Science.gov

Sample records for 16-slice spiral ct

  1. Image reconstruction and image quality evaluation for a 16-slice CT scanner.

    PubMed

    Flohr, Th; Stierstorfer, K; Bruder, H; Simon, J; Polacin, A; Schaller, S

    2003-05-01

    We present a theoretical overview and a performance evaluation of a novel approximate reconstruction algorithm for cone-beam spiral CT, the adaptive multiple plane reconstruction (AMPR), which has been introduced by Schaller, Flohr et al. [Proc. SPIE Int. Symp. Med. Imag. 4322, 113-127 (2001)] AMPR has been implemented in a recently introduced 16-slice CT scanner. We present a detailed algorithmic description of AMPR which allows for a free selection of the spiral pitch. We show that dose utilization is better than 90% independent of the pitch. We give an overview on the z-reformation functions chosen to allow for a variable selection of the spiral slice width at arbitrary pitch values. To investigate AMPR image quality we present images of anthropomorphic phantoms and initial patient results. We present measurements of spiral slice sensitivity profiles (SSPs) and measurements of the maximum achievable transverse resolution, both in the isocenter and off-center. We discuss the pitch dependence of image noise measured in a centered 20 cm water phantom. Using the AMPR approach, cone-beam artifacts are considerably reduced for the 16-slice scanner investigated. Image quality in MPRs is independent of the pitch and equivalent to a single-slice CT system at pitch p approximately 1.5. The full width at half-maximum (FWHM) of the spiral SSPs shows only minor variations as a function of the pitch, nominal, and measured values differ by less than 0.2 mm. With 16 x 0.75 mm collimation, the measured FWHM of the smallest reconstructed slice is about 0.9 mm. Using this slice width and overlapping image reconstruction, cylindrical holes with 0.6 mm diameter can be resolved in a z-resolution phantom. Image noise for constant effective mAs is nearly independent of the pitch. Measured and theoretically expected dose utilization are in good agreement. Meanwhile, clinical practice has demonstrated the excellent image quality and the increased diagnostic capability that is obtained

  2. Cardiac image reconstruction on a 16-slice CT scanner using a retrospectively ECG-gated multicycle 3D back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Shechter, Gilad; Naveh, Galit; Altman, Ami; Proksa, Roland M.; Grass, Michael

    2003-05-01

    Fast 16-slice spiral CT delivers superior cardiac visualization in comparison to older generation 2- to 8-slice scanners due to the combination of high temporal resolution along with isotropic spatial resolution and large coverage. The large beam opening of such scanners necessitates the use of adequate algorithms to avoid cone beam artifacts. We have developed a multi-cycle phase selective 3D back projection reconstruction algorithm that provides excellent temporal and spatial resolution for 16-slice CT cardiac images free of cone beam artifacts.

  3. Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries.

    PubMed

    Kefer, Joelle M; Coche, Emmanuel; Vanoverschelde, Jean-Louis J; Gerber, Bernhard L

    2007-01-01

    The purpose of this study was to assess the diagnostic accuracy of 16-slice multidetector-row computed tomography (MDCT) for detecting in-stent restenosis. Fifty patients with 69 previously implanted coronary stents underwent 16-slice MDCT before quantitative coronary angiography (QCA). Diagnostic accuracy of MDCT for detection of in-stent restenosis defined as >50% lumen diameter stenosis (DS) in stented and nonstented coronary segments >1.5-mm diameter was computed using QCA as reference. According to QCA, 18/69 (25%) stented segments had restenosis. In addition, 33/518 (6.4%) nonstented segments had >50% DS. In-stent restenosis was correctly identified on MDCT images in 12/18 stents, and absence of restenosis was correctly identified in 50/51 stents. Stenosis in native coronary arteries was correctly identified in 22/33 segments and correctly excluded in 482/485 segments. Thus, sensitivity (67% vs 67% p=1.0), specificity (98% vs 99%, p=0.96) and overall diagnostic accuracy (90% vs 97%, p=0.68) was similarly high for detecting in-stent restenosis as for detecting stenosis in nonstented coronary segments. MDCT has similarly high diagnostic accuracy for detecting in-stent restenosis as for detecting coronary artery disease in nonstented segments. This suggests that MDCT could be clinically useful for identification of restenosis in patients after coronary stenting.

  4. Evaluation of biventricular ejection fraction with ECG-gated 16-slice CT: preliminary findings in acute pulmonary embolism in comparison with radionuclide ventriculography.

    PubMed

    Coche, Emmanuel; Vlassenbroek, Alain; Roelants, Véronique; D'Hoore, William; Verschuren, Franck; Goncette, Louis; Maldague, Baudouin

    2005-07-01

    This study aimed to assess the feasibility of cardiac global function evaluation during a whole-chest multi-slice CT (MSCT) acquisition in patients referred for suspicion of pulmonary embolism (PE), and to compare the results with planar equilibrium radionuclide ventriculography (ERNA). Ten consecutive haemodynamically stable patients (six female, four male; mean age 69.7 years; heart rate 65-99 bpm) with suspicion of PE underwent an MSCT and ERNA within a 6 h period. CT acquisition was performed after contrast medium injection by using 16x1.5 mm collimation and retrospective ECG gating. Left ventricular (LVEF) and right ventricular (RVEF) ejection fractions were calculated using dedicated three-dimensional software. Relationships between measurements obtained with MSCT and ERNA were assessed using linear regression analysis and reliability of MSCT was assessed with intra-class correlation coefficient. Bland-Altman analysis was performed to calculate limits of agreement between MSCT and ERNA. MSCT was performed successfully in ten patients with a mean acquisition time of 16.5+/-2.8 s. Functional cardiac evaluation was possible on CT for all patients except for one due to poor opacification of right ventricle. Linear regression analysis showed a good correlation between MSCT and ERNA for the LVEF (R=0.91) and the RVEF (R=0.89) measurements. Intra-class correlation was superior for LVEF (0.92) than for the RVEF (0.68). Bland-Altman plots demonstrated that MSCT substantially overestimated the ERNA RVEF. Morphological CT data demonstrated PE in four of ten of patients and alternative diagnoses in five of ten patients. Our study reveals that MSCT with retrospective ECG gating may provide in one modality a morphological and a functional cardiopulmonary evaluation. Comparison with ERNA demonstrated a good correlation for both ventricular ejection fractions.

  5. Pulmonary embolism findings on chest radiographs and multislice spiral CT.

    PubMed

    Coche, Emmanuel; Verschuren, Franck; Hainaut, Philippe; Goncette, Louis

    2004-07-01

    Multislice spiral CT is becoming an increasingly important tool for diagnosing pulmonary embolism. However, in many instances, a chest radiograph is usually performed as a first-line examination. Many parenchymal, vascular, and other ancillary findings may be observed on both imaging modalities with a highly detailed depiction of abnormalities on multislice CT. A comprehensive review of chest radiograph findings is presented with side-by-side correlations of CT images reformatted mainly in the frontal plane.

  6. Volumetric applications for spiral CT in the thorax

    NASA Astrophysics Data System (ADS)

    Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.

    1994-05-01

    Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.

  7. Congenital left ventricular aneurysm diagnosed by spiral CT angiography

    SciTech Connect

    Beregi, J.P.; Coulette, J.M.; Ducloux, G.

    1996-05-01

    We report a rare case of congenital left ventricular aneurysm, diagnosed by spiral CT angiography. Despite 1 s time acquisition, spiral CT, with adequate acquisition parameters and bolus injection of contrast medium, produced sufficiently good images to permit visualization of the aneurysm. Subsequently, reconstructions (shaded surface display and multiplanar reformation) were performed to demonstrate the relationship of the aneurysm with the remainder of the left ventricle, the wide neck of the aneurysm, and the absence of contractility, therein permitting differentiation from a congenital diverticulum. 6 refs., 3 figs.

  8. Thromboembolic Complications Following Spine Surgery Assessed with Spiral CT Scans

    PubMed Central

    Kim, Han Jo; Walcott-Sapp, Sarah; Adler, Ronald S.; Pavlov, Helene; Boachie-Adjei, Oheneba

    2010-01-01

    Spine surgery is associated with a significant risk of postoperative pulmonary embolism (PE) and/or deep vein thrombosis (DVT). The goal of this study was to determine which symptoms and risk factors were associated with spiral CT scans positive for PE and/or DVT in the postoperative spine surgery patient. We conducted a retrospective review of all spine patients who underwent a postoperative CT to rule out PE during the period of March 2004–February 2006. The type of surgical procedure, risk factors, symptoms prompting scan ordering, anticoagulation, and treatment were recorded. Logistic regression models were used to determine significant predictors of a positive CT in this patient population. Of the 3,331 patients that had spine surgery during the study period, 130 (3.9%) had a spiral CT scan to rule out PE and/or proximal DVT. Thirty-three of the 130 (25.4%) CT scans were positive for PE only, five (3.8%) for PE and DVT, and three (2.3%) for DVT only. Only 24.5% (32) patients had risk factors for thromboembolic disease, and of these, a history of PE and/or DVT was the only significant risk factor for a positive scan (p = 0.03). No presenting symptoms or demographic variables were noted to have a significant association with PE and/or DVT. The type of surgical procedure (i.e., anterior, posterior, and percutaneous) was not associated with an increased risk for PE and/or DVT. Patients who are undergoing spine surgery with a history of thromboembolic disease should be carefully monitored postoperatively and may benefit from more aggressive prophylaxis. PMID:22294955

  9. Short communication: oesophageal tumour volume measurement using spiral CT.

    PubMed

    Liang, E Y; Chan, A; Chung, S C; Metreweli, C

    1996-04-01

    A CT technique for measuring oesophageal cancer tumour volume in the monitoring of local disease response following radiotherapy or chemotherapy is described. Patients with newly diagnosed oesophageal carcinoma were referred for pre- and post-chemotherapy CT scans. IV Buscopan was given to abolish peristalsis. Patients were scanned in prone position. Effervescent gas granules and Calogen (a negative contrast of fat density) were given. Spiral scanning was performed. The area of tumour on each 1 cm slice was measured. The sum of these areas gave tumour volume in cubic centimetres. The accuracy of the method was tested on patients who had had surgery. The volume of the segment of oesophagus containing tumour was measured by its weight and water displacement. Lumenal distention proximal and distal to the tumour was achieved in all patients. 10 gross surgical specimens were available for comparison with pre-operative CT. The correlation coefficient was 0.95. In conclusion, accurate tumour volume assessment was achieved with our technique.

  10. Prevalence and Characteristics of Cavum Septum Pellucidum in Schizophrenia: A 16 Slice Computed Tomography Study

    PubMed Central

    Khanra, Sourav; Srivastava, Naveen Kumar; Chail, Vivek; Khess, Christoday Raja Jayant

    2016-01-01

    Objective: Several significant midline abnormalities including cavum septum pellucidum (CSP) have been reported in schizophrenia. However, not all studies were able to replicate similar findings. Furthermore, very few of them were conducted with large samples. Methods: CSP was identified and graded with 16 slice computed tomography (CT) machine in 138 patients of schizophrenia and 64 controls. Results: We found 21.0% of patients in schizophrenia group had abnormal CSP compared to only 9.4% in control group (P = 0.047). Grade III was most frequent type (19.6%) in schizophrenia group. Conclusions: Our study adds to the existing literature suggesting abnormal CSP may reflect neurodevelopmental process in schizophrenia. The strength of our study was larger sample size. Limitations were use of CT, male predominance in schizophrenia group, the inclusion of nonpsychiatric patients in control group. PMID:27833230

  11. Reconstruction Algorithm with Improved Efficiency and Flexibility in Multi-Slice Spiral CT.

    PubMed

    Sun, Wenwu; Chen, Siping; Zhuang, Tiange

    2005-01-01

    There is a requirement for the development of CT to scan rapidly large longitudinal volume with high z-axis resolution. The combination of spiral scanning with multi-slice CT is a promising approach. The algorithm of image reconstruction for multi-slice spiral CT becomes, therefore, the main challenge. All algorithms known to the authors either need to derive the complementary data or work only for certain range of pitch values. This paper presents a novel reconstruction algorithm that can omit the derivations of the complementary data and work for arbitrary pitch values. The filter interpolation based on the proposed method is also easy to be implemented. The method is, thus, versatile. The results of computer simulations show that we can choose a combination of scan and filter parameters to meet the purpose of the examination.

  12. [Ultra-low-dose spiral (helical) CT of the thorax: a filtering technique].

    PubMed

    Nitta, N; Takahashi, M; Murata, K; Mori, M; Shimoyama, K; Mishina, A; Matsuo, H; Morita, R; Sugii, K; Nomura, A

    1996-01-01

    To reduce the radiation dose from spiral (helical) CT, a custom-made aluminium filter was installed in the X-ray tube and a reduction of effective tube current was attempted. A pronounced reduction of effective tube current, namely, 6 and 3 mA, was achieved with 26 and 37 mm thick aluminium filters, respectively. Visualization of normal lung structure was accomplished with both 6 and 3 mA settings. However, images of 3 mA failed to delineate mediastinal structures because of marked beam hardening resulting from the bone structure of the thoracic inlet. Six mA was considered the lowest dose setting of spiral (helical) CT of the thorax that could be used for lung cancer screening.

  13. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction.

    PubMed

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stéphane; Maldague, Baudouin

    2003-04-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries.

  14. Implementation of a spiral CT backprojection algorithm on the Cell Broadband Engine processor

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Goddard, Iain; Schuberth, Sebastian; Seebass, Martin

    2006-03-01

    Over the last few decades, the medical imaging community has passionately debated over different approaches to implement reconstruction algorithms for Spiral CT. Numerous alternatives have been proposed. Whether they are approximate, exact or, iterative, those implementations generally include a backprojection step. Specialized compute platforms have been designed to perform this compute-intensive algorithm within a timeframe compatible with hospital-workflow requirements. Solving the performance problem in a cost-effective way had driven designers to use a combination of digital signal processor (DSP) chips, general-purpose processors, application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). The Cell processor by IBM offers an interesting alternative for implementing the backprojection, especially since it offers a good level of parallelism and vast I/O capabilities. In this paper, we consider the implementation of a straight backprojection algorithm on the Cell processor to design a cost-effective system that matches the performance requirements of clinically deployed systems. The effects on performance of system parameters such as pitch and detector size are also analyzed to determine the ideal system size for modern CT scanners.

  15. The value of 64-slice spiral CT perfusion imaging in the treatment of liver cancer with argon-helium cryoablation

    PubMed Central

    Lv, Yinggang; Jin, Yurong; Yan, Qiaohuan; Yuan, Dingling; Wang, Yanling; Li, Xianping; Shen, Yanfeng

    2016-01-01

    We analyzed the effectiveness of using 64-slice spiral computed tomography (CT) and perfusion imaging to guide argon-helium cryoablation treatment of liver cancer. In total, 60 cases of advanced hepatocellular carcinoma before surgery treated with argon-helium cryoablation were inlcuded in the present study. Retrospective summary of the 60 cases of metaphase and advanced liver cancer were used as the control group. The control group were treated using cryoablation with argon-helium knife. We used enhanced scanning with 64-slice spiral CT to define the extent of their lesions and prepared a plan of percutaneous cryoablation for the treatment. Intraoperatively, we used the dynamics of CT perfusion imaging to observe the frozen ablation range and decreased the rate of complications. After surgery, the patients were followed-up regularly by 64-slice CT. We used conventional X-ray, CT and magnetic resonance imaging (MRI) for pre-operative lateralization. Intraoperative X-ray or ultrasound guidance and follow-up with CT or MTI were added to determine the clinical effectiveness and prognosis. The results showed that the total effective rate was improved significantly and incidence rate of overall complications decreased markedly in the observation group. Following treatment, AFP decreased significantly while the total freezing area and time were reduced significantly. The median survival time was increased significantly in the observation group. The numeric values of hepatic arterial perfusion, portal vein perfusion and hepatic arterial perfusion index were all markedly lowered after treatment. Differences were statistically significant (P<0.05). In conclusion, the use of 64-slice spiral CT perfusion imaging may considerably improve the effects of liver cancer treatment using the argon-helium cryoablation. It extended the survival time and reduced complications. PMID:28105165

  16. The Role of Multi-slice Spiral CT Angiography in Patient Management After Endovascular Therapy

    SciTech Connect

    Peloschek, P. Sailer, J.; Loewe, C.; Schillinger, M.; Lammer, J.

    2006-10-15

    Objectives. To bring out the role of multi-slice spiral CT angiography (MS-CTA) in patient management after endovascular therapy of subclavian artery stenosis. Methods. Twenty-one consecutive patients with clinically suspected restenosis after endovascular treatment of subclavian artery stenosis or occlusion were included in the study. Eleven patients had been treated with percutaneous transluminal angioplasty (PTA) alone and 10 with PTA and stenting. The mean follow-up period after PTA or stenting was 57 ({+-}27 SD) months. CTA was performed using a bolus-triggered high-resolution protocol with biphasic intravenous contrast medium injection. Axial images and curved planar reformations (CPRs) were rated by three readers with regard to patency of supra-aortic vessels. Imaging findings were correlated with a standardized clinical assessment. Results. All examinations were of diagnostic quality. Of 21 referred patients, 7 had significant reobstruction of the treated subclavian artery. Six of the 7 patients with significant restenosis on CTA were treated conservatively (antiplatelet agents), despite 2 of them being symptomatic on the standardized clinical assessment, which showed a sensitivity and specificity of 86% in predicting stenosis. One patient was treated with PTA and stent deployment because of strong subjective suffering. Conclusion. MS-CTA is useful for exclusion or quantification of clinically suspected restenosis in carefully selected patients after endovascular therapy where ultrasound is inconclusive and/or contrast-enhanced magnetic resonance angiography is contraindicated.

  17. The evaluation and comparison of kidney length obtained from axial cuts in spiral CT scan with its true length

    PubMed Central

    Karami, Mehdi; Rahimi, Farshad; Tajadini, Mohammadhasan

    2015-01-01

    Background: Increased size of kidney is the main symptom of pyelonephritis and renal ischemia in children. Ultrasound and computed tomography (CT) scan methods are the imaging methods for evaluating the urogenital system. The aim of this study is to compare the kidney length obtained from spiral CT scan with the true length obtained from multi-slice CT. Materials and Methods: From 100 patients 200 kidneys were examined in Alzahra Hospital in 2012. Multi-slice CT was used to obtain coronal and sagittal cuts to find the length of kidneys. Results: The mean values of true size of axial sections of the right and left kidneys were 108.37 ± 12.3 mm and 109.74 ± 13.6 mm, respectively. The mean difference of axial sections’ lengths in the right and left kidneys was 1.37 ± 1.22 mm. The mean values of length in the spiral CT scan of the right and left kidneys were 98.61 ± 15.8 mm and 103.11 ± 15.9 mm, respectively. The difference in the estimated size by multi-slice CT scan in oblique and axial images was significant (9.77 ± 1.19 mm and 6.63 ± 0.8 mm for the right and left kidneys, respectively (P < 0.001). Conclusion: The average size of both kidneys determined in axial images was smaller than the actual size. The estimation of kidney size in axial images is not reliable, and to obtain the actual size, it is required to have the coronal and sagittal cuts with proper quality, which could be achieved by multi-slice method. PMID:25709984

  18. Three-dimensional spiral CT angiography in pancreatic surgical planning using non-tailored protocols: comparison with conventional angiography.

    PubMed

    Blomley, M J; Albrecht, T; Williamson, R C; Allison, D J

    1998-03-01

    The aim of this study was to investigate three-dimensional spiral computed tomography (3DCT) as an adjunct to routine pancreatic CT scanning, with particular regard to the identification of surgically important hepatic arterial anomalies, correlated with conventional visceral angiography. 32 patients underwent spiral CT scans prior to pancreatic surgery using established protocols. Oral contrast medium was used throughout. 150 ml of intravenous contrast medium was given at 3 ml s-1 with a 24 s spiral CT sequence starting 35 s after the start of infusion. Two protocols were employed, both with a pitch of 1:3 mm table feed/collimation (n = 17) and 5 mm table feed/collimation (n = 15). Overlapping (1 mm minimum) axial reformats were reconstructed. 3DCT shaded-surface displays of the visceral arteries were assessed for visceral arterial anomalies. Visceral angiography (n = 23) was independently correlated. Satisfactory 3D angiograms were performed in all but one patient, in whom the coeliac axis was missed. (i) 3 mm protocol: 3DCT (n = 17) showed three anomalous right hepatic arteries (ARHA), one trifurcation anomaly and one splenic artery with an aortic origin. Angiography (n = 11) confirmed these findings, although one patient with an ARHA did not have angiography. A left gastric arterial supply to the left liver was not detected. (ii) 5 mm protocol: 3DCT (n = 15) showed two cases of ARHA. While confirming these findings, angiography (n = 12) showed a third case of ARHA, in which the coeliac and superior mesenteric artery had very close origins. A left gastric supply to the left liver was also missed. It is concluded that satisfactory 3DCT is possible without changing existing scanning protocols, although narrow sections are required for the confident assessment of right hepatic arterial anomalies, and any left hepatic supply via the left gastric artery was poorly assessed in this series.

  19. Spiral CT During Selective Accessory Renal Artery Angiography: Assessment of Vascular Territory Before Aortic Stent-Grafting

    SciTech Connect

    Dorffner, Roland; Thurnher, Siegfried; Prokesch, Rupert; Youssefzadeh, Soraya; Hoelzenbein, Thomas; Lammer, Johannes

    1998-03-15

    We evaluated the vascular territory of accessory renal arteries in cases where the vessel might be overlapped by an aortic stent-graft. Spiral CT during selective accessory renal artery angiography was performed in four patients with abdominal aortic aneurysms (including one with a horseshoe kidney). The volume of the vascular territory of each renal artery was measured using a software program provided by the CT unit manufacturer. The supernumerary renal arteries perfused 32%, 37%, 15%, and 16% of the total renal mass, respectively. In two patients, stent-grafts were implanted, which resulted in occlusion of the supernumerary renal artery. The volume of the renal infarction was equal to the volume perfused by the artery as calculated before implantation of the stent-graft.The method proposed is accurate for estimating the size of the expected renal infarction. It might help to determine whether placement of a stent-graft is acceptable.

  20. Radiation Dose and Cancer Risk Estimates in 16-Slice Computed Tomography Coronary Angiography

    PubMed Central

    Einstein, Andrew J.; Sanz, Javier; Dellegrottaglie, Santo; Milite, Margherita; Sirol, Marc; Henzlova, Milena; Rajagopalan, Sanjay

    2008-01-01

    Background Recent advances have led to a rapid increase in the number of computed tomography coronary angiography (CTCA) studies performed. While several studies have reported effective dose (E), there is no data available on cancer risk for current CTCA protocols. Methods and Results E and organ doses were estimated, using scanner-derived parameters and Monte Carlo methods, for 50 patients having 16-slice CTCA performed for clinical indications. Lifetime attributable risks (LARs) were estimated with models developed in the National Academies’ Biological Effects of Ionizing Radiation VII report. E of a complete CTCA averaged 9.5 mSv, while that of a complete study, including calcium scoring when indicated, averaged 11.7 mSv. Calcium scoring increased E by 25%, while tube current modulation reduced it by 34% and was more effective at lower heart rates. Organ doses were highest to the lungs and female breast. LAR of cancer incidence from CTCA averaged approximately 1 in 1600, but varied widely between patients, being highest in younger women. For all patients, the greatest risk was from lung cancer. Conclusions CTCA is associated with non-negligible risk of malignancy. Doses can be reduced by careful attention to scanning protocol. PMID:18371595

  1. Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique

    SciTech Connect

    Wang Jiahui; Engelmann, Roger; Li Qiang

    2007-12-15

    Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key 'spiral-scanning' technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the 'north pole' to the 'south pole'. The voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the 'optimal' outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two

  2. Evaluation of frontal sinus and skull measurements using spiral CT scanning: an aid in unknown person identification.

    PubMed

    Uthman, Asmaa T; Al-Rawi, Natheer H; Al-Naaimi, Ahmed S; Tawfeeq, Ahmed S; Suhail, Enas H

    2010-04-15

    The present study was undertaken to test a simple system for the identification of unknown bodies using spiral CT images of frontal sinus and other skull measurements among selected Iraqi sample. Ninety patients (45 males and 45 females) with age range from 20 to 49 years were selected in this study. Three features and two groups of measurements of frontal sinus and three skull dimensions were obtained from the CT images. Three basic features were F (presence or absence of frontal sinus), S (septum) and S (scalloping). Measurements selected for the study were frontal sinus width, height and anteroposterior length. In addition to measurements of total width, the distance between the highest points of the two sinuses, the distance between the highest points of each sinus to its maximum lateral limit. Skull measurements included; maximum skull length, prostio-bregmatic height and maximum skull width. All data were subjected to a descriptive and discriminative analysis using the SPSS (Version 17.0). The pre-post comparison (number of discordant items) resulted in 95% accurately predicted perfect match for intra-examiner calibration and 90% accurately predicted perfect match for inter-examiners calibration and the result for one discordant item was 5% for intra-examiner calibration and 10% for inter-examiners calibration. The discriminative analysis showed that the ability of the frontal sinus to identify gender was 76.9%, adding the skull measurements to the frontal sinus measurements gave a higher overall classification accuracy for gender (85.9%). Frontal sinus measurements are valuable method in differentiating gender. Adding skull measurements to the frontal sinus measurements can significantly improve accuracy of gender determination using discriminant analysis. CT based films can provide valuable and precise measurements not only for frontal sinus but even for the whole skull that cannot be approached by other means.

  3. Evaluation of the Prevalence of Maxillary Sinuses Abnormalities through Spiral Computed Tomography (CT)

    PubMed Central

    Drumond, João Paulo Nunes; Allegro, Bruna Bianca; Novo, Neil Ferreira; de Miranda, Sérgio Luís; Sendyk, Wilson Roberto

    2016-01-01

    Introduction Maxillary sinus disease is common and numerous disorders can affect this anatomical area. Abnormalities can be classified as: non-neoplastic, neoplastic benign, and neoplastic malignant. Objective Evaluate through CT the prevalence of diseases in maxillary sinuses, using the Radiology Department's database of a hospital in São Paulo city. Methods The sample consisted of 762 facial CT scans that we divided into three groups: Group A (12–19 years old); Group B (20–49 years old); Group C (above 50 years old); and male or female. We considered the following pathological processes: I - Mucoperiosteal Thickening; II - Chronic Sinusitis; III - Chronic Odontogenic Sinusitis; IV - Rhinosinusitis; V - Polypoid Lesions; VI - Bone Lesions; VII - Neoplasms; VIII - Antrolith; IX - Foreign Bodies; X - Oroantral Fistula. Results Our study found that 305 exams (40.02%) were normal and 457 exams (59.97%) were abnormal. We found the following disease frequencies: focal mucoperiosteal thickening (21.25%); polypoid lesions (10.76%); chronic sinusitis (7.48%); chronic odontogenic sinusitis (2.29%); neoplasms (2.03%); rhinosinusitis (1.77%); bone lesions, foreign bodies and oroantral fistula in 0.65%; 0.13% and 0.06% respectively. There was no significant difference between male and female, and Groups A, B, or C when relating the frequencies of abnormalities found. There was no significant difference between male and female and the age group for the side of the altered maxillary sinus. Conclusion We observed a high prevalence of sinus maxillary diseases. Mucoperiosteal thickening; acute, chronic, and odontogenic sinusitis; polypoid lesions and neoplasms have high prevalence in maxillary sinuses. Thus, facial CT exam was effective for the evaluation of diseases in maxillary sinuses. PMID:28382118

  4. [Value of multi-slice spiral CT in preoperative diagnosis of pancreatic cancer].

    PubMed

    Feng, G L; Jiang, H J; Li, J P; Jiang, H; Pan, W B

    2017-03-21

    Objective: To analyze the diagnostic value of multi-slice spiral computed tomography (MSCT) in preoperative tumor staging, lymphatic metastasis, vascular invasion and perineural invasion. Methods: From January 2013 to December 2015, MSCT images of 87 patients from the Second Hospital of Harbin Medical University who were examined by contrast-enhanced MSCT and diagnosed as pancreatic cancer by surgical pathology within 2 weeks were collected.MSCT images were retrospectively analyzed to evaluate the tumor staging, lymphatic metastasis, vascular invasion and perineural invasion and then compared with surgical pathology.Kappa test and receiver operation characteristic (ROC) curve were used to evaluate the diagnostic value of MSCT in pancreatic cancer. Results: The overall accuracy of MSCT in T staging of pancreatic cancer was 85.1% (kappa =0.67, P<0.01); the accuracy of T1, T2, T3 and T4 staging were 75.0%, 57.1%, 95.0% and 66.7%; the sensitivity were 75.0%, 80.0%, 87.7% and 75.0%; the specificity were 98.8%, 92.2%, 86.4% and 96.2%; the positive predictive value (PPV) were 75.0%, 57.1%, 95.0% and 66.7%; the negative predictive value (NPV) were 98.8%, 97.3%, 70.4% and 97.4%.The accuracy, sensitivity, specificity, PPV and NPV of MSCT in diagnosing lymphatic metastasis were 62.1%, 62.3%, 61.5%, 79.2% and 41.0%.The accuracy, sensitivity, specificity, PPV and NPV of MSCT in diagnosing vascular invasion were 94.3%, 78.6%, 97.3%, 84.6% and 95.9%.The accuracy, sensitivity, specificity, PPV and NPV of MSCT in diagnosing MSCT perineural invasion were 80.5%, 81.1%, 76.9%, 95.2% and 41.7%.The area under curve (AUC) was 0.79(95%CI 0.68-0.90, P=0.001). Conclusion: Contrast-enhanced MSCT plays important roles in evaluation of preoperative tumor staging, vascular invasion and perineural invasion of pancreatic cancer while it has little value on diagnosis of lymphatic metastasis.

  5. Spiral CT Quantification of Aorto-Renal Calcification and Its Use in the Detection of Atheromatous Renal Artery Stenosis: A Study in 42 Patients

    SciTech Connect

    Gayard, Pierre; Garcier, Jean-Marc; Boire, Jean-Yves; Ravel, Anne; Perez, Nessim; Privat, Christian; Lucien, Pascal; Viallet, Jean-Francois; Boyer, Louis

    2000-01-15

    Purpose: To investigate whether a correlation exists between aortic and renal arterial calcifications detected with spiral CT and significant angiographic renal artery stenosis (RAS).Methods: Forty-two patients (mean age 67 years, range 37-84 years), of whom 24 were hypertensive, prospectively underwent abdominal helical CT and aortic and renal arteriography. The 3-mm thickness CT scans (pitch = 1) were reconstructed each millimeter. A manual outline of the renal artery including its ostial portion was produced. Calcific hyperdensities were defined as areas of density more than 130 HU. CT data were compared with the presence or absence of RAS on angiography (24 cases); hypertension and age were taken into account (Mann-Whitney U-test).Results: CT detection and quantification appeared to be reliable and reproductible. We did not find any correlation between aortic and renal arterial calcifications and RAS, even for the patients above 65 years, with or without hypertension. There was no correlation either between calcifications and hypertension in patients without RAS. Conclusion: In this population, aortic and renal arterial calcifications have no predictive value for RAS.

  6. Computer-aided diagnosis: a 3D segmentation method for lung nodules in CT images by use of a spiral-scanning technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Engelmann, Roger; Li, Qiang

    2008-03-01

    Lung nodule segmentation in computed tomography (CT) plays an important role in computer-aided detection, diagnosis, and quantification systems for lung cancer. In this study, we developed a simple but accurate nodule segmentation method in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. We then transformed the VOI into a two-dimensional (2D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the VOI spirally scanned the VOI. The voxels scanned by the radial line were arranged sequentially to form a transformed 2D image. Because the surface of a nodule in 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified our segmentation method and enabled us to obtain accurate segmentation results. We employed a dynamic programming technique to delineate the "optimal" outline of a nodule in the 2D image, which was transformed back into the 3D image space to provide the interior of the nodule. The proposed segmentation method was trained on the first and was tested on the second Lung Image Database Consortium (LIDC) datasets. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric. The experimental results on the LIDC database demonstrated that our segmentation method provided relatively robust and accurate segmentation results with mean overlap values of 66% and 64% for the nodules in the first and second LIDC datasets, respectively, and would be useful for the quantification, detection, and diagnosis of lung cancer.

  7. Total variation minimization-based spiral CT reconstruction in a dental panoramic imaging system for cost-effective, low-dose dental X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hong, D. K.; Lee, S. H.; Cho, H. S.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Park, Y. O.; Je, U. K.; Choi, S. I.; Koo, Y. S.; Cho, H. M.

    2012-12-01

    In the paper, we proposed a pragmatic method capable of implementing a cost-effective, low-dose CT reconstruction directly onto a dental panoramic X-ray imaging system by adopting a spiral source trajectory. In the proposed geometry, a linear-type panoramic imaging sensor is rotated 90° from the orientation for panoramic imaging to imitate fan-beam image acquisition. For image reconstruction, we considered a total variation (TV) minimization-based algorithm that exploited the sparsity of the image gradient and was capable of reconstructing CT images with substantially high image accuracy against the image artifacts from sparse-view data. We implemented the algorithm for the proposed geometry and performed systematic simulation works to demonstrate its feasibility for dental imaging applications. CT images were successfully reconstructed from the proposed geometry, and the reconstruction quality was evaluated quantitatively by using an image similarity metric. We expect the proposed method to be applicable to developing a cost-effective, low-dose, all-in-one dental imaging system.

  8. Performance evaluation of Biograph PET/CT system based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Gao, Fei; Liu, Hua-Feng

    2010-10-01

    Combined lutetium oxyorthosilicate (LSO) Biograph PET/CT is developed by Siemens Company and has been introduced into medical practice. There is no septa between the scintillator rings, the acquisition mode is full 3D mode. The PET components incorporate three rings of 48 detector blocks which comprises a 13×13 matrix of 4×4×20mm3 elements. The patient aperture is 70cm, the transversal field of view (FOV) is 58.5cm, and the axial field of view is 16.2cm. The CT components adopt 16 slices spiral CT scanner. The physical performance of this PET/CT scanner has been evaluated using Monte Carlo simulation method according to latest NEMA NU 2-2007 standard and the results have been compared with real experiment results. For PET part, in the center FOV the average transversal resolution is 3.67mm, the average axial resolution is 3.94mm, and the 3D-reconstructed scatter fraction is 31.7%. The sensitivities of the PET scanner are 4.21kcps/MBq and 4.26kcps/MBq at 0cm and 10cm off the center of the transversal FOV. The peak NEC is 95.6kcps at a concentration of 39.2kBq/ml. The spatial resolution of CT part is up to 1.12mm at 10mm off the center. The errors between simulated and real results are permitted.

  9. Three-dimensional CT angiography: a new technique for imaging microvascular anatomy.

    PubMed

    Tregaskiss, Ashley P; Goodwin, Adam N; Bright, Linda D; Ziegler, Craig H; Acland, Robert D

    2007-03-01

    To date there has been no satisfactory research method for imaging microvascular anatomy in three dimensions (3D). In this article we present a new technique that allows both qualitative and quantitative examination of the microvasculature in 3D. In 10 fresh cadavers (7 females, 3 males, mean age 68 years), selected arteries supplying the abdominal wall and back were injected with a lead oxide/gelatin contrast mixture. From these regions, 30 specimens were dissected free and imaged with a 16-slice spiral computed tomographic (CT) scanner. Using three-dimensional CT (3D-CT) angiography, reconstructions of the microvasculature of each specimen were produced and examined for their qualitative content. Two calibration tools were constructed to determine (1) the accuracy of linear measurements made with CT software tools, and (2) the smallest caliber blood vessel that is reliably represented on 3D-CT reconstructions. Three-dimensional CT angiography produced versatile, high quality angiograms of the microvasculature. Correlation between measurements made with electronic calipers and CT software tools was very high (Lin's concordance coefficient, 0.99 (95% CI 0.99-0.99)). The finest caliber of vessel reliably represented on the 3D-CT reconstructions was 0.4 mm internal diameter. In summary, 3D-CT angiography is a simple, accurate, and reproducible method that imparts a much improved perception of anatomy when compared with existing research methods. Measurement tools provide accurate quantitative data to aid vessel mapping and preoperative planning. Further work will be needed to explore the full utility of 3D-CT angiography in a clinical setting.

  10. Imaging detection of new HCCs in cirrhotic patients treated with different techniques: Comparison of conventional US, spiral CT, and 3-dimensional contrast-enhanced US with the Navigator technique (Nav 3D CEUS)☆

    PubMed Central

    Giangregorio, F.; Comparato, G.; Marinone, M.G.; Di Stasi, M.; Sbolli, G.; Aragona, G.; Tansini, P.; Fornari, F.

    2009-01-01

    Introduction The commercially available Navigator system© (Esaote, Italy) allows easy 3D reconstruction of a single 2D acquisition of contrast-enhanced US (CEUS) imaging of the whole liver (with volumetric correction provided by the electromagnetic device of the Navigator©). The aim of our study was to compare the efficacy of this panoramic technique (Nav 3D CEUS) with that of conventional US and spiral CT in the detection of new hepatic lesions in patients treated for hepatocellular carcinoma (HCC). Materials and methods From November 2006 to May 2007, we performed conventional US, Nav 3D CEUS, and spiral CT on 72 cirrhotic patients previously treated for 1 or more HCCs (M/F: 38/34; all HCV-positive; Child: A/B 58/14) (1 examination: 48 patients; 2 examinations: 20 patients; 3 examinations: 4 patients). Nav 3D CEUS was performed with SonoVue© (Bracco, Milan, Italy) as a contrast agent and Technos MPX© scanner (Esaote, Genoa, Italy). Sensitivity, specificity, diagnostic accuracy, and positive and negative predictive values (PPV and NPV, respectively) were evaluated. Differences between the techniques were assessed with the chi-square test (SPSS release-15). Results Definitive diagnoses (based on spiral CT and additional follow-up) were: 6 cases of local recurrence (LocRecs) in 4 patients, 49 new nodules >2 cm from a treated nodule (NewNods) in 34 patients, and 10 cases of multinodular recurrence consisting of 4 or more nodules (NewMulti). The remaining 24 patients (22 treated for 1–3 nodules, 2 treated for >3 nodules) remained recurrence-free. Conventional US correctly detected 29/49 NewNods, 9/10 NewMultis, and 3/6 LocRecs (sensitivity: 59.2%; specificity: 100%; diagnostic accuracy: 73.6%; PPV: 100%; NPV: 70.1%). Spiral CT detected 42/49 NewNods plus 1 that was a false positive, 9/10 NewMultis, and all 6 LocRecs (sensitivity: 85.7%; specificity: 95.7%; diagnostic accuracy: 90.9%; PPV: 97.7%; NPV: 75.9%). 3D NAV results were: 46N (+9 multinodularN and 6 LR

  11. Evaluation of Distal Femoral Rotational Alignment with Spiral CT Scan before Total Knee Arthroplasty (A Study in Iranian population)

    PubMed Central

    Jabalameli, Mahmoud; Moradi, Amin; Bagherifard, Abolfazl; Radi, Mehran; Mokhtari, Tahmineh

    2016-01-01

    Background: Evaluating the landmarks for rotation of the distal femur is a challenge for orthopedic surgeons. Although the posterior femoral condyle axis is a good landmark for surgeons, the surgical transepicondylar axis may be a better option with the help of preoperative CT scanning. The purpose of this study was to ascertain relationships among the axes’ guiding distal femur rotational alignment in preoperative CT scans of Iranian patients who were candidates for total knee arthroplasty and the effects of age, gender, and knee alignment on these relationships. Methods: One hundred and eight cases who were admitted to two university hospitals for total knee arthroplasty were included in this study. The rotation of the distal femur was evaluated using single axial CT images through the femoral epicondyle. Four lines were drawn digitally in this view: anatomical and surgical transepicondylar axes, posterior condylar axis and the Whiteside anteroposterior line. The alignment of the extremity was evaluated in the standing alignment view. Then the angles were measured along these lines and their relationship was evaluated. Results: The mean angle between the anatomical transepicondylar axis and posterior condylar axis and between the surgical transepicondylar axis and posterior condylar axis were 5.9 ± 1.6 degrees and 1.6±1.7 degrees respectively. The mean angle between the Whiteside’s anteroposterior line and the line perpendicular to the posterior condylar axis was 3.7±2.1 degrees. Significant differences existed between the two genders in these relationships. No significant correlation between the age of patients and angles of the distal femur was detected. The anatomical surgical transepicondylar axis was in 4.3 degrees external rotation in relation to the surgical transepicondylar axis. Conclusion: Preoperative CT scanning can help accurately determine rotational landmarks of the distal femur. If one of the reference axes cannot be determined, other

  12. Performance of dual-source CT with high pitch spiral mode for coronary stent patency compared with invasive coronary angiography

    PubMed Central

    Yang, Xia; Yu, Qiang; Dong, Wei; Fu, Zhen-Hong; Yang, Jun-Jue; Guo, Jun; Chen, Yun-Dai

    2016-01-01

    Objective To investigate the performance of dual-source computed tomography (DSCT) using high-pitch spiral (HPS) mode for coronary stents patency. Methods We conducted a prospective study on 120 patients with 260 previous stents implanted due to recurred suspicious symptoms of angina scheduled for invasive coronary angiography (ICA), while DSCT were conducted using HPS mode. Results There was no significant impact of age, body mass index or heat rate (HR) on image quality (P > 0.05), while HR variability had a slight impact on that (P < 0.05). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of DSCT in detection of in-stent restenosis (ISR) based per-patient were 92.3%, 96.7%, 88.9%, and 97.8%, respectively. And those based per-stent were 87%, 96.8%, 83.3%, and 97.7% with un-assessment stents, 97.4%, 99.5%, 97.4%, and 99.5% without un-assessment stents. There was significant difference on sensitivity, specificity, PPV and NPV between diameter ≥ 3.0 mm group (93.3%, 97.9%, 87.5%, and 98.9%) and diameter < 3.0 mm group (80%, 93.3%, 80.0%, and 93.3%) (P < 0.05), and that between stent number ≥ 3 group (82.3%, 77.8%, 66.7%, and 60%) with < 3 group (97.3%, 80%, 96.5%, and 75%). The effective dose of DSCT (1.4 ± 0.5 mSv) is significantly less than that by invasive coronary angiography [4.0 ± 0.8 mSv (P < 0.01)]. Conclusion DSCT using HPS mode provides good diagnostic performance on stent patency with lower effective dose in patients with HR < 65 beats/min. PMID:27928222

  13. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64

    PubMed Central

    Vavere, Andrea L.; Rochitte, Carlos E.; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A.; Bush, David E.; Lardo, Albert C.; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E.; Lima, João A. C.

