Science.gov

Sample records for 1607-f3 sanitary sewer

  1. Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

    SciTech Connect

    L. M. Dittmer

    2007-04-26

    The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Remaining Sites Verification Package for the 100-F-26:10, 1607-F3 Sanitary Sewer Pipelines (182-F, 183-F, and 151-F Sanitary Sewer Lines), Waste Site Reclassification Form 2007-028

    SciTech Connect

    L. M. Dittmer

    2007-12-03

    The 100-F-26:10 waste site includes sanitary sewer lines that serviced the former 182-F, 183-F, and 151-F Buildings. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  3. SANITARY SEWER CALCULATION

    SciTech Connect

    Roy D. Clark

    1995-01-13

    This analysis defines and evaluates the surface sanitary sewer system on the North Portal, and addresses the requirements for the collection of sanitary sewage from each of the proposed surface buildings. A sewage treatment system will be defined that meets the needs of the North Portal, conforms to the existing site conditions, and meets the needs of the state and local permitting agencies.

  4. SANITARY-SEWER OVERFLOW CONTROL STRATEGY

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensive...

  5. SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Description: The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Becau...

  6. Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby receiving waters and can also ...

  7. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  8. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  9. DEVELOPMENT OF SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams. RDII can also cause se...

  10. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensiv...

  11. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alterantives to sewerline rehabilitation for infiltration/inflow (I/I) and ...

  12. Control Strategy for Storm-Generated Sanitary Sewer Overflows

    EPA Science Inventory

    This presentation covers a strategy for the abatement of pollution from sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alternatives to sewerline rehabilitation for infiltration/inflow (I/I) and associated ...

  13. COMPUTER TOOLS FOR SANITARY SEWER SYSTEM CAPACITY ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems, causing poor performance of many sewer systems. RDII is the main cause of SSOs to customer basements, streets, or nearby streams and can a...

  14. SSOAP - A USEPA Toolbox for Sanitary Sewer Overflow Analysis and Control Planning - Presentation

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) has identified a need to use proven methodologies to develop computer tools that help communities properly characterize rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems and develop sanitary sewer...

  15. COMPUTER MODEL ANALYSIS FOR CONTROL PLANNING OF SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150 million people and comprising about 800,000 km (500,000 mi) of municipally ...

  16. Update on the Status of Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. However, occasional unintentional discharges of raw sewage from municipal sanitary sewers – called sanitary sewe...

  17. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  18. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in these systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and the resulting high flows...

  19. Condition Assessment of Wastewater Collection Systems Using the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    The Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox can serve as the foundation of wastewater collection system infrastructure research, among several applications, for analyzing monitored flow data to prioritize where to inspect, monitor, and to assess the performa...

  20. COMPUTER MODEL ANALYSIS FOR MITIGATION PLANNING OF SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    Sanitary sewer overflows (SSOs) are generally difficult to witness or document as they usually occur during rain events when people are indoors or out of sight. To anser where and when an SSO may occur, it is necessary to know the flow conveyance capacity at various parts of the ...

  1. EXFILTRATION IN SANITARY SEWER SYSTEMS IN THE U.S.

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  2. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    SciTech Connect

    Not Available

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  3. Post-rehabilitation evaluation of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Royal, D.

    1995-11-01

    We are updating a CH2M Hill study which found that the sanitary sewer system is sufficient to transport peak dry weather flow. However, under peak wet weather conditions, the system has insufficient capacity to transport the projected flows for existing and future development. This is due to the amount of infiltration/inflow (I/I) that enters the sewer system when it rains. Our goal is to examine the existing system to determine its adequacy to accommodate present and future peak flows, and also to further update and improve the CH2M Hill study. A set of alternatives was also developed to address deficiencies of the existing system.

  4. A risk-based approach to sanitary sewer pipe asset management.

    PubMed

    Baah, Kelly; Dubey, Brajesh; Harvey, Richard; McBean, Edward

    2015-02-01

    Wastewater collection systems are an important component of proper management of wastewater to prevent environmental and human health implications from mismanagement of anthropogenic waste. Due to aging and inadequate asset management practices, the wastewater collection assets of many cities around the globe are in a state of rapid decline and in need of urgent attention. Risk management is a tool which can help prioritize resources to better manage and rehabilitate wastewater collection systems. In this study, a risk matrix and a weighted sum multi-criteria decision-matrix are used to assess the consequence and risk of sewer pipe failure for a mid-sized city, using ArcGIS. The methodology shows that six percent of the uninspected sewer pipe assets of the case study have a high consequence of failure while four percent of the assets have a high risk of failure and hence provide priorities for inspection. A map incorporating risk of sewer pipe failure and consequence is developed to facilitate future planning, rehabilitation and maintenance programs. The consequence of failure assessment also includes a novel failure impact factor which captures the effect of structurally defective stormwater pipes on the failure assessment. The methodology recommended in this study can serve as a basis for future planning and decision making and has the potential to be universally applied by municipal sewer pipe asset managers globally to effectively manage the sanitary sewer pipe infrastructure within their jurisdiction.

  5. Risk assessment of radionuclide discharges to sanitary sewers

    SciTech Connect

    Galpin, F.L.; Merrell, G.; Rogers, V.C.

    1996-12-31

    This presentation describes the basic approach and conduct of a study of the possible risks and consequences of radionuclide discharges into a sewage treatment system. The study`s objective was to determine if there were any possible significant exposures to either WSSC workers or the public form the discharge of radioactive material into the sewer system. The conduct of this study included a review of applicable regulations, and a case study of some past contamination events. The evaluation of potential occupational exposures involved measurements in the collection system were selected based on their location relative to potential dischargers. Measurement points at the treatment works were selected at points where biosolids might accumulate. Both passive, (TLD) and active, (scintillation detector) measurements were made. A limited number of samples were taken and analyzed. Potential doses to the public were estimated based on the possible pathways to man. Due both to limited resources and other project constraints several assumptions and bounding calculations were necessary to meet the objective. Although the study concluded that there were no present significant health concerns, followup evaluations were recommended. 7 refs., 1 fig., 1 tab.

