to resist perturbations, a phenomenon which is ubiquitous in living systems. In this work a detailed theory of chronotaxic systems is presented, specifically in the case of separable amplitude and phase dynamics. The theory is extended by the introduction of chronotaxic amplitude dynamics. The wide applicability of chronotaxic systems to a range of fields from biological and condensed matter systems to robotics and control theory is discussed.

  14. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  15. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  16. Frequency, phase, and amplitude changes of the hydrogen maser oscillation

    NASA Technical Reports Server (NTRS)

    Audoin, Claude; Diener, William A.

    1992-01-01

    The frequency, the phase, and the amplitude changes of the hydrogen maser oscillation, which are induced by the modulation of the cavity resonant frequency, are considered. The results obtained apply specifically to one of the H-maser cavity autotuning methods which is actually implemented, namely the cavity frequency-switching method. The frequency, the phase, and the amplitude changes are analyzed theoretically. The phase and the amplitude variations are measured experimentally. It is shown, in particular, that the phase of oscillation is subjected to abrupt jumps at the times of the cavity frequency switching, whose magnitude is specified. The results given can be used for the design of a phase-locked loop (PLL) aimed at minimizing the transfer of the phase modulation to the slaved VCXO.

  17. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    NASA Astrophysics Data System (ADS)

    Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao

    2016-10-01

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  18. Mammalian cycles: internally defined periods and interaction-driven amplitudes

    PubMed Central

    Krebs, CJ

    2015-01-01

    The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016) to be of extraordinarily low amplitude. PMID:26339557

  19. Amplitude and polarization asymmetries in a ring laser

    NASA Technical Reports Server (NTRS)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  20. Berends-Giele recursion for double-color-ordered amplitudes

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.

    2016-07-01

    Tree-level double-color-ordered amplitudes are computed using Berends-Giele recursion relations applied to the bi-adjoint cubic scalar theory. The standard notion of Berends-Giele currents is generalized to double-currents and their recursions are derived from a perturbiner expansion of linearized fields that solve the non-linear field equations. Two applications are given. Firstly, we prove that the entries of the inverse KLT matrix are equal to Berends-Giele double-currents (and are therefore easy to compute). And secondly, a simple formula to generate tree-level BCJ-satisfying numerators for arbitrary multiplicity is proposed by evaluating the field-theory limit of tree-level string amplitudes for various color orderings using double-color-ordered amplitudes.