    2012-01-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its noninvasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective “CORE-64” trial (“Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors”). This multi-centre trialwas unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows. PMID:18998142

  14. Contrast-Enhanced Ultrasound (CEUS) for Echographic Detection of Hepato Cellular Carcinoma in Cirrhotic Patients Previously Treated with Multiple Techniques: Comparison of Conventional US, Spiral CT and 3-Dimensional CEUS with Navigator Technique (3DNav CEUS)

    PubMed Central

    Giangregorio, Francesco

    2011-01-01

    A commercially available technique named “NAVIGATOR” (Esaote, Italy) easily enables a 3-D reconstruction of a single 2-D acquisition of Contrast Enhanced Ultrasound (CEUS) imaging of the whole liver (with a volumetric correction thanks to the electromagnetic device of NAVIGATOR). Aim of the study was to evaluate this “panoramic” technique in comparison with conventional US and spiral CT in the detection of new hepatic lesions. 144 cirrhotic patients (previously treated for hepato cellular carcinoma (HCC)) in follow-up with detection of 98 new nodules (N), 28 multinodular (Nmulti), 14 loco-regional regrowth (LR) 94 efficaciously treated without new nodules (neg) and four multinodular without new nodules, were submitted to 200 examinations with this new technique from November 2008 to November 2009. 3DNavCEUS was performed using SonoVue (Bracco), as contrast agent, and a machine (Technos MPX, Esaote). Spiral CT and 3DNav CEUS were performed in the same month during follow up. Sens.,Spec.,diagn.-Acc.,PPV and NPV were evaluated; comparison and differences between the techniques were obtained with chi-square (SPSS release-15). Final diagnosis was: 98 new lesions (N) (one to three), 28 multinodular HCC (Nmulti) and 14 loco-regional regrowth (LR); in 94 no more lesions were observed during follow-up; conventional US obtained: 58 N (+18 multinodularN and 8 LR), 40 false negative (+10 Nmulti and 6 LR) (sens:59.2, spec:100%, Diagn Accur:73.6, PPV:100; NPV:70.1); spiral CT obtained: 84N (+26-multinodularN and 14-LR), 14 false-negative (+2-Nmulti), and one false-positive (sens:85.7, spec:97.9%, Diagn Accur:90.9, PPV:97.7; NPV:86.8); 3DNAV obtained: 92N (+28 multinodularN and 14LR), 6 false-negative, and two false-positives (sens:93.9, spec:97.9%, Diagn Accur:95.6, PPV:97.9; NPV:93.9). 3-DNav CEUS is significantly better than US and almost similar to spiral CT for detection of new HCC. This technique, in particular, showed the presence of lesions even in the cases not

  15. Spirality: Spiral arm pitch angle measurement

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-12-01

    Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  16. [Application of computed tomography (CT) examination for forensic medicine].

    PubMed

    Urbanik, Andrzej; Chrzan, Robert

    2013-01-01

    The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.

  17. Helical (spiral) CT in the evaluation of emergent thoracic aortic syndromes. Traumatic aortic rupture, aortic aneurysm, aortic dissection, intramural hematoma, and penetrating atherosclerotic ulcer.

    PubMed

    Ledbetter, S; Stuk, J L; Kaufman, J A

    1999-05-01

    For the near future, CT will play the critical and dominant role in the evaluation of patients presenting with emergent aortic syndromes. Its convenience, accuracy, and utility in the rapid evaluation of not just the aorta, but the entire thorax, make it ideally suited for use in emergency settings. Further benefits are likely to be realized in speed and resolution with multislice CT, although it is as yet not widely available.

  18. Radiation dose reduction using a neck detection algorithm for single spiral brain and cervical spine CT acquisition in the trauma setting.

    PubMed

    Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin

    2013-12-01

    Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.

  19. Spiral tectonics

    NASA Astrophysics Data System (ADS)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  20. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  1. CT Perfusion of the Head

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... process. Nearly all CT scanners now have special computer programs that help to increase image quality at lower ...

  2. Technical aspects of CT angiography.

    PubMed

    Kuszyk, B S; Fishman, E K

    1998-10-01

    The basic tasks of spiral CT acquisition, image processing, and image display are the foundations underlying CT angiography regardless of the anatomic region of interest. Volume rendering is a rapidly emerging image processing technique for creating three-dimensional (3D) images from CT datasets, which has important advantages over other 3D rendering techniques including maximum intensity projection and surface rendering. This articles reviews the techniques that are commonly used in CT angiography and key considerations for optimization.

  3. Spiral Development: A Perspective

    DTIC Science & Technology

    2005-06-30

    Program Managers control the risk of developing a product that may not meet user specifications. Lessons learned from the previous spiral help...Perils” of the strategy well.1 In this text, we also learn one of the spiral success stories in regards to the Global Hawk transformation program...In another article, we learn one of the very first definition and characterization of spiral given by Boehm in 1988. Likewise, an enumeration of a

  4. Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model

    NASA Astrophysics Data System (ADS)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun; Krishnamurthi, Ganapathy; Presson, Robert G., Jr.

    2005-04-01

    Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52+/-1.70mL (p<0.002) at expiration and 4.77+/-3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76+/-68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21+/-3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25+/-0.04ml/s/ml and 0.32+/-0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21+/-0.04 and 0.15+/-0.02. There was a trend toward faster MTTs for emphysema rats (0.42+/-0.08s) than normal rats (0.89+/-0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.

  5. Spiral model of pitch

    NASA Astrophysics Data System (ADS)

    Miller, James D.

    2003-10-01

    A spiral model of pitch interrelates tone chroma, tone height, equal temperament scales, and a cochlear map. Donkin suggested in 1870 that the pitch of tones could be well represented by an equiangular spiral. More recently, the cylindrical helix has been popular for representing tone chroma and tone height. Here it is shown that tone chroma, tone height, and cochlear position can be conveniently related to tone frequency via a planar spiral. For this ``equal-temperament spiral,'' (ET Spiral) tone chroma is conceived as a circular array with semitones at 30° intervals. The frequency of sound on the cent scale (re 16.351 Hz) is represented by the radius of the spiral defined by r=(1200/2π)θr, where θr is in radians. By these definitions, one revolution represents one octave, 1200 cents, 30° represents a semitone, the radius relates θ to cents in accordance with equal temperament (ET) tuning, and the arclength of the spiral matches the mapping of sound frequency to the basilar membrane. Thus, the ET Spiral gives tone chroma as θ, tone height as the cent scale, and the cochlear map as the arclength. The possible implications and directions for further work are discussed.

  6. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  7. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  8. Spiral fluid separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1993-01-01

    A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

  9. Outskirts of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2017-03-01

    I present an overview of the recent star formation activity in the outer disks of spiral galaxies, from the observational standpoint, with emphasis on the gas content, the star formation law, the metallicity and the stellar populations.

  10. SUPERLUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity L{sub r} = 8–14L* (4.3–7.5 × 10{sup 44} erg s{sup −1}). These super spiral galaxies are also giant and massive, with diameter D = 57–134 kpc and stellar mass M{sub stars} = 0.3–3.4 × 10{sup 11}M{sub ⊙}. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and L{sub r} > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5–65 M{sub ⊙} yr{sup −1} place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  11. High assurance SPIRAL

    NASA Astrophysics Data System (ADS)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  12. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  13. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas; Arkansas Galaxy Evolution Survey

    2017-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code’s results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality’s error bars overlapped 2DFFT’s error bars for 26 of the 30 galaxies. The two methods’ agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies’ spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. We also analyze apparent spiral structure of three galaxies beyond z=2. The Spirality code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  14. Plasma Generator Using Spiral Conductors

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  15. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  16. Investigating Dwarf Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  17. Spiral disk packings

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshikazu; Sushida, Takamichi

    2017-04-01

    It is shown that van Iterson's metric for disk packings, proposed in 1907 in the study of a centric model of spiral phyllotaxis, defines a bounded distance function in the plane. This metric is also related to the bifurcation of Voronoi tilings for logarithmic spiral lattices, through the continued fraction expansion of the divergence angle. The phase diagrams of disk packings and Voronoi tilings for logarithmic spirals are dual graphs to each other. This gives a rigorous proof that van Iterson's diagram in the centric model is connected and simply connected. It is a nonlinear analog of the duality between the phase diagrams for disk packings and Voronoi tilings on the linear lattices, having the modular group symmetry.

  18. [Spiral computed tomography in the diagnosis and staging of bronchopulmonary carcinoma].

    PubMed

    Cittadini, G; Conzi, R; Motta, G

    1995-01-01

    Spiral or helical technology is a new computed tomographic technique based on the continuous acquisition of volumetric CT data during continuous x-ray beam rotation and continuous patient transportation at constant velocity. It has many advantages over conventional CT: the authors briefly review the basic principles of spiral CT and discuss the applications and the possible advantages in the assessment of lung cancer. The most important characteristics of spiral CT are rapid image acquisition, allowing a single-breath-hold scan of the lung, and the ability to obtain axial image reconstructions at arbitrary and overlapping intervals, thus allowing the detection of small lesions that otherwise would be inconspicuous because of respiratory misregistration or partial volume averaging. This leads to better identification of small pulmonary nodules and to high quality multiplanar reconstructions that can be useful in the study of mediastinal lymph nodes and the vascular and tracheobronchial spreading of lung cancer. Many of the spiral CT scanners allow for 40 sec extended spiral acquisition during a single-breath-hold, permitting the evaluation of the thorax and the upper abdomen. This usually includes the adrenals and the whole liver, thus allowing a rapid staging of thoracic neoplasms, with an accuracy higher than that of conventional CT.

  19. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  20. Spiral track oven

    SciTech Connect

    Drobilisch, Sandor

    1998-12-20

    Final report on development of a continuously operating oven system in which the parts are progressing automatically on a spiral track for in-line service installation for the production of electronic and/or other components to be heat cured or dried.

  1. Spiral wound extraction cartridge

    DOEpatents

    Wisted, Eric E.; Lundquist, Susan H.

    1999-01-01

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.

  2. Spiral wound extraction cartridge

    DOEpatents

    Wisted, E.E.; Lundquist, S.H.

    1999-04-27

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.

  3. CT Enterography

    MedlinePlus

    ... obstructions and Crohn’s disease. CT scanning is fast, painless, noninvasive and accurate. CT enterography is better able ... the benefits vs. risks? Benefits CT scanning is painless, noninvasive and accurate. A major advantage of CT ...

  4. Imaging detection of new HCCs in cirrhotic patients treated with different techniques: Comparison of conventional US, spiral CT, and 3-dimensional contrast-enhanced US with the Navigator technique (Nav 3D CEUS)().

    PubMed

    Giangregorio, F; Comparato, G; Marinone, M G; Di Stasi, M; Sbolli, G; Aragona, G; Tansini, P; Fornari, F

    2009-03-01

    Sommario INTRODUZIONE: Il sistema “Navigator” di Esaote consente di ottenere ricostruzioni 3-D di tutto il fegato (corrette volumetricamente da un sistema di guida) mediante singola acquisizione con CEUS (mediante scansione perpendicolare all'asse lungo del fegato, per una completa acquisizione 2-D del suo asse corto) e sovrappone tali ricostruzioni 3-D con quelle ottenute con la TC. SCOPO: valutare la capacità di tale sistema di diagnosticare nuovi HCC rispetto all'US e alla TC in una popolazione di HCC su cirrosi precedentemente trattati con varie metodiche. MATERIALI E METODI: Settantadue cirrotici con pregressi HCC (M/F: 38/34; tutti HCV +vi, Child A/B: 58/14, con detection di 49 nuovi noduli (N) in 34 pazienti; 10 nuovi HCC multinodulari (NMulti); 6 riprese locali di malattia (Ri) in 4 pazienti (3 riprese singole, in un paziente tre noduli con ripresa di malattia); 47 HCC trattati efficacemente (neg) in 22 pazienti + 2 pazienti con HCC multinodulare senza segni di ripresa (neg-Multi) sono stati sottoposti a 100 esami (1 esame: 48 pazienti; 2 esami: 20 pazienti; 3 esami: 4 pazienti) dal 1 novembre 2006 al novembre 2007. La Nav 3D CEUS è stata eseguita con SonoVue (BR1; Bracco) e con l'ecografo Esaote MPX collegato a un sistema “Navigator” con software di ricostruzione 3-D dedicato. La TC spirale di controllo è stata eseguita entro 30 giorni dall'esecuzione di Nav 3D CEUS. Sono stati valutati sensibilità, specificità, accuratezza diagnostica (ODA), valore predittivo positivo (PPV) e negativo (NPV). RISULTATI: La diagnosi finale fu: 34 pazienti con 49 nuove lesioni (N), 10 con HCC multiN e 6 recidive loco-regionali in 4 pazienti; 47 noduli in 24 pazienti senza nuove lesioni durante il follow-up. Gli US hanno ottenuto: 29 N (+5 multinodularN e 3 LR), 20 falsi negativi (+5 Nmulti e 3 LR) (sensibilità: 59,2, specificità: 100%; accuratezza diagnostica: 73;6; VPP: 100; VPN: 70, 1); la TC spirale ha ottenuto: 42 N (+9 multinodularN e 7 LR), 7 falsi

  5. Forming Spirals From Shadows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  6. Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging.

    PubMed

    Mori, Shinichiro; Endo, Masahiro; Tsunoo, Takanori; Kandatsu, Susumu; Tanada, Shuji; Aradate, Hiroshi; Saito, Yasuo; Miyazaki, Hiroaki; Satoh, Kazumasa; Matsushita, Satoshi; Kusakabe, Masahiro

    2004-06-01

    We have developed a prototype 256-slice CT-scanner for four-dimensional (4D) imaging that employs continuous rotations of a cone-beam. Since a cone-beam scan along a circular orbit does not collect a complete set of data to make an exact reconstruction of a volume [three-dimensional (3D) image], it might cause disadvantages or artifacts. To examine effects of the cone-beam data collection on image quality, we have evaluated physical performance of the prototype 256-slice CT-scanner with 0.5 mm slices and compared it to that of a 16-slice CT-scanner with 0.75 mm slices. As a result, we found that image noise, uniformity, and high contrast detectability were independent of z coordinate. A Feldkamp artifact was observed in distortion measurements. Full width at half maximum (FWHM) of slice sensitivity profiles (SSP) increased with z coordinate though it seemed to be caused by other reasons than incompleteness of data. With regard to low contrast detectability, smaller objects were detected more clearly at the midplane (z = 0 mm) than at z = 40 mm, though circular-band like artifacts affected detection. The comparison between the 16-slice and the 256-slice scanners showed better performance for the 16-slice scanner regarding the SSP, low contrast detectability, and distortion. The inferiorities of the 256-slice scanner in other than distortion measurement (Feldkamp artifact) seemed to be partly caused by the prototype nature of the scanner and should be improved in the future scanner. The image noise, uniformity, and high contrast detectability were almost identical for both CTs. The 256-slice scanner was superior to the 16-slice scanner regarding the PSF, though it was caused by the smaller transverse beam width of the 256-slice scanner. In order to compare both scanners comprehensively in terms of exposure dose, noise, slice thickness, and transverse spatial resolution, K=Dsigma2ha3 was calculated, where D was exposure dose (CT dose index), sigma was magnitude of

  7. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  8. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  9. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  10. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  11. Low-dose CT pulmonary angiography on a 15-year-old CT scanner: a feasibility study

    PubMed Central

    Kaup, Moritz; Gruber-Rouh, Tatjana; Scholtz, Jan E; Albrecht, Moritz H; Bucher, Andreas; Frellesen, Claudia; Vogl, Thomas J

    2016-01-01

    Background Computed tomography (CT) low-dose (LD) imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems. Purpose To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA). Material and Methods CTPA scans from 60 prospectively randomized patients (28 men, 32 women) were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD) settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale. Results CT dose index (CTDI) in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy). Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768). Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4). Conclusion The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries. PMID:28286671

  12. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  13. CT Enterography

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  14. Entoptic perceptions of spiral waves and rare inward spirals.

    PubMed

    Pearce, Ida

    2015-06-01

    This report concerns Entoptic Rotating Spiral Waves as observed and documented by the author over a period of 46 years (1962-2008). The manifestations of these state-dependent, elusive rotating spiral entities were brief, emerging only during sleep-to-waking arousal epochs (in limbo). The images were seen only with closed lids in favorable ambient lighting-here, termed the umbral view. The clusters of rotating spiral entities emerge briefly to conscious view; their angular subtenses are estimated to be between 1° and 4°, and the rotations at ten-turns per second. Epochs of these activities commonly continued for about 20 s, with longevity of each visible entity up to 4 s. 90% of all observed entities were circular and outwardly levorotary; 5% were elliptical, appearing only as horizontal (prolate) entities. Overlapping units were rare, and were chiefly elliptical. Observations of twin spirals were also rare, seen in counter rotations, each twin inwardly rotating.

  15. Optical resonant Archimedean spiral antennas

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Yang, Jing; Zhang, Weiwei; Zhang, Jiasen

    2011-01-01

    We investigated the field enhancement properties of optical resonant Archimedean spiral antennas by using a finite difference time domain method. Due to the spiral structure, the antennas show a circular dichroism in the electric field enhancement, especially for a large turning angle. A large magnetic field enhancement is also obtained with a confinement in the nanometer size. When the turning angle equals π for a linearly polarized incident beam, the polarization of the enhanced field in the spiral antenna can be perpendicular to the incident polarization with a similar enhancement factor to the optical resonant dipole antennas.

  16. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  17. Analytical approximations for spiral waves

    SciTech Connect

    Löber, Jakob Engel, Harald

    2013-12-15

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +} with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.

  18. Analytical approximations for spiral waves.

    PubMed

    Löber, Jakob; Engel, Harald

    2013-12-01

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R(0). For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R(+)) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R(+) with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.

  19. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  20. Mystery Spiral Arms Explained?

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Using a quartet of space observatories, University of Maryland astronomers may have cracked a 45-year mystery surrounding two ghostly spiral arms in the galaxy M106. The Maryland team, led by Yuxuan Yang, took advantage of the unique capabilities of NASA's Chandra X-ray Observatory, NASA's Spitzer Space Telescope, the European Space Agency's XMM-Newton X-ray observatory, and data obtained almost a decade ago with NASA's Hubble Space Telescope. NGC X-ray Image NGC 4258 X-ray Image M106 (also known as NGC 4258) is a stately spiral galaxy 23.5 million light-years away in the constellation Canes Venatici. In visible-light images, two prominent arms emanate from the bright nucleus and spiral outward. These arms are dominated by young, bright stars, which light up the gas within the arms. "But in radio and X-ray images, two additional spiral arms dominate the picture, appearing as ghostly apparitions between the main arms," says team member Andrew Wilson of the University of Maryland. These so-called "anomalous arms" consist mostly of gas. "The nature of these anomalous arms is a long-standing puzzle in astronomy," says Yang. "They have been a mystery since they were first discovered in the early 1960s." By analyzing data from XMM-Newton, Spitzer, and Chandra, Yang, Bo Li, Wilson, and Christopher Reynolds, all at the University of Maryland at College Park, have confirmed earlier suspicions that the ghostly arms represent regions of gas that are being violently heated by shock waves. Previously, some astronomers had suggested that the anomalous arms are jets of particles being ejected by a supermassive black hole in M106's nucleus. But radio observations by the National Radio Astronomy Observatory's Very Long Baseline Array, and the Very Large Array in New Mexico, later identified another pair of jets originating in the core. "It is highly unlikely that an active galactic nucleus could have more than one pair of jets," says Yang. In 2001, Wilson, Yang, and Gerald Cecil

  1. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  2. Electrospinning of micro spiral fibers

    NASA Astrophysics Data System (ADS)

    Chang, Guoqing; Zhu, Xuefeng; Warren, Roseanne; Wang, Xu; He, Tianzhen; Lin, Liwei; Shen, Jianyi

    2014-03-01

    We describe an easy way to form micro spiral structures resulting from buckling instabilities of an electro jet of a nanoscale polymer fiber of polyvinglpyrrolidone-Cu(NO3)2 (PVP-Cu(NO3)2) sol) and discuss the formation process. We control the morphologies of the fibers into spiral fibers, and free-standing hollow cylinders by connecting an opposite high voltage supply (-5 to -10 kV) on the collector. The microstructured surfaces were observed by scanning electron microscope (SEM). SEM analysis revealed the presence of spirals with diameters of approximately 20 to 30 μm. The structures formed by the nanofibers could be used in diverse fields of nanotechnology, such as micro planar inductor and nanochannels.

  3. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  4. Efficient Algorithm for Rectangular Spiral Search

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    An algorithm generates grid coordinates for a computationally efficient spiral search pattern covering an uncertain rectangular area spanned by a coordinate grid. The algorithm does not require that the grid be fixed; the algorithm can search indefinitely, expanding the grid and spiral, as needed, until the target of the search is found. The algorithm also does not require memory of coordinates of previous points on the spiral to generate the current point on the spiral.

  5. Stellar Spirals in Triaxial Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Hu, Shaoran; Sijacki, Debora

    2017-03-01

    Two-armed grand-design spirals may form if the shape of its dark matter halo changes abruptly enough. The feasibility of such a mechanism is tested in realistic simulations. The interplay of such externally-driven spirals and self-induced transient spirals is then studied. Subhaloes are also found to lead to transient grand-design spiral structures when they impact the disk.

  6. Inspired Spirals. Teaching Art with Art.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2001-01-01

    Discusses spirals in nature, man-made objects, and art. Focuses on art that incorporates the spiral, including works by M. C. Escher and Frank Lloyd Wright, an African headdress, and a burial urn. Describes activities to help students make spirals of their own, such as constructing a coil clay pot. (CMK)

  7. How Opaque Are Spiral Galaxies?

    NASA Astrophysics Data System (ADS)

    Allen, Ronald

    1999-07-01

    Using HST Archival images in a previous modest AR program, we have developed a new method to calibrate the effects of crowding and confusion from foreground structure on the counts of background galaxies seen through a foreground system. This new method, the Synthetic Field Method, permits us to establish the area-averaged amount of extinction through the entire thickness of the foreground galaxy. No assumptions about the spatial distribution of the obscuring material in the foreground system or about its reddening law are required. We now propose to exploit this method by applying it to deep Archival images of all 17 nearby spiral galaxies obtained earlier with the HST/WFPC2 in the Cepheid distance scale programs. Applying the method to this large sample of spirals will permit us: {1} to decrease the fundamental uncertainty in our results owing to field-to-field variations in the surface number density of the background galaxies, and {2} to begin quantifying the differences in extinction between arms and inter-arm regions, and between the inner and outer parts of spiral galaxy disks. The results of this project will provide the largest study to date of TOTAL extinction in spiral galaxies using background illuminating objects.

  8. The enigma of auroral spirals

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    One of the most spectacular forms that the aurora borealis can assume is the large-scale spiral Spirals are dominantly observed along the poleward boundary of the auroral oval during active periods Two concepts have been pursued in explaining their origin and in particular the counterclockwise sense of rotation of the luminous structures when viewed along the magnetic field direction An essentially magnetostatic theory following Hallinan 1976 attributes the spiral pattern to the twisting of field-lines caused by a centrally located upward field-aligned current According to Oguti 1981 and followers a clockwise rotation of the plasma flow produces the anticlockwise structure There are observations seemingly confirming or contradicting either theory In this paper it is argued that both concepts are insufficient in that only parts of the underlying physics are considered Besides field-aligned currents and plasma flow one has to take into at least two further aspects The ionospheric conductivity modified by particle precipitation has an impact on the magnetospheric plasma dynamics Furthermore auroral arcs are not fixed entities subject to distortions by plasma flows or twisted field-lines but sites of transient releases of energy We suggest that auroral spirals are ports of entry or exit of plasma into or out of the auroral oval This way it can be understood why a clockwise plasma flow can create an anticlockwise luminous pattern

  9. Power spiral conveyor section and method

    SciTech Connect

    Justice, J.C.; Delli-Gatti, F. Jr.

    1992-02-11

    This patent describes a method of mining a mine having a mine mouth, using a mining head with a spiral conveyor including a spiral conveyor screw rotatable with a shaft about an axis of rotation. It comprises: inserting the mining head in the mine through the mine mouth, and advancing the head into the mine mouth; continuously conveying mined material from the mine toward the mine mouth using the spiral conveyor; adding incremental lengths to the spiral conveyor screw as the distance from the mining head to the mouth increases; periodically providing power assists for effecting powered rotating of the spiral conveyor about its axis of rotation along the length of the spiral conveyor about its axis of rotation along the length of the spiral conveyor in the mine as the incremental lengths are added.

  10. Outer spiral structure in disk galaxies

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.

    2017-03-01

    In several grand design barred-spiral galaxies it is observed a second, fainter, outer set of spiral arms. Typical examples of objects of this morphology can be considered NGC 1566 and NGC 5248. I suggest that such an overall structure can be the result of two dynamical mechanisms acting in the disc. The bar and both spiral systems rotate with the same pattern speed. The inner spiral is reinforced by regular orbits trapped around the stable, elliptical, periodic orbits of the central family, while the outer system of spiral arms is supported by chaotic orbits. Chaotic orbits are also responsible for a rhomboidal area surrounding the inner barred-spiral region. In general there is a discontinuity between the two spiral structures at the corotation region.

  11. Cervix carcinoma and incidental finding of medullary thyroid carcinoma by 18F-FDG PET/CT--clinical case.

    PubMed

    Chaushev, Borislav; Bochev, Pavel; Klisarova, Anelia; Yordanov, Kaloyan; Encheva, Elitsa; Dancheva, Jivka; Yordanova, Cvetelina; Hristozov, Kiril; Krasnaliev, Ivan; Radev, Radoslav; Nenkov, Rumen

    2014-01-01

    Thyroid nodules are encountered in clinical practice during the diagnostic procedures or patients' follow-up due to other diseases quite far from the thyroid gland with prevalence 4-50% in general population, depending on age, diagnostic method and race. The prevalence of thyroid nodules increases with age and their clarification should be done for their adequate treatment. An 18F-FDG PET/CT was done with a PET/CT scanner (Philips Gemini TF), consisting of dedicated lutetium orthosilicate full ring PET scanner and 16 slice CT. The PET/CT scan of the whole-body revealed on the CT portion a hypodense nodular lesion in the left lobe of the thyroid gland with increased uptake of 18F-FDG on the PET with SUVmax 10.3 and demonstrated a complete response to the induction therapy of the main oncological disease of the patient--squamous cell carcinoma. This clinical case demonstrates that whole-body 18F-FDG-PET/CT has an increasingly important role in the early evaluation of thyroid cancer as a second independent malignant localization. Focal thyroid lesion with high risk of thyroid malignancy was incidentally found on 18F-FDG PET/CT.

  12. Automatic phase determination for retrospectively gated cardiac CT

    SciTech Connect

    Manzke, R.; Koehler, Th.; Nielsen, T.; Hawkes, D.; Grass, M.

    2004-12-01

    The recent improvements in CT detector and gantry technology in combination with new heart rate adaptive cone beam reconstruction algorithms enable the visualization of the heart in three dimensions at high spatial resolution. However, the finite temporal resolution still impedes the artifact-free reconstruction of the heart at any arbitrary phase of the cardiac cycle. Cardiac phases must be found during which the heart is quasistationary to obtain outmost image quality. It is challenging to find these phases due to intercycle and patient-to-patient variability. Electrocardiogram (ECG) information does not always represent the heart motion with an adequate accuracy. In this publication, a simple and efficient image-based technique is introduced which is able to deliver stable cardiac phases in an automatic and patient-specific way. From low-resolution four-dimensional data sets, the most stable phases are derived by calculating the object similarity between subsequent phases in the cardiac cycle. Patient-specific information about the object motion can be determined and resolved spatially. This information is used to perform optimized high-resolution reconstructions at phases of little motion. Results based on a simulation study and three real patient data sets are presented. The projection data were generated using a 16-slice cone beam CT system in low-pitch helical mode with parallel ECG recording.

  13. [Spiral computed tomography in the diagnosis of limb osteomyelitis].

    PubMed

    Vasil'ev, A Iu; Bulanova, T V; Panin, M G; Onishchenko, M P

    2002-01-01

    The results of radiation studies in 121 patients of different age (4 to 75 years) examined for limb osteomyelitis are analyzed. All the patients underwent routine X-ray study and computed tomography (CT), 26 patients had X-ray fistulography; 8, linear tomography; 10, CT fistulography; 6, scintigraphy, and 15, ultrasound study. Acute hematogenous osteomyelitis (AHO), chronic hematogenous osteomyelitis (CHO), and atypical (here Garre's sclerosing osteomyelitis and Brodie's abscess) osteomyelitis were ascertained in 10.6, 26.4, and 10.1% of cases, respectively. Posttraumatic osteomyelitis was diagnosed in almost 50% of the patients. CT defined the phase of chronic limb osteomyelitis. Spiral CT has proven to be the most effective technique for diagnosing limb osteomyelitis as compared with routine X-ray study: the accuracy of X-ray study was 81.8%, its sensitivity, 84.9%, and specificity, 60.0% and those of computed tomography were 96.7, 99.1, and 80.0%, respectively.

  14. [Spiral computed tomography in the diagnosis of limb osteomyelitis].

    PubMed

    Vasil'ev, A Iu; Bulanova, T V; Onishchenko, M P

    2003-01-01

    The results of radiation studies in 121 patients of different age (4 to 75 years) examined for limb osteomyelitis are analyzed. All the patients underwent routine X-ray study and computed tomography (CT), 26 patients had X-ray fistulography; 8, linear tomography; 10, CT fistulography; 6, scintigraphy, and 15, ultrasound study. Acute hematogenous osteomyelitis (AHO), chronic hematogenous osteomyelitis (CHO), and atypical (here Garre's sclerosing osteomyelitis and Brodie's abscess) osteomyelitis were ascertained in 10.6, 26.4, and 10.1% of cases, respectively. Posttraumatic osteomyelitis was diagnosed in almost 50% of the patients. CT defined the phase of chronic limb osteomyelitis. Spiral CT has proven to be the most effective technique for diagnosing limb osteomyelitis as compared with routine X-ray study: the accuracy of X-ray study was 81.8%, its sensitivity, 84.9%, and specificity, 60.0% and those of computed tomography were 96.7, 99.1, and 80.0%, respectively.

  15. M51's spiral structure

    NASA Technical Reports Server (NTRS)

    Howard, S.; Byrd, Gene G.

    1990-01-01

    The M51 system (NGC 5194/5195) provides an excellent problem both in spiral structure and in galaxy interactions. The authors present an analytic study of a computer experiment on the excitation mechanisms for M51's spiral arms and whether or not a halo is important for these mechanisms. This work extends previous numerical studies of the M51 system by including self-gravitation in a two component disk: gas and stars, and a dark halo. The analytic study provides two new observational constraints: the time (approx. 70 to 84 million years ago) and position angle of perigalacticon (300 degrees). By using these constraints and a simple conic approximation, the search for the companion's possible orbit is greatly simplified. This requires fewer N-body simulations than a fully self-gravitating orbit search.

  16. Spiral inertial waves emitted from geophysical vortices

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Özgökmen, Tamay M.

    2016-03-01

    By numerically simulating an initially unstable geophysical vortex, we discover for the first time a special kind of inertial waves, which are emitted in a spiral manner from the vortices; we refer to these waves as spiral inertial waves (SIWs). SIWs appear at small Rossby numbers (0.01 ≤ Ro ≤ 1) according to our parameter sweep experiments; the amplitude, wavelength and frequency of SIWs are sensitive to Rossby numbers. We extend the Lighthill-Ford radiation into inertial waves, and propose an indicator for the emission of inertial waves; this indicator may be adopted into general circulation models to parameterize inertial waves. Additionally, in our tracer releasing experiments, SIWs organize tracers into spirals, and modify the tracer's local rate of change by advecting tracers vertically. Further, the spirals of SIWs resembles some spiral features observed in the ocean and atmosphere, such as spiral ocean eddies and spiral hurricane rainbands; thus, SIWs may offer another mechanism to form spiral eddies and rainbands. Since no density anomaly is required to generate the spirals of SIWs, we infer that the density anomaly, hence the baroclinic or frontal instability, is unlikely to be the key factor in the formation of these spiral features.

  17. THE SPIRAL GALAXY M100

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the grand design of spiral galaxy M100 obtained with NASA's Hubble Space Telescope resolves individual stars within the majestic spiral arms. (These stars typically appeared blurred together when viewed with ground-based telescopes.) Hubble has the ability to resolve individual stars in other galaxies and measure accurately the light from very faint stars. This makes space telescope invaluable for identifying a rare class of pulsating stars, called Cepheid Variable stars embedded within M100's spiral arms. Cepheids are reliable cosmic distance mileposts. The interval it takes for the Cepheid to complete one pulsation is a direct indication of the stars's intrinsic brightness. This value can be used to make a precise measurement of the galaxy's distance, which turns out to be 56 million light-years. M100 (100th object in the Messier catalog of non-stellar objects) is a majestic face-on spiral galaxy. It is a rotating system of gas and stars, similar to our own galaxy, the Milky Way. Hubble routinely can view M100 with a level of clarity and sensitivity previously possible only for the very few nearby galaxies that compose our 'Local Group.'' M100 is a member of the huge Virgo cluster of an estimated 2,500 galaxies. The galaxy can be seen by amateur astronomers as a faint, pinwheel-shaped object in the spring constellation Coma Berenices. Technical Information: The Hubble Space Telescope image was taken on December 31, 1993 with the Wide Field Planetary Camera 2 (WFPC 2). This color picture is a composite of several images taken in different colors of light. Blue corresponds to regions containing hot newborn stars. The Wide Field and Planetary Camera 2 was developed by the Jet Propulsion Laboratory (JPL) and managed by the Goddard Space Flight Center for NASA's Office of Space Science. Credit: J. Trauger, JPL and NASA

  18. Modified spiral wound retaining ring

    NASA Technical Reports Server (NTRS)

    Lawson, A. G. (Inventor)

    1980-01-01

    A spiral wound retaining ring with angled ends is described. The ring is crimped at the same angle as the ring ends to maintain a constant thickness dimension. The angling of the ends of the ring and crimp allow the ends to be positioned closer together while maintaining enough clearance to enable insertion and removal of the ring. By reducing the separation distance between the ends a stronger ring results since the double layer area of the ring is maximized.

  19. Transient spirals as superposed instabilities

    SciTech Connect

    Sellwood, J. A.; Carlberg, R. G. E-mail: carlberg@astro.utoronto.ca

    2014-04-20

    We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the superposition of a few transient spiral modes. Each mode lasts between 5 and 10 rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with low-mass disks.

  20. More Satellites of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1997-03-01

    We present a revised and expanded catalog of satellite galaxies of a set of isolated spiral galaxies similar in luminosity to the Milky Way. This sample of 115 satellites, 69 of which were discovered in our multifiber redshift survey, is used to probe the results obtained from the original sample further (Zaritsky et al.). The satellites are, by definition, at projected separations <~500 kpc, have absolute recessional velocity differences with respect to the parent spiral of less than 500 km s-1, and are at least 2.2 mag fainter than their associated primary galaxy. A key characteristic of this survey is the strict isolation of these systems, which simplifies any dynamical analysis. We find no evidence for a decrease in the velocity dispersion of the satellite system as a function of radius out to galactocentric radii of 400 kpc, which suggests that the halo extends well beyond 200 kpc. Furthermore, the new sample affirms our previous conclusions (Zaritsky et al.) that (1) the velocity difference between a satellite and its primary is not strongly correlated with the rotation speed of the primary, (2) the system of satellites has a slight net rotation (34 +/- 14 km s-1) in the same sense as the primary's disk, and (3) that the halo mass of an ~L* spiral galaxy is in excess of 2 × 1012 M⊙. Lick Observatory Bulletin B1346.

  1. Enhanced Automated Spiral Bevel Gear Inspection

    DTIC Science & Technology

    1992-03-01

    in excessive wear, scoring, or even tooth breakage. This is as true for spiral bevel gears as it is for spur and helical gears. The elemental...conformity inspection of tooth profiles that is commonly performed on spur and helical gears, however, is not practical for spiral bevel gears because the size...AD-A250 770 NASA AVSCOM Contractor Report 189125 Technical Report 91-C-048 Enhanced Automated Spiral Bevel Gear Inspection DTIC Harold K. Frint and

  2. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  3. Optical fiber antenna generating spiral beam shapes

    SciTech Connect

    Sarkar Pal, S.; Mondal, S. K. Kumar, R.; Akula, A.; Ghosh, R.; Bhatnagar, R.; Kumbhakar, D.

    2014-01-20

    A simple method is proposed here to generate vortex beam and spiral intensity patterns from a Gaussian source. It uses a special type of optical fiber antenna of aperture ∼80 nm having naturally grown surface curvature along its length. The antenna converts linearly polarized Gaussian beam into a beam with spiral intensity patterns. The experimentally obtained spiral patterns with single and double spiral arms manifest the orbital angular momentum, l = ±1, 2, carried by the output beam. Such beam can be very useful for optical tweezer, metal machining, and similar applications.

  4. Fine Anthracite Coal Washing Using Spirals

    SciTech Connect

    R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

    2001-05-31

    The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

  5. Interaction between a drifting spiral and defects

    SciTech Connect

    Zou, X.; Levine, H. ); Kessler, D.A. )

    1993-02-01

    Spiral waves, a type of reentrant excitation,'' are believed to be associated with the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation. Recent experimental findings have implicated defective regions as a means of trapping spirals which would otherwise drift and (eventually) disappear. Here, we model the myocardium as a simple excitable medium and study via simulation the interaction between a drifting spiral and one or more such defects. We interpret our results in terms of a criterion for the transition between trapped and untrapped drifting spirals.

  6. Disk's Spiral Arms Point to Possible Planets

    NASA Video Gallery

    Simulations of young stellar systems suggest that planets embedded in a circumstellar disk can produce many distinctive structures, including rings, gaps and spiral arms. This video compares comput...

  7. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  8. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  9. [Prognostic significance of helical CT in patients with destructive pancreatitis].

    PubMed

    Bulanova, T V

    2000-01-01

    Spiral scanning computed tomography (CT) is able not only to image the pancreas and to evaluate its structure, but to interpret the status of the adjacent organs and tissues. CT symptoms of pancreatic necrotic changes and multiorgan failure were studied in the prospective follow-up of 47 patients with prior destructive pancreatitis (158 studies). CT differentially substantiated indications for choosing treatment policy for different forms of pancreatic lesions. The paper gives a quantitative assessment of necrotic pancreatic parencymatous areas and shows its prognostic value.

  10. Dynamical Evolution: Spirals and Bars

    NASA Astrophysics Data System (ADS)

    Combes, F.

    Non-axisymmetric modes like spirals and bars are the main driver of the evolution of disks, in transferring angular momentum, and allowing mass accretion. This evolution proceeds through self-regulation and feedback mechanisms, such as bar destruction or weakening by a central mass concentration, decoupling of a nuclear bar taking over the gas radial flows and mass accretion, etc.. These internal mechanisms can also be triggered by interaction with the environment. Recent problems are discussed, like the influence of counter-rotation in the m=1 and m=2 patterns development and on mass accretion by a central AGN.