  6. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  7. Sanitary Sewer Overflows and Association with Gastrointestinal Illness: A case crossover analysis of Massachusetts Data, 2006-2007

    EPA Science Inventory

    Sanitary sewer overflows (SSOs) occur when untreated sewage is discharged into water sources potentially causing contamination. SSOs are primarily caused by heavy rainfall, which is expected to become heavier and more episodic due to climate change. We conducted a case-crossover ...

  8. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  9. An analysis of the Cured-in-Place Pipe (CIPP) subproject of the sanitary sewer rehabilitation project

    SciTech Connect

    Morrow, W.; Siemiatkoski, S.

    1994-01-25

    The comprehensive rehabilitation of the Lawrence Livermore National Laboratory Sanitary Sewer System centers around a Cured-in-Place Pipe project. Driven by regulatory requirements to eliminate the potential for exfiltration, a careful condition assessment of the existing infrastructure was conducted. Under programmatic constraints to maintain continuous operations, the INLINER USA cured-in-place pipe system was selected as the appropriate technology, and the project is currently under contract.

  10. A potential sanitary sewer overflow treatment technology: fixed-media bioreactors.

    PubMed

    Tao, Jing; Mancl, Karen M; Tuovinen, Olli H

    2011-08-01

    Under certain conditions, sanitary sewer overflows (SSOs) containing raw wastewater may be discharged to public land and can contribute to environmental and public health issues. Although this problem has attracted the attention of local, state, and federal government and regulators, relatively little SSO abatement research has been published. This study used fixed-media bioreactors, a proven onsite technology in rural areas, to treat wet weather SSO wastewater and reduce its effects on the receiving water environment. The results of this 32-month laboratory study showed that fixed-media bioreactors, especially sand bioreactors, efficiently removed organic matter, solids, and nutrients during six-hour simulated SSO peak flows. Five-day biochemical oxygen demand (BODs) of the simulated SSO varied between 40 and 125 mg/L. The average effluent concentration of BOD5 was 13 mg/L in sand bioreactors at a hydraulic loading rate of 20.4 cm/h. In addition to having high hydraulic loadings, SSO events occur infrequently. This irregularity requires that treatment systems quickly start up and effectively treat wastewater after a period of no flow. This research found that an interval up to six months between two SSO peak flows did not affect the bioreactor performance. Based on this work, fixed-media bioreactors have the potential to reduce the effects of SSOs on the water environment by following proper design parameters and operation strategies. The pollution loading of approximately 18 g BODs/m2 x h is recommended for the efficient performance of sand bioreactors in the SSO treatment.

  11. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130

    SciTech Connect

    L. M. Dittmer

    2008-03-14

    The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  12. Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131

    SciTech Connect

    L. M. Dittmer

    2007-12-03

    The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. Effect of variation of liquid condition on transformation of sulfur and carbon in the sediment of sanitary sewer.

    PubMed

    Liu, Yanchen; Wu, Chen; Zhou, Xiaohong; Zhang, Tuanjie; Mu, Lei; Shi, Hanchang

    2015-05-01

    This study aims to estimate the influence of the typical variation in liquid conditions on the biochemical reaction characteristics of sulfur and carbon in the sediment of gravity sanitary sewers. Thus, a series of experimental tests were conducted with real wastewater and sewage sediment to investigate the potential biochemical process of carbon and sulfur in sediment. Results indicated that the sulfur and carbon biochemical process in sediment with neutral pH is significant in the gravity sewage system. The changes in concentration and the ratios of wastewater component substrates are the key factors in chemical oxygen demand and sulfate reduction rates. Furthermore, the condition of dissolved oxygen in liquid significantly affected the biochemical reaction processes of sulfur and carbon. Finally, the frequent alternation of anaerobic and anoxic with low dissolved oxygen effectively inhibits sulfide accumulation and simultaneously reduces carbon loss in the sewage system.

  14. Remaining Sites Verification Package for the 100-C-9:2 Sanitary Sewer Pipelines, Waste Site Reclassification Form 2004-013

    SciTech Connect

    L. M. Dittmer

    2007-07-11

    The 100-C-9:2 sanitary sewer pipelines include the feeder pipelines associated with the 1607-B8, the 1607-B9, the 1607-B10 and the 1607-B11 septic systems. Contaminated soil and piping from the feeder lines to the septic systems were removed and disposed of. The remaining soil in the excavations has been shown to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2004-006

    SciTech Connect

    L. M. Dittmer

    2007-03-21

    The 100-B-14:2 subsite encompasses the former sanitary sewer feeder lines associated with the 1607-B2 and 1607-B7 septic systems. Feeder lines associated with the 185/190-B building have also been identified as the 100-B-14:8 subsite, and feeder lines associated with the 1607-B7 septic system have also been identified as the 100-B-14:9 subsite. These two subsites have been administratively cancelled to resolve the redundancy. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Remaining Sites Verification Package for the 100-F-26:9, 1607-F2 Sanitary Sewer Pipelines, Waste Site Reclassification Form 2008-029

    SciTech Connect

    J. M. Capron

    2008-10-29

    The 100-F-26:9 underground pipeline subsite consists of the sanitary sewers servicing the 105-F, 108-F, 184-F, 185-F, and 190-F buildings, and the 1700-F administration and service buildings (1704-F, 1707-F, 1707-FA, 1713-F, 1717-F, 1719-F, and 1722-F). In accordance with this evaluation, the confirmatory and verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  17. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2005-004

    SciTech Connect

    L. M. Dittmer

    2008-03-14

    The 100-F-26:8 waste site consisted of the underground pipelines that conveyed sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office to the 1607-F1 septic tank. The site has been remediated and presently exists as an open excavation. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. EXFILTRATION IN SEWER SYSTEMS

    EPA Science Inventory

    This study focused on the quantification of leakage of sanitary and industrial sewage from sanitary sewer pipes on a national basis. The method for estimating exfiltration amounts utilized groundwater talbe information to identify areas of the country where the hydraulic gradient...

  19. COMBINED-SEWER OVERFLOW CONTROL AND TREATMENT

    EPA Science Inventory

    Combined-sewer overflow (CSO), along with sanitary-sewer overflow and stormwater are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater t...

  20. Advances in Sewer Condition and Capacity Assessment – Development and Applications of EPA SSOAP Toolbox

    EPA Science Inventory

    In the United States, sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ev...

  1. U.S. EPA Issues Technical Guides and Computer Tools for Sewer Condition and Capacity Assessment

    EPA Science Inventory

    The nation's sanitary sewer infrastructure is aging, with some sewers more than100 years old. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per year...

  2. SEWER SEDIMENT AND CONTROL: A MANAGEMENT PRACTICES REFERENCES GUIDE

    EPA Science Inventory

    Sewer-solids sediment is one of major sources of pollutants in urban wet-weather flow (WWF) discharges that include combined-sewer overflow (CSO), separate sanitary-sewer overflow (SSO), and stormwater runoff. During low-flow, dry-weather periods, sanitary wastewater solids depo...

  3. Measuring Flow Reductions in a Combined Sewer System using Green Infrastructure - abstract

    EPA Science Inventory

    In 2009, the Louisville and Jefferson County Metropolitan Sewer District (MSD) submitted an Integrated Overflow Abatement Plan (IOAP) addressing combined sewer overflows (CSOs) and sanitary sewer overflows. Many of the solutions involve gray infrastructure, such as large, end-of...

  4. Review of Sewer Design Criteria and RDII Prediction Methods

    EPA Science Inventory

    Rainfall-derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  5. Factors That Influence Properties of FOG Deposits and Their Formation in Sewer Collection Systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages, which eventually lead to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer ...

  6. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Anal...

  7. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - slides

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing S...

  8. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - abstract

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency developed the Sanitary Sewer Overflow Analysis a...

  9. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing ...

  10. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW

    EPA Science Inventory

    Wet-weather flow (WWF), including combined-sewer overflow (CSO, sanitary-sewer overflow, and stormwater (SW), is a significant contributor of microbial contamination to surface water and ground water. By using effective wastewater or SW disinfection, introduction of pathogen con...

  11. Contaminant transport pathways between urban sewer networks and water supply wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply wells and sanitary sewers are critical components of urban infrastructure, but sewer leakage threatens the quality of groundwater in sewered areas. Previous work by our group has documented the presence of human enteric viruses in deep public supply wells. Our current research uses such...

  12. Sewer Lateral Electro Scan Field Verification Pilot

    EPA Science Inventory

    Abstract:WERF selected a proposed research project to field test an emerging technology for inspecting sanitary sewer lateral pipes. The technology is called Electro Scan and is used to find defects in laterals that allow the infiltration of groundwater into the lateral. Electro ...

  13. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  14. Understanding the Spatial Formation and Accumulation of Fats, Oils & Grease Deposits in the Sewer Collection System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially...

  15. DESIGN MANUAL: SULFIDE CONTROL IN SANITARY SEWERAGE SYSTEMS

    EPA Science Inventory

    One characteristic by which sanitary sewage is known to the public is its potential for creating odor nuisances. Sometimes it is the odors escaping from sewer manholes that cause complaints; more commonly, the source is a wastewater treatment plant. Yet there are wastewater treat...

  16. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  17. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation.

  18. Sewer Maintenance Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Outlined are practices and procedures that should be followed in order to protect and fully realize the benefits of sewer systems and also to maximize service and minimize inconveniences to the public. Written in practical terms, the manual is designed to be of immediate use to municipal employees and others involved in sewer maintenance…

  19. Sewers as a source and sink of chlorinated-solvent groundwater contamination, Marine Corps Recruit Depot, Parris Island, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Lowery, M.A.; Landmeyer, J.E.

    2011-01-01

    Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater. The southern plume originates at a nearby, new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. The strong influence of sanitary sewers on source distribution and of storm sewers on plume orientation and discharge at this site indicates that groundwater-contamination investigators should consider the potential influence of sewer systems at their sites. ?? 2011, National Ground Water Association.

  20. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  1. Evidence for fat, oil, and grease (FOG) deposit formation mechanisms in sewer lines.

    PubMed

    He, Xia; Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J; de los Reyes, Francis L

    2011-05-15

    The presence of hardened and insoluble fats, oil, and grease (FOG) deposits in sewer lines is a major cause of line blockages leading to sanitary sewer overflows (SSOs). Despite the central role that FOG deposits play in SSOs, little is known about the mechanisms of FOG deposit formation in sanitary sewers. In this study, FOG deposits were formed under laboratory conditions from the reaction between free fatty acids and calcium chloride. The calcium and fatty acid profile analysis showed that the laboratory-produced FOG deposit displayed similar characteristics to FOG deposits collected from sanitary sewer lines. Results of FTIR analysis showed that the FOG deposits are metallic salts of fatty acid as revealed by comparisons with FOG deposits collected from sewer lines and pure calcium soaps. Based on the data, we propose that the formation of FOG deposits occurs from the aggregation of excess calcium compressing the double layer of free fatty acid micelles and a saponification reaction between aggregated calcium and free fatty acids.

  2. Effects of climate and sewer condition on virus transport to groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses....

  3. Sewer Lateral Electro Scan Field Verification Pilot (WERF Report INFR4R12)

    EPA Science Inventory

    Abstract:WERF selected a proposed research project to field test an emerging technology for inspecting sanitary sewer lateral pipes. The technology is called Electro Scan and is used to find defects in laterals that allow the infiltration of groundwater into the lateral. Electro ...