  11. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  12. Emergency Physicians Think in Spirals

    PubMed Central

    Renouf, Tia; Whalen, Desmond; Pollard, Megan

    2015-01-01

    As adult learners, junior clerks on core rotations in emergency medicine (EM) are expected to “own” their patients and follow them from presentation to disposition in the Emergency Department (ED). Traditionally, we teach clerks to present an exhaustive linear list of symptoms and signs to their preceptors. This does not apply well to the fast-paced ED setting. Mnemonics have been developed to teach clerks how to present succinctly and cohesively. To address the need for continual patient reassessment throughout the patient’s journey in the ED, we propose a complimentary approach called SPIRAL. PMID:26719824

  13. Emergency Physicians Think in Spirals.

    PubMed

    Renouf, Tia; Whalen, Desmond; Pollard, Megan; Dubrowski, Adam

    2015-11-17

    As adult learners, junior clerks on core rotations in emergency medicine (EM) are expected to "own" their patients and follow them from presentation to disposition in the Emergency Department (ED). Traditionally, we teach clerks to present an exhaustive linear list of symptoms and signs to their preceptors. This does not apply well to the fast-paced ED setting. Mnemonics have been developed to teach clerks how to present succinctly and cohesively. To address the need for continual patient reassessment throughout the patient's journey in the ED, we propose a complimentary approach called SPIRAL.

  14. Spiral Waves in Accretion Discs - Theory

    NASA Astrophysics Data System (ADS)

    Boffin, H. M. J.

    Spirals shocks have been widely studied in the context of galactic dynamics and protostellar discs. They may however also play an important role in some classes of close binary stars, and more particularly in cataclysmic variables. In this paper, we review the physics of spirals waves in accretion discs, present the results of numerical simulations and consider whether theory can be reconcilied with observations.

  15. Scaling effects in spiral capsule robots.

    PubMed

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10(-5) to 10(-2) m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  16. The smallest fullerene without a spiral

    NASA Astrophysics Data System (ADS)

    Brinkmann, Gunnar; Goedgebeur, Jan; McKay, Brendan D.

    2012-01-01

    In this note, we give the result of a computer search for the smallest fullerene that does not allow a face spiral code as used by Manolopoulos and Fowler and adopted in IUPAC recommendations for fullerene nomenclature. The search enumerated all the small fullerenes on up to 400 vertices and the conclusion is that the smallest fullerene without a face spiral has 380 vertices.

  17. Electrodynamics of planar Archimedean spiral resonator

    NASA Astrophysics Data System (ADS)

    Maleeva, N.; Averkin, A.; Abramov, N. N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Ustinov, A. V.

    2015-07-01

    We present a theoretical and experimental study of electrodynamics of a planar spiral superconducting resonator of a finite length. The resonator is made in the form of a monofilar Archimedean spiral. By making use of a general model of inhomogeneous alternating current flowing along the resonator and specific boundary conditions on the surface of the strip, we obtain analytically the frequencies fn of resonances which can be excited in such system. We also calculate corresponding inhomogeneous RF current distributions ψ n ( r ) , where r is the coordinate across a spiral. We show that the resonant frequencies and current distributions are well described by simple relationships f n = f 1 n and ψ n ( r ) ≃ sin [ π n ( r / R e ) 2 ] , where n = 1 , 2... and Re is the external radius of the spiral. Our analysis of electrodynamic properties of spiral resonators' is in good agreement with direct numerical simulations and measurements made using specifically designed magnetic probe and laser scanning microscope.

  18. The Lifetimes of Spirals and Bars

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.

    2015-03-01

    Simulations of isolated galaxy disks that are stable against bar formation readily manifest multiple, transient spiral patterns. It therefore seems likely that some spirals in real galaxies are similarly self-excited, although others are clearly driven by tidal interactions or by bars. The rapidly changing appearance of simulated spirals does not, however imply that the patterns last only a fraction of an orbit. Power spectrum analysis reveals a few underlying, longer-lived spiral waves that turn at different rates, which when super-posed give the appearance of swing-amplified transients. These longer-lived waves are genuine unstable spiral modes; each grows vigorously, saturates and decays over a total of several orbit periods. As each mode decays, the wave action created as it grew drains away to the Lindblad resonances, where it scatters stars. The resulting changes to the disk create the conditions for a new instability, giving rise to a recurring cycle of unstable modes.

  19. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... Z CT Colonography Computed tomography (CT) colonography or virtual colonoscopy uses special x-ray equipment to examine ... and blood vessels. CT colonography, also known as virtual colonoscopy, uses low dose radiation CT scanning to ...

  20. Fourier-wavelet restoration in PET/CT brain studies

    NASA Astrophysics Data System (ADS)

    Knešaurek, Karin

    2012-10-01

    Our goal is to improve brain PET imaging through the application of a novel, hybrid Fourier-wavelet (WFT) restoration technique. The major limitation of PET studies is a relatively poor resolution in comparison with MRI and CT imaging and there is a need for improved PET imaging. A GE DLS PET/CT 16 slice system was used to acquire the studies. In order to create restoration filters the point source study was performed. The 6-fillable spheres and 3D Hoffman brain phantom studies were acquired and used to test and optimize the restoration approach. The patient data used in the study were acquired in a 3D PET mode, using the standard clinical protocol. Here, we have implemented Fourier-wavelet regularized restoration. In the Fourier domain, the inverse of modulation transfer function was multiplied by a Butterworth low-pass filter, order n=6 and cut-off frequency f=0.35 cycles/pixel. In addition, wavelet (Daubechies, order 2) noise suppression was applied by “hard threshold”. Hot spheres and 3D Hoffman brain studies showed that the restoration process not only improves resolution and contrast but also improves quantification in 3D PET/CT imaging. The average contrast increase was 19% and the quantification improved in the range 8-20% depending on sphere size. In the restored images, there was no significant increase in noise when compared with the original images. The clinical studies followed brain phantom findings, i.e., the restored images had better contrast and resolution properties, when compared with the original images. The results of the study demonstrate that the quality and quantification of 3D brain 18F FDG PET images can be significantly improved by Fourier-wavelet (WFT) restoration filtering.

  1. Solar Interactions on Spiral Petroglyphs

    NASA Astrophysics Data System (ADS)

    Davis, Brian F.; Preston, Robert A.

    2003-11-01

    Like most prehistoric cultures, the ancestors of the native Puebloan people of the Southwest were aware of the yearly cycle of the sun. This and other natural phenomena are fundamental for interpreting their world view, religion, and art. Some researchers have argued that rock art, particularly petroglyphs, displays this focus on the natural world through the distinctive interplay of sunlight on these carvings. However, the question of whether or not these interactions occur by intention or chance has hampered the acceptance of this evidence by the archaeological community. To address this question we have performed a detailed study of a complete sample of over 100 spiral petroglyphs within a limited area (less than 20 km^2) of central New Mexico. We have examined this sample on both solstices and equinoxes, and have observed well-defined and consistent sunlight interactions on about 80This work clearly demonstrates the reality and profusion of this ancient cultural tradition. Several examples will be presented.

  2. Cochlear anatomy using micro computed tomography (μCT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil

    2008-02-01

    A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.

  3. Thickness determination of three-dimensional spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Zhao, Shanghui; Bao, Mengxian; Zhang, Wenyuan; Peng, Qiuhe

    1992-12-01

    CCD images of some spiral galaxies were obtained with the 1-m telescope of Yunnan Observatory. After processing and measuring the images, the authors get the morphological parameters, thickness and their relative errors of seven spiral galaxies (NGC 2608, NGC 2713, NGC 2776, NGC 3631, NGC 5669, NGC 5985 and NGC 7156) by fitting their spiral arms with logarithmic spirals.

  4. Curriculum Connections. The Learning Spiral--Toward Authentic Instruction.

    ERIC Educational Resources Information Center

    Dever, Martha T.; Hobbs, Deborah E.

    2000-01-01

    Describes the learning spiral, which was designed as a framework for instructional planning. Grounded in constructivism, the learning spiral attempts to align learning experiences at school with learning experiences in life. The components of the learning spiral are engage, investigate, share, and assess. The learning spiral is recursive, and it…

  5. REVIEWS OF TOPICAL PROBLEMS: Spiral light beams

    NASA Astrophysics Data System (ADS)

    Abramochkin, Evgenii G.; Volostnikov, Vladimir G.

    2004-12-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity strusture during propagation and focusing. We describe a family of laser beams termed spiral whose intensity remains invariable, up to scale and rotation, during propagation. Several properties of spiral beams are of practical interest for laser technologies, medicine, and microbiology. The problem of synthesis of spiral beams with the intensity distribution given by an arbitrary planar curve is considered. We emphasize the feasibility, in principle, of making lasers that directly generate beams with desired properties without additional unconventional optics.

  6. Nonresonance Spiral Responses in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Polyachenko, V. L.; Polyachenko, E. V.

    2002-01-01

    The behavior of the gravitational potential outside the region where the main spiral arms of galaxies are located is investigated. The characteristic features of this behavior include nearly circular extensions of the main arms, which typically have an angular extent of 90°. It is natural to interpret these quarter-turn spirals as the response of the galactic disk to the gravitational potential of the main spiral arms. The theoretical models are supported by observational data for the brightness distributions in both normal (NGC 3631) and barred (NGC 1365) galaxies.

  7. Explosions in Majestic Spiral Beauties

    NASA Astrophysics Data System (ADS)

    2004-12-01

    Images of beautiful galaxies, and in particular of spiral brethren of our own Milky Way, leaves no-one unmoved. It is difficult indeed to resist the charm of these impressive grand structures. Astronomers at Paranal Observatory used the versatile VIMOS instrument on the Very Large Telescope to photograph two magnificent examples of such "island universes", both of which are seen in a southern constellation with an animal name. But more significantly, both galaxies harboured a particular type of supernova, the explosion of a massive star during a late and fatal evolutionary stage. The first image (PR Photo 33a/04) is of the impressive spiral galaxy NGC 6118 [1], located near the celestial equator, in the constellation Serpens (The Snake). It is a comparatively faint object of 13th magnitude with a rather low surface brightness, making it pretty hard to see in small telescopes. This shyness has prompted amateur astronomers to nickname NGC 6118 the "Blinking Galaxy" as it would appear to flick into existence when viewed through their telescopes in a certain orientation, and then suddenly disappear again as the eye position shifted. There is of course no such problem for the VLT's enormous light-collecting power and ability to produce sharp images, and this magnificent galaxy is here seen in unequalled detail. The colour photo is based on a series of exposures behind different optical filters, obtained with the VIMOS multi-mode instrument on the 8.2-m VLT Melipal telescope during several nights around August 21, 2004. About 80 million light-years away, NGC 6118 is a grand-design spiral seen at an angle, with a very small central bar and several rather tightly wound spiral arms (it is classified as of type "SA(s)cd" [2]) in which large numbers of bright bluish knots are visible. Most of them are active star-forming regions and in some, very luminous and young stars can be perceived. Of particular interest is the comparatively bright stellar-like object situated directly

  8. Oxygen and nitrogen abundances in Virgo and field spirals

    NASA Astrophysics Data System (ADS)

    Pilyugin, L. S.; Mollá, M.; Ferrini, F.; Vílchez, J. M.

    2002-01-01

    The oxygen and nitrogen abundances in the H II regions of the nine Virgo spirals of the sample from Skillman et al. (1996) and in nine field spiral galaxies are re-determined with the recently suggested P-method. We confirm that there is an abundance segregation in the sample of Virgo spirals in the sense that the H I deficient Virgo spirals near the core of the cluster have higher oxygen abundances in comparison to the spirals at the periphery of the Virgo cluster. At the same time both the Virgo periphery and core spirals have counterparts among field spirals. Some field spirals have H I to optical radius ratios, similar to that in H I deficient Virgo core spirals. We conclude that if there is a difference in the abundance properties of the Virgo and field spirals, this difference appears to be small and masked by the observational errors.

  9. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Xiang, H; Li, B; Behrman, R; Russo, G; Kachnic, L; Lu, H; Fernando, H

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each density insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.

  10. Spiral waves on a contractile tissue

    NASA Astrophysics Data System (ADS)

    Mesin, L.; Ambrosi, D.

    2011-02-01

    In a healthy cardiac tissue, electric waves propagate in the form of a travelling pulse, from the apex to the base, and activate the contraction of the heart. Defects in the propagation can destabilize travelling fronts and originate possible new periodic solutions, as spiral waves. Spiral waves are quite stable, but the interplay between currents and strain can distort the periodic pattern, provided the coupling is strong enough. In this paper we investigate the stability of spiral waves on a contractile medium in a non-standard framework, in which the electrical potential dictates the active strain (not stress) of the muscle. The role of conducting and contracting fibers is included in the model and periodic boundary conditions are adopted. A correlation analysis allows to evaluate numerically the range of stability of the parameters for the spiral waves, depending on the strain of the contracted fibers and on the magnitude of the stretch activated current.

  11. Featured Image: The Birth of Spiral Arms

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    In this figure, the top panels show three spiral galaxies in the Virgo cluster, imaged with the Sloan Digital Sky Survey. The bottom panels provide a comparison with three morphologically similar galaxies generated insimulations. The simulations run by Marcin Semczuk, Ewa okas, and Andrs del Pino (Nicolaus Copernicus Astronomical Center, Poland) were designed to examine how the spiral arms of galaxies like the Milky Way may have formed. In particular, the group exploredthe possibility that so-called grand-design spiral arms are caused by tidal effects as a Milky-Way-like galaxy orbits a cluster of galaxies. The authors show that the gravitational potential of the cluster can trigger the formation of two spiral arms each time the galaxy passes through the pericenter of its orbit around the cluster. Check out the original paper below for more information!CitationMarcin Semczuk et al 2017 ApJ 834 7. doi:10.3847/1538-4357/834/1/7

  12. View factors of cylindrical spiral surfaces

    NASA Astrophysics Data System (ADS)

    Lebedev, Vladimir A.; Solovjov, Vladimir P.

    2016-03-01

    Analytical expressions are presented for the view factors (radiative configuration factors) associated with the flat right cylindrical spiral surface. Such cylindrical spiral systems are widely applied as electrical resistance heating elements for lighting devices, electronic radio tubes, high-speed gas flow heaters, and other appliances used for scientific, industrial and domestic purposes. Derivation of the view factors is based on the invariant principles and the results presented in Lebedev (2000, 2003,1988) [1-3].

  13. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    PubMed

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution.

  14. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    SciTech Connect

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A. E-mail: martinez@astro.unam.mx

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  15. DO BARS DRIVE SPIRAL DENSITY WAVES?

    SciTech Connect

    Buta, Ronald J.; Knapen, Johan H.; Elmegreen, Bruce G.; Salo, Heikki; Laurikainen, Eija; Elmegreen, Debra Meloy; Puerari, Ivanio; Block, David L. E-mail: jhk@iac.es E-mail: hsalo@sun3.oulu.fi E-mail: elmegreen@vassar.edu E-mail: David.Block@wits.ac.za

    2009-05-15

    We present deep near-infrared K{sub s} -band Anglo-Australian Telescope Infrared Imager and Spectrograph observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0{sup -} to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. However, the earlier samples had only a few excessively strong bars. Our new sample largely confirms our previous studies, but still any correlation is relatively weak. We find two galaxies, NGC 7513 and UGC 10862, where there is only a weak spiral in the presence of a very strong bar. We suggest that some spirals probably are driven by their bars at the same pattern speed, but that this may be only when the bar is growing or if there is abundant gas and dissipation.

  16. Spiral Development in Action: A Case Study of Spiral Development in the Global Hawk Unmanned Aerial Vehicle Program

    DTIC Science & Technology

    2005-12-01

    government acquisitions, and presented lessons learned through a case study of the Global Hawk UAV Program. This paper examined the Global Hawk’s spiral...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Spiral Development in Action: A Case Study of Spiral...Professional Report 4. TITLE AND SUBTITLE: Spiral Development in Action: A Case Study of Spiral Development in the Global Hawk Unmanned Aerial

  17. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  18. Instability of spiral convective vortex

    NASA Astrophysics Data System (ADS)

    Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova

    2014-05-01

    Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.

  19. Dielectrically Loaded HTS Spiral Antenna

    NASA Astrophysics Data System (ADS)

    Ramasamy, J.; Hanna, D.; Vlasov, Y. A.; Larkins, G. L.; Moeckly, B. H.

    2004-06-01

    The objective of this work is to fabricate, test, and study a dielectrically loaded high temperature superconductor (HTS) spiral antenna that would operate in the frequency band of 10 MHz to 200 MHz. The antenna is formed by depositing and patterning a YBa2Cu3O7 (YBCO) thin film on top of 4-inch-diameter sapphire and Yittria Stabilized ZrO2 substrates. The presence of the HTS material guarantees low conductor loss in the antenna. A thick epitaxial layer of strontium titanate (STO) is then deposited on top of the YBCO for high dielectric constant loading. This set-up can be simulated using the Fidelity software routine, a Finite Difference Time Domain based program from Zeland, Inc. We have simulated the performance of this antenna structure, first in free space and then after loading with the dielectric slabs. Important parameters such as feed point impedance and antenna gain are studied for different simulation conditions. The dielectric ensures reduced feed point impedance as well as improvement of the low frequency response of the antenna.

  20. Six Decades of Spiral Density Wave Theory

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  1. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  2. Computed Tomography (CT) - Spine

    MedlinePlus

    ... test used to help diagnose—or rule out—spinal column damage in injured patients. CT scanning is fast, ... CT is to detect—or to rule out—spinal column damage in patients who have been injured. CT ...

  3. Accessible or Inaccessible? Diagnostic Efficacy of CT-Guided Core Biopsies of Head and Neck Masses

    SciTech Connect

    Cunningham, Jane D. McCusker, Mark W.; Power, Sarah; PearlyTi, Joanna; Thornton, John; Brennan, Paul; Lee, Michael J.; O’Hare, Alan; Looby, Seamus

    2015-04-15

    PurposeTissue sampling of lesions in the head and neck is challenging due to complex regional anatomy and sometimes necessitates open surgical biopsy. However, many patients are poor surgical candidates due to comorbidity. Thus, we evaluated the use of CT guidance for establishing histopathological diagnosis of head and neck masses.MethodsAll consecutive patients (n = 22) who underwent CT-guided core biopsy of head or neck masses between April 2009 and August 2012 were retrospectively reviewed using the departmental CT interventional procedures database. The indication for each biopsy performed was to establish or exclude a diagnosis of neoplasia in patients with suspicious head or neck lesions found on clinical examination or imaging studies. Patients received conscious sedation and 18 G, semiautomated core needle biopsies were performed by experienced neuroradiologists using 16-slice multidetector row CT imaging guidance (Somatom Definition Siemens Medical Solutions, Germany). Histopathology results of each biopsy were analysed.ResultsSixteen of 22 biopsies that were performed (73 %) yielded a pathological diagnosis. Anatomic locations biopsied included: masticator (n = 7), parapharyngeal (n = 3), parotid (n = 3), carotid (n = 3), perivertebral (n = 3), pharyngeal (n = 2), and retropharyngeal (n = 1) spaces. Six biopsies (27 %) were nondiagnostic due to inadequate tissue sampling, particularly small biopsy sample size and failure to biopsy the true sampling site due to extensive necrosis. No major complications were encountered.ConclusionsThe use of CT guidance to perform core biopsies of head and neck masses is an effective means of establishing histopathological diagnosis and reduces the need for diagnostic open surgical biopsy and general anaesthesia.

  4. CT and MRI Determination of Intermuscular Space within Lumbar Paraspinal Muscles at Different Intervertebral Disc Levels

    PubMed Central

    Wang, Shidong; Zhang, Yu; Han, Hui; Zheng, Dengquan; Ding, Zihai; Wong, Kelvin K. L.

    2015-01-01

    Background Recognition of the intermuscular spaces within lumbar paraspinal muscles is critically important for using the paramedian muscle-splitting approach to the lumbar spine. As such, it is important to determine the intermuscular spaces within the lumbar paraspinal muscles by utilizing modern medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). Methods A total of 30 adult cadavers were studied by sectional anatomic dissection, and 60 patients were examined using CT (16 slices, 3-mm thickness, 3-mm intersection gap, n = 30) and MRI (3.0T, T2-WI, 5-mm thickness, 1-mm intersection gap, n = 30). The distances between the midline and the superficial points of the intermuscular spaces at different intervertebral disc levels were measured. Results Based on study of our cadavers, the mean distances from the midline to the intermuscular space between multifidus and longissimus, from intervertebral disc levels L1–L2 to L5–S1, were 0.9, 1.1, 1.7, 3.0, and 3.5 cm, respectively. Compared with the upper levels (L1–L3), the superficial location at the lower level (L4–S1) is more laterally to the midline (P<0.05). The intermuscular space between sacrospinalis and quadratus lumborum, and that between longissimus and iliocostalis did not exist at L4–S1. The intermuscular spaces in patients also varied at different levels of the lumbar spine showing a low discontinuous density in CT and a high signal in MRI. There were no significant differences between the observations in cadavers and those made using CT and MRI. Conclusion The intermuscular spaces within the paraspinal muscles vary at different intervertebral disc levels. Preoperative CT and MRI can facilitate selection of the muscle-splitting approach to the lumbar spine. This paper demonstrates the efficacy of medical imaging techniques in surgical planning. PMID:26458269

  5. Spiral computed tomography of fetuses: reference data and interest in fetopathy

    NASA Astrophysics Data System (ADS)

    Braillon, Pierre M.; Bouvier, Raymonde

    1999-09-01

    The aim of this work was to define reference values for the skeletal and total body volumes (SV and TBV) of human fetuses from 3D reconstructions obtained with spiral computed tomography (CT). The interest of the technique in fetopathy was also estimated. Twenty three fetuses who died just before delivery were studied. The causes of death were not associated with any metabolism abnormality, and all these babies were appropriated for gestational age (GA: 14 - 41.5 wks; Body Weight BW: 22 - 3760 g). They were scanned with a spiral mode on a CT scanner (Elscint CT Twin) using a 2.7 mm slice thickness, a pitch value of 0.7, and a 512 X 512 image matrix. Lengths and volumes were measured on 3D images reconstructed with appropriate windows. High correlations (r greater than 0.95) were found between BW, SV or TBV and the long bone lengths. The ratio SV/TBV was 8.2 plus or minus 0.2%. With the scanning and analysis parameters used, it was extremely difficult to make a precise segmentation of a given organ. However, some few alterations of these parameters could largely increase the potential of the technique in fetopathy.

  6. The molecular spiral arms of NGC 6946

    NASA Technical Reports Server (NTRS)

    Tacconi, L. J.; Xie, S.

    1990-01-01

    From CO-12(J=1 to 0) observations at 45 seconds resolution Tacconi and Young (1989) have found evidence for enhancements in both the CO emissivity and the massive star formation efficiency (MSFE) on optical spiral arms of the bright spiral galaxy NGC 6946. In the optically luminous and well-defined spiral arm in the NE quadrant, there are enhancements in both the H2 surface density and MSFE relative to the interarm regions. In contrast, a poorly defined arm in the SW shows no arm-interarm contrast in the MSFE. To further investigate the molecular gas content of these two spiral arms, researchers have made CO-12 J=2 to 1 and 3 to 2 observations with the James Clerk Maxwell Telescope. In the J=2 to 1 line, they made observations of the NE and SW spiral arm and interarm regions in 4 x 9 10 seconds spaced grids (36 points per grid). Because of decreased sensitivity in the J=3 to 2 line, they were limited to mapping the two arm regions in 2 x 3 10 seconds spaced grids (6 points per grid). The centers of each of the grids lie 2.4 minutes to the NE and 2.3 minutes to the SW of the nucleus of NGC 6946. With the CO J=2 to 1 data researchers are able to fully resolve the two observed spiral arms in NGC 6946. In both cases the CO emission is largely confined to the optical spiral arm regions with the peak observed T asterisk sub A being up to 4 times higher on the spiral arms than in the interarm regions. Researchers are currently estimating massive star formation efficiencies on and off the spiral arms through direct comparison of the CO maps with an H alpha image. They are also comparing the CO J=2 to 1 data with an HI map made at similar resolution. Thus, they will be able to determine structure in all components of the IS on scales of less than 20 inches.

  7. Precision distances with spiral galaxy apparent diameters

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2016-01-01

    Spiral galaxy diameters offer the oldest extragalactic distance indicator known. Although outdated and hitherto imprecise, two spiral diameter-based distance indicators applied in the 1980s can be tested, calibrated, and re-established for precision era use, based on abundant redshift-independent distances data available in NED-D. Indicator one employs the largest Giant Spiral Galaxies, which have an absolute isophotal major diameter of ~70 +/- 10 kpc, offering standard ruler-based distances with <10% precision. Indicator two employs the diameter-magnitude relation for spirals in general, as a secondary indicator, offering ~20% precision. The ruler-based indicator is the only indicator with <10% precision able to independently calibrate type Ia supernovae-based distances at cosmological distances. The secondary-based indicator is the only indicator with 20% precision applicable to more galaxies than in current Tully-Fisher surveys. The primary indicator gives researchers a new tool to confirm or refute if, as currently believed, universal expansion is accelerating. The secondary indicator gives researchers a new path toward acquiring a more complete 3D picture of the local universe and potentially, because the majority of galaxies in the universe are spirals, the distant universe.

  8. Observational Confirmations of Spiral Density Wave Theory

    NASA Astrophysics Data System (ADS)

    Kennefick, Julia D.; Kennefick, Daniel; Shameer Abdeen, Mohamed; Berrier, Joel; Davis, Benjamin; Fusco, Michael; Pour Imani, Hamed; Shields, Doug; DMS, SINGS

    2017-01-01

    Using two techniques to reliably and accurately measure the pitch angles of spiral arms in late-type galaxies, we have compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.We have further shown that density wave theory leads us to a three-way correlation between bulge mass, pitch angle, and disk gas density, and have used data from the Galaxy Disk Mass Survey to confirm this possible fundamental plane. Density wave theory also predicts that the pitch angle of spiral arms should change with observed waveband as each waveband is sampling a different stage in stellar population formation and evolution. We present evidence that this is indeed the case using a sample of galaxies from the Spitzer Infrared Nearby Galaxy Survey. Furthermore, the evolved spiral arms cross at the galaxy co-rotation radius. This gives a new method for determining the co-rotation radius of spiral galaxies that is found to agree with those found using previous methods.

  9. The Spiral Curriculum: implications for online learning

    PubMed Central

    Masters, Kenneth; Gibbs, Trevor

    2007-01-01

    Background There is an apparent disjuncture between the requirements of the medical spiral curriculum and the practice of replacing previous online material in undergraduate courses. This paper investigates the extent to which students revisit previous online material for the purposes of building the educational spiral, and the implications for the implementation of a Faculty's Learning Management System implementation. Methods At the University of Cape Town, medical students' last date of access to 16 previous online courses was determined. Students completed a survey to determine their reasons for revisiting this material and the perceived benefits of this availability. Results 70% of the students revisited their previous online courses. The major reasons were to review lecture presentations, lectures notes, and quizzes. The perceived benefits were for understanding new material, preparation for assessments, and convenience. Although student comments were not always in line with the concept of the spiral curriculum, most referred to processes of building on previous work, and some mentioned the spiral curriculum specifically. Conclusion This study suggests that the practice of replacing previous online courses may hinder rather than support student learning. Although students visit previous material for ranges of reasons, a large number are aware of the spiral curriculum, and use the online environment to build upon previous material. Any practice, which entails replacing material and redesigning curricula content may be detrimental to the students' future learning needs, and such activities may need revision. PMID:18154654

  10. Pitch Angle Survey of GOODS Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Boe, Benjamin; Kennefick, Daniel; Arkansas Galaxy Evolution Survey, Arkansas CenterSpace; Planetary Sciences

    2015-01-01

    This research looks at how the pitch angles of galaxies change over scales of cosmic time. We measure the pitch angle, or tightness of spiral winding, using a new code, Spirality. We then compare the results to those obtained from established software, 2DFFT (2 Dimensional Fast Fourier Transform). We investigate any correlation between pitch angle and redshift, or distance from Earth. Previous research indicates that the pitch angle of a galaxy correlates with its central bulge mass and the mass of its central black hole. Thus any evolution in the distribution of pitch angles could ultimately prove to be indicative of evolution in the supermassive black hole mass function. Galaxies from the Hubble GOODS (Great Observatories Origins Deep Survey) North and South were measured. We found that there was strong agreement between Spirality and 2DFFT measurements. Spirality measured the pitch angle of the GOODS galaxies with a lower error than 2DFFT on average. With both software a correlation between pitch angle and redshift was found. Spirality observed a 6.150 increase in pitch per unit redshift. The increase in pitch angle with redshift suggests that in the past galaxies had higher pitch angles, which could be indicative of lower central black hole masses (or, more directly, central bulge masses).

  11. Discontinuous Spirals of Stable Periodic Oscillations

    PubMed Central

    Sack, Achim; Freire, Joana G.; Lindberg, Erik; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase orderly without bound. Such complex patterns emerge forming self-similar discontinuous phases that combine in an artful way to produce large discontinuous spirals of stability. This unanticipated discrete accumulation of stability phases was detected experimentally and numerically in a Duffing-like proxy specially designed to bypass noisy spectra conspicuously present in driven oscillators. Discontinuous spirals organize the dynamics over extended parameter intervals around a focal point. They are useful to optimize locking into desired oscillatory modes and to control complex systems. The organization of oscillations into discontinuous spirals is expected to be generic for a class of nonlinear oscillators. PMID:24284508

  12. The Spiral Structure of AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kennefick, J.; Barrows, R. S.; Hughes, J. A.; Schilling, A.; Davis, B.; Shields, D.; Madey, A.; Kennefick, D.; Lacy, C.; Seigar, M.

    2014-03-01

    Recent work has uncovered a correlation between the black hole mass, M, in the centers of local spiral galaxies and the pitch angles, P, of their spiral arms. We propose to test this M-P correlation at moderate to high redshifts, using a sample of active galaxies selected from the Great Observatories Origins Survey and the Sloan Digital Sky Survey showing evidence for spiral structure in their host galaxies. The mass of the central black holes are estimated using the Hβ or Mg II lines in existing spectra using luminosity-radius scaling relations. Pitch angles are measured using an iterative 2D FFT algorithm. The aim is to establish this M-P relation beyond our local epoch, test for evolution in its form, and eventually to compute a BH mass function for late-type galaxies out to moderate redshifts.

  13. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  14. Maximum life spiral bevel reduction design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-01-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed backcone distance of the spiral bevel gear set for a specified speed reduction, shaft angle, input torque, and power. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  15. Maximum life spiral bevel reduction design

    NASA Astrophysics Data System (ADS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-07-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed backcone distance of the spiral bevel gear set for a specified speed reduction, shaft angle, input torque, and power. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  16. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  17. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  18. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT

    SciTech Connect

    Lu Wei; Parikh, Parag J.; Hubenschmidt, James P.; Bradley, Jeffrey D.; Low, Daniel A.

    2006-08-15

    Respiratory motion can cause significant dose delivery errors in conformal radiation therapy for thoracic and upper abdominal tumors. Four-dimensional computed tomography (4D CT) has been proposed to provide the image data necessary to model tumor motion and consequently reduce these errors. The purpose of this work was to compare 4D CT reconstruction methods using amplitude sorting and phase angle sorting. A 16-slice CT scanner was operated in cine mode to acquire 25 scans consecutively at each couch position through the thorax. The patient underwent synchronized external respiratory measurements. The scans were sorted into 12 phases based, respectively, on the amplitude and direction (inhalation or exhalation) or on the phase angle (0-360 deg.) of the external respiratory signal. With the assumption that lung motion is largely proportional to the measured respiratory amplitude, the variation in amplitude corresponds to the variation in motion for each phase. A smaller variation in amplitude would associate with an improved reconstructed image. Air content, defined as the amount of air within the lungs, bronchi, and trachea in a 16-slice CT segment and used by our group as a surrogate for internal motion, was correlated to the respiratory amplitude and phase angle throughout the lungs. For the 35 patients who underwent quiet breathing, images (similar to those used for treatment planning) and animations (used to display respiratory motion) generated using amplitude sorting displayed fewer reconstruction artifacts than those generated using phase angle sorting. The variations in respiratory amplitude were significantly smaller (P<0.001) with amplitude sorting than those with phase angle sorting. The subdivision of the breathing cycle into more (finer) phases improved the consistency in respiratory amplitude for amplitude sorting, but not for phase angle sorting. For 33 of the 35 patients, the air content showed significantly improved (P<0.001) correlation with the

  19. From Graphical to Mathematical: The Spiral of Golden Proportion

    ERIC Educational Resources Information Center

    Fletcher, Rodney

    2007-01-01

    There has been a lot of material written about logarithmic spirals of golden proportion but this author states that he has never come across an article that states the exact equation of the spiral which ultimately spirals tangentially to the sides of the rectangles. In this article, the author intends to develop such an equation. (Contains 5…

  20. Computer numerical control grinding of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Scott, H. Wayne

    1991-01-01

    The development of Computer Numerical Control (CNC) spiral bevel gear grinding has paved the way for major improvement in the production of precision spiral bevel gears. The object of the program was to decrease the setup, maintenance of setup, and pattern development time by 50 percent of the time required on conventional spiral bevel gear grinders. Details of the process are explained.

  1. Computed Tomography (CT) -- Head

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  2. Computed Tomography (CT) - Spine

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  3. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  4. Abdominal and Pelvic CT

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ...

  5. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    SciTech Connect

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placed within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.

  6. Experimental study on the spiral and oval spiral EGR cooler efficiencies in a diesel engine

    NASA Astrophysics Data System (ADS)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Hyung-Man

    2014-12-01

    The cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxide emissions in diesel engine. Because the combustion characteristics in diesel engine involves high temperature and load, the amount of particulate matter (PM) emission tends to increase, thereby the PM fouling in EGR cooler degrades the heat transfer performance considerably, which in turn has a significant influence on the design of the EGR cooler. In the present study, engine dynamometer tests are performed to investigate the influences of PM fouling on the heat exchange characteristics of spiral and oval-spiral type EGR coolers equipped with a diesel engine. The evaluation test results show that the oval-spiral type EGR cooler has higher efficiency by approximate 10 % than the spiral type EGR cooler because of the increase of heat transfer area and the increased removal of PM from the deposit layer due to fluid shear force.

  7. Investigation of Spiral and Sweeping Holes

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  8. The Spiral Curriculum. Research into Practice

    ERIC Educational Resources Information Center

    Johnston, Howard

    2012-01-01

    The Spiral Curriculum is predicated on cognitive theory advanced by Jerome Bruner (1960), who wrote, "We begin with the hypothesis that any subject can be taught in some intellectually honest form to any child at any stage of development." In other words, even the most complex material, if properly structured and presented, can be understood by…

  9. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  10. The handedness of historiated spiral columns.

    PubMed

    Couzin, Robert

    2016-11-17

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  11. Media Credibility and the Spiral of Silence.

    ERIC Educational Resources Information Center

    Lee, Hye-ryeon

    The Spiral of Silence theory (Elisabeth Noelle-Neumann, l973) suggests that highly consonant media content has a strong impact upon individuals' perception of the opinion climate as well as upon their opinion expression. Noting that the theory lacks empirical investigation, a study took advantage of a controlled media system in Cheongju, South…

  12. Square spiral photonic crystal with visible bandgap

    NASA Astrophysics Data System (ADS)

    Krabbe, Joshua D.; Leontyev, Viktor; Taschuk, Michael T.; Kovalenko, Andriy; Brett, Michael J.

    2012-03-01

    Nanoimprint lithography was combined with glancing angle deposition (GLAD) of titanium dioxide to fabricate a square spiral columnar film with a bandgap in the visible spectral range. Nanoimprint stamps were fabricated with seed spacing ranging from 80 to 400 nm, and four periods of square spiral film were deposited on top of the 320 nm array of seeds. The ratio of lattice spacing, vertical pitch and spiral arm swing was chosen as a : P : A = 1 : 1.35 : 0.7 and the deposition angle was fixed at 86° to maximize the square spiral film's bandgap. Reflectivity measurements show that the fabricated structure exhibit a pseudo-gap centered at around 600 nm wavelength, in good agreement with finite difference electromagnetic simulations. The absence of a full 3D bandgap is due the deviation of GLAD columns' cross-section from the optimal one, which has to be highly elongated in the deposition plane. However, simulations show that a geometry close to the fabricated one will produce a full 3D bandgap, if the structure is inverted. The material refractive index in such an inverted photonic crystal can be as low as n = 2.15.

  13. How to make a spiral bacterium

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles W.; Inclan, Yuki F.; Quan, Julie; Mukherjee, Sulav; Oster, George; Koehl, M. A. R.

    2005-09-01

    The motility of some kinds of bacteria depends on their spiral form, as does the virulence of certain pathogenic species. We propose a novel mechanism for the development of spiral shape in bacteria and the supercoiling of chains ('filaments') of many cells. Recently discovered actin-like proteins lying just under the cell wall form fibers that play a role in maintaining cell shape. Some species have a single actin-like fiber helically wrapped around the cell, while others have two fibers wrapped in the same direction. Here, we show that if these fibers elongate more slowly than growth lengthens the cell, the cell both twists and bends, taking on a spiral shape. We tested this mechanism using a mathematical model of expanding fiber-wound structures and via experiments that measure the shape changes of elongating physical models. Comparison of the model with in vivo experiments on stationary phase Caulobacter crescentus filaments provide the first evidence that mechanical stretching of cytoskeletal fibers influences cell morphology. Any hydraulic cylinder can spiral by this mechanism if it is reinforced by stretch-resistant fibers wrapped helically in the same direction, or shortened by contractile elements. This might be useful in the design of man-made actuators.

  14. Structured Molecular Gas Reveals Galactic Spiral Arms

    NASA Astrophysics Data System (ADS)

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory 13CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  15. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  16. Spiral kicker for the beam abort system

    SciTech Connect

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  17. Maximum life spiral bevel reduction design

    NASA Astrophysics Data System (ADS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-07-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  18. Maximum life spiral bevel reduction design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-01-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  19. Spiral waves in a model of myocardium

    NASA Astrophysics Data System (ADS)

    Tyson, John J.; Keener, James P.

    1987-11-01

    Myocardial tissue is an excitable medium through which propagate waves of electrical stimulation and muscular contraction. In addition to radially expanding waves of neuromuscular activity characterizing the normal heartbeat, myocardial tissue may also support high frequency, rotating spiral waves of activity which are associated with cardiac pathologies (flutter and fibrillation). Recently Pertsov, Ermakova and Panfilov have presented a numerical study of rotating spiral waves in a two-dimensional excitable medium modeled on the FitzHugh-Nagumo equations, suitably modified to reflect the electrical properties of myocardium. We show that some of their principal numerical results can be reproduced in quantitative detail by a general theory of rotating spiral waves in excitable media. The critical ingredients of our theory are the dispersion of nonlinear plane waves and the effects of curvature on the propagation of wave fronts in two-dimensional media. The close comparison of our analytical results with numerical simulations of the full reaction-diffusion equations lends credence to our theoretical description of spiral waves in excitable media.

  20. The contribution of PET/CT to improved patient management.

    PubMed

    Ell, P J

    2006-01-01

    With the introduction of both SPET/CT and PET/CT, multimodality imaging has truly entered routine clinical practice. Multiple slice spiral CT scanners have been incorporated with multiple detector gamma cameras or PET systems, such that the benefit of these modalities can be achieved in one patient sitting. The subject of this manuscript is PET/CT and its impact on patient management. Applications of PET/CT span the whole field of medical and surgical oncology since very few cancers do not take up the labelled glucose tracer, (18)F-FDG. Given the contrast achieved, high-quality data can be obtained with FDG PET/CT. This technology has now spread worldwide and has been the subject of intense interest, as witnessed by the vast body of published evidence. In this short overview, only a brief discussion of the main clinical applications is possible. Novel applications of PET/CT outside the field of oncology are expected in the near future.