  4. SEWER PIPELINE PERFORMANCE INDICATORS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the United States, approximately 150 million people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately o...

  5. Narratives of Public Health in Dickens's Journalism: The Trouble with Sanitary Reform.

    PubMed

    Smith, Ralph F

    2015-01-01

    Although Dickens is still known as having been a highly visible supporter of England's well-known nineteenth-century sanitary movement, he became, in fact, deeply troubled by many of this movement's fundamental tenets, as evidenced by journal narratives on fever that he edited and wrote in the mid-nineteenth century. Rather than water and sewer engineering works and a sanitary regime policed by government agencies as envisaged by Edwin Chadwick and other sanitary reformers, Dickens's view by 1855 was that only a massive erasure of the existing social and political systems and their replacement by an utterly new infrastructure would suffice. PMID:26095845

  6. Factors that influence properties of FOG deposits and their formation in sewer collection systems.

    PubMed

    Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2014-02-01

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system.

  7. Factors that influence properties of FOG deposits and their formation in sewer collection systems.

    PubMed

    Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2014-02-01

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. PMID:24317022

  8. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage.

  9. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. PMID:26379202

  10. [Sanitary control of cosmetics].

    PubMed

    Bonini, Maira; Pellino, Pasquale; Pilla, Mariateresa

    2005-01-01

    In the Lombardia region (Italy), the function of sanitary control of cosmetic products has been delegated to the local health units (ASL). The Province of Milano 1 Local Health Unit therefore carried out a cosmetics surveillance programme involving 92 cosmetic firms located in its territory. Manufacturing and storage conditions of cosmetics produced by the local firms were evaluated and overall, good sanitary conditions were found.

  11. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  12. Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows

    NASA Astrophysics Data System (ADS)

    Pongmala, Khemngeun; Autixier, Laurène; Madoux-Humery, Anne-Sophie; Fuamba, Musandji; Galarneau, Martine; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah

    2015-12-01

    Urban source water protection requires knowledge of sources of fecal contamination upstream of drinking water intakes. Combined and sanitary sewer overflows (CSOs and SSOs) are primary sources of microbiological contamination and wastewater micropollutants (WWMPs) in urban water supplies. To quantify the impact of sewer overflows, predictive simulation models are required and have not been widely applied for microbial contaminants such as fecal indicator bacteria and pathogens in urban drainage networks. The objective of this study was to apply a simulation model to estimate the dynamics of three contaminants in sewer overflows - total suspended solids, Escherichia coli (E. coli) and carbamazepine, a WWMP. A mixed combined and pseudo-sanitary drainage network in Québec, Canada was studied and modelled for a total of 7 events for which water quality data were available. Model results were significantly correlated with field water quality data. The model confirmed that the contributions of E. coli from runoff and sewer deposits were minor and their dominant source was from sewage. In contrast, the main sources of total suspended solids were stormwater runoff and sewer resuspension. Given that it is not present in stormwater, carbamazepine was found to be a useful stable tracer of sewage contributions to total contaminant loads and also provided an indication of the fraction of total suspended solids originating from sewer deposits because of its similar response to increasing flowrates.

  13. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows discharging into waterways.

    PubMed

    Goulding, R; Jayasuriya, N; Horan, E

    2012-10-15

    Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows.

  14. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  15. A model for methane production in sewers.

    PubMed

    Chaosakul, Thitirat; Koottatep, Thammarat; Polprasert, Chongrak

    2014-09-19

    Most sewers in developing countries are combined sewers which receive stormwater and effluent from septic tanks or cesspools of households and buildings. Although the wastewater strength in these sewers is usually lower than those in developed countries, due to improper construction and maintenance, the hydraulic retention time (HRT) could be relatively long and resulting considerable greenhouse gas (GHG) production. This study proposed an empirical model to predict the quantity of methane production in gravity-flow sewers based on relevant parameters such as surface area to volume ratio (A/V) of sewer, hydraulic retention time (HRT) and wastewater temperature. The model was developed from field survey data of gravity-flow sewers located in a peri-urban area, central Thailand and validated with field data of a sewer system of the Gold Coast area, Queensland, Australia. Application of this model to improve construction and maintenance of gravity-flow sewers to minimize GHG production and reduce global warming is presented.

  16. HANDBOOK: SEWER SYSTEM INFRASTRUCTURE ANALYSIS AND REHABILITATION

    EPA Science Inventory

    Many of our Nation's sewer systems date back to the 19th Century when brick sewers were common. hese and more recent sewer systems can be expected to fail in time, but because they are placed underground, signs of accelerated deterioration and capacity limitations are not readily...

  17. Demonstration of Innovative Sewer System Inspection Technology SewerBatt

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...

  18. Space-Derived Sewer Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.

  19. [Sanitary classification of publishing products].

    PubMed

    Teksheva, L M

    2001-01-01

    The natural asthenopic pattern of the process of reading shows it necessary to set sanitary standards of publishing production, namely, printing type styling and the printing quality of publications. The necessity of sanitary classification of publishing production stems from the specificity of reading the publications of different functional uses and from the physiological features of vision in different age group readers. The developed sanitary classification of printing production is based on the researches into the actual visual load while reading the publications of different types by readers of different ages.

  20. Effects of Climate and Sewer Condition on Virus Transport to Groundwater.

    PubMed

    Gotkowitz, Madeline B; Bradbury, Kenneth R; Borchardt, Mark A; Zhu, Jun; Spencer, Susan K

    2016-08-16

    Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses. Viruses were detected infrequently, in 17 of 455 samples, compared to previous sampling at these wells. Thirteen of the 22 wells sampled were virus-positive at least once. While the highest virus concentrations occurred in shallower wells, shallow and deep wells were virus-positive at similar rates. Virus presence in groundwater was temporally coincident, with 16 of 17 virus-positive samples collected in a six-month period. Detections were associated with precipitation and occurred infrequently during a prolonged drought. The study purposely included sites with sewers of differing age and material. The rates of virus detections in groundwater were similar at all study sites during this study. However, a relationship between sewer age and virus detections emerged when compared to data from an earlier study, conducted during high precipitation conditions. Taken together, these data indicate that sewer condition and climate affect urban groundwater contamination by human enteric viruses.

  1. Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines.

    PubMed

    He, Xia; de los Reyes, Francis L; Leming, Michael L; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2013-09-01

    FOG deposits in sewer systems have recently been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. In this study, batch tests were performed to elucidate the mechanisms of FOG deposit formation that lead to sanitary sewer overflows (SSOs). We report the first formation of FOG deposits on a concrete surface under laboratory conditions that mimic the formation of deposits in sewer systems. Results showed that calcium, the dominant metal in FOG deposits, can be released from concrete surfaces under low pH conditions and contribute to the formation process. Small amounts of additional oil to grease interceptor effluent substantially facilitated the air/water or pipe surface/water interfacial reaction between free fatty acids and calcium to produce surface FOG deposits. Tests of different fatty acids revealed that more viscous FOG deposit solids were formed on concrete surfaces, and concrete corrosion was accelerated, in the presence of unsaturated FFAs versus saturated FFAs. Based on all the data, a comprehensive model was proposed for the mechanisms of FOG deposit formation in sewer systems.

  2. Biodegradation of fat, oil and grease (FOG) deposits under various redox conditions relevant to sewer environment.

    PubMed

    He, Xia; Zhang, Qian; Cooney, Michael J; Yan, Tao

    2015-07-01

    Fat, oil and, grease (FOG) deposits are one primary cause of sanitary sewer overflows (SSOs). While numerous studies have examined the formation of FOG deposits in sewer pipes, little is known about their biodegradation under sewer environments. In this study, FOG deposit biodegradation potential was determined by studying the biodegradation of calcium palmitate in laboratory under aerobic, nitrate-reducing, sulfate-reducing, and methanogenic conditions. Over 110 days of observation, calcium palmitate was biodegraded to CO2 under aerobic and nitrate-reducing conditions. An approximate 13 times higher CO2 production rate was observed under aerobic condition than under nitrate-reducing condition. Under sulfate-reducing condition, calcium palmitate was recalcitrant to biodegradation as evidenced by small reduction in sulfate. No evidence was found to support calcium palmitate degradation under methanogenic condition in the simulated sewer environment. Dominant microbial populations in the aerobic and nitrate-reducing microcosms were identified by Illumina seqeuncing, which may contain the capability to degrade calcium palmitate under both aerobic and nitrate-reducing conditions. Further study on these populations and their functional genes could shed more light on this microbial process and eventually help develop engineering solutions for SSOs control in the future.

  3. Effects of Climate and Sewer Condition on Virus Transport to Groundwater.

    PubMed

    Gotkowitz, Madeline B; Bradbury, Kenneth R; Borchardt, Mark A; Zhu, Jun; Spencer, Susan K

    2016-08-16

    Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses. Viruses were detected infrequently, in 17 of 455 samples, compared to previous sampling at these wells. Thirteen of the 22 wells sampled were virus-positive at least once. While the highest virus concentrations occurred in shallower wells, shallow and deep wells were virus-positive at similar rates. Virus presence in groundwater was temporally coincident, with 16 of 17 virus-positive samples collected in a six-month period. Detections were associated with precipitation and occurred infrequently during a prolonged drought. The study purposely included sites with sewers of differing age and material. The rates of virus detections in groundwater were similar at all study sites during this study. However, a relationship between sewer age and virus detections emerged when compared to data from an earlier study, conducted during high precipitation conditions. Taken together, these data indicate that sewer condition and climate affect urban groundwater contamination by human enteric viruses. PMID:27434550

  4. Corrosion and odor management in sewer systems.

    PubMed

    Jiang, Guangming; Sun, Jing; Sharma, Keshab R; Yuan, Zhiguo

    2015-06-01

    Sewers emit hydrogen sulfide and various volatile organic sulfur and carbon compounds, which require control and mitigation. In the last 5-10 years, extensive research was conducted to optimize existing sulfide abatement technologies based on newly developed in-depth understanding of the in-sewer processes. Recent advances have also led to low-cost novel solutions targeting sewer biofilms. Online control has been demonstrated to greatly reduce the chemical usage. Dynamic models for both the water, air and solid (concrete) phases have been developed and used for the planning and maintenance of sewer systems. Existing technologies primarily focused on 'hotspots' in sewers. Future research should aim to achieve network-wide corrosion and emission control and management of sewers as an integrated component of an urban water system. PMID:25827114

  5. Corrosion and odor management in sewer systems.

    PubMed

    Jiang, Guangming; Sun, Jing; Sharma, Keshab R; Yuan, Zhiguo

    2015-06-01

    Sewers emit hydrogen sulfide and various volatile organic sulfur and carbon compounds, which require control and mitigation. In the last 5-10 years, extensive research was conducted to optimize existing sulfide abatement technologies based on newly developed in-depth understanding of the in-sewer processes. Recent advances have also led to low-cost novel solutions targeting sewer biofilms. Online control has been demonstrated to greatly reduce the chemical usage. Dynamic models for both the water, air and solid (concrete) phases have been developed and used for the planning and maintenance of sewer systems. Existing technologies primarily focused on 'hotspots' in sewers. Future research should aim to achieve network-wide corrosion and emission control and management of sewers as an integrated component of an urban water system.

  6. MANAGEMENT AND CONTROL OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The paper gives a basic overview of the U.S. government's involvements in developing countermeasures for the abatement of combined sewer overflow pollution. batement or prevention of pollution stormwater runoff and combined sewer overflows is one of the most challenging areas in ...

  7. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  8. In-place rehabilitation of process sewers

    SciTech Connect

    Arles, K.R.; Faller, C.C.