  1. Development of a surface micromachined spiral-channel viscous pump

    NASA Astrophysics Data System (ADS)

    Kilani, Mohammad Ibrahim

    This work introduces a new pump, called the spiral pump, which targets the surface micromachining technology. We demonstrate the possibility of realizing the spiral pump geometry in standard surface micromachining, lay out the theoretical foundation for its operation, and conduct an objective assessment for its practicality. The spiral pump is a shear-driven viscous pump, which works by rotating a disk with a spiral groove at a close proximity over a stationary plate. Fluid contained in the spiral groove between the stationary plate and the rotating disk, is subject to a net tangential viscous stress, which allows it to be transported against an imposed pressure difference. A number of spiral pumps were fabricated in 5 levels of polysilicon using Sandia's Ultraplanar Multilevel Surface Micromachining Technology, SUMMiT, and the fabricated micropump were tested in dry-run mode using electrostatic probing and optical microscopy. To achieve a more comprehensive understanding of the spiral micropump operation, an analytical model was developed for the flow field in the spiral channel of the pump using an approximation which replaces the spiral channel with an equivalent straight channel with appropriate dimensions and boundary conditions. An analytical solution for this model at the lubrication limit relates the flow rate, torque and power consumption of the spiral pump to the pressure difference and rotation rate. The model was validated using macroscale experiments conducted on a scaled up spiral pump model, which involved a quantitative characterization of the spiral pump performance. Those experiments validate the developed theory and help assess the practicality of the spiral pump concept. In addition to the spiral pump, two positive-displacement ring-gear pumps were designed and fabricated in this work. The feasibility of surface micromachined ring-gear pumps is briefly investigated in this work, and compare to that of the spiral micropump.

  2. Curved spiral antennas for underwater biological applications

    NASA Astrophysics Data System (ADS)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  3. 64-Slice spiral computed tomography and three-dimensional reconstruction in the diagnosis of cystic pancreatic tumors

    PubMed Central

    WEN, ZHAOXIA; YAO, FENGQING; WANG, YUXING

    2016-01-01

    The present study aimed to describe the characteristics of cystic pancreatic tumors using computed tomography (CT) and to evaluate the diagnostic accuracy (DA) of post-imaging three-dimensional (3D) reconstruction. Clinical and imaging data, including multi-slice spiral CT scans, enhanced scans and multi-faceted reconstruction, from 30 patients with pathologically confirmed cystic pancreatic tumors diagnosed at the Linyi People's Hospital between August 2008 and June 2014 were retrospectively analyzed. Following the injection of Ultravist® 300 contrast agent, arterial, portal venous and parenchymal phase scans were obtained at 28, 60 and 150 sec, respectively, and 3D reconstructions of the CT images were generated. The average age of the patients was 38.4 years (range, 16–77 years), and the cohort included 5 males and 25 females (ratio, 1:5). The patients included 8 cases of mucinous cystadenoma (DA), 80%]; 9 cases of cystadenocarcinoma (DA, 84%); 6 cases of serous cystadenoma (DA, 100%); 3 cases of solid pseudopapillary tumor (DA, 100%); and 4 cases of intraductal papillary mucinous neoplasm (DA, 100%). 3D reconstructions of CT images were generated and, in the 4 cases of intraductal papillary mucinous neoplasm, the tumor was connected to the main pancreatic duct and multiple mural nodules were detected in one of these cases. The DA of the 3D-reconstructed images of cystic pancreatic tumors was 89.3%. The 64-slice spiral CT and 3D-reconstructed CT images facilitated the visualization of cystic pancreatic tumor characteristics, in particular the connections between the tumor and the main pancreatic duct. In conclusion, the 3D reconstruction of multi-slice CT data may provide an important source of information for the surgical team, in combination with the available clinical data. PMID:27073473

  4. GANIL-SPIRAL2: A new era

    SciTech Connect

    Gales, Sydney

    2011-05-06

    GANIL presently offers unique opportunities in nuclear physics and many other fields that arise from not only the provision of low-energy stable beams, fragmentation beams and re-accelerated radioactive species, but also from the availability of a wide range of state-of-the-art spectrometers and instrumentation. A few examples of recent highlights are discussed in the present paper.With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more than 10{sup 13} fissions/s. The expected radioactive beam intensities in the mass range from A = 60 to A = 140, will surpass by two orders of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100 {mu}A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. Under the 7FP program of European Union called *Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4MEuro to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and associated physics instruments in collaboration with EU and International partners will be presented.

  5. Spiral analysis-improved clinical utility with center detection.

    PubMed

    Wang, Hongzhi; Yu, Qiping; Kurtis, Mónica M; Floyd, Alicia G; Smith, Whitney A; Pullman, Seth L

    2008-06-30

    Spiral analysis is a computerized method that measures human motor performance from handwritten Archimedean spirals. It quantifies normal motor activity, and detects early disease as well as dysfunction in patients with movement disorders. The clinical utility of spiral analysis is based on kinematic and dynamic indices derived from the original spiral trace, which must be detected and transformed into mathematical expressions with great precision. Accurately determining the center of the spiral and reducing spurious low frequency noise caused by center selection error is important to the analysis. Handwritten spirals do not all start at the same point, even when marked on paper, and drawing artifacts are not easily filtered without distortion of the spiral data and corruption of the performance indices. In this report, we describe a method for detecting the optimal spiral center and reducing the unwanted drawing artifacts. To demonstrate overall improvement to spiral analysis, we study the impact of the optimal spiral center detection in different frequency domains separately and find that it notably improves the clinical spiral measurement accuracy in low frequency domains.

  6. The application of new configurations of coal spirals

    SciTech Connect

    MacNamara, L.; Milees, N.J.; Addison, F.; Bethell, P.; Davis, P.

    1995-08-01

    Increasing awareness of treatment costs and the economic viability of unit processes in coal preparation, has led to a resurgence in the use of spirals. Recent performance studies on innovative spiral designs and circuit configurations are reported, with particular relevance to fine coal. A specially designed splitter box has allowed detailed analysis of the distribution of particles across the spiral profile, and has led to the optimization of spiral configuration for different coal feeds and duties. Short turn spirals, typically three to four turns in lengths, are considered as a viable alternative to conventional spirals (five to seven turns). Comparative studies on these spiral configurations have been carried out on a range of UK and USA coals, the results will be detailed in this paper.

  7. Diagnosis demystified: CT as diagnostic tool in endodontics.

    PubMed

    Shruthi, Nagaraja; Murthy, B V Sreenivasa; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-06-27

    Diagnosis in endodontics is usually based on clinical and radiographical presentations, which are only empirical methods. The role of healing profession is to apply knowledge and skills towards maintaining and restoring the patient's health. Recent advances in imaging technologies have added to correct interpretation and diagnosis. CT is proving to be an effective tool in solving endodontic mysteries through its three-dimensional visualisation. CT imaging offers many diagnostic advantages to produce reconstructed images in selected projection and low-contrast resolution far superior to that of all other X-ray imaging modalities. This case report is an endeavour towards effective treatment planning of cases with root fracture, root resorption using spiral CT as an adjuvant diagnostic tool.

  8. NETL CT Imaging Facility

    ScienceCinema

    None

    2016-07-12

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  9. Body CT (CAT Scan)

    MedlinePlus

    ... may increase the risk of an unusual adverse effect. Women should always inform their physician and the CT ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  10. Inertial focusing dynamics in spiral microchannels

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2012-01-01

    This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556

  11. Spiral precipitation patterns in confined chemical gardens.

    PubMed

    Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2014-12-09

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.

  12. Chandra Observatory Reveals Spiral Galaxy's Boisterous Activity

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Chandra X-ray observatory image of M83 shows numerous point-like neutron stars and black hole x-ray sources scattered throughout the disk of this spiral galaxy. The bright nuclear region of the galaxy glows prominently due to a burst of star formation that is estimated to have begun about 20 million years ago in the galaxy's time frame. The nuclear region, enveloped by a 7 million degree Celsius gas cloud of carbon, neon, magnesium, silicon, and sulfur atoms, contains a much higher concentration of neutron stars and black holes than the rest of the galaxy. Hot gas with a slightly lower temperature of 4 million degrees observed along the spiral arms of the galaxy suggests that star formation in this region may be occurring at a more sedate rate.

  13. Direct model extraction of RFCMOS spiral transformers

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Yang, Hai-Gang

    2010-11-01

    In a spiral transformer, couplings between the coils are interlaced and correlative, and are difficult to independently extract from limited network parameters. In this article, we present a method for directly extracting model parameters including mutual inductances and port-to-port capacitances one by one. In the method, by leaving unmeasured ports short-circuited or open-circuited on the wafer, we transform a 4-port transformer into four 2-port networks for obtaining adequate measurement data, enabling us to extract all the '2-π'-like model parameters independently. We adopt this method into the modelling of a 5:5-turn spiral transformer fabricated in 0.18 μm CMOS technology. Finally, comparisons between electromagnetic (EM)-simulated results, measured results and model-simulated results demonstrate that our method is accurate and reliable.

  14. Status of the SPIRAL2 injector commissioning

    SciTech Connect

    Thuillier, T. Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  15. Status of the SPIRAL2 injector commissioning.

    PubMed

    Thuillier, T; Angot, J; Barué, C; Bertrand, P; Biarrotte, J L; Canet, C; Denis, J-F; Ferdinand, R; Flambard, J-L; Jacob, J; Jardin, P; Lamy, T; Lemagnen, F; Maunoury, L; Osmond, B; Peaucelle, C; Roger, A; Sole, P; Touzery, R; Tuske, O; Uriot, D

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  16. Status of the SPIRAL2 injector commissioning

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Barué, C.; Bertrand, P.; Biarrotte, J. L.; Canet, C.; Denis, J.-F.; Ferdinand, R.; Flambard, J.-L.; Jacob, J.; Jardin, P.; Lamy, T.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Peaucelle, C.; Roger, A.; Sole, P.; Touzery, R.; Tuske, O.; Uriot, D.

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ˜50. A status of its assembly is proposed.

  17. Spiral precipitation patterns in confined chemical gardens

    PubMed Central

    Haudin, Florence; Brau, Fabian; De Wit, A.

    2014-01-01

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction–diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space. PMID:25385581

  18. Determining the Co-Rotation Radius of Nearby Spiral Galaxies Using Spiral Arm Overlays

    NASA Astrophysics Data System (ADS)

    Shameer Abdeen, Mohamed; Kennefick, Daniel; Kennefick, Julia D.; Pour Imani, Hamed; Shields, Douglas W.; Eufrasio, Rafael; Berlanga Medina, Jazmin; Monson, Erik

    2017-01-01

    Density wave theory, originally proposed by C.C. Lin and Frank Shu (Lin & Shu 1964), views the spiral arm structures in spiral galaxies as density waves that propagates through the galactic disk. Resonances within orbits create standing wave patterns of density waves that we observe as spiral arms. The theory predicts the existence of a radius known as the co-rotation radius in which the spiral arm pattern speed matches the velocities of the stars within the disk. We introduce a novel way of determining the co-rotation radius, based on an image overlaying technique, which involves tracing the arms of spiral galaxies on images observed from different wavelengths. For the purpose of this study, 12 nearby galaxies were analyzed from four different wavelengths using pitch angle measurements from a previous study (Hamed et al. 2016). We used optical wavelength images (B-Band,440 nm), two infrared wavelength (Infrared; 3.6 µm and 8 µm) Spitzer Space Telescope images and ultraviolet images from GALEX. The results were verified by checking against results compiled from the literature.

  19. Magnificant Details in a Dusty Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In 1995, the majestic spiral galaxy NGC 4414 was imaged by the Hubble Space Telescope as part of the HST Key Project on the Extragalactic Distance Scale. An international team of astronomers, led by Dr. Wendy Freedman of the Observatories of the Carnegie Institution of Washington, observed this galaxy on 13 different occasions over the course of two months. Images were obtained with Hubble's Wide Field Planetary Camera 2 (WFPC2) through three different color filters. Based on their discovery and careful brightness measurements of variable stars in NGC 4414, the Key Project astronomers were able to make an accurate determination of the distance to the galaxy. The resulting distance to NGC 4414, 19.1 megaparsecs or about 60 million light-years, along with similarly determined distances to other nearby galaxies, contributes to astronomers' overall knowledge of the rate of expansion of the universe. In 1999, the Hubble Heritage Team revisited NGC 4414 and completed its portrait by observing the other half with the same filters as were used in 1995. The end result is a stunning full-color look at the entire dusty spiral galaxy. The new Hubble picture shows that the central regions of this galaxy, as is typical of most spirals, contain primarily older, yellow and red stars. The outer spiral arms are considerably bluer due to ongoing formation of young, blue stars, the brightest of which can be seen individually at the high resolution provided by the Hubble camera. The arms are also very rich in clouds of interstellar dust, seen as dark patches and streaks silhouetted against the starlight.

  20. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  1. Gastric spiral bacteria in small felids.

    PubMed

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  2. Differentiating tremor patients using spiral analyses.

    PubMed

    Koirala, N; Muthuraman, M; Anjum, T; Chaitanya, C V; Helmolt, V F; Mideksa, K G; Lange, K; Schmidt, G; Schneider, S; Deuschl, G

    2015-01-01

    Essential tremor follows an autosomal dominant type of inheritance in the majority of patients, yet its genetic basis has not been identified. The age of onset in this tremor is bimodal, one in young age and another when they are old. The old onset is referred to as senile tremor in this study. The precise pathology is still not completely understood for both these tremors. We wanted to develop an easy diagnostic tool to differentiate these two tremors clinically. In this study, the spirals were asked to be drawn by 30 patients, 15 from each group. The spirals were recorded digitally from each hand, with and without the spiral template, using a Wacom intuos version 4 tablets. The aim of the study was to look at the easy diagnostic measures from these spirals to distinguish the two cohorts of patients. The first measure was to use the well-known clinical scores like the number of complete circles without the template, width, height, axis, and degree of severity. The second measure was to estimate the peak frequency and the peak amplitude for the position, velocity, and acceleration data, in the frequency domain. The well-known clinical scores, most of them, did not show any significant difference between the two patient cohorts except the degree of severity which showed significant difference. The peak frequency and the peak amplitude in most of the data were not significantly different between the two cohorts of patients, only the peak amplitude from the acceleration data showed significant difference. Thus, we could use these two parameters to differentiate between the two tremors patient groups, which would be an easy clinical diagnostic tool without the need for any complicated analyses.

  3. Spiral laser beams in inhomogeneous media.

    PubMed

    Mahalov, Alex; Suazo, Erwin; Suslov, Sergei K

    2013-08-01

    Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

  4. Integral Field Spectroscopy of 23 Spiral Bulges

    NASA Astrophysics Data System (ADS)

    Batcheldor, D.; Axon, D.; Merritt, D.; Hughes, M. A.; Marconi, A.; Binney, J.; Capetti, A.; Merrifield, M.; Scarlata, C.; Sparks, W.

    2005-09-01

    We have obtained integral-field spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first two-dimensional survey directed solely at the bulges of spiral galaxies. Eleven galaxies of the sample do not have previous measurements of the stellar velocity dispersion (σ*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 106-108 Msolar using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mg b and Ca II triplets. We use both cross-correlation and maximum penalized likelihood to determine projected σ* in these systems and present radial velocity fields, major axis rotation curves, curves of growth, and σ* fields. Using cross-correlation to extract the low-order two-dimensional stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that σ* is a nontrivial parameter to estimate.

  5. SPIRAL PATTERNS IN PLANETESIMAL CIRCUMBINARY DISKS

    SciTech Connect

    Demidova, Tatiana V.; Shevchenko, Ivan I.

    2015-05-20

    Planet formation scenarios and the observed planetary dynamics in binaries pose a number of theoretical challenges, especially concerning circumbinary planetary systems. We explore the dynamical stirring of a planetesimal circumbinary disk in the epoch when the gas component disappears. For this purpose, following theoretical approaches by Heppenheimer and Moriwaki and Nakagawa, we develop a secular theory of the dynamics of planetesimals in circumbinary disks. If a binary is eccentric and its components have unequal masses, a spiral density wave is generated, engulfing the disk on a secular timescale, which may exceed 10{sup 7} yr, depending on the problem parameters. The spiral pattern is transient; thus, its observed presence may betray a system’s young age. We explore the pattern both analytically and in numerical experiments. The derived analytical spiral is a modified lituus; it matches the numerical density wave in the gas-free case perfectly. Using the smoothed particle hydrodynamics scheme, we explore the effect of residual gas on the wave propagation.

  6. Dielectrophoretic manipulation of cells with spiral electrodes.

    PubMed Central

    Wang, X B; Huang, Y; Wang, X; Becker, F F; Gascoyne, P R

    1997-01-01

    Electrokinetic responses of human breast cancer MDA-MB-231 cells were studied in suspensions of conductivities 18, 56, and 160 mS/m on a microelectrode array consisting of four parallel spiral electrode elements energized with phase-quadrature signals of frequencies between 100 Hz and 100 MHz. At low frequencies cells were levitated and transported toward or away from the center of the spiral array, whereas at high frequencies cells were trapped at electrode edges. The frequencies of transition between these characteristic cell behaviors increased with increasing suspension conductivity. Levitation heights and radial velocities were determined simultaneously for individual cells as a function of the applied field magnitude and frequency. Results were compared with theoretical predictions from generalized dielectrophoresis theory applied in conjunction with cell dielectric parameters and simulated electric field distributions corrected for electrode polarization effects. It was shown that the conventional and traveling-wave dielectrophoretic force components dominated cell levitation and radial motion, respectively. Both theoretical predictions and experimental data showed that the cell radial velocity was very sensitive to the field frequency when the in-phase component of the field-induced polarization was close to zero. Applications of spiral electrode arrays, including the isolation of cells of clinical relevance, are discussed. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 11 PMID:9083692

  7. Flow map layout via spiral trees.

    PubMed

    Verbeek, Kevin; Buchin, Kevin; Speckmann, Bettina

    2011-12-01

    Flow maps are thematic maps that visualize the movement of objects, such as people or goods, between geographic regions. One or more sources are connected to several targets by lines whose thickness corresponds to the amount of flow between a source and a target. Good flow maps reduce visual clutter by merging (bundling) lines smoothly and by avoiding self-intersections. Most flow maps are still drawn by hand and only few automated methods exist. Some of the known algorithms do not support edge-bundling and those that do, cannot guarantee crossing-free flows. We present a new algorithmic method that uses edge-bundling and computes crossing-free flows of high visual quality. Our method is based on so-called spiral trees, a novel type of Steiner tree which uses logarithmic spirals. Spiral trees naturally induce a clustering on the targets and smoothly bundle lines. Our flows can also avoid obstacles, such as map features, region outlines, or even the targets. We demonstrate our approach with extensive experiments.

  8. Spiral Structure and Fragmentation in Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Basu, S.

    2005-12-01

    The susceptibility of protostellar disks to gravitational instability and subsequent formation of protoplanetary clumps is currently under debate. We perform numerical simulations of gravitational cloud core collapse until approximately 99% of the initial cloud core mass is accreted by the central protostar and protostellar disk system. We find that the protostellar disk is gravitationally unstable, even in the later phase of negligible mass infall from the surrounding envelope, and quickly develops a flocculent spiral structure. The spiral structure is sharp in the early phase of disk evolution and is diffuse in the later phase. In the early phase, when the mass infall from the envelope is sufficiently high, dense protoplanetary clumps form within the spiral arms. Some of the clumps get dispersed over the course of several orbital periods and the others are driven onto the protostar. These episodes of clump infall can increase the luminosity of the protostar by a factor of up to ˜ 1000. This work was supported by a grant from NSERC. EIV acknowledges support from a CITA National Fellowship.

  9. Dynamics of stars around spiral arms in an N-body/SPH simulated barred spiral galaxy

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Kawata, Daisuke; Cropper, Mark

    2012-10-01

    We run N-body smoothed particle hydrodynamics (SPH) simulations of a Milky Way-sized galaxy. The code takes into account hydrodynamics, self-gravity, star formation, supernova and stellar wind feedback, radiative cooling and metal enrichment. The simulated galaxy is a barred spiral galaxy consisting of a stellar and gas disc, enveloped in a static dark matter halo. Similar to what is found in our pure N-body simulation of a non-barred galaxy in Grand et al., we find that the spiral arms are transient features whose pattern speeds decrease with radius, in such a way that the pattern speed is similar to the rotation of star particles. Compared to the non-barred case, we find that the spiral arm pattern speed is slightly faster than the rotation speed of star particles: the bar appears to boost the pattern speed ahead of the rotational velocity. We trace particle motion around the spiral arms at different radii, and demonstrate that there are star particles that are drawn towards and join the arm from behind (in front of) the arm and migrate towards the outer (inner) regions of the disc until the arm disappears as a result of their transient nature. We see this migration over the entire radial range analysed, which is a consequence of the spiral arm rotating at similar speeds to star particles at all radii, which is inconsistent with the prediction of classical density wave theory. The bar does not prevent this systematic radial migration, which is shown to largely preserve circular orbits. We also demonstrate that there is no significant offset of different star-forming tracers across the spiral arm, which is also inconsistent with the prediction of classical density wave theory.

  10. Spiral density waves in a young protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Pérez, Laura M.; Carpenter, John M.; Andrews, Sean M.; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I.; Wilner, David J.; Henning, Thomas; Deller, Adam T.; Chandler, Claire J.; Dullemond, Cornelis P.; Lazio, Joseph; Menten, Karl M.; Corder, Stuartt A.; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S.; Harris, Robert J.; Mundy, Lee G.

    2016-09-01

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.

  11. Spiral density waves in a young protoplanetary disk.

    PubMed

    Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-09-30

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.

  12. Wave-particle dualism of spiral waves dynamics.

    PubMed

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  13. Hα Imaging of Early-type(Sa-Sab) Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Hameed, S.; Devereux, N.

    1997-12-01

    Hα imaging of Early-type (Sa-Sab) Spirals A recent analysis of the IRAS database indicates that the massive star formation rates in early-type(Sa-Sab) spirals are comparable to the massive star formation rates in late-type spirals. We are conducting an Hα imaging survey of a complete sample of nearby (D <= 40Mpc), bright (m(B) <= 12.1), early-type spirals to confirm the results obtained by IRAS. Our preliminary results indicate that a majority of these galaxies show either signs of interaction, and/or host nuclear starbursts. The occurence of nuclear starbursts in early-type spirals may be related to the propensity for such galaxies to also host Seyfert nuclei. The evidence for interactions suggests that early-type spirals are evolving in the current epoch.

  14. Bezoar-induced small bowel obstruction: Clinical characteristics and diagnostic value of multi-slice spiral computed tomography

    PubMed Central

    Wang, Pei-Yuan; Wang, Xia; Zhang, Lin; Li, Hai-Fei; Chen, Liang; Wang, Xu; Wang, Bin

    2015-01-01

    AIM: To determine the possible predisposing factors of bezoar-induced small bowel obstruction (BI-SBO) and to discuss the diagnostic value of multi-slice spiral computed tomography, particularly contrast-enhanced scanning, in this condition. METHODS: A total of 35 BI-SBO cases treated at our hospital from January 2007 to December 2013 were retrospectively analysed. Complete clinical and computed tomography (CT) data of the patients were available and confirmed by surgery. SBO was clinically diagnosed on the basis of clinical manifestations. Of the 35 patients, 18 underwent abdominal and pelvic CT planar scanning with GE 64-slice spiral CT and 17 underwent abdominal and pelvic CT planar scanning with GE 64-slice spiral CT combined with contrast-enhanced examination. Original images were processed using a GE ADW4.3 workstation to obtain MPR, CPR, MIP and CTA images. The images of all patients were evaluated by two abdominal imaging experts. The main analytical contents of planar scanning included intestinal bezoar conditions, changes in the intestinal wall and changes in peri-intestinal conditions. Vascular hyperaemia and arterial blood supply conditions at a specific obstruction site and the distal end of the obstruction site were evaluated through contrast-enhanced examination. RESULTS: The proportion of males to females among the 35 cases was 1:1.69 (13:22); median age was 63.3 years. The following cases were observed: 29 (82.8%) cases occurred in autumn and winter and showed a history of consuming high amounts of persimmon and hawthorn; 19 (54.3%) cases revealed a history of gastrointestinal surgery; 19 exhibited incomplete dentition, with missing partial or whole posterior teeth; 26 suffered from obstruction at the ileum. A total of 51 bezoars were found in these patients, of whom 16 (45.7%) had multiple bezoars. CT planar scanning of bezoars showed lumps with mottled gas inside the intestinal cavity. Furthermore, 9 cases of bezoars had envelopes and 11 cases

  15. Coherent acoustic vibrations in silicon submicron spiral arrays

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masashi; Liu, Jianxun; Ye, Dexian; Lu, Toh-Ming

    2009-08-01

    Mechanical properties of complex silicon submicron structures have been studied both experimentally and theoretically using time resolved ultrafast spectroscopy and finite element analysis. Periodic and random arrays of single-turned silicon submircron spirals were grown using the oblique angle deposition technique. Resonant vibrational modes of the submicron spirals were coherently excited by femtosecond laser pulses. Excitation of multiple harmonics of the resonant vibrations has been observed, and the mode patterns of the excited vibrations in the submicron spirals have been calculated.

  16. Fluid Mechanics and Heat Transfer Spirally Fluted Tubing.

    DTIC Science & Technology

    1984-12-01

    on a flat strip and subsequently welding the corregated strip to form spiral fluted tubing results in a low fabrication cost approximately equal to...G., "Intensification of Convective Heat Exchange by Spiral Swirlers in the Flow of Anomalously Viscous Liquid in Pipes ", Journal of Engineering...axial velocity at the pipe axis w (V w ( velocity components in the (Z ( z ,(Z)) co-ordinate system x x x ( co-ordinate system following the spiralling Of

  17. Automated Inspection and Precision Grinding of Spiral Bevel Gears

    DTIC Science & Technology

    1987-07-01

    even tooth breakage. The elemental inspection of tooth profiles that is commonly performed on spur and helical gears is not practical for spiral ...NASA AVSCOM Contractor Report 4083 Technical Report 87-C-11 SAutomated Inspection and Precision Grinding of Spiral Bevel Gears Harold Frint Sikorsky...design and in-process inspection of spiral bevel gears, utilizing a computer-controlled multi-axis coordinate measuring machine, has been developed at

  18. Comparison of CT-Number and Gray Scale Value of Different Dental Materials and Hard Tissues in CT and CBCT

    PubMed Central

    Emadi, Naghmeh; Safi, Yaser; Akbarzadeh Bagheban, Alireza; Asgary, Saeed

    2014-01-01

    Introduction: Computed tomography (CT) and cone-beam CT (CBCT) are valuable diagnostic aids for many clinical applications. This study was designed to compare the gray scale value (GSV) and Hounsfield unit (HU) of selected dental materials and various hard tissues using CT or CBCT. Methods and Materials: Three samples of all test materials including amalgam (AM), composite resin (CR), glass ionomer (GI), zinc-oxide eugenol (ZOE), calcium-enriched mixture (CEM) cement, AH-26 root canal sealer (AH-26), gutta-percha (GP), Coltosol (Col), Dycal (DL), mineral trioxide aggregate (MTA), zinc phosphate (ZP), and polycarbonate cement (PC) were prepared and scanned together with samples of bone, dentin and enamel using two CBCT devices, Scanora 3D (S3D) and NewTom VGi (NTV) and a spiral CT (SCT) scanner (Somatom Emotion 16 multislice spiral CT);. Subsequently, the HU and GSV values were determined and evaluated. The data were analyzed by the Kruskal-Wallis and Mann-Whitney U tests. The level of significance was determined at 0.05. Results: There were significant differences among the three different scanners (P<0.05). The differences between HU/GSV values of 12 selected dental materials using NTV was significant (P<0.05) and for S3D and SCT was insignificant (P>0.05). All tested materials showed maximum values in S3D and SCT (3094 and 3071, respectively); however, bone and dentin showed low/medium values (P<0.05). In contrast, the tested materials and tissues showed a range of values in NTV (366 to15383; P<0.05). Conclusion: Scanner system can influence the obtained HU/GSV of dental materials. NTV can discriminate various dental materials, in contrast to S3D/SCT scanners. NTV may be a more useful diagnostic aid for clinical practice. PMID:25386210

  19. Relaxation and Thermalization in Spiral Galaxies Mediated by Spiral Wave Scattering

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Shalit, D.; Comins, N. F.; Sandri, G. V. H.

    1993-12-01

    We have constructed N-body particle-mesh simulations of disk galaxies in which the relaxation times of the simulated disks (as measured by thermalization of the disk, i.e. increase in Toomre's Q parameter) is comparable to the actual relaxation time scale in actual disk galaxies (several tens of rotation periods). These simulations require 1M to 4M particles (1M = 2(20) ), consistent with the work of White and of Comins and Schroeder on the dependence of relaxation time on N. We observe that during the interval when Q is increasing, that the Fourier power associated with spiral modes is large. When Q has risen to its asymptotic value in the simulation, the Fourier power diminishes to a low level. This suggests a scenario in which stars (simulation particles) scatter off the time-varying spiral potential, as suggested by Carlberg and Sellwood. Eventually random velocities of stars increase to a value which quenches the spiral instability. We compare the heating rates in our simulations at observed spiral wave amplitudes to the expected growth rates as given by Carlberg and Sellwood.

  20. Bailey, Butler, McFarland: Discovery of Spiral Nebulae: Unwinding the discovery of spiral nebulae

    NASA Astrophysics Data System (ADS)

    Bailey, M. E.; Butler, C. J.; McFarland, J.

    2005-04-01

    Evidence for spiral structure in distant galaxies was first noticed by William Parsons, the Third Earl of Rosse, in April 1845 within a few months of the first trial of his great six-foot reflector the ``Leviathan of Parsonstown'' on 11 February 1845. Despite the significance of this discovery there are puzzling inconsistencies in the story, and the discovery date - sometime in April - is curiously vague. Here we review the chronology of observations of the two principal players in the story: Messier 51 and Messier 99. The former was identified by Lord Rosse as having a spiral arrangement in the spring of 1845, and the latter ``the following spring''. The Revd Thomas Romney Robinson, the third Director of the Armagh Observatory, was observing with Lord Rosse during February and March 1845, and again in 1848, but he apparently only confirmed Rosse's detection of spirality in both galaxies around 11 March 1848. No-one doubted Lord Rosse's discovery of spirality in M51 (and the following year also in M99), but it was almost three years before the observation was confirmed by another astronomer.

  1. Spiral structure of M51: Streaming motions across the spiral arms

    NASA Technical Reports Server (NTRS)

    Tilanus, R. P. J.; Allen, R. J.

    1990-01-01

    The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations.

  2. The Circle in the Spiral: Up the Down Spiral with English, Vol. 2, Project Insight.

    ERIC Educational Resources Information Center

    Catholic Board of Education, Diocese of Cleveland, OH.

    Units contained in this second volume of a spiral curriculum guide for English (See also TE 002 061.) are (1) An Insight into the Writing Process--Composition, 7-12; (2) A Program for Culturally Different, Underachieving, Low I.Q., Seventh Grade Students ("an approach to English conceived for the modern black American"); (3) Seventh Grade Program…

  3. Determination of recovery length in spiral strands

    SciTech Connect

    Raoof, M.; Kraincanic, I.

    1994-12-31

    On the offshore scene, the ever growing demands placed on moorings for conventional semi-submersible platforms, coupled with the requirements for guys to new structural forms such as compliant towers has led to the use of larger and longer ropes and spiral strands. Much emphasis has recently been placed on suitable forms of discard criteria based on the remaining fatigue life (or strength) of the spiral strands and wire ropes. It is now well established that, depending on the type of cable (strand or rope) application, the influence of broken wires on the strength of the cable is not directly equivalent to a loss of area of steel: the number and distribution of wire breaks around a cable cross-section and also along its length are both important. With sufficient friction, a broken wire will be capable of supporting its total share of the load in a relatively short length called the recovery length. The determination of recovery length for any type of steel cable, therefore, is of importance as a first step towards developing realistic guidelines for cable discard criteria. The present paper presents a theoretical model for predicting the recovery length in any layer of an axially preloaded spiral strand. Based on a series of theoretical parametric studies, a straightforward method is proposed for obtaining reasonable estimates of variations in the recovery length in any layer of a strand with changes in the lay angle. In view of the simple nature of the final results, these should prove of interest to practicing engineers. Moreover, the final recommendations should prove of some value in the context of length effects associated with axial fatigue loading of cables under laboratory conditions which has recently attracted much attention: the question here is how to determine a minimum length for test specimens whose axial fatigue life under laboratory conditions may safely be used to represent those of the much longer cables in the field.

  4. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  5. Spiral Light Beams and Contour Image Processing

    NASA Astrophysics Data System (ADS)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  6. MAGNIFICENT DETAILS IN A DUSTY SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1995, the majestic spiral galaxy NGC 4414 was imaged by the Hubble Space Telescope as part of the HST Key Project on the Extragalactic Distance Scale. An international team of astronomers, led by Dr. Wendy Freedman of the Observatories of the Carnegie Institution of Washington, observed this galaxy on 13 different occasions over the course of two months. Images were obtained with Hubble's Wide Field Planetary Camera 2 (WFPC2) through three different color filters. Based on their discovery and careful brightness measurements of variable stars in NGC 4414, the Key Project astronomers were able to make an accurate determination of the distance to the galaxy. The resulting distance to NGC 4414, 19.1 megaparsecs or about 60 million light-years, along with similarly determined distances to other nearby galaxies, contributes to astronomers' overall knowledge of the rate of expansion of the universe. The Hubble constant (H0) is the ratio of how fast galaxies are moving away from us to their distance from us. This astronomical value is used to determine distances, sizes, and the intrinsic luminosities for many objects in our universe, and the age of the universe itself. Due to the large size of the galaxy compared to the WFPC2 detectors, only half of the galaxy observed was visible in the datasets collected by the Key Project astronomers in 1995. In 1999, the Hubble Heritage Team revisited NGC 4414 and completed its portrait by observing the other half with the same filters as were used in 1995. The end result is a stunning full-color look at the entire dusty spiral galaxy. The new Hubble picture shows that the central regions of this galaxy, as is typical of most spirals, contain primarily older, yellow and red stars. The outer spiral arms are considerably bluer due to ongoing formation of young, blue stars, the brightest of which can be seen individually at the high resolution provided by the Hubble camera. The arms are also very rich in clouds of interstellar dust

  7. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  8. CT angiography - chest

    MedlinePlus

    Computed tomography angiography - thorax; CTA - lungs; Pulmonary embolism - CTA chest; Thoracic aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT ...

  9. The superiority of 256-slice spiral computed tomography angiography for preoperative evaluation of surrounding arteries in patients with gastric cancer

    PubMed Central

    Wu, Deqing; Zhao, Linyong; Liu, Ying; Wang, Junjiang; Hu, Weixian; Feng, Xingyu; Lv, Zejian; Li, Yong; Yao, Xueqing

    2017-01-01

    Objective To evaluate the utilization of 256-slice spiral computed tomography (CT) angiography in preoperative assessment of perigastric vascular anatomy in patients with gastric cancer. Methods In this study, 80 gastric cancer patients were included. The medical procedure of 256-slice spiral CT angiography was performed on each of these patients consecutively. Thereafter, these patients were subjected to surgical treatment in our hospital. The techniques of volume rendering (VR) and maximum intensity projection (MIP) were used to image reconstruction of arteries around the stomach. Results Both VR and MIP were applied to reconstruct the images of perigastric arteries. The results indicated that VR imaging was inferior to MIP in determining the variant small artery anatomy around the greater curvature and fundus. The respective rates of imaging produced by VR and MIP for left gastroepiploic artery, short gastric artery, and posterior gastric artery, were 32.50% versus 100%, 16.25% versus 87.50%, and 3.75% versus 25.00%, respectively. According to Hiatt’s classification, 75 out of 240 cases were abnormal types, among which we found Type II in 30 cases, Type III in 33 cases, Type IV in three cases, Type V in six cases, and Type VI in only three cases. There was no significant difference for total and every single variation type, between our group and Hiatt’s group (P>0.05). Conclusion The 256-slice spiral CT angiography can be regarded as an effective and accurate diagnostic modality for preoperative assessing anatomical arterial variations in gastric cancer; MIP was superior to VR at identifying variations of some small artery, whereas VR was better than MIP at showing anatomical arterial variations due to its three-dimensional effect. PMID:28243128

  10. Self-destructing Spiral Waves: Global Simulations of a Spiral-wave Instability in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee; Richard, Samuel

    2016-09-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ˜ 5 × 10-4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10-5. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  11. From the RSNA refresher courses: CT angiography: clinical applications in the abdomen.

    PubMed

    Fishman, E K

    2001-10-01

    The development of spiral computed tomography (CT) and subsequently multidetector CT has provided unparalleled opportunities for advancement of CT technology and clinical applications. One of the most influential developments has been CT angiography, which is the use of thin-section CT combined with postprocessing of imaging data by using a variety of three-dimensional reconstruction techniques to produce vascular maps that equal or exceed those provided by classic angiography in many applications. In the evaluation of pancreatic disease, the use of multidetector CT angiography enables the radiologist to produce vascular maps that clearly show tumor invasion of vasculature and the relationship of vessels to pancreatic masses. Anatomic areas for which the three-dimensional display is especially helpful include the confluence of the portal vein and the superior mesenteric vein and the more distal portions of the portal vein. Preliminary studies indicate that CT angiography may prove beneficial in the evaluation of ischemic bowel and active Crohn disease. CT angiography has proved extremely valuable for applications such as preoperative planning for hepatic resection, preoperative evaluation and planning for liver transplantation, pretreatment planning for patients considered for hepatic arterial infusion chemotherapy, and pretreatment evaluation of portal vein patency for a variety of reasons. CT angiography can also provide supplemental information in patients with cirrhosis, upper gastrointestinal tract bleeding due to varices, or primary extrahepatic neoplasms.

  12. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  13. Giant cyclones in gaseous discs of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Polyachenko, E.; Zasov, A. V.; Sil'chenko, O. K.; Afanas'ev, V. L.; Dodonov, S. N.; Moiseev, A. V.

    1999-12-01

    We report the detection of giant cyclonic vortices in the gaseous disc of the spiral galaxy NGC 3631 in the reference frame rotating with the spiral pattern. A presence of such structures was predicted by the authors for galaxies, where the radial gradient of the perturbed velocity exceeds that of the rotational velocity. This situation really takes place in NGC 3631.

  14. Spiral Arms Triggered By Shadows In Transition Disks

    NASA Astrophysics Data System (ADS)

    Montesinos, Matias

    2016-07-01

    Motivated by the recent identification of deep shadows cast by an inner warp in HD142527 we suggest a novel mechanism able to trigger spiral arms only from illumination effects due the warp. Using 2D hydro simulations we found that pressure gradients due to temperature differences between obscured and illuminated regions induce observable (scattered light) spiral structures in the density field.

  15. Spiral-wound gasket forms low-temperature seal

    NASA Technical Reports Server (NTRS)

    Irick, S. C.

    1981-01-01

    Spiral-wound cryogenic gasket with one component requires no encapsulant and is easily produced with self-locking features. Seal either opens and closes or is fixed. It is made by skiving strip from circumference of disk of glass-filled material. Successive turns of strip are spirally wrapped in groove machined into one flange surface. Closing joint compresses gasket.

  16. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry I gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion. Previously announced in STAR as N82-30552

  17. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry 1 gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion.

  18. Effects of non Newtonian spiral blood flow through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  19. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    SciTech Connect

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  20. SELF-PERPETUATING SPIRAL ARMS IN DISK GALAXIES

    SciTech Connect

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-20

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  1. Spiral wave chimeras in locally coupled oscillator systems

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Dierckx, Hans

    2016-02-01

    The recently discovered chimera state involves the coexistence of synchronized and desynchronized states for a group of identical oscillators. In this work, we show the existence of (inwardly) rotating spiral wave chimeras in the three-component reaction-diffusion systems where each element is locally coupled by diffusion. A transition from spiral waves with the smooth core to spiral wave chimeras is found as we change the local dynamics of the system or as we gradually increase the diffusion coefficient of the activator. Our findings on the spiral wave chimera in the reaction-diffusion systems suggest that spiral chimera states may be found in chemical and biological systems that can be modeled by a large population of oscillators indirectly coupled via a diffusive environment.

  2. Suppression of Spiral Wave in Modified Orengonator Model

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Jin, Wu-Yin; Yi, Ming; Wang, Chun-Ni

    2008-08-01

    In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh Nagumo model. It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence.

  3. Two-dimensional optical thermal ratchets based on Fibonacci spirals.

    PubMed

    Xiao, Ke; Roichman, Yael; Grier, David G

    2011-07-01

    An ensemble of symmetric potential energy wells arranged at the vertices of a Fibonacci spiral can serve as the basis for an irreducibly two-dimensional thermal ratchet. Periodic rotation of the potential energy landscape through a three-step cycle drives trapped Brownian particles along spiral trajectories through the pattern. Which spiral is selected depends on the angular displacement at each step, with transitions between selected spirals arising at rational proportions of the golden angle. Fibonacci spiral ratchets therefore display an exceptionally rich range of transport properties, including inhomogeneous states in which different parts of the pattern induce motion in different directions. Both the radial and angular components of these trajectories can undergo flux reversal as a function of the scale of the pattern or the rate of rotation.