    1996-07-01

    The majority of petrochemical manufacturing facilities have thousands of feet of existing underground gravity sewers that convey the site`s industrial wastes to treatment facilities. The integrity of these sewer systems is a serious concern to owners. A potential consequence of leaks is soil and groundwater contamination. Prior to 1992, only two options were available to remedy this situation. The sewer systems could be replaced with either a new dual-walled, monitored underground pipe system via direct bury, or with an above ground pumped system. In 1992, Engineering, in conjunction with several trenchless technology vendors, developed and demonstrated modified relining systems that can rehabilitate existing sewers and result in monitored dual-walled gravity sewer systems. These proven systems have since been enhanced, upgraded, and installed at two operating facilities. With thorough sewer investigation and assessments, industry now has viable, cost effective options to rehabilitate underground chemical process sewers. These upgraded sewer systems provide the environmental security of monitored dual-walled pipe, enhanced flow characteristics, and retain accessibility for maintenance and inspections.

  9. Wastewater temperature decrease in pressure sewers.

    PubMed

    Sallanko, Jarmo; Pekkala, Mari

    2008-12-01

    The centralization of wastewater treatment in large central treatment plants and the connection of sparsely populated areas to sewerage systems have increased the time wastewater is retained in sewers. These retention times lead to a decrease in wastewater temperature and affect wastewater treatment, especially the removal of nitrogen. In this study, temperature changes in long transfer sewers were examined. The temperature change was greatest at the end of winter and in the front part of the sewer. Temperature changes in the front parts of the sewers ranged from 0.16 to 0.27 degree C/km, and in the end parts from 0.02 to 0.10 degree C/km. When expressed in terms of the retention time for wastewater in the sewer, the temperature changes ranged from 0.12 to 0.17 degree C per retention hour.

  10. Sanitary Landfill Supplemental Test Final Report

    SciTech Connect

    Altman, D.J.

    1999-07-28

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill.

  11. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  12. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  13. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  14. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  15. [Topical problems of sanitary and epidemiologic examination concerning projects of sanitary protection zones in airports].

    PubMed

    Isayeva, A M; Zibaryov, E V

    2015-01-01

    The article covers data on major errors in sanitary protection zones specification for civil airports, revealed through sanitary epidemiologic examination. The authors focus attention on necessity to develop unified methodic approach to evaluation of aviation noise effects, when justifying sanitary protection zone of airports and examining sanitary and epidemiologic project documents.

  16. Sulfide and methane production in sewer sediments.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  17. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  18. SEWER AND TANK SEDIMENT FLUSHING: CASE STUDIES

    EPA Science Inventory

    The objective of the report summarized here is to demonstrate that sewer system and storage tank flushing that reduces sediment deposition and accumulation is of prime importance to optimizing performance, maintaining structural integrity, and minimizing pollution of receiving wa...

  19. Dynamic time warping improves sewer flow monitoring.

    PubMed

    Dürrenmatt, D J; Del Giudice, D; Rieckermann, J

    2013-07-01

    Successful management and control of wastewater and storm water systems requires accurate sewer flow measurements. Unfortunately, the harsh sewer environment and insufficient flow meter calibration often lead to inaccurate and biased data. In this paper, we improve sewer flow monitoring by creating redundant information on sewer velocity from natural wastewater tracers. Continuous water quality measurements upstream and downstream of a sewer section are used to estimate the travel time based on i) cross-correlation (XCORR) and ii) dynamic time warping (DTW). DTW is a modern data mining technique that warps two measured time series non-linearly in the time domain so that the dissimilarity between the two is minimized. It has not been applied in this context before. From numerical experiments we can show that DTW outperforms XCORR, because it provides more accurate velocity estimates, with an error of about 7% under typical conditions, at a higher temporal resolution. In addition, we can show that pre-processing of the data is important and that tracer reaction in the sewer reach is critical. As dispersion is generally small, the distance between the sensors is less influential if it is known precisely. Considering these findings, we tested the methods on a real-world sewer to check the performance of two different sewer flow meters based on temperature measurements. Here, we were able to detect that one of two flow meters was not performing satisfactorily under a variety of flow conditions. Although theoretical analyses show that XCORR and DTW velocity estimates contain systematic errors due to dispersion and reaction processes, these are usually small and do not limit the applicability of the approach.

  20. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted. PMID:16477988

  1. 76 FR 35215 - Notice of EPA Workshop on Sanitary Sewer Overflows and Peak Wet Weather Discharges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... weather discharges. See 75 FR 30395 (June 1, 2010). Participants in the sessions offered both verbal and...'' section of EPA's notice announcing the 2010 Listening Sessions at 75 FR 30395 (June 1, 2010) and to... significant overlap with those highlighted for the 2010 listening sessions. See 75 FR 30399-30401 (June...

  2. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  3. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This paper overviews causes of combined-sewer deterioration and their heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer and combined-sewer overflow (CSO) storage-tank-flushing systems for removi...

  4. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.

  5. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...

  6. 2. PORTAL VIEW OF BRIDGE FROM NORTH SIDE OF SANITARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PORTAL VIEW OF BRIDGE FROM NORTH SIDE OF SANITARY AND SHIP CANAL, LOOKING SOUTHEAST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  7. Sewers, sewage treatment, sludge: damage without end.

    PubMed

    Rockefeller, Abby A

    2002-01-01

    It is in the nature of sewering and sewage treatment to compound environmental problems in the process of moving sewage and in attempting to remove from sewage the pollutants it carries. Spreading sewage sludge on land is but the latest in the compounding of environmental damage from sewerage. This practice must be banned and there must be a federal reorientation of all technology dealing with human excreta and the waste materials from industry and society that now are carried away by sewers. The reorientation must center on biologically based on-site pollution prevention and resource recycling technologies mandated through a revised Clean Water Act. PMID:17208779

  8. Dynamic online sewer modelling in Helsingborg.

    PubMed

    Hernebring, C; Jönsson, L E; Thorén, U B; Møller, A

    2002-01-01

    Within the last decade, the sewer system in Helsingborg, Sweden has been rehabilitated in many ways along with the reconstruction of the WWTP Oresundsverket in order to obtain a high degree of nitrogen and phosphorus removal. In that context a holistic view has been applied in order to optimise the corrective measures as seen from the effects in the receiving waters. A sewer catchment model has been used to evaluate several operation strategies and the effect of introducing RTC. Recently, a MOUSE ONLINE system was installed. In this phase the objective is to establish a stable communication with the SCADA system and to generate short-term flow forecasts. PMID:11936663

  9. Sewers, sewage treatment, sludge: damage without end.

    PubMed

    Rockefeller, Abby A

    2002-01-01

    It is in the nature of sewering and sewage treatment to compound environmental problems in the process of moving sewage and in attempting to remove from sewage the pollutants it carries. Spreading sewage sludge on land is but the latest in the compounding of environmental damage from sewerage. This practice must be banned and there must be a federal reorientation of all technology dealing with human excreta and the waste materials from industry and society that now are carried away by sewers. The reorientation must center on biologically based on-site pollution prevention and resource recycling technologies mandated through a revised Clean Water Act.

  10. 21 CFR 129.37 - Sanitary operations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Buildings and Facilities § 129.37 Sanitary operations. (a) The product water-contact surfaces of all multiservice containers, utensils, pipes... sanitary manner so as to preclude contamination of the bottled drinking water....

  11. 21 CFR 129.37 - Sanitary operations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Buildings and Facilities § 129.37 Sanitary operations. (a) The product water-contact surfaces of all multiservice containers, utensils, pipes... sanitary manner so as to preclude contamination of the bottled drinking water....

  12. 21 CFR 129.37 - Sanitary operations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Buildings and Facilities § 129.37 Sanitary operations. (a) The product water-contact surfaces of all multiservice containers, utensils, pipes... sanitary manner so as to preclude contamination of the bottled drinking water....

  13. 21 CFR 129.37 - Sanitary operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sanitary manner so as to preclude contamination of the bottled drinking water. ... HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Buildings and Facilities § 129.37 Sanitary operations. (a) The product water-contact surfaces of all multiservice containers, utensils,...

  14. 21 CFR 129.37 - Sanitary operations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sanitary manner so as to preclude contamination of the bottled drinking water. ... HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Buildings and Facilities § 129.37 Sanitary operations. (a) The product water-contact surfaces of all multiservice containers, utensils,...

  15. 46 CFR 169.255 - Sanitary inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Sanitary inspection. 169.255 Section 169.255 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.255 Sanitary inspection. At each inspection for...

  16. 46 CFR 169.255 - Sanitary inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Sanitary inspection. 169.255 Section 169.255 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.255 Sanitary inspection. At each inspection for...

  17. 46 CFR 169.255 - Sanitary inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Sanitary inspection. 169.255 Section 169.255 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.255 Sanitary inspection. At each inspection for...

  18. 46 CFR 169.255 - Sanitary inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Sanitary inspection. 169.255 Section 169.255 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.255 Sanitary inspection. At each inspection for...

  19. 46 CFR 169.255 - Sanitary inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Sanitary inspection. 169.255 Section 169.255 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.255 Sanitary inspection. At each inspection for...

  20. Distribution of selected PCB congeners in the Babcock Street sewer district: a multimedia approach to identify PCB sources in combined sewer overflows (CSOs) discharging to the Buffalo River, New York.

    PubMed

    Loganathan, B G; Irvine, K N; Kannan, K; Pragatheeswaran, V; Sajwan, K S

    1997-08-01

    To evaluate sources of PCBs in combined sewer overflows (CSOs) to the Buffalo River, New York, combined sewage, sanitary flow, atmospheric wet and dry depositions, and street dust samples were collected from the Babcock Street sewer district and analyzed. Total PCB concentrations (sum of the PCB congeners quantitated) in particulate and dissolved phases of sanitary flow were 101-269 ng g-1 dry weight and <0.2 ng L-1, respectively. PCBs in the atmospheric dry and wet deposition samples were close to the method detection limit (a few pg/cm2 day-1 and <0.2 ng L-1, respectively). Average concentrations of total PCBs were noticeable in both dissolved (64 ng/l-1) and particulate (907 ng g-1 dry weight) phases in CSOs. Total PCBs in aggregates of street dust samples were between 53 and 1,700 ng g-1 dry weight, with the highest concentrations at sites nearest an industrial area that was previously remediated for PCB contamination. PCB congeners 153, 138, 101, 118, and 180 contributed >50% of the total PCB load in street dust samples. PCB congener composition in the particulate phase of CSOs reflects the congener pattern of the street dusts. In this context, it can be suggested that the local contaminated street dusts are one of the potential sources of PCBs in CSOs, which is a source of PCBs to the Buffalo River.

  1. Wastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments.

    PubMed

    Hajj-Mohamad, M; Aboulfadl, K; Darwano, H; Madoux-Humery, A-S; Guérineau, H; Sauvé, S; Prévost, M; Dorner, S