  4. Spiral patterns in wet granular matter under vertical vibrations

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Gollwitzer, Frank; Rehberg, Ingo

    2010-03-01

    From the evolution of galaxy to hurricane, from the inner structure of sea shell to the cochlea of our inner ears, spirals are widely existing in nature. In the past decades, spiral patterns have been discovered and extensively studied in model systems such as Rayleigh-B'ernard convection, Belousov-Zhabotinksy reactions and various biological systems. Here we report spiral patterns observed in a thin layer of wet granular matter driven by vertical vibrations. In the phase diagram of driven wet granular matter, spirals appear close to a fluid-gas coexistence phase and show hysteresis. The trajectory and rotation velocity of the three-armed spirals are studied as a function of the driving parameters and compared with other model systems.

  5. Self-perpetuating Spiral Arms in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-01

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  6. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  7. High chemical abundances in stripped Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Skillman, E. D.; Kennicutt, R. C.; Shields, G. A.

    1993-01-01

    Based on a comparison of the oxygen abundances in H 2 regions in field and Virgo cluster late type spiral galaxies, Shields, Skillman, & Kennicutt (1991) suggested that the highly stripped spiral galaxies in the Virgo cluster have systematically higher abundances than comparable field galaxies. In April 1991 and May 1992 we used the blue channel spectrograph on the MMT to obtain new observations of 30 H 2 regions in Virgo spiral galaxies. These spectra cover the wavelength range from (O II) lambda 3727 to (S II) lambda 6731. We now have observed at least 4 H II regions in 9 spiral galaxies in the Virgo cluster. Combining (O II) and (O III) line strengths, we calculate the H II region oxygen abundances based on the empirical calibration of Edmunds & Pagel (1984). These observations show: (1) The stripped, low luminosity Virgo spirals (N4689, N4571) truly have abundances characteristic of much more luminous field spirals; (2) Virgo spirals which show no evidence of stripping (N4651, N4713) have abundances comparable to field galaxies; and (3) Evidence for transition galaxies (e.g., N4254, N4321), with marginally stripped disks and marginal abundance enhancements. The new observations presented here confirm the validity of the oxygen over-abundances in the stripped Virgo spirals. Shields et al. (1991) discussed two different mechanisms for producing the higher abundances in the disks of stripped galaxies in Virgo. The first is the supression of infall of near-primordial material, the second is the suppression of radial inflow of metal-poor gas. Distinguishing between the two cases will require more observations of the Virgo cluster spirals and a better understanding of which parameters determine the variation of abundance with radius in field spirals (cf., Garnett & Shields 1987).

  8. Assessments of Coronary Artery Visibility and Radiation Dose in Infants with Congenital Heart Disease on Cardiac 128-slice CT and on Cardiac 64-slice CT.

    PubMed

    Cui, Y; Huang, M; Zheng, J; Li, J; Liu, H; Liang, C

    2016-01-01

    The aim of this study was to compare the coronary artery visibility and radiation dose in infants with CHD on cardiac 128-slice CT and on cardiac 64-slice CT. The images of 200 patients were analyzed in this study, 100 patients were selected randomly from a group of 789 infants (<1 years old) with CHD undergoing 128-slice CT prospective ECG-triggered axial scan, and 100 were selected randomly from 911 infants with CHD undergoing 64-slice CT retrospective ECG-gated spiral scan. The visibility of coronary artery segments was graded on a four-point scale. The coronary arteries were considered to be detected or visible when grade was 2 or higher. The visibility of the coronary artery segments and the radiation dose was compared between the two groups. Except for the rate of LM (96 vs. 99%), the detection rates of the total, LAD, LCX, RCA, and the proximal segment of the RCA in the 256-slice CT group were significantly higher than those in the 64-slice CT group (51.7, 53.33, 33.67, 53.33, and 99 vs. 34.8, 34.33, 18, 30.67, and 75%, respectively). The counts of visibility score (4/3/2/1) for the LM and the proximal segment of the RCA were 62/22/12/4 and 56/20/17/7, respectively, in the 128-slice CT group and 17/42/30/1 and 9/30/38/25, respectively, in the 64-slice CT group. There were significant differences, especially for score 4 and 3, between the two groups. The radiation dose in the 128-slice CT group was significantly decreased than those in the 64-slice CT group (CTDIvol 1.88 ± 0.51 vs. 5.61 ± 0.63 mGy; SSDE 4.48 ± 1.15 vs. 13.97 ± 1.52 mGy; effective radiation dose 1.36 ± 0.44 vs. 4.06 ± 0.7 mSv). With reduced radiation dose, the visibility of the coronary artery in infants with CHD via prospective ECG-triggered mode on a 128-slice CT is superior to that of the 64-slice CT using retrospective ECG-gated spiral mode.

  9. Spiral implants bearing full-arch rehabilitation: analysis of clinical outcome.

    PubMed

    Danza, Matteo; Grecchi, Francesco; Zollino, Ilaria; Casadio, Claudia; Carinci, Francesco

    2011-08-01

    A spiral implant (SPI) is a conical internal helix implant with a variable thread design which confers the characteristic of self drilling, self tapping, and self bone condensing. The effectiveness of this type of implant has been reported in several clinical situations. However, because there are no reports that specifically focus on one of the biggest challenges in oral rehabilitation, that is, full arch rehabilitation, it was decided to perform a retrospective study. The study population was composed of 23 patients (12 women and 11 men, median age 57 years) for evaluation and implant treatment between January 2005 and June 2009. Two-hundred six spiral family implants (SFIs) were inserted with a mean postloading follow-up of 23 months. Several variables were investigated: demographic (age and gender), anatomic (maxilla and mandible, tooth site), implant (type, length, and diameter), surgical (surgeon, postextractive, flapless technique, grafts), and prosthetic (implant/crown ratio, dentition in the antagonist arch, type of loading, and computerized tomography [CT] planning) variables. Implant loss and peri-implant bone resorption were evaluated. Univariate and multivariate tests were performed. Survival and success rates were 97.1% and 82.5%, respectively. Only implant length and implant/crown ratio showed statistical significance in determining a better clinical outcome. In conclusion, SFIs are a reliable tool for the most difficult cases of oral rehabilitation. No differences were detected among implant type. Length and implant/crown ratio can influence the crestal bone resorption with better result for longer fixtures and a higher implant/crown ratio. In addition, banked bone derived from living donors can be used to restore alveolar ridge augmentation without adverse effects. Finally, flapless and CT-planned surgery did not significantly increase the clinical outcome in most complex rehabilitation.

  10. Spiral computed tomographic scanning of the chest with three dimensional imaging in the diagnosis and management of paediatric intrathoracic airway obstruction.

    PubMed Central

    Sagy, M.; Poustchi-Amin, M.; Nimkoff, L.; Silver, P.; Shikowitz, M.; Leonidas, J. C.

    1996-01-01

    BACKGROUND: The usefulness of spiral computed tomographic (CT) scans of the chest with three dimensional imaging (3D-CT) of intrathoracic structures in the diagnosis and management of paediatric intrathoracic airway obstruction was assessed. METHODS: A retrospective review was made of five consecutive cases (age range six months to four years) admitted to the paediatric intensive care unit and paediatric radiology division of a tertiary care children's hospital with severe respiratory decompensation suspected of being caused by intrathoracic large airway obstruction. Under adequate sedation, the patients underwent high speed spiral CT scanning of the thorax. Non-ionic contrast solution was injected in two patients to demonstrate the anatomical relationship between the airway and the intrathoracic large vessels. Using computer software, three-dimensional images of intrathoracic structures were then reconstructed by the radiologist. RESULTS: In all five patients the imaging results were useful in directing the physician to the correct diagnosis and appropriate management. In one patient, who had undergone repair of tetralogy of Fallot with absent pulmonary valve, the 3D-CT image showed bilateral disruptions in the integrity of the tracheobronchial tree due to compression by a dilated pulmonary artery. This patient underwent pulmonary artery aneurysmorrhaphy and required continued home mechanical ventilation via tracheostomy. In three other patients with symptoms of lower airway obstruction the 3D-CT images showed significant stenosis in segments of the tracheobronchial tree in two of them, and subsequent bronchoscopy established a diagnosis of segmental bronchomalacia. These two patients required mechanical ventilation and distending pressure to relieve their bronchospasm. In another patient who had undergone surgical repair of intrathoracic tracheal stenosis three years prior to admission the 3D-CT scan ruled out restenosis as the reason for her acute respiratory

  11. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.

  12. HI in the outskirts of Nearby Spirals

    NASA Astrophysics Data System (ADS)

    Brinks, Elias; Portas, António

    2017-03-01

    We analyse nine galaxies taken from the THINGS survey to investigate the H I extent of spiral galaxy disks. We exploit the high spatial and velocity resolution, and the sensitivity of THINGS to investigate where the atomic gas disks end and what might shape their outskirts. We find that the atomic gas surface density across most of the disk is constant at 5 to 10 M⊙ pc-2 and declines at large radius. The shape of the H I distribution can be described by a Sérsic-type function with a slope index n = 0.18 - 0.36. The H I column density at which radial profiles turn over is found to be at too high a level for it to be caused by ionisation by a meta-galactic UV field. Instead we suggest the H I extent is rather set by how galaxy disks form.

  13. Enhanced automated spiral bevel gear inspection

    NASA Technical Reports Server (NTRS)

    Frint, Harold K.; Glasow, Warren

    1992-01-01

    Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.

  14. Spiral model pilot project information model

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  15. Optically driven micropump with a twin spiral microrotor.

    PubMed

    Maruo, Shoji; Takaura, Akira; Saito, Yohei

    2009-10-12

    An optically driven micropump that employs viscous drag exerted on a spinning microrotor with left- and right-handed spiral blades on its rotational axis has been developed using two-photon microfabrication. It was demonstrated that the twin spiral microrotor provides a higher rotation speed than a single spiral microrotor. The rotation speed reached 560 rpm at a laser power of 500 mW. The twin spiral microrotor was also applied to a viscous micropump with a U-shaped microchannel. To pump fluid, the twin spiral microrotor located at the corner of the U-shaped microchannel was rotated by focusing a laser beam. The flow field inside the U-shaped microchannel was analyzed using the finite element method (FEM) based on the Navier-Stokes equation to optimize the shape of the microchannel. It was confirmed that the rotation of the twin spiral microrotor generated a unidirectional laminar flow. Finally, a tandem micropump using two twin spiral microrotors was driven by a dual optical trapping system using a spatial light modulation technique.

  16. The Nature of Red-Sequence Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  17. Propagation of spiral waves pinned to circular and rectangular obstacles.

    PubMed

    Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2015-05-01

    We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.

  18. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  19. Photocreating supercooled spiral-spin states in a multiferroic manganite

    NASA Astrophysics Data System (ADS)

    Sheu, Y. M.; Ogawa, N.; Kaneko, Y.; Tokura, Y.

    2016-08-01

    We demonstrate that the dynamics of the a b -spiral-spin order in a magnetoelectric multiferroic Eu0.55Y0.45MnO3 can be unambiguously probed through optical second harmonic signals, generated via spin-induced ferroelectric polarization. In the case of weak excitation, the ferroelectric and the spiral-spin order remains interlocked, both relaxing through spin-lattice relaxation in the nonequilibrium state. When the additional optical pulse illuminating the sample is intense enough to induce a local phase transition thermally, the system creates a metastable state of the b c -spiral-spin order (with the electric polarization P ∥c ) via supercooling across the first-order phase transition between the a b and b c spiral. The supercooled state of the b c -spiral spin is formed in the thermodynamical ground state of the a b spiral (P ∥a ), displaying a prolonged lifetime with strong dependence on the magnetic field along the a axis. The observed phenomena provide a different paradigm for photoswitching between the two distinct multiferroic states, motivating further research into a direct observation of the photocreated supercooled b c -spiral spin in multiferroic manganites.

  20. Feathering instability of spiral arms. II. Parameter study

    SciTech Connect

    Lee, Wing-Kit

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by its average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.

  1. Spiral Antenna-Coupled Microbridge Structures for THz Application.

    PubMed

    Gou, Jun; Zhang, Tian; Wang, Jun; Jiang, Yadong

    2017-12-01

    Bolometer sensor is a good candidate for THz imaging due to its compact system, low cost, and wideband operation. Based on infrared microbolometer structures, two kinds of antenna-coupled microbridge structures are proposed with different spiral antennas: spiral antenna on support layer and spiral antenna with extended legs. Aiming at applications in detection and imaging, simulations are carried out mainly for optimized absorption at 2.52 THz, which is the radiation frequency of far-infrared CO2 lasers. The effects of rotation angle, line width, and spacing of the spiral antenna on THz wave absorption of microbridge structures are discussed. Spiral antenna, with extended legs, is a good solution for high absorption rate at low absorption frequency and can be used as electrode lead simultaneously for simplified manufacturing process. A spiral antenna-coupled microbridge structure with an absorption rate of more than 75% at 2.52 THz is achieved by optimizing the structure parameters. This research demonstrates the use of different spiral antennas for enhanced and tunable THz absorption of microbridge structures and provides an effective way to fabricate THz microbolometer detectors with great potential in the application of real-time THz imaging.

  2. Spiral Waves Triggered by Shadows in Transition Disks

    NASA Astrophysics Data System (ADS)

    Montesinos, Matías; Perez, Sebastian; Casassus, Simon; Marino, Sebastian; Cuadra, Jorge; Christiaens, Valentin

    2016-05-01

    Circumstellar asymmetries such as central warps have recently been shown to cast shadows on outer disks. We investigate the hydrodynamical consequences of such variable illumination on the outer regions of a transition disk, and the development of spiral arms. Using 2D simulations, we follow the evolution of a gaseous disk passively heated by the central star, under the periodic forcing of shadows with an opening angle of ˜28°. With a lower pressure under the shadows, each crossing results in a variable azimuthal acceleration, which in time develops into spiral density waves. Their pitch angles evolve from Π ˜ 15°-22° at the onset, to ˜11°-14°, over ˜65 au to 150 au. Self-gravity enhances the density contrast of the spiral waves, as also reported previously for spirals launched by planets. Our control simulations with unshadowed irradiation do not develop structures, except for a different form of spiral waves seen at later times only in the gravitationally unstable control case. Scattered light predictions in the H-band show that such illumination spirals should be observable. We suggest that spiral arms in the case-study transition disk HD 142527 could be explained as a result of shadowing from the tilted inner disk.

  3. Chemical abundances in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Richer, Michael Gerard

    2015-08-01

    The chemical abundances observed in planetary nebulae in the discs of spiral galaxies are revealing a rich variety of information about their progenitor stars as well as the structure and evolution of the galaxies they inhabit. As concerns galaxy structure and evolution, most of the attention has been on whether gradients in chemical abundances have changed with time, but there is also the issue of the formation and origin of the stellar progenitors of planetary nebulae. The gradients in oxygen abundances for planetary nebulae in M81 and NGC 300 are shallower than the corresponding gradients for H II regions in these galaxies. On the other hand, the gradients for H II regions and planetary nebulae are similar in M33. In the case of M31, there is mounting evidence whose simplest explanation may not be related to internal processes, but instead may lay in the gravitational interaction between it and its neighbours, past and present. As concerns the nucleosynthesis of the stellar progenitors of these planetary nebulae, some results for both nitrogen and oxygen may indicate the production of these elements during the previous evolutionary stages of their progenitor stars. Nominally, this may not be surprising for nitrogen, but the results do not agree quantitatively with canonical theory. At this point, though, there are still too few studies to draw very firm conclusions regrading any of these topics. Even so, the surprises among the results found so far make clear that interpreting the chemical abundances in the planetary nebulae in nearby spirals will require considering the processes affecting both stellar and galactic evolution.

  4. Variable Stars in a Distant Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A NASA Hubble Space Telescope (HST) view of the magnificent spiral galaxy NGC 4603, the most distant galaxy in which a special class of pulsating stars called Cepheid variables have been found. It is associated with the Centaurus cluster, one of the most massive assemblages of galaxies in the nearby universe. The Local Group of galaxies, of which the Milky Way is a member, is moving in the direction of Centaurus at a speed of more than a million miles an hour under the influence of the gravitational pull of the matter in that direction. Clusters of young bright blue stars highlight the galaxy's spiral arms. In contrast, red giant stars in the process of dying are also found. Only the very brightest stars in NGC 4603 can be seen individually, even with the unmatched ability of the Hubble Space Telescope to obtain detailed images of distant objects. Much of the diffuse glow comes from fainter stars that cannot be individually distinguished by Hubble. The reddish filaments are regions where clouds of dust obscure blue light from the stars behind them. This galaxy was observed by a team affiliated with the HST Key Project on the Extragalactic Distance Scale. Because NGC 4603 is much farther away than the other galaxies studied with Hubble by the Key Project team, 108 million light-years, its stars appear very faint from the Earth, and so accurately measuring their brightness, as is required for distinguishing the characteristic variations of Cepheids, is extremely difficult. Determining the distance to the galaxy required an unprecedented statistical analysis based on extensive computer simulations.

  5. Patterns of spiral tip motion in cardiac tissues

    NASA Astrophysics Data System (ADS)

    Kim, Dave T.; Kwan, Yvonne; Lee, John J.; Ikeda, Takanori; Uchida, Takumi; Kamjoo, Kamyar; Kim, Young-Hoon; Ong, James J. C.; Athill, Charles A.; Wu, Tsu-Juey; Czer, Lawrence; Karagueuzian, Hrayr S.; Chen, Peng-Sheng

    1998-03-01

    In support of the spiral wave theory of reentry, simulation studies and animal models have been utilized to show various patterns of spiral wave tip motion such as meandering and drifting. However, the demonstration of these or any other patterns in cardiac tissues have been limited. Whether such patterns of spiral tip motion are commonly observed in fibrillating cardiac tissues is unknown, and whether such patterns form the basis of ventricular tachycardia or fibrillation remain debatable. Using a computerized dynamic activation display, 108 episodes of atrial and ventricular tachycardia and fibrillation in isolated and intact canine cardiac tissues, as well as in vitro swine and myopathic human cardiac tissues, were analyzed for patterns of nonstationary, spiral wave tip motion. Among them, 46 episodes were from normal animal myocardium without pharmacological perturbations, 50 samples were from normal animal myocardium, either treated with drugs or had chemical ablation of the subendocardium, and 12 samples were from diseased human hearts. Among the total episodes, 11 of them had obvious nonstationary spiral tip motion with a life span of >2 cycles and with consecutive reentrant paths distinct from each other. Four patterns were observed: (1) meandering with an inward petal flower in 2; (2) meandering with outward petals in 5; (3) irregularly concentric in 3 (core moving about a common center); and (4) drift in 1 (linear core movement). The life span of a single nonstationary spiral wave lasted no more than 7 complete cycles with a mean of 4.6±4.3, and a median of 4.5 cycles in our samples. Conclusion: (1) Patently evident nonstationary spiral waves with long life spans were uncommon in our sample of mostly normal cardiac tissues, thus making a single meandering spiral wave an unlikely major mechanism of fibrillation in normal ventricular myocardium. (2) A tendency toward four patterns of nonstationary spiral tip motion was observed.

  6. Fluid Mechanics and Heat Transfer Spirally Fluted Tubing,

    DTIC Science & Technology

    1981-08-01

    rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs. approximately...AD-AI07 983 GENERAL ATOMIC CO SAN DIEGO CALIF FIG 20/4 FLUI D MECHANICS AND HEAT TRANSFER SPIRALLY FLUTED TUBING,(U) AUG 81 J C LARUE, P A LIBBY. J S...YAMPOLSKY N0001-79-C0773 UNCLASSIFIED GA-A6541 NL II- "N m oom o 1111_____ ~fI.2.. 1 1. GA-Al6541 LEVEL"’ FLUID MECHANICS AND HEAT TRANSFER SPIRALLY

  7. The spiral structure of the outer Milky Way in hydrogen.

    PubMed

    Levine, E S; Blitz, Leo; Heiles, Carl

    2006-06-23

    We produce a detailed map of the perturbed surface density of neutral hydrogen in the outer Milky Way disk, demonstrating that the Galaxy is a non-axisymmetric multiarmed spiral. Spiral structure in the southern half of the Galaxy can be traced out to at least 25 kiloparsecs, implying a minimum radius for the gas disk. Overdensities in the surface density are coincident with regions of reduced gas thickness. The ratio of the surface density to the local median surface density is relatively constant along an arm. Logarithmic spirals can be fit to the arms with pitch angles of 20 degrees to 25 degrees .

  8. A Software Development Simulation Model of a Spiral Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  9. Optimal multiobjective design of digital filters using spiral optimization technique.

    PubMed

    Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid

    2013-01-01

    The multiobjective design of digital filters using spiral optimization technique is considered in this paper. This new optimization tool is a metaheuristic technique inspired by the dynamics of spirals. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the spiral optimization technique produced filters which fulfill the desired characteristics and are of practical use.

  10. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  11. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... scanners can perform the exam without stopping.) A computer creates separate images of the body area, called ...

  12. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... scanners can perform the exam without stopping.) A computer creates separate images of the arm area, called ...

  13. Computed Tomography (CT) -- Sinuses

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  14. Computed Tomography (CT) -- Head

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  15. Thoracic spine CT scan

    MedlinePlus

    ... Narrowing of the spine ( spinal stenosis ) Scoliosis Tumor Risks Risks of CT scans include: Exposure to radiation ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  16. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  17. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  18. Body CT (CAT Scan)

    MedlinePlus

    ... lives. CT has been shown to be a cost-effective imaging tool for a wide range of ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  19. Cardiac CT Scan

    MedlinePlus

    ... CT Scan Related Topics Aneurysm Coronary Calcium Scan Coronary Heart Disease Heart Attack Pulmonary Embolism Send a link to ... imaging test can help doctors detect or evaluate coronary heart disease, calcium buildup in the coronary arteries, problems with ...

  20. CT of pituitary abscess

    SciTech Connect

    Fong, T.C.; Johns, R.D.; Long, M.; Myles, S.T.

    1985-06-01

    Pituitary abscess is a rare condition, with only 50 cases reported in the literature. Of those, 29 cases were well documented for analysis. Preoperative diagnosis of pituitary abscess is difficult. The computed tomographic (CT) appearance of pituitary abscess was first described in 1983; the abscess was depicted by axial images with coronal reconstruction. The authors recently encountered a case of pituitary abscess documented by direct coronal CT of the sella turcica.

  1. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy

    SciTech Connect

    Li Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa

    2012-12-15

    Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose

  2. Topological Signatures in the Electronic Structure of Graphene Spirals

    PubMed Central

    Avdoshenko, Stas M.; Koskinen, Pekka; Sevinçli, Haldun; Popov, Alexey A.; Rocha, Claudia G.

    2013-01-01

    Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work. PMID:23568379

  3. Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah

    2014-01-01

    Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.

  4. Smooth dark spiral arms in the flocculent galaxy NGC2841

    NASA Astrophysics Data System (ADS)

    Block, David L.; Elmegreen, B. G.; Wainscoat, R. J.

    1996-06-01

    OPTICAL images of the arms of spiral galaxies invariably show massive blue stars forming in ridges of interstellar gas and dust1. These are particularly striking in 'grand-design' galaxies, in which the stellar positions are influenced by spiral density waves1. By contrast, many galaxies have a 'flocculent' appearance, with no obvious evidence of spiral structure at visible wavelengths. Here we report infrared observations of the prototype flocculent galaxy NGC2841, which reveal a remarkable system of long, dark spiral arms. These arms arise from concentrations of dust; they are hidden at optical wavelengths by light scattered from the dust. The mechanism that has organized the gas and dust into these dark arms is at present unclear; the arms might be highly sheared dense clouds, or they might correspond to density waves in the interstellar medium driven by an elongated central bulge, which would not affect the stable stellar disk.

  5. Ultraminiature broadband light source with spiral shaped filament

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W (Inventor)

    2012-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  6. Spiral structures in the rotor-router walk

    NASA Astrophysics Data System (ADS)

    Papoyan, Vl V.; Poghosyan, V. S.; Priezzhev, V. B.

    2016-04-01

    We study the rotor-router walk on the infinite square lattice with the outgoing edges at each lattice site ordered clockwise. In the previous paper (Papoyan et al 2015 J. Phys. A: Math. Theor. 48 285203), we considered the loops created by rotors and labeled the sites where the loops become closed. The sequence of labels in the rotor-router walk was conjectured to form a spiral structure asymptotically obeying an Archimedean property. In the present paper, we select a subset of labels called ‘nodes’ and consider the spirals formed by them. The new spirals are directly related to tree-like structures, which represent the evolution of the cluster of vertices visited by the walk. We show that the average number of visits to the origin < {{n}0}(t)> by the moment t\\gg 1 is < {{n}0}(t)> =4< n(t)> +O(1) where < n(t)> is the average number of spiral rotations.

  7. Spin dynamics of counterrotating Kitaev spirals via duality

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar; Coldea, Radu

    2016-11-01

    Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counterrotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: The Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.

  8. A new planar feed for slot spiral antennas

    NASA Technical Reports Server (NTRS)

    Nurnberger, M. W.; Volakis, J. L.

    1995-01-01

    This report presents a new planar, wideband feed network for a slot spiral antenna, and the subsequent design and performance of a VHF antenna utilizing this feed design. Both input impedance and radiation pattern measurements are presented to demonstrate the performance and usefulness of this feed. Almost all previous designs have utilized wire spirals, requiring bulky, non-planar feeds with separate baluns, and large absorbing cavities. The presented slot spiral antenna feed integrates the balun into the structure of the slot spiral antenna, making the antenna and feed planar. This greatly simplifies the design and construction of the antenna, in addition to providing repeatable accuracy. It also allows the use of a very shallow reflecting cavity for conformal applications. Finally, this feeding approach now makes many of the known miniaturization techniques viable options.

  9. INTERIOR VIEW OF THE SPIRAL DISTRIBUTOR, STEEL STAY VANES ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE SPIRAL DISTRIBUTOR, STEEL STAY VANES ARE IN THE LEFT FOREGROUND, NOTE SCALE FIGURE. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  10. INTERIOR VIEW FROM AN INTAKE TUBE SHOWING THE SPIRAL DISTRIBUTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW FROM AN INTAKE TUBE SHOWING THE SPIRAL DISTRIBUTOR AND THE STEEL STAY VANES. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  11. 15. April 1963 SPIRAL STAIRS AND EGGSHELL DORMER Shaker ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. April 1963 SPIRAL STAIRS AND EGG-SHELL DORMER - Shaker Centre Family Trustees' Office, South side of Village Road, North of U.S. Route 68 & State Route 33 intersection, Shakertown, Mercer County, KY

  12. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  13. Spiral formation at microscale by μ-pyro-electrospinning

    NASA Astrophysics Data System (ADS)

    Mecozzi, L.; Gennari, O.; Rega, R.; Grilli, S.; Bhowmick, S.; Gioffrè, M. A.; Coppola, G.; Ferraro, P.

    2016-05-01

    Spiral shapes occur frequently in nature, such as in case of snail shells or in case of the so-called cochlea, namely the auditory portion of the inner ear. They also inspire many technological devices that take advantage of this geometry. Here we show that μ-pyro electrospinning is able to control the whipping instabilities in order to form polymeric spirals directly onto the target support and with true regularity at microscale. The results show that the polymer concentration plays a key role in producing reliable and long spirals. We investigate the cell response to these spiral templates that, thanks to their true regularity, would be useful for developing innovative cochlea regeneration scaffolds.

  14. Anatomy of a Spiral Arm: Gas, Dust and Star Formation

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Meidt, Sharon; Pety, Jerome; Leroy, Adam; Hughes, Annie; Colombo, Dario

    2015-08-01

    Spiral arms can be easily depicted in disk galaxies from the numerous young stars associated with them. However, it is on a fundamental level not clear where, how and when star formation starts relative to the spiral arm. We address these questions by utilizing high 1-3'' resolution observation of the total and dense molecular gas in a spiral arm segment of the nearby grand-design spiral galaxy M51 from PAWS (PdBI Arcsecond Whirlpool Survey) in combination with observations of young stars, HII regions and dust emission. We build a complete picture of the onset, progression and impact of star formation for this segment and discuss this picture in light of theoretical expectations.

  15. Effects of abnormal excitation on the dynamics of spiral waves

    NASA Astrophysics Data System (ADS)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  16. Selection for Spiral Waves in the Social Amoebae Dictyostelium

    NASA Astrophysics Data System (ADS)

    Palsson, Eirikur; Lee, Kyoung J.; Goldstein, Raymond E.; Franke, Jakob; Kessin, Richard H.; Cox, Edward C.

    1997-12-01

    Starving Dictyostelium amoebae emit pulses of the chemoattractant cAMP that are relayed from cell to cell as circular and spiral waves. We have recently modeled spiral wave formation in Dictyostelium. Our model suggests that a secreted protein inhibitor of an extracellular cAMP phosphodiesterase selects for spirals. Herein we test the essential features of this prediction by comparing wave propagation in wild type and inhibitor mutants. We find that mutants rarely form spirals. The territory size of mutant strains is approximately 50 times smaller than wild type, and the mature fruiting bodies are smaller but otherwise normal. These results identify a mechanism for selecting one wave symmetry over another in an excitable system and suggest that the phosphodiesterase inhibitor may be under selection because it helps regulate territory size.

  17. VIEW FROM THE GENERATOR FLOOR LOOKING DOWN AT THE SPIRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE GENERATOR FLOOR LOOKING DOWN AT THE SPIRAL DISTRIBUTOR AND DRAFT CONE. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  18. Exterior, detail, showing spiral stair, looking northwest Beale Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior, detail, showing spiral stair, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Guard Tower, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    SciTech Connect

    Thomas, D; Neylon, J; Dou, T; Jani, S; Lamb, J; Low, D; Tan, J

    2014-06-15

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motion model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed

  20. Discovery of a low-luminosity spiral DRAGN

    NASA Astrophysics Data System (ADS)

    Mulcahy, D. D.; Mao, M. Y.; Mitsuishi, I.; Scaife, A. M. M.; Clarke, A. O.; Babazaki, Y.; Kobayashi, H.; Suganuma, R.; Matsumoto, H.; Tawara, Y.

    2016-11-01

    Standard galaxy formation models predict that large-scale double-lobed radio sources, known as DRAGNs, will always be hosted by elliptical galaxies. In spite of this, in recent years a small number of spiral galaxies have also been found to host such sources. These so-called spiral DRAGNs are still extremely rare, with only 5 cases being widely accepted. Here we report on the serendipitous discovery of a new spiral DRAGN in data from the Giant Metrewave Radio Telescope (GMRT) at 322 MHz. The host galaxy, MCG+07-47-10, is a face-on late-type Sbc galaxy with distinctive spiral arms and prominent bulge suggesting a high black hole mass. Using WISE infra-red and GALEX UV data we show that this galaxy has a star formation rate of 0.16-0.75 M⊙ yr-1, and that the radio luminosity is dominated by star-formation. We demonstrate that this spiral DRAGN has similar environmental properties to others of this class, but has a comparatively low radio luminosity of L1.4 GHz = 1.12 × 1022 W Hz-1, two orders of magnitude smaller than other known spiral DRAGNs. We suggest that this may indicate the existence of a previously unknown low-luminosity population of spiral DRAGNS. FITS cutout image of the observed spiral DRAGN MCG+07-47- 10 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L8

  1. Status of the SPIRAL I upgrade at GANIL

    SciTech Connect

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Feierstein, C.; Pellemoine, F.; Lecomte, P.; Leherissier, P.; Maunoury, L.; Saint-Laurent, M. G.; Traykov, E.

    2012-02-15

    The upgrade of the ''Systeme de Production d'Ions Radioactifs en Ligne'' phase I (SPIRAL I) installed at the ''Grand Accelerateur National d'Ions Lourds'' (GANIL) situated at Caen, France, is in progress and should be ready by 2014. In parallel, the first part of SPIRAL II facility is currently under construction. The global status of the upgrade is presented: goal, radioactive ion production systems, modification of the production cave and impact of the current safety re-evaluation of GANIL.

  2. Spur, Helical, and Spiral Bevel Transmission Life Modeling.

    DTIC Science & Technology

    1994-04-01

    spiral bevel reductions as well as series combinations of these reductions. The basic spur and helical reductions include: single mesh, compound, and...comparisons of transmission service life at the design stage for optimization. A variety of transmissions may be analyzed including: spur, helical , and...as is the use of a ring gear for the output. The spiral bevel reductions include single and dual input drives with arbitrary shaft angles. The

  3. Face on Barred and Ringed Spiral Galaxy NGC 3351

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the face on barred and ringed spiral galaxy NGC 3351 (M95). The morphological appearance of a galaxy can change dramatically between visual and ultraviolet wavelengths. In the case of M95, the nucleus and bar dominate the visual image. In the ultraviolet, the bar is not even visible and the ring and spiral arms dominate.

  4. Mechanism of unpinning spirals by a series of stimuli

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Hong

    2014-06-01

    Antitachycardia pacing (ATP) is widely used to terminate tachycardia before it proceeds to lethal fibrillation. The important prerequisite for successful ATP is unpinning of the spirals anchored to the obstacle by a series of stimuli. Here, to understand the mechanism of unpinning spirals by ATP, we propose a theoretical explanation based on a nonlinear eikonal relation and a kinematical model. The theoretical results are quantitatively consistent with the numerical simulations in both weak and high excitabilities.

  5. Quantum Spin Fluctuations for a Distorted Incommensurate Spiral

    SciTech Connect

    Fishman, Randy Scott

    2012-01-01

    Quantum spin fluctuations are investigated for the incommensurate state of a geometrically- frustrated triangular-lattice antiferromagnet. With increasing anisotropy, the average suppression of the spin by quantum fluctuations is reduced but the distorted spiral becomes more elliptical. Quan- tum fluctuations also increase the wavevector of the spin state and enhance the critical anisotropy above which a collinear spin state is stabilized. An experimental technique is proposed to isolate the effect of quantum fluctuations from the classical distortion of the spiral.

  6. Dust outflows from quiescent spiral disks.

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Rand, R. J.; Xilouris, E. M.; Bevan, S.; Ferguson, A. M.; Davies, J. I.; Bianchi, S.

    2000-07-01

    We have conducted a search for ``dust chimneys'' in a sample of 10 highly-inclined spiral galaxies (i=86-90deg) which we had previously observed in the Hα emission line (Rand 1996). We have procured B-band CCD images for this purpose and employed unsharp-masking techniques to accentuate the structure of the dust lane. A scattering+absorption radiation transfer model enabled us to separate 5 galaxies from the sample which are sufficiently inclined (i>87deg) for us to reliably identify and quantify dust clouds residing at over 2 scale-heights above the disk. Three of these galaxies possess numerous curvi-linear chimney structures stretching up to 2 kpc from the midplane and the fraction of total galactic dust contained in such structures is of order 1%. Optical extinction offers a lower limit to the amount of dust contained in the extraplanar layer but, by examining the transparent submm thermal emission from NGC 891, we fix an upper limit of 5%. Our results are consistent with a similar recent study by Howk & Savage (1999) which indicates that about half of quiescent spiral disks possess detectable dust chimneys. We have compared our optical images with the corresponding Hα emission-line radiation. We do not find a detailed spatial correspondance between dust chimneys and either sites of recent star-formation or the extraplanar diffuse ionized gas. This is somewhat surprising given that FIR-bright galaxies, such as M 82, are known to entrain dust at the working surface of the starburst-driven outflow (traced in Hα ). It is possible a global correlation exists, with disks experiencing overall higher rates of star-formation also possessing the greatest number of chimneys. This may indicate a timescale difference between the two phenomena with the Hα phase lasting ~ 106 yr but chimneys requiring ~ 107 yr to form. Additionally, we have investigated the edge-on disk NGC 55 which, being ten times closer than galaxies in our main sample, allows us to examine in greater

  7. Galactic Spiral Shocks with Thermal Instability

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2008-07-01

    Using one-dimensional hydrodynamic simulations including interstellar heating, cooling, and thermal conduction, we investigate nonlinear evolution of gas flow across galactic spiral arms. We model the gas as a non-self-gravitating, unmagnetized fluid and follow its interaction with a stellar spiral potential in a local frame comoving with the stellar pattern. Initially uniform gas with density n0 in the range 0.5 cm -3 <= n0 <= 10 cm -3 rapidly separates into warm and cold phases as a result of thermal instability (TI) and also forms a quasi-steady shock that prompts phase transitions. After saturation, the flow follows a recurring cycle: warm and cold phases in the interarm region are shocked and immediately cool to become a denser cold medium in the arm; postshock expansion reduces the mean density to the unstable regime in the transition zone and TI subsequently mediates evolution back into warm and cold interarm phases. For our standard model with n0 = 2 cm -3, the gas resides in the dense arm, thermally unstable transition zone, and interarm region for 14%, 22%, and 64% of the arm-to-arm crossing time, respectively. These regions occupy 1%, 16%, and 83% of the arm-to-arm distance, respectively. Gas at intermediate temperatures (i.e., neither warm stable nor cold states) represents ~25%-30% of the total mass, similar to the fractions estimated from H I observations (larger interarm distances could reduce this mass fraction, whereas other physical processes associated with star formation could increase it). Despite transient features and multiphase structure, the time-averaged shock profiles can be matched to that of a diffusive isothermal medium with temperature 1000 K (which is < Twarm) and a "particle" mean free path of l0 = 100 pc . Finally, we quantify numerical conductivity associated with translational motion of phase-separated gas on the grid and show that convergence of numerical results requires the numerical conductivity to be comparable to or smaller

  8. Halo Mass Concentration and the Morphology of Simulated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Berlanga Medina, Jazmin; Berrier, Joel C.; Kennefick, Daniel; Arkansas Galaxy Evolution Survey

    2015-01-01

    Using a model based on the Milky Way, we vary the central concentration of the dark matter halo component of simulated spiral galaxies. We evolve 11 galaxies in isolation under the effects of gravity for a time of 3 Gyr and look for differences in the disk structure. We primarily quantify morphological differences with measurements of the spiral arms'pitch angle by using a two-dimensional fast Fourier transform code (2DFFT). Preliminary results indicate that while overall spiral arm structure is dynamic throughout the duration of the time range given, pitch angle values tend to restabilize during periods of reemerging spiral structure. This suggests that pitch angle may be fairly stable on timescales of a few Gyr, even if it tends to change at timescales of Myr. While concentration does seem to determine both the relative age at which simulated galaxies develop clearly visible spiral structure and the specific expression of spiral arms, a clear relationship between concentration vs pitch angle cannot be confirmed at this time.

  9. Spiral instabilities in media supporting complex oscillations under periodic forcing

    NASA Astrophysics Data System (ADS)

    Gao, Qingyu; Li, Jun; Zhang, Kailong; Epstein, Irving R.

    2009-09-01

    The periodically forced Brusselator model displays temporal mixed-mode and quasiperiodic oscillations, period doubling, and chaos. We explore the behavior of such media as reaction-diffusion systems for investigating spiral instabilities. Besides near-core breakup and far-field breakup resulting from unstable modes in the radial direction or Doppler-induced instability (destabilization of the core's location), the observed complex phenomena include backfiring, spiral regeneration, and amplitude modulation from line defects. Amplitude modulation of spirals can evolve to chambered spirals resembling those found in nature, such as pine cones and sunflowers. When the forcing amplitude is increased, the spiral-tip meander evolves from simple rotation to complex petals, corresponding to transformation of the local dynamics from simple oscillations to mixed-mode, period-2, and quasiperiodic oscillations. The number of petals is related to the complexity of the mixed-mode oscillations. Spiral turbulence, standing waves, and homogeneous synchronization permeate the entire system when the forcing amplitude is further increased.

  10. Hidden structures of information transport underlying spiral wave dynamics

    NASA Astrophysics Data System (ADS)

    Ashikaga, Hiroshi; James, Ryan G.

    2017-01-01

    A spiral wave is a macroscopic dynamics of excitable media that plays an important role in several distinct systems, including the Belousov-Zhabotinsky reaction, seizures in the brain, and lethal arrhythmia in the heart. Because the spiral wave dynamics can exhibit a wide spectrum of behaviors, its precise quantification can be challenging. Here we present a hybrid geometric and information-theoretic approach to quantifying the spiral wave dynamics. We demonstrate the effectiveness of our approach by applying it to numerical simulations of a two-dimensional excitable medium with different numbers and spatial patterns of spiral waves. We show that, by defining the information flow over the excitable medium, hidden coherent structures emerge that effectively quantify the information transport underlying the spiral wave dynamics. Most importantly, we find that some coherent structures become more clearly defined over a longer observation period. These findings provide validity with our approach to quantitatively characterize the spiral wave dynamics by focusing on information transport. Our approach is computationally efficient and is applicable to many excitable media of interest in distinct physical, chemical, and biological systems. Our approach could ultimately contribute to an improved therapy of clinical conditions such as seizures and cardiac arrhythmia by identifying potential targets of interventional therapies.

  11. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    SciTech Connect

    Honig, Z. N.; Reid, M. J.

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.

  12. Stone incrustation: a relevant complication of the intraprostatic spiral.

    PubMed

    Chiu, A W; Lin, A T; Lee, Y H; Chen, M T; Chang, L S

    1991-01-01

    Six high operative risk patients with urinary retention caused by benign prostatic hyperplasia were managed with an intraprostatic spiral at our hospital. Three of them had severe coronary artery disease, 1 had uremia, 1 had cerebral stroke and 1 had poorly controlled diabetes mellitus. The urinary retention was successfully relieved by the intraprostatic spiral in all patients. No operative mortality or severe complication was encountered. One patient experienced a repeat attack of urinary retention due to proximal migration of the spiral. Four patients complained of urgency, which was relieved by anticholinergic agents. Stone incrustation was found on 2 out of 3 spirals removed (66%), and the stone turned out to be calcium phosphate and struvite by scanning electron microscopy and infrared spectrophotometry. In 1 patient, stone formation was so abundant that it almost obstructed the lumen of the redundant tip of the spiral. From our preliminary results, the intraprostatic spiral seems to be a good alternative to an indwelling catheter for patients awaiting prostatectomy. Nevertheless, the potential complication of stone incrustation should be anticipated and it is suggested to remove the device as soon as possible or to replace it at regular intervals.

  13. Error of Archimedes spiral when applied in linearity compensation

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Chen, Xiuzheng; Song, Jincheng; Liang, Yajun

    2013-01-01

    The polar coordinates equation of Archimedes spiral is ρ = ρ0 + aθ , also known as uniform speed spiral. In a polar coordinate system, the polar radius ρ has linear relation with polar angle θ . This character could be used for linearity compensation in mechanical engineering, or metrical instrument. For example, it could be used for moment linearity compensation, the common configuration has a pivot axis on the pole, and a thin line wrap around the spiral on the turntable. The gravitation of a suspension used as constant pull, and the level polar radius as force arm, then it generates a liner moment when the Archimedes spiral rotating at uniform speed. But as the polar angle of tangent point on the plumb line changes at any moment, the polar radius on level direction isn't linear with polar angle anymore, and the small error influences the effect of linearity compensation configuration. This paper presented the application of Archimedes spiral in linearity compensation, analyzed the theory error, and deduced the error equation by Mathematic theory. Using computer emulator, educed the precise errors of some dispersed points in common use, and provided according error tabulation. In engineering applications, engineers could consult this error tabulation and correct the points on Archimedes spiral, to realize accurately linearity compensation.

  14. Noncontrast Peripheral MRA with Spiral Echo Train Imaging

    PubMed Central

    Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164

  15. Mapping IR Enhancements in Closely Interacting Spiral-Spiral Pairs: I. ISO CAM and ISO SWS Observations

    NASA Technical Reports Server (NTRS)

    Xu, C.; Gao, Y.; Mazzarella, J.; Lu, N.; Sulentic, J.; Domingue, D.

    2000-01-01

    Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission.

  16. Spiral vortices in compressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Gomez, T.; Politano, H.; Pouquet, A.; Larchevêque, M.

    2001-07-01

    We extend the spiral vortex solution of Lundgren [Phys. Fluids 25, 2193 (1982)] to compressible turbulent flows with a perfect gas. This model links the dynamical and the spectral properties of incompressible flows, providing a k-5/3 Kolmogorov energy spectrum. In so doing, a compressible spatiotemporal transformation is derived, reducing the dynamics of three-dimensional vortices, stretched by an axisymmetric incompressible strain, into a two-dimensional compressible vortex dynamics. It enables us to write the three-dimensional spectra of the incompressible and compressible square velocities in terms of, respectively, the two-dimensional spectra of the enstrophy and of the square velocity divergence, by the use of a temporal integration. Numerical results are presented from decaying direct simulations performed with 5122 grid points; initially, the rms Mach number is 0.23, with local values up to 0.9, the Reynolds number is 700, and the ratio between compressible and incompressible square velocities is 0.1. A k-5/3 inertial behavior is seen to result from the dynamical evolution for both the compressible and incompressible three-dimensional spectra.

  17. The Nineteenth-Century Spiral Nebula Whodunit

    NASA Astrophysics Data System (ADS)

    Weekes, Trevor C.

    2010-06-01

    The discovery of the first spiral nebula was a milestone in the history of astronomy, but the initial observations of it are shrouded in mystery. The discovery came within months of the commissioning of the Third Earl of Rosse’s very large 72-inch optical telescope at Birr Castle in the center of Ireland. Unfortunately, no observing records have survived, and while there is no doubt that the observations took place in the spring of 1845, there is some uncertainty as to whom was actually present when the discovery was made. The construction of the Earl’s telescope (the Leviathan) was a magnificent achievement, since it was entirely of his design, built with his own funds, and constructed by his own workers who were literally taken “from the plough” on his estate. The summer of 1845 saw the first appearance of the Irish Potato Famine of 1845-1848, which would seriously curtail astronomical activity when Lord Rosse’s 72-inch telescope was in prime condition.

  18. Analytical modeling of orthogonal spiral structures

    NASA Astrophysics Data System (ADS)

    Santos, Auteliano A.; Hobeck, Jared D.; Inman, Daniel J.

    2016-11-01

    This paper presents the analytical modeling of orthogonal spiral structures (OSS), a promising option for small-scale energy harvesting applications. This unique multi-beam structure is analyzed using a distributed parameter approach with Euler-Bernoulli assumptions. First, an aluminum substrate is evaluated to determine if the proposed design can be used to capture vibration energy in the desired frequency range using a twelve beam OSS. Finite element calculations are used to validate the analytical model. This model is then modified to include the electromechanical effects of a piezoelectric layer added to the aluminum substrate. Lastly, the effects of the beam width and the number of beams is analyzed for a particular surface area of the OSS. Results show that increasing the number of beams causes a reduction in the first natural frequency. From those results, it is possible to conclude that OSS can be used as an alternative to current energy harvesting systems for MEMS applications, allowing the capture of environmental energy in the frequency range of common mechanical systems.

  19. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  20. SPIRALE: early warning optical space demonstrator

    NASA Astrophysics Data System (ADS)

    Galindo, D.; Carucci, A.

    2004-11-01

    Thanks to its global coverage, its peacetime capabilities and its availability, ballistic missiles Early Warning (EW) space systems are identified as a key node of a global missile defence system. Since the Gulf war in 1991, several feasibility studies of such an Early Warning system have been conducted in France. The main conclusions are first that the most appropriate concept is to use infra-red (IR) sensors on geo- stationary orbit satellites and second that the required satellite performances are achievable and accessible to European industries, even if technological developments are necessary. Besides that, it was recommended to prepare the development of the EW operational system, by demonstrating its achievable performances on the basis of collected background images and available target IR signatures. This is the objective of the "EW optical space demonstrator", also named SPIRALE (this a French acronym which stands for "Preparatory IR Program for EW"). A contract has been awarded early 2004, by DGA/SPOTI (French Armament Procurement Agency), to EADS Astrium France, with a significant participation of Alcatel Space, to perform this demonstration.

  1. Dose conversion coefficients for CT examinations of adults with automatic tube current modulation

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Becker, J.; Hoeschen, C.

    2010-10-01

    Automatic tube current modulation (TCM) is used in modern CT devices. This is implemented in the numerical calculation of dose conversion coefficients for CT examinations. For four models of adults, the female and male reference models of ICRP and ICRU and a lighter and a heavier female model, dose conversion coefficients normalized to CTDIvol (DCCCT) have been computed with a Monte Carlo transport code for CT scans with and without TCM. It could be shown for both cases that reliable values for spiral CT scans are obtained when combining the results from an appropriate set of axial scans. The largest organ DCCCT are presented for typical CT examinations for all four models. The impact of TCM is greatest for chest, pelvis and whole-trunk CT examinations, where with TCM the effective DCCCT can be 20-25% lower than without TCM. Typical organs with strong dependence on TCM are thyroid, urinary bladder, lungs and oesophagus. While the DCCCT of thyroid and urinary bladder are mainly sensitive to angular TCM, the DCCCT of lungs and oesophagus are influenced primarily by longitudinal TCM. The impact of the body stature on the effective DCCCT is of the same order as the effect of TCM. Thus, for CT scans in the trunk region, accurate dose values can only be obtained when different sets of DCCCT are employed that are appropriate for the patient's sex and stature and the actual TCM settings.

  2. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance.

    PubMed

    Rubin, Geoffrey D; Leipsic, Jonathon; Joseph Schoepf, U; Fleischmann, Dominik; Napel, Sandy

    2014-06-01

    Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5-15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography.

  3. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi

    2017-02-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.

  4. CT of abdominal tuberculosis

    SciTech Connect

    Epstein, B.M.; Mann, J.H.

    1982-11-01

    Intraabdominal tuberculosis (TB) presents with a wide variety of clinical and radiologic features. Besides the reported computed tomographic (CT) finding of high-density ascites in tuberculous peritonitis, this report describes additional CT features highly suggestive of abdominal tuberculosis in eight cases: (1) irregular soft-tissue densities in the omental area; (2) low-density masses surrounded by thick solid rims; (3) a disorganized appearance of soft-tissue densities, fluid, and bowel loops forming a poorly defined mass; (4) low-density lymph nodes with a multilocular appearance after intravenous contrast administration; and (5) possibly high-density ascites. The differential diagnosis of these features include lymphoma, various forms of peritonitis, peritoneal carcinomatosis, and peritoneal mesothelioma. It is important that the CT features of intraabdominal tuberculosis be recognized in order that laparotomy be avoided and less invasive procedures (e.g., laparoscopy, biopsy, or a trial of antituberculous therapy) be instituted.

  5. From Bubble Domains to Spirals in Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pirkl, S.; Oswald, P.

    1996-03-01

    We first show how to make a finger of the second species from a bubble domain in a frustrated cholesteric liquid crystal in an A.C. electric field. Two scenarios are possible, depending on the applied voltage: either the finger forms a single spiral, or it forms two symmetrical spirals which we refer to as twin spirals. We then describe the long-time behavior of an isolated single spiral and, especially, the trajectories of its two tips. These results are discussed using a simple kinematical model in terms of the motion of curves with free ends. We finish by studying the dynamics of the fingers of the second species when the dielectric anisotropy of the liquid crystal tends to zero. Nous montrons d'abord comment fabriquer un doigt de seconde espèce à partir d'une sphérulite dans un cholestérique frustré soumis à champ électrique alternatif. Deux scénarios sont possibles suivant la tension appliquée: soit le doigt forme une spirale simple, soit il donne deux spirales jumelles symétriques l'une de l'autre. Nous décrivons ensuite le comportement à long terme d'une spirale simple isolée, et plus particulièrement les trajectoires de ses deux extrémités. Ces résultats sont analysés à l'aide d'un modèle cinématique simple en termes de mouvement de courbes aux extrémités libres. Nous terminons par la dynamique des doigts de seconde espèce lorsque la constante diélectrique du cristal liquide tend vers zéro.

  6. Multidetector-row CT with a 64-row amorphous silicon flat panel detector

    NASA Astrophysics Data System (ADS)

    Shapiro, Edward G.; Colbeth, Richard E.; Daley, Earl T.; Job, Isaias D.; Mollov, Ivan P.; Mollov, Todor I.; Pavkovich, John M.; Roos, Pieter G.; Star-Lack, Josh M.; Tognina, Carlo A.

    2007-03-01

    A unique 64-row flat panel (FP) detector has been developed for sub-second multidetector-row CT (MDCT). The intent was to explore the image quality achievable with relatively inexpensive amorphous silicon (a-Si) compared to existing diagnostic scanners with discrete crystalline diode detectors. The FP MDCT system is a bench-top design that consists of three FP modules. Each module uses a 30 cm x 3.3 cm a-Si array with 576 x 64 photodiodes. The photodiodes are 0.52 mm x 0.52 mm, which allows for about twice the spatial resolution of most commercial MDCT scanners. The modules are arranged in an overlapping geometry, which is sufficient to provide a full-fan 48 cm diameter scan. Scans were obtained with various detachable scintillators, e.g. ceramic Gd IIO IIS, particle-in-binder Gd IIO IIS:Tb and columnar CsI:Tl. Scan quality was evaluated with a Catphan-500 performance phantom and anthropomorphic phantoms. The FP MDCT scans demonstrate nearly equivalent performance scans to a commercial 16-slice MDCT scanner at comparable 10 - 20 mGy/100mAs doses. Thus far, a high contrast resolution of 15 lp/cm and a low contrast resolution of 5 mm @ 0.3 % have been achieved on 1 second scans. Sub-second scans have been achieved with partial rotations. Since the future direction of MDCT appears to be in acquiring single organ coverage per scan, future efforts are planned for increasing the number of detector rows beyond the current 64- rows.

  7. SU-E-I-98: Dose Comparison for Pulmonary Embolism CT Studies: Single Energy Vs. Dual Energy

    SciTech Connect

    Mahmood, U; Erdi, Y

    2014-06-01

    Purpose: The purpose of this study was to assess and compare the size specific dose estimate (SSDE), dose length product (DLP) and noise relationship for pulmonary embolism studies evaluated by single source dual energy computed tomography (DECT) against conventional CT (CCT) studies in a busy cancer center and to determine the dose savings provided by DECT. Methods: An IRB-approved retrospective study was performed to determine the CTDIvol and DLP from a subset of patients scanned with both DECT and CCT over the past five years. We were able to identify 30 breast cancer patients (6 male, 24 female, age range 24 to 81) who had both DECT and CCT studies performed. DECT scans were performed with a GE HD 750 scanner (140/80 kVp, 480 mAs and 40 mm) and CCT scans were performed with a GE Lightspeed 16 slice scanner (120 kVp, 352 mAs, 20 mm). Image noise was measured by placing an ROI and recording the standard deviation of the mean HU along the descending aorta. Results: The average DECT patient size specific dose estimate was to be 14.2 ± 1.7 mGy as compared to 22.4 ± 2.7 mGy from CCT PE studies, which is a 37% reduction in the SSDE. The average DECT DLP was 721.8 ± 84.6 mGy-cm as compared to 981.8 ± 106.1 mGy-cm for CCT, which is a 26% decrease. Compared to CCT the image noise was found to decrease by 19% when using DECT for PE studies. Conclusion: DECT SSDE and DLP measurements indicate dose savings and image noise reduction when compared to CCT. In an environment that heavily debates CT patient doses, this study confirms the effectiveness of DECT in PE imaging.

  8. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions

  9. Characterizing Spiral Arm and Interarm Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Blanc, G. A.; Schinnerer, E.; Groves, B.; Adamo, A.; Hughes, A.; Meidt, S.

    2016-08-01

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Hα maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc2. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of Hα luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/Hα line ratio instead of the Hα surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 109 yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  10. CT Perfusion of the Head

    MedlinePlus

    ... the machine as the actual CT scanning is performed. Depending on the type of CT scan, the machine may make several passes. The contrast material will then be injected through an intravenous line ( ...

  11. Vibration damping using a spiral acoustic black hole.

    PubMed

    Lee, Jae Yeon; Jeon, Wonju

    2017-03-01

    This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.

  12. On wave dark matter in spiral and barred galaxies

    SciTech Connect

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L. E-mail: bray@math.duke.edu

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  13. Environment Dependence of Disk Morphology of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    2014-02-01

    We analyze the dependence of disk morphology (arm class, Hubble type, bar type) of nearby spiral galaxies on the galaxy environment by using local background density (Σ_{n}), project distance (r_{p}), and tidal index (TI) as measures of the environment. There is a strong dependence of arm class and Hubble type on the galaxy environment, while the bar type exhibits a weak dependence with a high frequency of SB galaxies in high density regions. Grand design fractions and early-type fractions increase with increasing Σ_{n}, 1/r_{p}, and TI, while fractions of flocculent spirals and late-type spirals decrease. Multiple-arm and intermediate-type spirals exhibit nearly constant fractions with weak trends similar to grand design and early-type spirals. While bar types show only a marginal dependence on Σ_{n}, they show a fairly clear dependence on r_{p} with a high frequency of SB galaxies at small r_{p}. The arm class also exhibits a stronger correlation with r_{p} than Σ_{n} and TI, whereas the Hubble type exhibits similar correlations with Σ_{n} and r_{p}. This suggests that the arm class is mostly affected by the nearest neighbor while the Hubble type is affected by the local densities contributed by neighboring galaxies as well as the nearest neighbor.

  14. Atomic hydrogen in the spiral galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    1997-04-01

    New high-resolution, high-sensitivity Westerbork Synthesis Radio Telescope Hi synthesis observations of the spiral galaxy NGC 3631 are presented. In the total atomic hydrogen map, the spiral arms are well distinguished from the interarm regions, while the sensitivity allows detection of Hi in all but a few isolated regions of the areas between the spiral arms. Most of the atomic hydrogen is located within the optical disc, but the Hi extends to some 1.5R_opt. The Hi follows the spiral arms, and streaming motions of up to ~15 km s^-1 (projected) can be identified from the velocity field. Assuming a constant inclination angle of 17 deg, a rotation curve is derived which is declining slightly in the outer parts of the disc. An analysis of a residual velocity field, obtained after the subtraction of an axisymmetric model based on the rotation curve, confirms the existence of streaming motions near the spiral arms in an otherwise undisturbed disc.

  15. Gas and stellar spiral structures in tidally perturbed disc galaxies

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.

    2016-06-01

    Tidal interactions between disc galaxies and low-mass companions are an established method for generating galactic spiral features. In this work, we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order of 1 × 109 M⊙, equivalent to only 4 per cent of the stellar disc mass, or 0.5 per cent of the total galactic mass of a Milky Way analogue.

  16. Influence of spiral framework on nonlinear optical materials.

    PubMed

    Hu, Yang-Yang; Sun, Shi-Ling; Tian, Wen-Tao; Tian, Wei Quan; Xu, Hong-Liang; Su, Zhong-Min

    2014-04-04

    A series of spiral donor-π-acceptor frameworks (i.e. 2-2, 3-3, 4-4, and 5-5) based on 4-nitrophenyldiphenylamine with π-conjugated linear acenes (naphthalenes, anthracenes, tetracenes, and pentacenes) serving as the electron donor and nitro (NO2 ) groups serving as the electron acceptor were designed to investigate the relationships between the nonlinear optical (NLO) responses and the spirality in the frameworks. A parameter denoted as D was defined to describe the extent of the spiral framework. The D value reached its maximum if the number of NO2 groups was equal to the number of fused benzene rings contained in the linear acene. A longer 4-nitrophenyldiphenylamine chain led to a larger D value and, further, to a larger first hyperpolarizability. Different from traditional NLO materials with charge transfer occurring in the one-dimensional direction, charge transfer in 2-2, 3-3, 4-4, and 5-5 occur in three-dimensional directions due to the attractive spiral frameworks, and this is of great importance in the design of NLO materials. The origin of such an enhancement in the NLO properties of these spiral frameworks was explained with the aid of molecular orbital analysis.

  17. Guiding Spin Spirals by Local Uniaxial Strain Relief

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Finco, Aurore; Schmidt, Lorenz; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-01-01

    We report on the influence of uniaxial strain relief on the spin spiral state in the Fe double layer grown on Ir(111). Scanning tunneling microscopy (STM) measurements reveal areas with reconstruction lines resulting from uniaxial strain relief due to the lattice mismatch of Fe and Ir atoms, as well as pseudomorphic strained areas. Magnetic field-dependent spin-polarized STM measurements of the reconstructed Fe double layer reveal cycloidal spin spirals with a period on the nm scale. Globally, the spin spiral wave fronts are guided along symmetry-equivalent [11 2 ¯ ] crystallographic directions of the fcc(111) substrate. On an atomic scale the spin spiral propagation direction is linked to the [001] direction of the bcc(110)-like Fe, leading to a zigzag shaped wave front. The isotropically strained pseudomorphic areas also exhibit a preferred magnetic periodicity on the nm scale but no long-range order. We find that already for local strain relief with a single set of reconstruction lines a strict guiding of the spin spiral is realized.

  18. Electrodynamics of a ring-shaped spiral resonator

    NASA Astrophysics Data System (ADS)

    Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.

    2014-02-01

    We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

  19. The local spiral structure of the Milky Way.

    PubMed

    Xu, Ye; Reid, Mark; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu

    2016-09-01

    The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy's major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms.

  20. The local spiral structure of the Milky Way

    PubMed Central

    Xu, Ye; Reid, Mark; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu

    2016-01-01

    The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy’s major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms. PMID:27704048

  1. Interaction between spiral and paced waves in cardiac tissue

    PubMed Central

    Agladze, Konstantin; Kay, Matthew W.; Krinsky, Valentin; Sarvazyan, Narine

    2010-01-01

    For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca2+-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior. PMID:17384124

  2. Engineering structured light with Vogel spiral arrays of nanoparticles

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2013-03-01

    We present a general analytical model for light scattering by arbitrary Vogel spiral arrays of circular apertures uniformly illuminated at normal incidence. This model suffices to unveil the fundamental mathematical structure of their complex Fraunhofer diffraction patterns and enables the engineering of optical beams carrying multiple values of orbital angular momentum (OAM). By performing analytical Fourier-Hankel decomposition of spiral arrays and far field patterns, we rigorously demonstrate the ability to encode specific numerical sequences onto the OAM values of diffracted optical beams. In particular, we show that these OAM values are determined by the rational approximations of the continued fraction expansions of the irrational angles utilized to generate Vogel spirals. Finally, we experimentally demonstrate structured light carrying multiple values of OAM in the far-field scattering region of Vogel spiral arrays of metallic nanoparticles. Using Fourier-Hankel mode decomposition analysis and interferometric reconstruction of the complex amplitude of scattered waves, we show the ability to encode well-defined numerical sequences, determined by the aperiodic spiral geometry, into azimuthal OAM values, in excellent agreement with analytical scattering theory. The generation of sequences of OAM values by light scattering from engineered aperiodic surfaces is relevant to a number of device applications for secure optical communication, classical and quantum cryptography.

  3. Interaction between spiral and paced waves in cardiac tissue.

    PubMed

    Agladze, Konstantin; Kay, Matthew W; Krinsky, Valentin; Sarvazyan, Narine

    2007-07-01

    For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca(2+)-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior.

  4. Spirals in protoplanetary disks from photon travel time

    NASA Astrophysics Data System (ADS)

    Kama, M.; Pinilla, P.; Heays, A. N.

    2016-09-01

    Spiral structures are a common feature in scattered-light images of protoplanetary disks, and of great interest as possible tracers of the presence of planets. However, other mechanisms have been put forward to explain them, including self-gravity, disk-envelope interactions, and dead zone boundaries. These mechanisms explain many spirals very well, but are unable to easily account for very loosely wound spirals and single spiral arms. We study the effect of light travel time on the shape of a shadow cast by a clump orbiting close (within 1 au) of the central star, where there can be significant orbital motion during the light travel time from the clump to the outer disk and then to the sky plane. This delay in light rays reaching the sky plane gives rise to a variety of spiral- and arc-shaped shadows, which we describe with a general fitting formula for a flared, inclined disk. The three movies are available at http://www.aanda.org

  5. Microscopic spiral waves reveal positive feedback in subcellular calcium signaling.

    PubMed Central

    Lipp, P; Niggli, E

    1993-01-01

    The regenerative Ca(2+)-induced Ca2+ release mechanism is an important amplifier of signal transduction in diverse cells. In heart muscle cells, this mechanism contributes to the Ca2+ transient activating the mechanical contraction, but it is also believed to drive Ca2+ waves propagating within the cytosol. We investigated the subcellular Ca2+ distribution in heart muscle cells during spontaneous Ca2+ release using laser scanning confocal microscopy with a ratiometric fluorescent indicator technique. Besides planar Ca2+ waves with linear propagation, sequences of confocal optical sections also revealed spiral Ca2+ waves spinning around a subcellular core at approximately 1 Hz. Although the Ca2+ spirals were continuous processes they frequently exhibited an apparently oscillatory output function into the elongated cell body. These oscillatory waves emanating from the spiral at regular intervals were formally considered to be short outer segments of the spiral but could not be distinguished from planar Ca2+ waves propagating along the longitudinal cell axis. The complex spatiotemporal pattern of spiral Ca2+ waves implies the participation of an active process exhibiting a large degree of positive feedback, most likely the Ca(2+)-induced Ca2+ release mechanism. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:8312468

  6. Multi-detector row CT as a "one-stop" examination in the preoperative evaluation of the morphology and function of living renal donors: preliminary study.

    PubMed

    Su, Chen; Yan, Chaogui; Guo, Yan; Zhou, Xuhui; Chen, Yaqing; Liu, Mingjuan; Wang, Wenjuan; Zhang, Xiaoling

    2011-02-01

    We designed to investigate the feasibility of multi-detector row computerized tomography (CT) as a "one-stop" examination for the simultaneous preoperative evaluation of the morphology and function of living renal donors. 21 living renal donors were examined by 64-slice spiral CT with a three-phase enhancement CT scan and two inserted dynamic scans. The maximum intensity projection (MIP), multi-planar reformation (MPR), and volume reconstruction (VR) procedures were performed to compare the renal parenchyma, renal vessels, and collecting system with operational findings. The known Patlak equation was used to calculate the glomerular filtration rate (GFR); exact GFR information was acquired by single photon emission computed tomography (SPECT). Our results as following, there were 3 cases of artery variation and 3 cases of vein variation. CT findings all corresponded with the operation, and the sensitivity, positive predictive value, specialty, and negative predictive value of CT were all 100%. The r of the GFR values estimated from CT is 0.894 (left) (P < 0.001) and 0.881 (right) (P < 0.001). In conclusions, our findings demonstrate that 64-slice spiral CT may offer a "one-stop" examination to replace SPECT in the preoperative evaluation of living renal donors to simultaneously provide information regarding both anatomy and the GFR of living renal donors.

  7. Seventh-generation CT

    NASA Astrophysics Data System (ADS)

    Besson, G. M.

    2016-03-01

    A new dual-drum CT system architecture has been recently introduced with the potential to achieve significantly higher temporal resolution than is currently possible in medical imaging CT. The concept relies only on known technologies; in particular rotation speeds several times higher than what is possible today could be achieved leveraging typical x-ray tube designs and capabilities. However, the architecture lends itself to the development of a new arrangement of x-ray sources in a toroidal vacuum envelope containing a rotating cathode ring and a (optionally rotating) shared anode ring to potentially obtain increased individual beam power as well as increase total exposure per rotation. The new x-ray source sub-system design builds on previously described concepts and could make the provision of multiple conventional high-power cathodes in a CT system practical by distributing the anode target between the cathodes. In particular, relying on known magnetic-levitation technologies, it is in principle possible to more than double the relative speed of the electron-beam with respect to the target, thus potentially leading to significant individual beam power increases as compared to today's state-of-the-art. In one embodiment, the proposed design can be naturally leveraged by the dual-drum CT concept previously described to alleviate the problem of arranging a number of conventional rotating anode-stem x-ray tubes and power conditioners on the limited space of a CT gantry. In another embodiment, a system with three cathodes is suggested leveraging the architecture previously proposed by Franke.

  8. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  9. Asymmetric propagation of electromagnetic waves through nanoscale spirals

    NASA Astrophysics Data System (ADS)

    Hu, Jingpei; Lin, Yu; Zhu, Aijiao; Zhao, Xiaonan; Wang, Chinhua

    2016-10-01

    In this paper, we report that normal incidence transmission of different circularly polarized waves through the 2D Archimedes' nanoscale spirals is asymmetric. The structures consist of raised spiral ridge and two layers metal film covered on the substrate and the ridge. The finite difference time domain method was used to design the structure and perform the simulation. The device can distinguish the different circularly polarized wave across the transmission intensity compare with the common Archimedes' nanoscale spirals which just exhibit the bright or dark modes in the light field. We confirmed that the device provide about 10% circular dichroism in 3.85um-6.0um broadband region. The circular dichroism in the wavelength 3.95 um can reach 13%. This ultracompact device could prove useful for remote sensing and advanced telecommunication applications.

  10. Generation of speckle vortices by Archimedes' spiral micro-holes

    NASA Astrophysics Data System (ADS)

    Sun, Haibin; Liu, Tingting; Chen, Jun; Sun, Ping

    2016-10-01

    Speckle plays an important role in the optical field. Optical vortices which exist in random speckle fields usually contain useful phase information. The distribution of speckle field is determined by these optical vortices. In order to study speckle vortices quantitatively, we established a micro-holes array model based on the law of Archimedes' spiral arrangement. Speckle vortices can be generated by the random diffuse reflection points (spiral micro-holes). In the experiments, the gray image of Archimedes' spiral micro-holes are displayed on the screen of liquid crystal spatial light modulator (LC-SLM), and the output optical field is captured by a CCD camera. The numerical simulations and experimental results show that the model can be used to generate speckle vortices.

  11. Double lead spiral platen parallel jaw end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C.

    1989-01-01

    The double lead spiral platen parallel jaw end effector is an extremely powerful, compact, and highly controllable end effector that represents a significant improvement in gripping force and efficiency over the LaRC Puma (LP) end effector. The spiral end effector is very simple in its design and has relatively few parts. The jaw openings are highly predictable and linear, making it an ideal candidate for remote control. The finger speed is within acceptable working limits and can be modified to meet the user needs; for instance, greater finger speed could be obtained by increasing the pitch of the spiral. The force relaxation is comparable to the other tested units. Optimization of the end effector design would involve a compromise of force and speed for a given application.

  12. Generation of a spiral wave using amplitude masks

    NASA Astrophysics Data System (ADS)

    Anguiano-Morales, Marcelino; Salas-Peimbert, Didia P.; Trujillo-Schiaffino, Gerardo

    2011-09-01

    Optical beams of Bessel-type whose transverse intensity profile remains unchanged under free-space propagation are called nondiffracting beams. Experimentally, Durnin used an annular slit on the focal plane of a convergent lens to generate a Bessel beam. However, this configuration is only one of many that can be used to generate nondiffracting beams. The method can be modified in order to generate a required phase distribution in the beam. In this work, we propose a simple and effective method to generate spiral beams whose intensity remains invariant during propagation using amplitude masks. Laser beams with spiral phase, i.e., vortex beams have attracted great interest because of their possible use in different applications for areas ranging from laser technologies, medicine, and microbiology to the production of light tweezers and optical traps. We present a study of spiral structures generated by the interference between two incomplete annular beams.

  13. Nano concentration by acoustically generated complex spiral vortex field

    NASA Astrophysics Data System (ADS)

    Tang, Qiang; Wang, Xiaofei; Hu, Junhui

    2017-03-01

    A strategy to concentrate nanoscale materials on the boundary between a nano suspension droplet and non-vibration substrate is demonstrated and analyzed. It employs the spiral vortex of acoustic streaming, generated by an ultrasonically vibrating needle parallel to and above the non-vibration substrate. The vortex drags nanoscale materials to the center of itself, forming a concentration spot. For 250 nm-diameter SiO2 nano particle suspension with an initial concentration of 0.09 mg/ml, the diameter of the concentration spot can be up to several hundred microns. The dependency of the spiral vortex field on the vibration distribution of the acoustic needle in the droplet is also clarified by experiments and computation, and the concentration conditions are obtained by analyzing the nano particle dynamics in the spiral vortex.

  14. Propagation of an Airy beam with a spiral phase.

    PubMed

    Chu, Xiuxiang

    2012-12-15

    The propagation of an Airy beam with a spiral phase is studied. The centroid position and spread of the beam are investigated analytically for different topological charges. Study shows that the centroid position of the Airy beam with a spiral phase keeps moving during propagation. The motion with positive topological charge is in the direction opposite to that with negative topological charge. The speed of the motion of the centroid position is proportional to the topological charge and the normalized distance. From the variation of the second moment of the beam, we can also see that the beam spread is speeded up by the spiral phase during propagation. The speed of the beam spread is proportional to the square of the topological charge.

  15. Ultraharmonics and Secondary Spiral Wakes Induced by a Planet

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit

    2016-12-01

    We investigate the ultraharmonics response of a protoplanetary disk to an orbiting planet. We find that the multi-armed spiral structure can be excited by the higher-order forcing due to nonlinear mode-coupling. In particular, the preferential excitation of the gas response with a small azimuthal wavenumber (m˜ 2) is a direct consequence of mode-coupling among linear waves. The presence of multiple Fourier components in a planet’s potential is a distinct feature compared to the previous studies in the context of spiral galaxies, which turns out to be crucial for the generation of ultraharmonics waves. This analysis may shed light on the understanding of some results regarding the spiral structures excited by a massive planet.

  16. A Grazing Encounter Between Two Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The larger and more massive galaxy is cataloged as NGC 2207 (on the left in the Hubble Heritage image), and the smaller one on the right is IC 2163. Strong tidal forces from NGC 2207 have distorted the shape of IC 2163, flinging out stars and gas into long streamers stretching out a hundred thousand light-years toward the right-hand edge of the image. Computer simulations, carried out by a team led by Bruce and Debra Elmegreen, demonstrate the leisurely timescale over which galactic collisions occur. In addition to the Hubble images, measurements made with the National Science Foundation's Very Large Array Radio Telescope in New Mexico reveal the motions of the galaxies and aid the reconstruction of the collision. The calculations indicate that IC 2163 is swinging past NGC 2207 in a counterclockwise direction, having made its closest approach 40 million years ago. However, IC 2163 does not have sufficient energy to escape from the gravitational pull of NGC 2207, and is destined to be pulled back and swing past the larger galaxy again in the future. The high resolution of the Hubble telescope image reveals dust lanes in the spiral arms of NGC 2207, clearly silhouetted against IC 2163, which is in the background. Hubble also reveals a series of parallel dust filaments extending like fine brush strokes along the tidally stretched material on the right-hand side. The large concentrations of gas and dust in both galaxies may well erupt into regions of active star formation in the near future. Trapped in their mutual orbit around each other, these two galaxies will continue to distort and disrupt each other. Eventually, billions of years from now, they will merge into a single, more massive galaxy. It is believed that many present-day galaxies, including the Milky Way, were assembled from a similar process of coalescence of smaller galaxies occurring over billions of years. This image was created from 3 separate pointings of Hubble. The Wide Field Planetary Camera 2 data

  17. The Onset of Spiral Structure in the Universe

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2014-01-01

    The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is "woolly" with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, while another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ~ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ~ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ~ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.

  18. Protoplanetary Disk Heating and Evolution Driven by Spiral Density Waves

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-11-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  19. Tidal Origin of Spiral Arms in Galaxies Orbiting a Cluster

    NASA Astrophysics Data System (ADS)

    Semczuk, Marcin; Łokas, Ewa L.; del Pino, Andrés

    2017-01-01

    One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a galaxy cluster. Using N-body simulations we investigate the formation and evolution of spiral arms in a Milky-Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution are followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit; however, they wind up rather quickly and are disturbed by another pericenter passage. The arms on the most extended orbit, which we analyze in more detail, wind up slowly and survive for the longest time. Measurements of the pattern speed of the arms indicate that they are kinematic density waves. We attempt a comparison with observations by selecting grand-design spiral galaxies in the Virgo cluster. Among those, we find nine examples bearing no sign of recent interactions or the presence of companions. For three of them we present close structural analogues among our simulated spiral galaxies.

  20. The onset of spiral structure in the universe

    SciTech Connect

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2014-01-20

    The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is 'woolly' with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, while another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.

  1. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice

    PubMed Central

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects. PMID:26900841

  2. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    PubMed

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  3. Origin choice and petal loss in the flower garden of spiral wave tip trajectories

    NASA Astrophysics Data System (ADS)

    Gray, Richard A.; Wikswo, John P.; Otani, Niels F.

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  4. Digital spiral-slit for bi-photon imaging

    NASA Astrophysics Data System (ADS)

    McLaren, Melanie; Forbes, Andrew

    2017-04-01

    Quantum ghost imaging using entangled photon pairs has become a popular field of investigation, highlighting the quantum correlation between the photon pairs. We introduce a technique using spatial light modulators encoded with digital holograms to recover both the amplitude and the phase of the digital object. Down-converted photon pairs are entangled in the orbital angular momentum basis, and are commonly measured using spiral phase holograms. Consequently, by encoding a spiral ring-slit hologram into the idler arm, and varying it radially we can simultaneously recover the phase and amplitude of the object in question. We demonstrate that a good correlation between the encoded field function and the reconstructed images exists.

  5. Illuminating the Role of Spiral Waves in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Hartmann, Lee W.

    2017-01-01

    The transport of angular momentum and mass, and the generation of turbulence, play a crucial role in the evolution of a variety of astrophysical disks. Spiral waves, driven for instance by companion bodies or instabilities, have long been recognized as an important means for the aforementioned two processes. In this dissertation talk, I will discuss an instability of spiral waves that I have recently come across. I will begin by presenting the results from a three-dimensional global hydrodynamic simulation which described the growth and saturation of the instability. The spiral wave instability (SWI) arises as inertial modes, natural oscillations in rotating systems, amplify when they resonantly couple to and extract energy from the background spiral waves. This leads to break down of the spiral waves into turbulence when the velocity perturbations caused by unstable inertial modes reach a similar magnitude to those induced by the spiral waves. As an implication of the instability, I will present numerical results and discuss the consequence of the SWI when it acts on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. I find that the planet-driven spiral arms are destabilized via the SWI, generating hydrodynamic turbulence and sustained vertical flows that are associated with long wavelength inertial modes. The associated vertical diffusion rate measured from the simulations is such that solid particles with sizes up to a few centimeters are vertically mixed within the first scale height in a protosolar nebula-like disk. Since circumstellar disks are believed to remain laminar, and thus to induce no or very little particle stirring as suggested by recent magnetocentrifugal wind models, the results imply that the SWI can be the mechanism controlling the degree of vertical settling of solid particles in planet-hosting disks. In particular, if accretion of mm- to cm-sized pebbles dominates the growth of terrestrial bodies, the stirring of solid

  6. The Supermassive Black Hole Mass Function in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kennefick, Julia D.; Berrier, J. C.; Kennefick, D.; Davis, B. L.; Seigar, M.; Shields, D.; Barrows, R. S.; Lacy, C. H.; Hughes, J. A.; Galaxy Evolution Survey, Arkansas

    2013-01-01

    The AGES group is exploring a number of techniques to study the relationship between central SMBH black hole mass and spiral arm morphology in disk galaxies. We have developed a new technique which permits us to reliably and accurately measure pitch angle based upon a 2DFFT algorithm. We have then compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.

  7. The Galactic Centre Mini-Spiral with CARMA

    NASA Technical Reports Server (NTRS)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, K.; Schodel. R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; Zensus, J.; Valencia-S, M.; Karas, V.

    2012-01-01

    The Galactic centre mini-spiral region is a mixture of gas and dust with temperatures ranging from a few hundred K to 10(exp 4) K. We report results from 1.3 and 3mm radio interferometric observations of this region with CARMA, and present a spectral index map of this region. We find a range of emission mechanisms in the region, including the inverted synchrotron spectrum of Sgr A*, free-free emission from the mini-spiral arms, and a possible dust emission contribution indicated by a positive spectral index.

  8. The disk-halo interface in edge-on spirals

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene; Braun, Robert; Norman, Colin

    1993-01-01

    We are studying the disk-halo interface in several edge-on spiral galaxies through extensive imagery in H(alpha) and other emission lines from Diffuse Ionized Gas (DIG), also referred to as the Warm Ionized Medium (WIM). In addition, for the nearby Sc galaxy NGC4631 we have obtained x-ray observations with ROSAT, to map the distribution of hot (10(exp 6) - 10(exp 7)) gas in the disk and halo. Here we present initial results for two late-type spirals, NGC4244 and NGC4631.

  9. Rotation and mass in the Milky Way and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2017-02-01

    Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk, and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results.

  10. Hyperbolic Spirals as Surface Structures in Thin Layers.

    PubMed

    Weh, Lothar

    2001-03-15

    When thin layers of 4-chloro-3-methylphenol and a copolymer of methyl(methacrylate) and maleic acid dissolved in acetone are dried by solvent evaporation, various surface structures appear. Besides linear surface deformations that can ramify like fractals, spirals of the hyperbolic type have been found. The surface structures are due to crystallization processes and flows caused by surface tension differences. The spirals are surface elevations with grooves on both sides as shown by surface profile measurements by means of a microscope interferometer. The addition of surfactants reduces the structure formation. A large surfactant concentration prevents the structure formation. Copyright 2001 Academic Press.

  11. Spiral Orbit Tribometry I: Description of the Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    A new rolling contact tribometer based on a planar thrust bearing geometry is described. The bearing 'races' are flat plates that drive a ball into a near-circular, spiral path. The spiraling ball is returned to its initial radius each revolution around the race by a 'guide plate' backed by a force transducer. The motions of the ball are analyzed and the force exerted by the ball on the guide plate is related to the friction coefficient of the system. The experimental characteristics of the system are presented and the system is shown to exhibit the behavior expected for a tribometer.

  12. Change in neutrino spirality in a dense plasma

    NASA Astrophysics Data System (ADS)

    Semikoz, V. B.

    1989-03-01

    It is shown that a change in the spirality of a Dirac neutrino during electromagnetic scattering by nuclei can occur in a dispersive medium in the framework of a symmetric electro-weak model. This change in spirality is not connected with the presence of a vacuum anomalous magnetic moment, but is a more efficient mechanism of the sterilization of soft neutrinos with an energy much less than the Fermi momentum of electrons of the medium. A new limitation on the mixing parameters of left and right bosons is obtained.

  13. Formation and evolution of spiral arms in galaxies orbiting a Virgo-like cluster

    NASA Astrophysics Data System (ADS)

    Semczuk, Marcin; Łokas, Ewa L.

    2017-03-01

    The origin of spiral structure in disks of galaxies remains an open question. One of the theories predicts that two-armed, grand design spiral arms originate from tidal interactions with another body. Using N-body simulations we find that a Milky Way-like galaxy can develop spiral arms due to tidal force from a cluster-size dark matter halo.

  14. SU-E-I-26: The CT Compatibility of a Novel Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer

    SciTech Connect

    Elzibak, A; Safigholi, H; Soliman, A; Ravi, A; Song, WY; Kager, P; Han, D

    2015-06-15

    Purpose: To examine CT metal image artifact from a novel direction-modulated brachytherapy (DMBT) tandem applicator (95% tungsten) for cervical cancer using a commercially available orthopedic metal artifact reduction (O-MAR) algorithm. Comparison to a conventional stainless steel applicator is also performed. Methods: Each applicator was placed in a water-filled phantom resembling the female pelvis and scanned in a Philips Brilliance 16-slice CT scanner using two pelvis protocols: a typical clinical protocol (120kVp, 16×0.75mm collimation, 0.692 pitch, 1.0s rotation, 350mm field of view (FOV), 600mAs, 1.5mm slices) and a protocol with a higher kVp and mAs setting useful for larger patients (140kVp, 16×0.75mm collimation, 0.688 pitch, 1.5s rotation, 350mm FOV, 870mAs, 1.5mm slices). Images of each tandem were acquired with and without the application of the O-MAR algorithm. Baseline scans of the phantom (no applicator) were also collected. CT numbers were quantified at distances from 5 to 30 mm away from the applicator’s edge (in increments of 5mm) using measurements at eight angles around the applicator, on three consecutive slices. Results: While the presence of both applicators degraded image quality, the DMBT applicator resulted in larger streaking artifacts and dark areas in the image compared to the stainless steel applicator. Application of the O-MAR algorithm improved all acquired images, both visually and quantitatively. The use of low and high kVp and mAs settings (120 kVp/600mAs and 140 kVp/870mAs) in conjunction with the O-MAR algorithm lead to similar CT numbers in the vicinity of the applicator and a similar reduction of the induced metal artifact. Conclusion: This work indicated that metal artifacts induced by the DMBT and the stainless steel applicator are greatly reduced when using the O-MAR algorithm, leading to better quality phantom images. The use of a high dose protocol provided similar improvements in metal artifacts compared to the

  15. Rugose Spiraling Whitefly: A new invasive pest in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aleurodicus rugioperculatus Martin, commonly known as gumbo limbo or rugose spiraling whitefly is a new addition in the list of devastating whitefly species found in Florida. Because it is a fairly new species to science (identified less than a decade ago) not much information is available about thi...

  16. A Multivariate Test of the Spiral of Silence Hypothesis.

    ERIC Educational Resources Information Center

    Salmon, Charles T.; Neuwirth, Kurt

    To clarify numerous points of contention surrounding Elizabeth Noelle-Neumann's spiral of silence theory, according to which individuals' media-influenced perception of their congruence or incongruence with dominant opinion determines their willingness to speak out in public, a study examined the relationship between opinion expression, perceived…

  17. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  18. Tuning magnetic spirals beyond room temperature with chemical disorder

    PubMed Central

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-01-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127

  19. Spirals, chaos, and new mechanisms of wave propagation.

    PubMed

    Chen, P S; Garfinkel, A; Weiss, J N; Karagueuzian, H S

    1997-02-01

    The chaos theory is based on the idea that phenomena that appear disordered and random may actually be produced by relatively simple deterministic mechanisms. The disordered (aperiodic) activation that characterizes a chaotic motion is reached through one of a few well-defined paths that are characteristic of nonlinear dynamical systems. Our group has been studying VF using computerized mapping techniques. We found that in electrically induced VF, reentrant wavefronts (spiral waves) are present both in the initial tachysystolic stage (resembling VT) and the later tremulous incoordination stage (true VF). The electrophysiological characteristics associated with the transition from VT to VF is compatible with the quasiperiodic route to chaos as described in the Ruelle-Takens theorem. We propose that specific restitution of action potential duration (APD) and conduction velocity properties can cause a spiral wave (the primary oscillator) to develop additional oscillatory modes that lead to spiral meander and breakup. When spiral waves begin to meander and are modulated by other oscillatory processes, the periodic activity is replaced by unstable quasiperiodic oscillation, which then undergoes transition to chaos, signaling the onset of VF. We conclude that VF is a form of deterministic chaos. The development of VF is compatible with quasiperiodic transition to chaos. These results indicate that both the prediction and the control of fibrillation are possible based on the chaos theory and with the advent of chaos control algorithms.

  20. Feeding IC 342: The nuclear spiral of a starburst galaxy

    NASA Technical Reports Server (NTRS)

    Levine, D.; Turner, J. L.; Hurt, Robert L.

    1993-01-01

    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342.

  1. Quintessence-like dark matter in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Guzman, F. S.; Matos, T.; Nunez, D.; Ramirez, E.

    2003-06-01

    Through the geodesic analysis of a static and axially symmetric space time, we present conditions on the state equation of an isotropic perfect fluid p = omegad, when it is considered as the dark matter in spiral galaxies. The main conclusion is that it can be an exotic fluid (-1 < omega < -1/3) as it is found for Quintessence at cosmological scale.

  2. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-12-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.

  3. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    SciTech Connect

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A. E-mail: shields@astro.as.utexas.edu

    2012-03-20

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 {+-} 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  4. Global properties of the nearby spiral M101

    NASA Technical Reports Server (NTRS)

    Beichman, C.; Boulanger, F.; Rice, W.; Persson, Carol J. Lonsdale; Viallefond, F.

    1987-01-01

    M101 (NGC 5457) is a classic Sc I spiral galaxy located suffiently nearby, 6.8 Mpc, that its structure can be studied even with the coarse angular resolution of the Infrared Astronomy Satellite (IRAS). The global infrared properties of M101 are addressed including the radial dependence of its infrared emission.

  5. Spiral magnets with Dzyaloshinskii-Moriya interaction containing defect bonds

    NASA Astrophysics Data System (ADS)

    Utesov, O. I.; Sizanov, A. V.; Syromyatnikov, A. V.

    2015-09-01

    We present a theory describing spiral magnets with Dzyaloshinskii-Moriya interaction (DMI) subject to bond disorder at small concentration c of defects. It is assumed that both DMI and exchange coupling are changed on imperfect bonds. Qualitatively the same physical picture is obtained in two models which are considered in detail: B20 cubic helimagnets and layered magnets in which DMI leads to a long-period spiral ordering perpendicular to layers. We find that the distortion of the spiral magnetic ordering around a single imperfect bond is long range: values of additional turns of spins decay with the distance r to the defect as 1 /r2 being governed by the Poisson's equation for electric dipole. At finite concentration of randomly distributed imperfect bonds, we calculate correction to the spiral vector. We show that this correction can change the sign of spin chirality even at c ≪1 if defects are strong enough. It is demonstrated that impurities lead to a diffuse elastic neutron scattering which has power-law singularities at magnetic Bragg peaks positions. Then, each Bragg peak acquires power-law decaying tails. Corrections are calculated to the magnon energy and to its damping caused by scattering on impurities.

  6. Vortices and Spirals in the HD135344B Transition Disk

    NASA Astrophysics Data System (ADS)

    van der Marel, N.; Cazzoletti, P.; Pinilla, P.; Garufi, A.

    2016-12-01

    In recent years, spiral structures have been seen in scattered light observations and signs of vortices in millimeter images of protoplanetary disks, both probably linked with the presence of planets. We present Atacama Large Millimeter/submillimeter Array Band 7 (335 GHz or 0.89 mm) continuum observations of the transition disk HD 135344B at an unprecedented spatial resolution of 0.″16, using superuniform weighting. The data show that the asymmetric millimeter-dust ring seen in previous work actually consists of an inner ring and an outer asymmetric structure. The outer feature is cospatial with the end of one of the spiral arms seen in scattered light, but the feature itself is not consistent with a spiral arm due to its coradiance. We propose a new possible scenario to explain the observed structures at both wavelengths. Hydrodynamical simulations show that a massive planet can generate a primary vortex (which dissipates at longer timescales, becoming an axisymmetric ring) and trigger the formation of a second generation vortex further out. Within this scenario, the two spiral arms observed at scattered light originate from a planet at ˜30 au and from the secondary vortex at ˜75 au rather than a planet further out as previously reported.

  7. Mitigating Spirals of Conflict in DOD Source Selections

    DTIC Science & Technology

    2011-04-01

    Government contracting is rife with opportunities for miscom- munication and misperception. This can undermine trust and fuel spirals of conflict. For this...article, the authors interviewed participants and analyzed Government Accountability Office (GAO) bid protest decisions involving Department of...General Accounting Office, or GAO (renamed the Government Account- ability Office in July 2004), authority to decide protests of source selection

  8. A Parallax-based Distance Estimator for Spiral Arm Sources

    NASA Astrophysics Data System (ADS)

    Reid, M. J.; Dame, T. M.; Menten, K. M.; Brunthaler, A.

    2016-06-01

    The spiral arms of the Milky Way are being accurately located for the first time via trigonometric parallaxes of massive star-forming regions with the Bar and Spiral Structure Legacy Survey, using the Very Long Baseline Array and the European VLBI Network, and with the Japanese VLBI Exploration of Radio Astrometry project. Here we describe a computer program that leverages these results to significantly improve the accuracy and reliability of distance estimates to other sources that are known to follow spiral structure. Using a Bayesian approach, sources are assigned to arms based on their (l, b, v) coordinates with respect to arm signatures seen in CO and H i surveys. A source's kinematic distance, displacement from the plane, and proximity to individual parallax sources are also considered in generating a full distance probability density function. Using this program to estimate distances to large numbers of star-forming regions, we generate a realistic visualization of the Milky Way's spiral structure as seen from the northern hemisphere.

  9. Deceptively Simple Harmonic Motion: A Mass on a Spiral Spring.

    ERIC Educational Resources Information Center

    McDonald, F. Alan

    1980-01-01

    Discusses the oscillatory motion of a mass on a spiral (nonhelical) spring, and calculates the lowest eigenfrequency and the associated effective spring mass for a range of values of the attached mass. Analytic and numerical comparisons are made to the helical spring problem. (HM)

  10. Fingerprints of nucleosynthesis in the local spiral arm

    NASA Technical Reports Server (NTRS)

    Knoedlseder, J.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Oberlack, U.; Ryan, J.; Schoenfelder, V.; vonBallmoos, P.

    1997-01-01

    The local spiral arm with its inherent massive star population is a natural site of recent nucleosynthesis activity. The features found in 1.8 MeV observation of candidate Al-26 sources situated in this structure are discussed. The emphasis is on Loop 1, a nearby superbubble which is possibly the site of a recent supernova explosion.

  11. SPIRAL (Sandia's Program for Information Retrieval and Listing)

    ERIC Educational Resources Information Center

    West, Leslie E.

    The general scope of SPIRAL is storage of free-flowing text information into a machine-readable library and recall of any portions of this stored information that are relevant to an inquiry. The major objectives in the design of the system were (1) to make it easy to use by persons unfamiliar with computer systems; and (2) to make it efficient, in…

  12. Crowds as an Excitable Medium for Spiral Wave Dynamics

    NASA Astrophysics Data System (ADS)

    Welsh, Andrea; Greco, Edwin; Fenton, Flavio

    Spiral wave (SW) patterns are studied in many physical, biological, and chemical excitable systems. Of particular importance are SW of electrical activity that develop in the heart and give rise to arrhythmias such as tachycardia (single SW) and fibrillation (multiple SWs). We investigate if a crowd of people given simple rules for activation and deactivation, modeled on cardiac cells, can act as a living simulation for SW dynamics. For group sizes ranging from 50 to 650 people we demonstrate, experimentally, the existence of stable spiral waves and of spiral wave breakup leading to chaotic dynamics. Numerical simulation predicts the simple rules lead to well define wave fronts. People, however, respond with various degrees of anticipation and misinformation. This human behavior can lead to smoothed fronts or even lead to spiral wave breakup and chaos. We present a new cell model that includes variations in reaction to account for the observed behavior in crowds. This model may be useful in the study of coupling and decoupling of cardiac cells that lead to arrhythmic behavior. Supported by NSF.

  13. 4. NORTH END OF TERMINAL ROOM, SHOP LEVEL SHOWING SPIRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH END OF TERMINAL ROOM, SHOP LEVEL SHOWING SPIRAL STAIR TO CABLE RACK. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  14. Spiral graphone and one-sided fluorographene nanoribbons

    NASA Astrophysics Data System (ADS)

    Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S. K.; Los, J. H.; Peeters, F. M.

    2013-02-01

    The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T=1000 K within our simulation time of 1 ns.

  15. METHODS FOR THE SPIRAL SALMONELLA MUTAGENICITY ASSAY INCLUDING SPECIALIZED APPLICATIONS

    EPA Science Inventory

    ABSTRACT

    An automated approach to bacterial mutagenicity testing--the spiral Salmonella assay--was developed to simplify testing and to reduce the labor and materials required to generate dose-responsive mutagenicity information. This document provides the reader with an ...

  16. Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity

    DTIC Science & Technology

    2015-01-01

    1 Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity ...in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...generated by surface wind stress with constant eddy viscosity in homogeneous ocean. In real oceans, the eddy viscosity varies due to turbulent mixing

  17. 61. View of TR spiral access stair system from transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. View of TR spiral access stair system from transmitter building no. 102 mezzanine level; note elevator door on right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. Using spiral intensity profile to quantify head and neck cancer

    PubMed Central

    Kong, Koon Y.; Shanna, Yachna; Raza, S. Hussain; Chen, Zhuo (Georgia); Muller, Susan; Wang, May D.

    2016-01-01

    During the analysis of microscopy images, researchers locate regions of interest (ROI) and extract relevant information within it. Identifying the ROI is mostly done manually and subjectively by pathologists. Computer algorithms could help in reducing their workload and improve reproducibility. In particular, we want to assess the validity of the folic acid receptor as a biomarker for head and neck cancer. We are only interested in folic acid receptors appearing in cancerous tissue. Therefore, the first step is to segment images into cancerous and noncancerous regions. We propose to use a spiral intensity profile for segmentation of light microscopy images. Many algorithms identify objects in an image by considering pixel intensity and spatial information separately. Our algorithm integrates intensity and spatial information by considering the change, or profile, of pixel intensity in a spiral fashion. Using a spiral intensity profile can also perform segmentation at different scales from cancer regions to nuclei cluster to individual nuclei. We compared our algorithm with manually segmented image and obtained a specificity of 83.7% and sensitivity of 61.1%. Spiral intensity profiles can be used as a feature to improve other segmentation algorithms. Segmentation of cancerous images at different scales allows effective quantification of folic acid receptor inside cancerous regions, nuclei clusters, or individual cells.

  19. The Crystalline Dynamics of Spiral-Shaped Curves

    NASA Astrophysics Data System (ADS)

    Dudziński, Marcin; Górka, Przemysław

    2015-07-01

    We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach's Contraction Mapping Theorem and the Bellman-Gronwall inequality are the main tools applied in our proof.

  20. Selection of Multiarmed Spiral Waves in a Regular Network of Neurons

    PubMed Central

    Hu, Bolin; Ma, Jun; Tang, Jun

    2013-01-01

    Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966

  1. Selection of multiarmed spiral waves in a regular network of neurons.

    PubMed

    Hu, Bolin; Ma, Jun; Tang, Jun

    2013-01-01

    Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained.

  2. Model for Simulating a Spiral Software-Development Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  3. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    NASA Astrophysics Data System (ADS)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  4. Spiral arms and disc stability in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-03-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H i, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  5. Total internal reflection fluorescence microscopy study of spiral Ca2+ waves in single heart cell.

    PubMed

    Bai, Y; Tang, A; Wang, S; Zhu, X

    2008-03-01

    Spiral wave phenomena exist in many scales of nature and have attracted the attention of scientists from different fields. Although much work has been done on qualitative analysis of spiral waves, the mechanism of spiral waves' spontaneous formation and termination in living systems is still not clear. Here, by using total internal reflection fluorescence microscopy, we show the spiral waves of calcium signals in single rat cardiac myocytes and the simulation of the waves comprising calcium sparks. The mechanism of the formation and termination of spiral waves is attributable to the calcium release channels' refractory resulting from their stochastic release. We suggest that this mechanism can be adapted to other living systems.

  6. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Muñuzuri, Alberto P.; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M.; Epstein, Irving R.

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  7. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule.

    PubMed

    Zeng, Jian-Ye; Ye, Hai-Hong; Yang, Shi-Xiong; Jin, Ren-Chao; Huang, Qi-Liang; Wei, Yong-Chu; Huang, Si-Guang; Wang, Bin-Qiang; Ye, Jia-Zhou; Qin, Jian-Ying

    2015-01-01

    The aim of this study was to investigate the clinical application effects of a novel computer-aided detection (CAD) system based on three-dimensional computed tomography (CT) images on pulmonary nodule. 98 cases with pulmonary nodule (PN) in our hospital from Jun, 2009 to Jun, 2013 were analysed in this study. All cases underwent PN detection both by the simple spiral CT scan and by the computer-aided system based on 3D CT images, respectively. Postoperative pathological results were considered as the "gold standard", for both two checking methods, the diagnostic accuracies for determining benign and malignant PN were calculated. Under simple spiral CT scan method, 63 cases is malignant, including 50 true positive cases and 13 false positive cases from the "gold standard"; 35 cases is benign, 16 true negative case and 19 false negative cases, the Sensitivity 1 (Se1)=0.725, Specificity1 (Sp1)=0.448, Agreement rate1 (Kappa 1)=0.673, J1 (Youden's index 1)=0.173, LR(+)1=1.616, LR(-)1=0.499. Kappa 1=0.673 between the 0.4 and 0.75, has a moderate consistency. Underwent computer-aided detection (CAD) based on 3D CT method, 67cases is malignant, including 62 true positive cases and 7 false positive cases; 31 cases is benign, 24 true negative case and 7 false negative cases, Sensitivity 2 (Se2)=0.899, Specificity2 (Sp2)=0.828, Agreement rate (Kappa 2)=0.877, J2 (Youden's index 2)=0.727, LR(+)2=5.212, LR(-)2=0.123. Kappa 2=0.877 >0.75, has a good consistency. Computer-aided PN detecting system based on 3D CT images has better clinical application value, and can help doctor carry out early diagnosis of lung disease (such as cancer, etc.) through CT images.

  8. Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2013-02-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.

  9. Dynamics of spiral patterns in gas discharge detected by optical method

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Wang, Mingyi; Liu, Shuhua

    2016-09-01

    The dynamics behavior of spiral patterns is investigated in gas discharge using optical method. Rich kinks of spiral patterns are obtained and the formation and evolution process is investigated. The process of pattern formation is breakdown -> hexagon -> bee comb-like -> strip -> spiral -> chaos. Spiral pattern always formed after the strip pattern. It is found that the temperature of the water electrodes plays an important role in the spiral patterns formation. When it exceeds 20°C no spiral has been obtained. The discharge current waveform and the emission spectrum of the discharge have been measured when the filaments self-organized in spiral pattern. Electron excited temperature of forming spiral pattern is calculated using intensity ratio method. It is found that the electron excited temperature of spiral pattern increase as the power supply frequency increased. Relation between wavelength and discharge parameter has been measured. It shows that the wavelength of spiral pattern increases as the discharge gap increases, and decreases as the air ratio mixed in argon increases. Accompanying measurements proved that the wavelength is approximately linear to the square root of the spiral rotating period .This work has useful reference value for studying pattern dynamics.

  10. Quantification of the drawing of an Archimedes spiral through the analysis of its digitized picture.

    PubMed

    Miralles, F; Tarongí, S; Espino, A

    2006-04-15

    We have developed a new quantitative analysis of spiral drawing that is able to evaluate any spiral execution and it has not temporal or spatial limitations in the obtaining of specimens. Thirty-one patients with action tremor and 24 control subjects were asked to draw an Archimedes spiral over a print template. Specimens were scanned and then treated through a semiautomatic computer program that reconstructs the temporal sequence of the spiral drawing by the subject. The spirals were first analysed by means of the cross-correlation coefficient with the spiral template. Secondly, the mean and the standard deviation of the distance between each point of the spiral drawing and the corresponding point of the spiral model were determined. Finally, the reconstructed spiral was analysed using the Fourier Transform. Its results were interpreted with the aid of a computer model of a tremulous spiral. The experimental variables were greater in the patients group respect to age-matched controls. There was also a high linear correlation between them and the clinical score given by three neurologists. Finally, Receiver Operating Characteristic (ROC) curves analysis shown that the method classified the spirals better than human ratters.

  11. Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers.

    PubMed

    Zhang, Fei; Ge, Zheng; Grimaud, Julien; Hurst, Jim; He, Zhen

    2013-04-01

    The use of spiral spacers to create a helical flow for improving electricity generation in microbial fuel cells (MFCs) was investigated in both laboratory and on-site tests. The lab tests found that the MFC with the spiral spacers produced more electricity than the one without the spiral spacers at different recirculation rates or organic loading rates, likely due to the improved transport/distribution of ions and electron mediators instead of the substrates because the organic removal efficiency was not obviously affected by the presence of the spiral spacers. The energy production in the MFC with the spiral spacers reached 0.071 or 0.073 kWh/kg COD in either vertical or horizontal installment. The examination of the MFCs installed in an aeration tank of a municipal wastewater treatment plant confirmed the advantage of using the spiral spacers. Those results demonstrate that spiral spacers could be an effective approach to improve energy production in MFCs.

  12. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivanio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  13. Spiral patterns beyond the optical radius: numerical simulations and synthetic HI observations

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey; Bertin, Giuseppe

    2017-03-01

    The outer parts of many galaxy disks exhibit extended spiral arms far beyond the optical radius. To understand the nature and the origin of such outer spiral structure, we investigate the propagation in the outer gaseous regions of large-scale spiral density waves excited in the bright optical disk. By means of 3D hydrodynamical simulations, we show that spiral density waves, penetrating in the gas through the outer Lindblad resonance, can indeed give rise to relatively regular patterns outside the bright optical stellar disk. The amplitude of spiral structure increases rapidly with radius. Beyond the optical radius, spirals become nonlinear and develop small-scale features related to shear-induced instabilities. We also construct the synthetic 21-cm data cubes extracted from simulated gaseous disks. Our synthetic HI observations point to the existence of specific kinematical features related to the presence of spiral pattern perturbations that should be found in deep HI observations.

  14. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    NASA Astrophysics Data System (ADS)

    Bychkov, Igor V.; Kuzmin, Dmitry A.; Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G.

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii-Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii-Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications.

  15. Chronic osteomyelitis examined by CT

    SciTech Connect

    Wing, V.W.; Jeffrey, R.B. Jr.; Federle, M.P.; Helms, C.A.; Trafton, P.

    1985-01-01

    CT examination of 25 patients who had acute exacerbations of chronic osteomyelitis allowed for the correct identification of single or multiple sequestra in 14 surgical patients. Plain radiographs were equivocal for sequestra in seven of these patients, because the sequestra were too small or because diffuse bony sclerosis was present. CT also demonstrated a foreign body and five soft tissue abscesses not suspected on the basis of plain radiographs. CT studies, which helped guide the operative approach, were also useful in treating those patients whose plain radiographs were positive for sequestra. The authors review the potential role of CT in evaluating patients with chronic osteomyelitis.

  16. Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast.

    PubMed

    Rogers, S W

    1999-10-15

    Because the brain does not usually leave direct evidence of its existence in the fossil record, our view of this structure in extinct species has relied upon inferences drawn from comparisons between parts of the skeleton that do fossilize or with modern-day relatives that survived extinction. However, soft-tissue structure preservation may indeed occasionally occur, particularly in the endocranial space. By applying modern imaging and analysis methods to such natural cranial "endocasts," we can now learn more than ever thought possible about the brains of extinct species. I will discuss one such example in which spiral computed tomography (CT) scanning analysis has been successfully applied to reveal preserved internal structures of a naturally occurring endocranial cast of Allosaurus fragilis, the dominant carnivorous dinosaur of the late Jurassic period. The ability to directly examine the neuroanatomy of an extinct dinosaur, whose modern-day relatives are birds and crocodiles, has exciting implications about Allosaurus' behavior, its adaptive responses to its environment, and its eventual extinction.

  17. Magnetic and gaseous spiral arms in M83

    NASA Astrophysics Data System (ADS)

    Frick, P.; Stepanov, R.; Beck, R.; Sokoloff, D.; Shukurov, A.; Ehle, M.; Lundgren, A.

    2016-01-01

    Context. The magnetic field configurations in several nearby spiral galaxies contain magnetic arms that are sometimes located between the material arms. The nearby barred galaxy M83 provides an outstanding example of a spiral pattern seen in tracers of gas and magnetic field. Aims: We analyse the spatial distribution of magnetic fields in M83 and their relation to the material spiral arms. Methods: Isotropic and anisotropic wavelet transforms are used to decompose the images of M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We used radio polarization observations at λ6.2 cm and λ13 cm obtained with the VLA, Effelsberg and ATCA telescopes and APEX sub-mm observations at 870 μm, which are first published here, together with maps of the emission of warm dust, ionized gas, molecular gas, and atomic gas. Results: The spatial power spectra are similar for the tracers of dust, gas, and total magnetic field, while the spectra of the ordered magnetic field are significantly different. As a consequence, the wavelet cross-correlation between all material tracers and total magnetic field is high, while the structures of the ordered magnetic field are poorly correlated with those of other tracers. The magnetic field configuration in M83 contains pronounced magnetic arms. Some of them are displaced from the corresponding material arms, while others overlap with the material arms. The pitch angles of the magnetic and material spiral structures are generally similar. The magnetic field vectors at λ6.2 cm are aligned with the outer material arms, while significant deviations occur in the inner arms and, in particular, in the bar region, possibly due to non-axisymmetric gas flows. Outside the bar region, the typical pitch angles of the material and magnetic spiral arms are very close to each other at about 10°. The typical pitch angle of the magnetic field vectors is about 20° larger than that of the material spiral arms. Conclusions

  18. Shadows and spirals in the protoplanetary disk HD 100453

    NASA Astrophysics Data System (ADS)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and

  19. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    SciTech Connect

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul E-mail: paul@astr.as.utexas.edu E-mail: lorenza.levy@yahoo.com

    2010-02-15

    Broadband B and R and H{alpha} images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of H{alpha} flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the H{alpha} disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the H{alpha} disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both

  20. SU-E-T-161: Characterization and Validation of CT Simulator Hounsfield Units to Relative Stopping Power Values for Proton Treatment Planning

    SciTech Connect

    Schnell, E; Ahmad, S; De La Fuente Herman, T

    2015-06-15

    Purpose: To develop a calibration curve that includes and minimizes the variations of Hounsfield Unit (HU) from a CT scanner to Relative Stopping Power (RSP) of tissues along the proton beam path. The variations are due to scanner and proton energy, technique, phantom size and placement, and tissue arrangement. Methods: A CIRS 062 M phantom with 10 plugs of known relative electron density (RED) was scanned through a 16 slice GE Discovery CT Simulator scanner. Three setup combinations of plug distributions and techniques clinically implemented for five treatment regions were scanned with energies of 100, 120, and 140 kV. Volumetric HU values were measured for each plug and scan. The RSP values derived through the Bethe-Bloch formula are currently being verified with parallel-plate ionization chamber measurements in water using 80, 150, and 225 MeV proton beam. Typical treatment plans for treatment regions of brain, head-&-neck, chest, abdomen, and pelvis are being planned and dose delivered will be compared with film and Optically Stimulated Luminescence (OSL) measurements. Results: Percentage variations were determined for each variable. For tissues close to water, variations were <1% from any given parameter. Tissues far from water equivalence (lung and bone) showed the greatest sensitivity to change (7.4% maximum) with scanner energy and up to 5.3% with positioning of the phantom. No major variations were observed for proton energies within the treatment range. Conclusion: When deriving a calibration curve, attention should be placed to low and high HU values. A thorough verification process of calculated vs. water-phantom measured RSP values at different proton energies, followed by dose validation of planned vs. measured doses in phantom with film and OSL detectors are currently being undertaken.

  1. Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging

    NASA Astrophysics Data System (ADS)

    Petrick, Nicholas; Kim, Hyun J. Grace; Clunie, David; Borradaile, Kristin; Ford, Robert; Zeng, Rongping; Gavrielides, Marios A.; McNitt-Gray, Michael F.; Fenimore, Charles; Lu, Z. Q. John; Zhao, Binsheng; Buckler, Andrew J.

    2011-03-01

    The purpose of this work was to estimate bias in measuring the size of spherical and non-spherical lesions by radiologists using three sizing techniques under a variety of simulated lesion and reconstruction slice thickness conditions. We designed a reader study in which six radiologists estimated the size of 10 synthetic nodules of various sizes, shapes and densities embedded within a realistic anthropomorphic thorax phantom from CT scan data. In this manuscript we report preliminary results for the first four readers (Reader 1-4). Two repeat CT scans of the phantom containing each nodule were acquired using a Philips 16-slice scanner at a 0.8 and 5 mm slice thickness. The readers measured the sizes of all nodules for each of the 40 resulting scans (10 nodules x 2 slice thickness x 2 repeat scans) using three sizing techniques (1D longest in-slice dimension; 2D area from longest in-slice dimension and corresponding longest perpendicular dimension; 3D semi-automated volume) in each of 2 reading sessions. The normalized size was estimated for each sizing method and an inter-comparison of bias among methods was performed. The overall relative biases (standard deviation) of the 1D, 2D and 3D methods for the four readers subset (Readers 1-4) were -13.4 (20.3), -15.3 (28.4) and 4.8 (21.2) percentage points, respectively. The relative biases for the 3D volume sizing method was statistically lower than either the 1D or 2D method (p<0.001 for 1D vs. 3D and 2D vs. 3D).

  2. SU-E-J-207: Assessing the Validity of 4D-CT Based Target Volumes and Free Breathing CBCT Localization in Lung Stereotactic Ablative Radiation Therapy (SABR)

    SciTech Connect

    Badkul, R; Pokhrel, D; Jiang, H; Park, J; Wang, F; Kumar, P

    2014-06-01

    Purpose: Four-dimensional-computed-tomography(4D-CT) imaging for target-volume delineation and cone-beam-tomography(CBCT) for treatment localization are widely utilized in lung-SABR.Aim of this study was to perform a quantitative-assessment and inter-comparison of Internal-targetvolumes( ITV) drawn on various phases of breathing-cycle 4D-CT-scans, Maximum-intensity-projection(MIP), average-intensity-projection(AIP)and static CT-scans of lung-motion-phantom to simulate lung-SABR patient geometry. We also analyzed and compared the ITVs drawn on freebreathing- CBCT. Materials and Methods: 4D-CT-scans were acquired on Philips big-bore 16slice CT and Bellows-respiratory monitoring-system using retrospective phase-binning method. Each respiratory cycle divided into 10-phases. Quasar-Phantom with lung-inserts and 3cm-diameter nylonball to simulate tumor and was placed on respiratory-motion-platform for 4D-CT and CBCT-acquisition. Amplitudes of motions: 0.5,1.0,2.0,3.0cm in superior-inferior direction with breathing-cycle time of 6,5,4,6sec, respectively used.4D-CTs with 10-phases(0%to90%)for each excursion-set and 3D-CT for static-phantom exported to iPlan treatment-planningsystem( TPS).Tumor-volumes delineated in all phases of 4D-CT, MIP,AIP,CBCT scans using fixed-HU-threshold(−500to1000)values automatically.For each 4D-dataset ITV obtained by unifying the tumorcontours on all phases.CBCT-ITV-volumes were drawn in Eclipse-TPS. Results: Mean volume of tumor contours for all phases compared with static 3D-CT were 0.62±0.08%, 1.67±0.26%, 4.77±0.54% and 9.27±1.23% for 0.5cm,1cm,2cm,3cm excursions respectively. Differences of mean Union-ITV with MIP-ITV were close(≤2.4%).Mean Union-ITV from expected-theoretical values differed from −4.9% to 3.8%.Union-ITV and MIP-ITV were closer within 2.3%. AIP-ITVs were underestimated from 14 to 32% compared to union-ITV for all motion datasets. Differences of −5.9% to −44% and −5% to 6.7% for CBCT-ITV from MIP-ITV and AIP

  3. The black hole mass function derived from local spiral galaxies

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Daniel; Kennefick, Julia; Seigar, Marc S.; Lacy, Claud H. S.; Hartley, Matthew T.

    2014-07-10

    We present our determination of the nuclear supermassive black hole (SMBH) mass function for spiral galaxies in the local universe, established from a volume-limited sample consisting of a statistically complete collection of the brightest spiral galaxies in the southern (δ < 0°) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. The sample is defined by a limiting luminosity (redshift-independent) distance, D{sub L} = 25.4 Mpc (z = 0.00572) and a limiting absolute B-band magnitude, M{sub B}=−19.12. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch-angle distribution function may be useful in the study of the morphology of late-type galaxies. We then use an established relationship between the logarithmic spiral arm pitch angle and the mass of the central SMBH in a host galaxy in order to estimate the mass of the 128 respective SMBHs in this volume-limited sample. This result effectively gives us the distribution of mass for SMBHs residing in spiral galaxies over a lookback time, t{sub L} ≤ 82.1 h{sub 67.77}{sup −1} Myr and contained within a comoving volume, V{sub C} = 3.37 × 10{sup 4} h{sub 67.77}{sup −3} Mpc{sup 3}. We estimate that the density of SMBHs residing in spiral galaxies in the local universe is ρ=5.54{sub −2.73}{sup +6.55} × 10{sup 4} h{sub 67.77}{sup 3} M{sub ☉} Mpc{sup –3}. Thus, our derived cosmological SMBH mass density for spiral galaxies is Ω{sub BH}=4.35{sub −2.15}{sup +5.14} × 10{sup –7} h{sub 67.77}. Assuming that

  4. Curvature-driven bubbles or droplets on the spiral surface

    PubMed Central

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-01-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration. PMID:27885261

  5. Charge breeder for the SPIRAL1 upgrade: Preliminary results

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Bajeat, O.; Frigot, R.; Jeanne, A.; Jardin, P.; Kamalou, O.; Lecomte, P.; Osmond, B.; Peschard, G.; Savalle, A.; Angot, J.; Sole, P.; Lamy, T.

    2016-02-15

    In the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF—buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab. This contribution shall present preliminary results of experiments conducted at LPSC concerning the 1 + to n+ conversion efficiencies for noble gases as well as for alkali elements and the corresponding transformation times.

  6. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  7. Local interstellar gasdynamical stability in spiral arm flow

    NASA Technical Reports Server (NTRS)

    Balbus, S. A.

    1986-01-01

    The stability of two-dimensional interstellar gas flow passing through a spiral potential has been investigated. The background flow is assumed to move in a tightly wound potential, which may be regarded as external or self-generated. The unperturbed flow, which may be time dependent, is self-gravitating and satisfies the Roberts equations of motion. A polytropic, single-fluid assumption has been used. Magnetic effects are not considered. The motivation behind this work is to try to understand how much of the diversity of spiral arm morphology can be understood by large scale gas dynamical processes alone. To this end, it is suggested that spurring and feathering, and forming molecular cloud complexes may be closely related in the sense of having dynamically similar origins.

  8. A spiral vortex model of homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Higgins, Keith; Ooi, Andrew; Chong, Min

    2002-11-01

    The Lundgren-Townsend model of turbulent fine scales has been successful in predicting some of the properties of homogeneous isotropic turbulence. Lundgren obtained these results by averaging over an ensemble of nearly axisymmetric, unsteady, stretched spiral vortices. These vortical structures are represented in the model by a large-time asymptotic solution of the Navier-Stokes equations. Extending on the work of Pullin & Saffman [Phys. Fluids 8, 3072 (1996)], we calculate the energy spectrum and longitudinal velocity structure functions for a specific realisation of the Lundgren-Townsend model. Here the members of our ensemble are time-evolving spiral vortex structures resulting from the merging of stretched Burgers vortex tubes. The merging is computed numerically following the method of Buntine & Pullin [JFM 205, 263 (1989)]. We present results for a range of vortex Reynolds numbers.

  9. Mass extinctions and the sun's encounters with spiral arms

    NASA Astrophysics Data System (ADS)

    Leitch, Erik M.; Vasisht, Gautam

    1998-02-01

    The terrestrial fossil record shows that the exponential rise in biodiversity since the Precambrian period has been punctuated by large extinctions, at intervals of 40 to 140 Myr. These mass extinctions represent extremes over a background of smaller events and the natural process of species extinction. We point out that the non-terrestrial phenomena proposed to explain these events, such as boloidal impacts (a candidate for the end-Cretaceous extinction) and nearby supernovae, are collectively far more effective during the solar system's traversal of spiral arms. Using the best available data on the location and kinematics of the Galactic spiral structure (including distance scale and kinematic uncertainties), we present evidence that arm crossings provide a viable explanation for the timing of the large extinctions.

  10. Study of surface plasmon chirality induced by Archimedes' spiral grooves.

    PubMed

    Ohno, Tomoki; Miyanishi, Shintaro

    2006-06-26

    A chirality of surface plasmons excited on a silver film with Archimedes' spiral grooves during incidence of a circularly polarized light is analytically and numerically studied by using the finite-difference time-domain (FDTD) modeling method. We found that the surface of a plasmon has selective chirality, which is given by the sum of the chiralities of the incident light and the spiral structure. The surface plasmons with the chirality lead to zero-order, first-order, and high-order evanescent Bessel beams with electric charge distributions on the film. This selectivity could be widely applied for chiral detection of the incident light and chiral excitation of several optical modes in nanophotonics.

  11. Curvature-driven bubbles or droplets on the spiral surface

    NASA Astrophysics Data System (ADS)

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-11-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration.

  12. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  13. Laser milling of martensitic stainless steels using spiral trajectories

    NASA Astrophysics Data System (ADS)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  14. Experimental measurement on movement of spiral-type capsule endoscope

    PubMed Central

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability. PMID:26848279

  15. EGRET Unidentified Sources and the Galactic Spiral Arms

    NASA Astrophysics Data System (ADS)

    Miyagi, T.; Bhattacharya, D.; Zych, A.; Akyuz, A.; Samimi, J.

    2004-10-01

    An unbiased and complete LogN-LogS relation sam- ples the source distribution for a specific source ge- ometry without the knowledge of the source lumi- nosity function or the distance. Based on such an analysis we show that EGRET unidentified (EUI) sources are very closely aligned with the Galactic spiral arms and specifically with the distribution of the giant molecular clouds. Furthermore, the lumi- nosity distribution of the unidentified sources show a two population Gaussian distribution. We find that a combined distribution of OB associations, SNR and superbubbles interacting with molecular clouds within the spiral arms are the most likely counter- parts of the unidentified sources. Key words: gamma rays: observations - general - ISM: clouds.

  16. Continuous separation of blood cells in spiral microfluidic devices

    PubMed Central

    Nivedita, Nivedita; Papautsky, Ian

    2013-01-01

    Blood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry. Here, we report on optimized Archimedean spiral devices to achieve cell separation in less than 8 cm of downstream focusing length. These improved devices are small in size (<1 in.2), exhibit high separation efficiency (∼95%), and high throughput with rates up to 1 × 106 cells per minute. These device concepts offer a path towards possible development of a lab-on-chip for point-of-care blood analysis with high efficiency, low cost, and reduced analysis time. PMID:24404064

  17. Heating hydrocarbon containing formations in a spiral startup staged sequence

    DOEpatents

    Vinegar, Harold J.; Miller, David Scott

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  18. Development of spiral-groove self-acting face seals

    NASA Technical Reports Server (NTRS)

    Obrien, M.

    1977-01-01

    An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s surface speed, 199.9 N/sq cm air pressure, and 645.4K (702 F) air temperature. The maximum speed condition of 243.8 m/s was obtained at a shaft speed of 72,500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine.

  19. Chiral spiral induced by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Abuki, Hiroaki

    2016-11-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a "continent" of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  20. Millimeter-wave generation with spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Kulke, B.

    1971-01-01

    The feasibility of using the interaction between a thin, solid, spiraling electron beam of 10 to 20 kV energy and a microwave cavity to generate watts of CW millimeter-wave power was investigated. Experimental results are given for several prototype devices operating at 9.4 GHz and at 94 GHz. Power outputs of 5 W, and electronic efficiencies near 3%, were obtained at X band, and moderate gain was obtained at 94 GHz. The small-signal theory gives a good fit to the X-band data, and the device behavior at 94 GHz is as expected from the given beam characteristics. The performance is limited chiefly by the velocity spread in the spiraling electron beam, and once this can be brought under control, high-power generation of millimeter waves appears quite feasible with this type of device.

  1. Stationary spiral waves in film flow over a spinning disk

    NASA Astrophysics Data System (ADS)

    Sisoev, G. M.; Goldgof, D. B.; Korzhova, V. N.

    2010-05-01

    Stationary spiral waves in liquid film flowing over a spinning disk have been observed in earlier experiments [H. Espig and R. Hoyle, "Waves in a thin liquid layer on a rotating disk," J. Fluid Mech. 22, 671 (1965); A. F. Charwat et al., "The flow and stability of thin liquid films on a rotating disk," J. Fluid Mech. 53, 227 (1972); G. Leneweit et al., "Surface instabilities of thin liquid film flow on a rotating disk," Exp. Fluids 26, 75 (1999)]. In the framework of a mathematical model derived by the integral method, it is shown that the waves develop due to nonaxisymmetric liquid feeding onto the spinning disk, and the wave shapes are approximated by the Archimedean spirals, whose coefficients depend on the Eckman number. The dependence has been confirmed by experimental data from recorded videos.

  2. Experimental measurement on movement of spiral-type capsule endoscope.

    PubMed

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability.

  3. Spiral-Bevel-Gear Damage Detected Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.

    2003-01-01

    Helicopter transmission integrity is critical to helicopter safety because helicopters depend on the power train for propulsion, lift, and flight maneuvering. To detect impending transmission failures, the ideal diagnostic tools used in the health-monitoring system would provide real-time health monitoring of the transmission, demonstrate a high level of reliable detection to minimize false alarms, and provide end users with clear information on the health of the system without requiring them to interpret large amounts of sensor data. A diagnostic tool for detecting damage to spiral bevel gears was developed. (Spiral bevel gears are used in helicopter transmissions to transfer power between nonparallel intersecting shafts.) Data fusion was used to integrate two different monitoring technologies, oil debris analysis and vibration, into a health-monitoring system for detecting surface fatigue pitting damage on the gears.

  4. The generalized transmission error of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1987-01-01

    The traditional definition of the transmission error of parallel-axis gear pairs is reviewed and shown to be unsuitable for characterizing the deviation from conjugate action of bevel gear pairs for vibration excitation characterization purposes. This situation is rectified by generalizing the concept of the transmission error of parallel-axis gears to a three-component transmission error for spiral bevel gears of nominal spherical involute design. A general relationship is derived which expresses the contributions to the three-component transmission error from each gear of a meshing spiral bevel pair as a linear transformation of the six coordinates that describe the deviation of the shaft centerline position of each gear of the pair from the position of its rigid perfect involute counterpart.

  5. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  6. Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2017-02-01

    Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.

  7. Spiral column configuration for protein separation by high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro

    2009-01-01

    Retention of the stationary phase of aqueous-aqueous polymer phase systems is improved by a spiral column configuration which utilizes the radially acting centrifugal force along the spiral pitch to retain the heavier phase in the outer portion and the lighter phase in the inner portion of the spiral channel. For the separation of proteins which has low mass transfer rates, the system needs further modification of the separation channel to interrupt the laminar flow and enhance mixing of the two phases. Two spiral column assemblies were developed, one using a disk with spiral grooves and the other, the spiral tube support which accommodates the multiple spiral layers made from a single piece of fluorinated plastic tubing. In the spiral disk assembly, the best protein separation is achieved by the mixer-settler system which vigorously mixes two phases by vibrating glass beads placed in every other section of barricaded spiral channel, while in the spiral tube assembly the partition efficiency of proteins is enhanced by compressing the tubing to interrupt the laminar flow of the mobile phase. In both systems protein samples were well resolved by choosing the suitable elution modes. PMID:20823942

  8. Thoracic textilomas: CT findings*

    PubMed Central

    Machado, Dianne Melo; Zanetti, Gláucia; Araujo, Cesar Augusto; Nobre, Luiz Felipe; Meirelles, Gustavo de Souza Portes; Pereira e Silva, Jorge Luiz; Guimarães, Marcos Duarte; Escuissato, Dante Luiz; Souza, Arthur Soares; Hochhegger, Bruno; Marchiori, Edson

    2014-01-01

    OBJECTIVE: The aim of this study was to analyze chest CT scans of patients with thoracic textiloma. METHODS: This was a retrospective study of 16 patients (11 men and 5 women) with surgically confirmed thoracic textiloma. The chest CT scans of those patients were evaluated by two independent observers, and discordant results were resolved by consensus. RESULTS: The majority (62.5%) of the textilomas were caused by previous heart surgery. The most common symptoms were chest pain (in 68.75%) and cough (in 56.25%). In all cases, the main tomographic finding was a mass with regular contours and borders that were well-defined or partially defined. Half of the textilomas occurred in the right hemithorax and half occurred in the left. The majority (56.25%) were located in the lower third of the lung. The diameter of the mass was ≤ 10 cm in 10 cases (62.5%) and > 10 cm in the remaining 6 cases (37.5%). Most (81.25%) of the textilomas were heterogeneous in density, with signs of calcification, gas, radiopaque marker, or sponge-like material. Peripheral expansion of the mass was observed in 12 (92.3%) of the 13 patients in whom a contrast agent was used. Intraoperatively, pleural involvement was observed in 14 cases (87.5%) and pericardial involvement was observed in 2 (12.5%). CONCLUSIONS: It is important to recognize the main tomographic aspects of thoracic textilomas in order to include this possibility in the differential diagnosis of chest pain and cough in patients with a history of heart or thoracic surgery, thus promoting the early identification and treatment of this postoperative complication. PMID:25410842

  9. Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Darren Robert

    This thesis describes a system that, given approximately-centered images of spiral galaxies, produces quantitative descriptions of spiral galaxy structure without the need for per-image human input. This structure information consists of a list of spiral arm segments, each associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs representation allows description of arbitrary spiral galaxy structure: the arms do not need to be symmetric, may have forks or bends, and, more generally, may be arranged in any manner with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined center). Such flexibility is important in order to accommodate the myriad structure variations observed in spiral galaxies. From the arcs produced from our method it is possible to calculate measures of spiral galaxy structure such as winding direction, winding tightness, arm counts, asymmetry, or other values of interest (including user-defined measures). In addition to providing information about the spiral arm "skeleton" of each galaxy, our method can enable analyses of brightness within individual spiral arms, since we provide the pixel regions associated with each spiral arm segment. For winding direction, arm tightness, and arm count, comparable information is available (to various extents) from previous efforts; to the extent that such information is available, we find strong correspondence with our output. We also characterize the changes to (and invariances in) our output as a function of modifications to important algorithm parameters. By enabling generation of extensive data about spiral galaxy structure from large-scale sky surveys, our method will enable new discoveries and tests regarding the nature of galaxies and the universe, and will facilitate subsequent work to automatically fit detailed brightness models of spiral galaxies.

  10. A Comparison of Spiral Tracers in M81: Erratum

    NASA Astrophysics Data System (ADS)

    Kaufman, Michele; Bash, Frank N.; Hine, Butler; Rots, Arnold H.; Elmegreen, Debra M.; Hodge, Paul W.

    1990-05-01

    In the paper "A Comparison of Spiral Tracers in M81" by Michele Kaufman, Frank N. Bash, Butler Hine, Arnold H. Rots, Debra M. Elmegreen, and Paul W. Hodge (Ap. J., 345, 674 [1989]), Figure 1 (Plate 7) was miscentered, and as a result the labels on be vertical axis on the left-hand side of the H I image were cut off. The separation between tick marks on the vertical axis is 200", the same as on the horizontal axis.

  11. The Abundance and Chemical Evolution of Nitrogen in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Thurston, Tad Ralph

    1998-09-01

    The character of nitrogen processing in spiral galaxies is studied in this dissertation. Of particular interest are questions of how the (N/O) ratio changes over time as a result of perturbations of environmental parameters, as well as the importance of primary vs. secondary nitrogen generation and the regimes where one may be the preferred method. A robust numerical chemical evolution code (NICE) was written to model the change in elemental ratios during galactic chemical processing. This code is consistent with standard observational constraints. A new method is developed for the calculation of (N/O) abundances in the absence of observed temperature-diagnostic emission lines. New (N/O) abundances are derived for previously observed HII regions in spiral and dwarf galaxies, and the trends noted in the observations are modeled with the numeric code NICE. I conclude it is likely that early-type spirals once had a higher rate of infalling material relative to late-type galaxies, resulting in both a higher (N/O) ratio as well as a lower gas fraction during later epochs. NICE models also suggest that the star formation rate was suppressed in the extremely metal-poor stages of galaxy chemical processing, as shown by the model fits to the I Zw 18 regions as well as a highly redshifted primeval galaxy. Primary nitrogen production is only realized in stars of 4-8 solar masses, so that this is the first source of nitrogen after an episode of star formation. This is seen in both the observations and the models of low-metallicity dwarf galaxies. At later times, secondary nitrogen is released by stars in the lower mass range (1-4 solar masses), contributing to the steeper slope seen in (N/O) vs. OH for the more chemically advanced spiral galaxies.

  12. Multi-modes processes for stretched spiral vortex formation

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi

    2004-11-01

    We studied a process for formation of the stretched spiral vortex (Lundgren 1982) in incompressible homogeneous isotropic turbulence. It was shown that multi modes exist for the configuration of alignment between the vorticity vectors along the vortex tube core and the vorticity vector along the sheet which emanates from and wraps around the tube core. A representative one is that generated via a roll-up of the vortex sheet through focusing, in which these two vorticity vectors were parallel. Alternative mechanism for formation of this parallel configuration was through the interaction of two different sheets which were initially placed perpendicular to each other. These two sheets generated a weak circulation and it gradually accumulated to form the tube core region. These two sheets were entrained by the tube core and the spiral sheets emanating from the tube core was formed. The tubes in this mode persisted for a rather long period of time. In another mode, the vorticity vectors along the sheet were in the direction transverse to those along the tube core. It was found that this mode often takes an asymmetric configuration in which the vorticity vectors along one of the sheets were parallel to those along the tube, while the vectors along another sheet were transverse to those along the tube. The configuration in which the vorticity vectors along both sheets were transverse to those along the tube core (Pullin and Lundgren 2001) was rarely found. Intense energy cascade took place with the stretching of the spiral vortex sheets. As the Reynolds number was increased, the frequency of occurrence of the spiral vortex formation increased, and the energy spectrum showed a profile close to the -5/3 law.

  13. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  14. Nonlinear density wave theory for the spiral structure of galaxies.

    PubMed

    Kondoh, S; Teramoto, R; Yoshida, Z

    2000-05-01

    The theory of nonlinear waves for plasmas has been applied to the analysis of the density wave theory of galaxies which are many-body systems of gravity. A nonlinear Schrödinger equation has been derived by applying the reductive perturbation method on the fluid equations that describe the behavior of infinitesimally thin disk galaxies. Their spiral arms are characterized by a soliton and explained as a pattern of a propagating nonlinear density wave.

  15. Corrosion Prevention and Control Planning Guidebook Spiral 3

    DTIC Science & Technology

    2007-09-01

    radiation (sunlight) causes chalking of paint; hydrolysis of chlorinated organics; and de- grades exposed plastics and elastomers . Degradation of these...plastics and elastomers . Some paint strippers, some cleaners, and most acids are very corrosive to airplane structure. Designers should select... Elastomeric , High Solids, active, 30 December 1994 Spiral Number 3 D-3 Volume I 2.1.1.1.2 Military MIL-PRF-3043, Resin-Coating, Permanent, For

  16. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  17. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  18. Straddle Design Of Spiral Bevel And Hypoid Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.; Kuan, Chihping; Kieffer, Jonathan; Bossler, Robert

    1994-01-01

    Computer-assisted method of analysis of straddle designs for spiral bevel and hypoid gears helps prevent undercutting of gear shafts during cutting of gear teeth. Analytical method and computer program based on equations for surface traced out by motion of head cutter, equation for cylindrical surface of shaft, and equations expressing relationships among coordinate systems fixed to various components of gear-cutting machine tool and gear.

  19. Intussusception involving the spiral colon in a calf.

    PubMed

    Hamilton, G F; Tulleners, E P

    1980-01-01

    Clinical examination of a ten month old Holstein heifer with a history of colic and anorexia revealed a distended viscus in the midline and a hard, sausage-shaped mass in the right lower posterior quadrant of the abdomen. At surgery, the mass was exteriorized and found to be an intussusception of the colon into the spiral colon. The intussusception was reduced by traction and the animal made an uneventful recovery.

  20. Tracing the Galactic spiral structure with embedded clusters

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bonatto, C.; Bica, E.

    2015-07-01

    In this work, we investigate the properties of 18 embedded clusters (ECs). The sample includes 11 previously known clusters and we report the discovery of seven ECs on WISE images, thus complementing our recent list of 437 new clusters. The main goal is to use such clusters to shed new light on the Galactic structure by tracing the spiral arms with cluster distances. Our results favour a four-armed spiral pattern tracing three arms, Sagitarius-Carina, Perseus, and the Outer arm. The Sagitarius-Carina spiral arm is probed in the borderline of the third and fourth quadrants at a distance from the Galactic Centre of d1 ˜ 6.4 kpc adopting R⊙ = 7.2 kpc, or d2 ˜ 7.2 kpc for R⊙ = 8.0 kpc. Most ECs in our sample are located in the Perseus arm that is traced in the second and third quadrants and appear to be at Galactocentric distances in the range d1 = 9-10.5 kpc or d2 = 9.8-11.3 kpc. Dolidze 25, Bochum 2, and Camargo 445 are located in the Outer arm that extends along the second and third Galactic quadrants with a distance from the Galactic Centre in the range of d1 = 12.5-14.5 kpc or d2 = 13.5-15.5 kpc. We find further evidence that in the Galaxy ECs are predominantly located within the thin disc and along spiral arms. They are excellent tools for tracing these Galactic features and therefore new searches for ECs can contribute to a better understanding of the Galactic structure. We also report an EC aggregate located in key italicthe Perseus arm.

  1. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  2. Design principles for Bernal spirals and helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  3. Fraunhofer diffraction of a partially blocked spiral phase plate.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Hernandez, Travis J

    2011-07-04

    The Fraunhofer diffraction pattern from a partially blocked spiral phase plate (SPP) produces a partial vortex output pattern that is rotated by 90 degrees compared with the input. The rotation direction depends on whether the angular phase pattern increases in the clockwise or counterclockwise direction. In this work, we present an explanation of this effect based on careful examination of classical diffraction theory and show new experimental results. This approach is very convenient for easily determining the sign of the vortex charge.

  4. The similar stellar populations of quiescent spiral and elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Robaina, Aday R.; Hoyle, Ben; Gallazzi, Anna; Jiménez, Raul; van der Wel, Arjen; Verde, Licia

    2012-12-01

    We compare the stellar population properties in the central regions of visually classified non-star-forming spiral and elliptical galaxies from Galaxy Zoo and Sloan Digital Sky Survey (SDSS) Data Release 7. The galaxies lie in the redshift range 0.04 < z < 0.1 and have stellar masses larger than log M* = 10.4. We select only face-on spiral galaxies in order to avoid contamination by light from the disc in the SDSS fibre and enabling the robust visual identification of spiral structure. Overall, we find that galaxies with larger central stellar velocity dispersions, regardless of morphological type, have older ages, higher metallicities and an increased overabundance of α-elements. Age and α-enhancement, at fixed velocity dispersion, do not depend on morphological type. The only parameter that, at a given velocity dispersion, correlates with morphological type is metallicity, where the metallicity of the bulges of spiral galaxies is 0.07 dex higher than that of the ellipticals. However, for galaxies with a given total stellar mass, this dependence on morphology disappears. Under the assumption that, for our sample, the velocity dispersion traces the mass of the bulge alone, as opposed to the total mass (bulge+disc) of the galaxy, our results imply that the formation epoch of galaxy and the duration of its star-forming period are linked to the mass of the bulge. The extent to which metals are retained within the galaxy, and not removed as a result of outflows, is determined by the total mass of the galaxy.

  5. Crawling and spiraling of cholesteric fingers in electric field

    NASA Astrophysics Data System (ADS)

    Ribière, P.; Oswald, P.; Pirkl, S.

    1994-01-01

    We show that two types of fingers exist in homeotropic samples of cholesteric liquid crystals of positive dielectric anisotropy : fingers of a first species in which the director field is continuous, and fingers of a second species which are topologically singular and of the same nature as spherulites (also called cholesteric bubbles). When the former are subjected to a low frequency AC electric field, they crawl slowly along their axes whereas the latter drift perpendicularly to their axes and form spirals when one of their ends is pinned on a defect. This work supplements spirals recently observed in Nice by Kamayé and Gilli [8] and by Mitov and Sixou [9] in similar systems. Nous montrons que deux types de doigts existent dans des échantillons homéotropes de cristaux liquides cholestériques d'anisotropie diélectrique positive : les doigts de première espèce dans lesquels le champ de directeurs est continu, et les doigts de seconde espèce qui sont topologiquement singuliers et de même nature que les sphérulites (aussi appelées “ bulles ” cholestériques). Quand les premiers sont soumis à un champ électrique alternatif basse fréquence, ils rampent lentement le long de leurs axes tandis que les seconds dérivent perpendiculairement à leurs axes et forment des spirales quand une de leurs extrémités est piégée sur un défaut. Ce travail complète les observations de spirales faites récemment à Nice par Kamayé et Gilli [8] ainsi que par Mitov et Sixou [9] dans des systèmes similaires.

  6. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields.

  7. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2014-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  8. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  9. Turbulence and Star Formation in a Sample of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Maier, Erin; Chien, Li-Hsin; Hunter, Deidre A.

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  10. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    PubMed Central

    2016-01-01

    A broad class of soil fungi form the annular patterns known as ‘fairy rings’ and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns. PMID:26934477

  11. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  12. Spiral arms and `dye walls' in a compound vortex

    NASA Astrophysics Data System (ADS)

    Stepanova, E.

    2009-04-01

    Shapes of water surface and transport of contaminants by compound vortex were studied experimentally. Vortex motion in a cylindrical container was produced by uniformly rotating disc placed near the bottom of container. Shapes and depth of surface trough for different values of experimental conditions that are depth of the fluid layer, diameter and angular velocity of rotating disc were measured and compared with calculated. Running large-scale inertial waves and short spiral waves are observed on the surface of the trough. Strong anisotropy of substance transport from a compact spot in compound vortex is observed. In a fluid at rest drop of dye placed on a free surface form cascade of circular vortices. Drop of the dye placed on a free surface inside the surface trough of compound vortex is transformed into fast changing vortex structures. On the free surface extended spiral arms are spinning from the spot. Dye from spiral arms is extracted into vortex and transported along vertical cylindrical surfaces. Comparison with a few previously published papers is given and extrapolation of data on environmental conditions is discussed.

  13. Novel on-chip spiral inductors with back hollow structure

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Liu, Houfang; Li, Xiaoning; Qiu, Haochuan; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    In this work, on-chip spiral inductors with back hollow structure have been prepared on the 500 μm thick silicon substrate with high resistivity (ρ > 5000Ωcm). The silicon underneath the inductor region has been completely etched by deep etching process in order to reduce the substrate eddy current losses. Several types of square spiral on-chip inductors with different metal width (w) and line spacing (s) in the case of w + s = 40μm were fabricated. The experimental results are verified by FEM simulation using HFSS software. The results show that the Q-factor and self-resonance frequency of back hollow structure inductors are both enhanced compared with the conventional inductors. Furthermore, narrower width of coils for the on-chip spiral inductors with back hollow structure can result in higher Q-factor, inductance L and self-resonance frequency, which provide some important design guides for the fabrication of the high performance on-chip inductors.

  14. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  15. The observed North-South Asymmetry of IMF spiral

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.; Xue, S. S.

    1995-01-01

    We appraise the finding, reported in the literature, that a small but finite north-south asymmetry (NSA) exists in the interplanetary magnetic field (IMF) spiral at Earth's orbit. We have analyzed the data available on the Omnitape for the 1963 to 1993 period. The coverage is very uneven, ranging from less than 40% to greater than 80%. The magnitude of NSA fluctuates considerably during the period of our analysis. This is true even if one considers the period 1967 to 1982 when the coverage is greater than 50%. The values of NSA derived from 27-day averages of the hourly data points range from greater than +50 deg to less than -40 deg. If one arranges the data according to the magnetic polarity epochs of the solar polar field, the epoch averages gives the magnitude of NSA less than approximately 2 deg. This is also true, if one considers the average magnitude of NSA for the 1965 to 1993 period, when the coverage is greater than 25%. A genuine, persistent, NSA of IMF spiral is likely to affect the cosmic ray modulation, on either side of the current sheet, by introducing a corresponding change in the radial diffusion coefficient of energetic particle transport in the heliosphere. The annual mean values of the observed NSA of IMF spiral are compared with the observed off-ecliptic contributions to cosmic ray modulation.

  16. Dark and luminous properties of low-luminosity spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kogoshvili, N.; Borchkhadze, T.

    2012-08-01

    On the basis of data in our Merged Catalogue of Galaxies (MERCG), for which an online version is now available, we have analysed some properties of spiral galaxies that are members of pairs or small groups of galaxies. Our sample consists of a total of approximately 300 pairs and groups, distributed over the entire sky. In this context, low-luminosity spirals (LLS), here defined as those with an absolute magnitude of MB ≥ -20.6, are of particular interest, since they are thought to harbour dark matter. We find that the mean distance between the two components in LLS/LLS pairs of galaxies is significantly smaller than in LLS/elliptical (E), LLS/high-luminosity spiral (HLS) and HLS/HLS pairs, as well as in groups with at least one LLS. Moreover, LLS from this sample in the mean have larger central surface densities μo and smaller values of the full angular momentum K than HLS. In the second part, we investigate the relative frequencies of LLS galaxies, single as well as in pairs/groups. We find that they are 4-5 times more frequent inside and around three major clusters of galaxies (Virgo, Pegasus I and Perseus) than in the general field. Our findings all support the assumption that LLS galaxies are indeed carriers of dark matter.

  17. Accretion, radial flows and abundance gradients in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Pezzulli, Gabriele; Fraternali, Filippo

    2016-01-01

    The metal-poor gas continuously accreting on to the discs of spiral galaxies is unlikely to arrive from the intergalactic medium (IGM) with exactly the same rotation velocity as the galaxy itself and even a small angular momentum mismatch inevitably drives radial gas flows within the disc, with significant consequences to galaxy evolution. Here, we provide some general analytic tools to compute accretion profiles, radial gas flows and abundance gradients in spiral galaxies as a function of the angular momentum of the accreting material. We generalize existing solutions for the decomposition of the gas flows, required to reproduce the structural properties of galaxy discs, into direct accretion from the IGM and a radial mass flux within the disc. We then solve the equation of metallicity evolution in the presence of radial gas flows with a novel method, based on characteristic lines, which greatly reduces the numerical demand on the computation and sheds light on the crucial role of boundary conditions on the abundance profiles predicted by theoretical models. We also discuss how structural and chemical constraints can be combined to disentangle the contributions of inside-out growth and radial flows in the development of abundance gradients in spiral galaxies. Illustrative examples are provided throughout with parameters plausible for the Milky Way. We find that the material accreting on the Milky Way should rotate at 70-80 per cent of the rotational velocity of the disc, in agreement with previous estimates.

  18. Wiggle Instability of Galactic Spiral Shocks: Effects of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae; Elmegreen, Bruce G.

    2015-08-01

    It has been suggested that the wiggle instability (WI) of spiral shocks in a galactic disk is responsible for the formation of gaseous feathers observed in grand-design spiral galaxies. We perform both a linear stability analysis and numerical simulations to investigate the effect of magnetic fields on the WI. The disk is assumed to be infinitesimally thin, isothermal, and non-self-gravitating. We control the strengths of magnetic fields and spiral-arm forcing using the dimensionless parameters β and {F}, respectively. By solving the perturbation equations as a boundary-eigenvalue problem, we obtain dispersion relations of the WI for various values of β =1-∞ and {F}=5% and 10%. We find that the WI arising from the accumulation of potential vorticity at disturbed shocks is suppressed, albeit not completely, by magnetic fields. The stabilizing effect of magnetic fields is not from the perturbed fields but from the unperturbed fields that reduce the density compression factor in the background shocks. When {F}=5% and β ≲ 10 or {F}=10% and β ˜ 5-10, the most unstable mode has a wavelength of ˜0.1-0.2 times the arm-to-arm separation, which appears consistent with a mean spacing of observed feathers.

  19. Infrared emission and tidal interactions of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small.

  20. STAR FORMATION EFFICIENCY IN THE BARRED SPIRAL GALAXY NGC 4303

    SciTech Connect

    Momose, Rieko; Okumura, Sachiko K.; Sawada, Tsuyoshi; Koda, Jin E-mail: sokumura@nro.nao.ac.j E-mail: Jin.Koda@stonybrook.ed

    2010-09-20

    We present new {sup 12}CO (J = 1 - 0) observations of the barred galaxy NGC 4303 using the Nobeyama 45 m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H{alpha} images of barred spiral galaxies often show active star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate (SFR) and star formation efficiency (SFE) at a scale where local star formation is spatially resolved. Our CO map covers the central 2.'3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that SFR and SFE are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schmidt (KS) law, which indicates a constant SFR at a given gas surface density. The KS law breaks down at our native resolution ({approx}250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.

  1. CT scanning of the breast using a conventional CT scanner.

    PubMed

    Doust, B D; Milbrath, J R; Doust, V L

    1981-09-01

    Using a conventional body CT scanner, computed tomography of the breast was performed on 32 patients known to have or suspected of having breast masses. Xeromammograms were available for comparison in all cases. All mass lesions were histologically proved. Seven patients were examined prone, 25 supine. The prone position yielded pictures that resembled craniocaudal mammograms. Breast asymmetry, skin thickening, stranding from a mass to the chest wall, calcification, and axillary lymphadenopathy could be demonstrated by means of CT. The portion of the breast adjacent to the chest wall was more readily examined by means of CT than by conventional mammography. Internal mammary nodes could not be demonstrated.

  2. Dosimetric and image quality assessment of different acquisition protocols of a novel 64-slice CT scanner

    NASA Astrophysics Data System (ADS)

    Vite, Cristina; Mangini, Monica; Strocchi, Sabina; Novario, Raffaele; Tanzi, Fabio; Carrafiello, Gianpaolo; Conte, Leopoldo; Fugazzola, Carlo

    2006-03-01

    Dose and image quality assessment in computed tomography (CT) are almost affected by the vast variety of CT scanners (axial CT, spiral CT, low-multislice CT (2-16), high-multislice CT (32-64)) and imaging protocols in use. Very poor information is at the moment available on 64 slices CT scanners. Aim of this work is to assess image quality related to patient dose indexes and to investigate the achievable dose reduction for a commercially available 64 slices CT scanner. CT dose indexes (weighted computed tomography dose index, CTDI w and Dose Length Product, DLP) were measured with a standard CT phantom for the main protocols in use (head, chest, abdomen and pelvis) and compared with the values displayed by the scanner itself. The differences were always below 7%. All the indexes were below the Diagnostic Reference Levels defined by the European Council Directive 97/42. Effective doses were measured for each protocol with thermoluminescent dosimeters inserted in an anthropomorphic Alderson Rando phantom and compared with the same values computed by the ImPACT CT Patient Dosimetry Calculator software code and corrected by a factor taking in account the number of slices (from 16 to 64). The differences were always below 25%. The effective doses range from 1.5 mSv (head) to 21.8 mSv (abdomen). The dose reduction system of the scanner was assessed comparing the effective dose measured for a standard phantom-man (a cylinder phantom, 32 cm in diameter) to the mean dose evaluated on 46 patients. The standard phantom was considered as no dose reduction reference. The dose reduction factor range from 16% to 78% (mean of 46%) for all protocols, from 29% to 78% (mean of 55%) for chest protocol, from 16% to 76% (mean of 42%) for abdomen protocol. The possibility of a further dose reduction was investigated measuring image quality (spatial resolution, contrast and noise) as a function of CTDI w. This curve shows a quite flat trend decreasing the dose approximately to 90% and a

  3. Helical CT in emergency radiology.

    PubMed

    Novelline, R A; Rhea, J T; Rao, P M; Stuk, J L

    1999-11-01

    Today, a wide range of traumatic and nontraumatic emergency conditions are quickly and accurately diagnosed with helical computed tomography (CT). Many traditional emergency imaging procedures have been replaced with newer helical CT techniques that can be performed in less time and with greater accuracy, less patient discomfort, and decreased cost. The speed of helical technology permits CT examination of seriously ill patients in the emergency department, as well as patients who might not have been taken to CT previously because of the length of the examinations of the past. Also, helical technology permits multiple, sequential CT scans to be quickly obtained in the same patient, a great advance for the multiple-trauma patient. Higher quality CT examinations result from decreased respiratory misregistration, enhanced intravenous contrast material opacification of vascular structures and parenchymal organs, greater flexibility in image reconstruction, and improved multiplanar and three-dimensional reformations. This report summarizes the role and recommended protocols for the helical CT diagnosis of thoracic aortic trauma; aortic dissection; pulmonary embolism; acute conditions of the neck soft tissues; abdominal trauma; urinary tract stones; appendicitis; diverticulitis; abdominal aortic aneurysm; fractures of the face, spine, and extremities; and acute stroke.

  4. New analytical spiral tube assembly for separation of proteins by counter-current chromatography

    PubMed Central

    Ma, Xiaofeng; Ito, Yoichiro

    2015-01-01

    A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6 mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60 ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5 % (w/w) in water. At 2 ml/min, three protein samples were well resolved in one hour. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. PMID:26074099

  5. Global gravitationally organized spiral waves and the structure of NGC 5247

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Khoperskov, A. V.; Khrykin, I. S.; Korchagin, V. I.; Casetti-Dinescu, D. I.; Girard, T.; van Altena, W.; Maitra, D.

    2012-12-01

    Using observational data, we build numerical N-body, hydrodynamical and combined equilibrium models for the spiral galaxy NGC 5247. The models turn out to be unstable as regards spiral structure formation. We simulate scenarios of spiral structure formation for different sets of equilibrium rotation curves, radial velocity-dispersion profiles and disc thicknesses and demonstrate that in all cases the simulated spiral pattern agrees qualitatively with the observed morphology of NGC 5247. We also demonstrate that an admixture of a gaseous component with a mass of about a few per cent of the total mass of the disc increases the lifetime of a spiral pattern by approximately 30 per cent. The simulated spiral pattern in this case lasts for about 3 Gyr from the beginning of the growth of perturbations.

  6. Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna.

    PubMed

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits.

  7. Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens.

    PubMed

    Chen, Weibin; Nelson, Robert L; Zhan, Qiwen

    2012-05-01

    The spin dependence of the focusing behavior of a spiral slot plasmonic lens can be utilized for a miniature circular polarization analyzer. However, the azimuthal polarization component of the incident circular polarization does not contribute to surface plasmon excitation and focusing because it is TE polarized with respect to the spiral slot. In this Letter, a hybrid metallic lens that consists of alternating spiral triangle array and spiral slot is designed to improve the plasmonic coupling efficiency. The spiral triangle array is responsible for coupling the azimuthal polarization component into surface plasmon. Numerical studies show that the field enhancement at the focus and power conversion efficiency can be increased by 39.53% and 94.69% compared to that of pure spiral slot plasmonic lens.

  8. Effects of Dielectric Substrates and Ground Planes on Resonance Frequency of Archimedean Spirals.

    PubMed

    Hooker, Jerris W; Ramaswamy, Vijaykumar; Arora, Rajendra K; Edison, Arthur S; Brey, William W

    2016-04-01

    Superconducting self-resonant spiral structures are of current interest for applications both in metamaterials and as probe coils for nuclear magnetic resonance (NMR) spectroscopy for high-sensitivity chemical analysis. Accurate spiral models are available in the literature for behavior of a spiral below and up to self-resonance. However, knowledge of the higher modes is also important. We present the relationships between the spiral parameters and the multiple mode frequencies of single sided spirals on dielectric substrates as modeled by method of moments simulation. In the absence of a ground plane, we find that the mode frequency has a linear though not necessarily harmonic dependence on the mode number. The effect of a thick substrate can be approximated by an effective dielectric constant. But when the thickness is less than 20% of the spiral trace width (router - rinner) this approximation is no longer accurate. We have developed a simple empirical formula to predict the higher modes.

  9. MULTIMODALITY IMAGING: BEYOND PET/CT AND SPECT/CT

    PubMed Central

    Cherry, Simon R.

    2009-01-01

    Multimodality imaging with PET/CT and SPECT/CT has become commonplace in clinical practice and in preclinical and basic medical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? The combination of PET or SPECT with MRI is an area of active research at the present time, while other, perhaps less obvious combinations, including CT/MR and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend towards harnessing the complementary nature of the different modalities on integrated imaging platforms? PMID:19646559

  10. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery

    NASA Astrophysics Data System (ADS)

    Soler, Luc; Delingette, Herve; Malandain, Gregoire; Montagnat, Johan; Ayache, Nicholas; Clement, Jean-Marie; Koehl, Christophe; Dourthe, Olivier; Mutter, Didier; Marescaux, Jacques

    2000-06-01

    To facilitate hepatic surgical planning, we have developed a new system for the automatic 3D delineation of anatomical and pathological hepatic structures from a spiral CT scan. This system also extracts functional information useful for surgery planning, such as portal vein labeling and anatomical segment delineation following the conventional Couinaud definition. From a 2 mm thick enhanced spiral CT scan, a first stage automatically delineates the skin, bones, lungs and kidneys, by combining the use of thresholding, mathematical morphological methods and distance maps. Next, a reference 3D model is immerged in the image and automatically deformed to the liver contour. Then an automatic Gaussians fitting on the imaging histogram allows to threshold the intensities of parenchyma, vessels and lesions. The next stage improves this first classification by an original topological and geometrical analysis, providing an automatic and precise delineation of lesions and veins. Finally, a topological and geometrical analysis based on medical knowledge provides the hepatic functional information invisible in medical imaging: portal vein labeling and hepatic anatomical segments. Clinical validation performed on more than 30 patients shows that this method allows a delineation of anatomical structures, often more sensitive and more specific than manual delineation by a radiologist.

  11. Numerical Modelling of Intense Electron Beam Transport in the Spiral Line Induction Accelerator

    DTIC Science & Technology

    1992-08-28

    arising in the context of the spiral line induction accelerator (SLIA), a device in which the beam is transported along an open-ended beam pipe ...field. Because the field coils are wound directly onto the spiral beam pipe , and because each bend is magnetically shielded from its neighbors, each... Spiral Line Induction Accelerator J. KRALL, S. SLINKER, M. LAMPE AND G. JOYCE Beam Physics Branch Plasma Physics Division August 28, 1992 _pw DTIC U)lz E

  12. Evolution of spiral waves subjected to parameter modulation under chaotic signal

    NASA Astrophysics Data System (ADS)

    Jun, Ma; Yan-Long, Li; Jin-Long, Jiang; Yan-Jun, Liu; Chun-Ni, Wang

    2006-09-01

    A new scheme of parameter perturbation is used to suppress the stable spiral waves, which generated in a class of excitable media. An appropriated parameter of the investigated model is modulated by a weak chaotic signal from the emanative Rőssler chaotic system. Therefore, the dynamics of the spiral waves is changed, As we expected, the numerical simulation results give evidences that the whole system reach homogeneous state and the spiral waves is killed within 60 time units.

  13. Errors in CT colonography.

    PubMed

    Trilisky, Igor; Ward, Emily; Dachman, Abraham H

    2015-10-01

    CT colonography (CTC) is a colorectal cancer screening modality which is becoming more widely implemented and has shown polyp detection rates comparable to those of optical colonoscopy. CTC has the potential to improve population screening rates due to its minimal invasiveness, no sedation requirement, potential for reduced cathartic examination, faster patient throughput, and cost-effectiveness. Proper implementation of a CTC screening program requires careful attention to numerous factors, including patient preparation prior to the examination, the technical aspects of image acquisition, and post-processing of the acquired data. A CTC workstation with dedicated software is required with integrated CTC-specific display features. Many workstations include computer-aided detection software which is designed to decrease errors of detection by detecting and displaying polyp-candidates to the reader for evaluation. There are several pitfalls which may result in false-negative and false-positive reader interpretation. We present an overview of the potential errors in CTC and a systematic approach to avoid them.

  14. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    NASA Astrophysics Data System (ADS)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  15. Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser.

    PubMed

    Dai, Yutang; Yang, Minghong; Xu, Gang; Yuan, Yinquan

    2013-07-15

    A novel magnetic field sensor based on Terfenol-D coated fiber Bragg grating with spiral microstructure was proposed and demonstrated. Through a specially-designed holder, the spiral microstructure was ablated into the fiber Bragg grating (FBG) cladding by femtosecond laser. Due to the spiral microstructure, the sensitivity of FBG coated with magnetostrictive film was enhanced greatly. When the spiral pitch is 50 μm and microgroove depth is 13.5 μm, the sensitivity of the magnetic field sensor is roughly 5 times higher than that of non-microstructured standard FBG. The response to magnetic field is reversible, and could be applicable for magnetic field detection.

  16. THE COUPLING AND MUTUAL IMPEDANCE BETWEEN BALANCED WIRE-ARM CONICAL LOG-SPIRAL ANTENNAS

    DTIC Science & Technology

    CONICAL ANTENNAS, *COUPLED ANTENNAS, * HELICAL ANTENNAS, ANTENNA COMPONENTS, ANTENNA RADIATION PATTERNS, COUPLINGS, DESIGN, ELECTRIC CURRENTS...ELECTRIC POTENTIAL, ELECTRICAL IMPEDANCE, MEASUREMENT, POLARIZATION, PROPAGATION, ROTATION, SPIRAL ANTENNAS, THEORY

  17. AN INVESTIGATION OF THE NEAR FIELDS ON THE CONICAL EQUIANGULAR SPIRAL ANTENNA

    DTIC Science & Technology

    ANTENNA RADIATION PATTERNS, *CONICAL ANTENNAS, * HELICAL ANTENNAS, ELECTRIC CURRENT, ELECTRIC FIELDS, HELIXES, MATHEMATICAL ANALYSIS, MEASUREMENT, PHASE MEASUREMENT, SPIRAL ANTENNAS, STANDING WAVE RATIOS.

  18. Mixer-settler counter-current chromatography with a barricaded spiral disk assembly with glass beads.

    PubMed

    Ito, Yoichiro; Qi, Lin; Powell, Jimmie; Sharpnack, Frank; Metger, Howard; Yost, James; Cao, Xue-Li; Dong, Yin-Mao; Huo, Liang-Sheng; Zhu, Xiao-Ping; Li, Ting

    2007-06-01

    A novel spiral disk is designed by placing barricades at 6 mm intervals in the middle of the spiral channel to divide the channel into multiple sections. Glass beads are placed in every other section so that the planetary motion produces repetitive mixing and settling of polymer phase systems. Performance of this mixer-settler spiral disk assembly was examined for separation of lysozyme and myoglobin with a polymer phase system. The best results were obtained with a spiral disk equipped with barricades with openings ranging from 1.2 to 0.4 mm on each side at a high revolution speed up to 1200 rpm.

  19. Removal of a pinned spiral by generating target waves with a localized stimulus

    NASA Astrophysics Data System (ADS)

    Fu, Ya-Qing; Zhang, Hong; Cao, Zhoujian; Zheng, Bo; Hu, Gang

    2005-10-01

    Pinning of spiral waves by defects in cardiac muscle may cause permanent tachycardia. We numerically study the removal of a pinned spiral by a localized stimulus at the boundary of a two-dimensional excitable medium. It is shown that target waves may be generated by an external local force, and then the target waves will interact with the pinned spiral. When the external force is appropriately chosen, the generated target waves may suppress the pinned spiral, and the system is finally dominated by the target waves.

  20. Greening America's Capitals - Hartford, CT

    EPA Pesticide Factsheets

    This Greening America's Capitals report gives Hartford, CT, a new vision for Capitol Avenue that highlights existing assets and fills in gaps along the mile-long area of focus and into the surrounding neighborhoods.