    2014-01-01

    A sensitive method was developed to measure the sediment concentration of 10 wastewater micropollutants selected as potential sanitary tracers of sewage contamination and include: nonsteroidal anti-inflammatory drugs (acetaminophen - ACE and diclofenac - DIC), an anti-epileptic drug (carbamazepine - CBZ), a β-blocker (atenolol - ATL), a stimulant (caffeine - CAF), a bronchodilator (theophylline - THEO), steroid hormones (progesterone - PRO and medroxyprogesterone - MedP), an artificial sweetener (aspartame - APM) and personal care products (N,N-diethyl-3-methylbenzamide - DEET). Natural sediments (combined sewer overflow and stream sediments) were extracted by ultrasonic-assisted extraction followed by solid-phase extraction. Analyses were performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) using atmospheric pressure chemical ionisation in positive mode (APCI+) with a total analysis time of 4.5 min. Method detection limits were in the range of 0.01 to 15 ng g(-1) dry weight (dw) for the compounds of interest, with recoveries ranging from 75% to 156%. Matrix effects were observed for some compounds, never exceeding |±18%|. All results displayed a good degree of reproducibility and repeatability, with relative standard deviations (RSD) of less than 23% for all compounds. The method was applied to an investigation of stream and combined sewer overflow sediment samples that differed in organic carbon contents and particle size distributions. Acetaminophen, caffeine and theophylline (as confounded with paraxanthine) were ubiquitously detected at 0.13-22 ng g(-1) dw in stream bed sediment samples and 98-427 ng g(-1) dw in combined sewer overflow sediment samples. Atenolol (80.5 ng g(-1) dw) and carbamazepine (54 ng g(-1) dw) were quantified only in combined sewer overflow sediment samples. The highest concentrations were recorded for DEET (14 ng g(-1) dw) and progesterone (11.5 ng g(-1) dw) in stream bed and combined

  2. Wastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments.

    PubMed

    Hajj-Mohamad, M; Aboulfadl, K; Darwano, H; Madoux-Humery, A-S; Guérineau, H; Sauvé, S; Prévost, M; Dorner, S

    2014-01-01

    A sensitive method was developed to measure the sediment concentration of 10 wastewater micropollutants selected as potential sanitary tracers of sewage contamination and include: nonsteroidal anti-inflammatory drugs (acetaminophen - ACE and diclofenac - DIC), an anti-epileptic drug (carbamazepine - CBZ), a β-blocker (atenolol - ATL), a stimulant (caffeine - CAF), a bronchodilator (theophylline - THEO), steroid hormones (progesterone - PRO and medroxyprogesterone - MedP), an artificial sweetener (aspartame - APM) and personal care products (N,N-diethyl-3-methylbenzamide - DEET). Natural sediments (combined sewer overflow and stream sediments) were extracted by ultrasonic-assisted extraction followed by solid-phase extraction. Analyses were performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) using atmospheric pressure chemical ionisation in positive mode (APCI+) with a total analysis time of 4.5 min. Method detection limits were in the range of 0.01 to 15 ng g(-1) dry weight (dw) for the compounds of interest, with recoveries ranging from 75% to 156%. Matrix effects were observed for some compounds, never exceeding |±18%|. All results displayed a good degree of reproducibility and repeatability, with relative standard deviations (RSD) of less than 23% for all compounds. The method was applied to an investigation of stream and combined sewer overflow sediment samples that differed in organic carbon contents and particle size distributions. Acetaminophen, caffeine and theophylline (as confounded with paraxanthine) were ubiquitously detected at 0.13-22 ng g(-1) dw in stream bed sediment samples and 98-427 ng g(-1) dw in combined sewer overflow sediment samples. Atenolol (80.5 ng g(-1) dw) and carbamazepine (54 ng g(-1) dw) were quantified only in combined sewer overflow sediment samples. The highest concentrations were recorded for DEET (14 ng g(-1) dw) and progesterone (11.5 ng g(-1) dw) in stream bed and combined

  3. MANUAL: REAL TIME CONTROL OF COMBINED SEWERS

    EPA Science Inventory

    Managers, engineers, and operators of combined urban sewer systems are faced with difficult problems related to the operation and maintenance of their facilities. In addition to the issues related to the operation and upkeep of the system, many sewerage agencies are facing increa...

  4. Multistakeholder Evaluation of Condominial Sewer Services

    ERIC Educational Resources Information Center

    Nance, Earthea

    2005-01-01

    A multistakeholder evaluation procedure is presented to address the many challenges in evaluating the performance of condominial sewer projects in Brazil. Condominial sewerage is a promising appropriate technology that is coproduced by users and public agencies, but little is known about project performance. This article shows that…

  5. Urban Runoff and Combined Sewer Overflow.

    ERIC Educational Resources Information Center

    Field, Richard; Gardner, Bradford B.

    1978-01-01

    Presents a literature review of wastewater treatment, covering publications of 1976-77. This review includes areas such as: (1) urban runoff quality and quantity; (2) urban hydrology; (3) management practices; and (4) combined sewer overflows. A list of 140 references is also presented. (HM)

  6. OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...

  7. Real-time sewer effluent monitoring system

    SciTech Connect

    Koopman, S.; Yamauchi, R.K.

    1990-12-01

    Lawrence Livermore National Laboratory has upgraded its early sewer monitoring system from the 1970's. LLNL must insure that its waste water is of a consistent and acceptable nature for the City of Livermore's community sewer system. The Sewer Monitor UpGrade system (SMUG) is now monitoring the Lab's sewer effluent. SMUG monitors the effluent for pH, flow rate, metals, and alpha, beta and gamma emitting isotopes. It turns on the appropriate alarms if present alarm levels are exceeded. The hardware consists of DEC Micro VAX II/GPX that has been repackaged by Nuclear Data Company as the Genie 9900 Data Acquisition and Display System. The gamma detector, three XRFAs, pH meter, and flow rate meter are commercially available. The metals sample cells are custom built at the Lab. The operating system is the VMS version 5.4. The application software is written in DEC's Fortran-77 and MACRO, and Nuclear Data software library. 3 refs., 3 figs.

  8. An Environmental Innovation: The Sewer Mouse

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the effort to clean up America's waters, there is a little-known complicating factor: because they leak, sewer systems in many American cities are causing rather than preventing pollution of rivers and lakes. Fixing the leaks is difficult because their locations are unknown. Maintenance crews can't tear up a whole city looking for cracks in the pipes; they must first determine which areas are most likely suspects. An aerospace spinoff is providing help in that regard. The problem starts with heavy rains. Rainwater naturally flows into the sewers from streets, but sewage systems are designed to accommodate it. However, they are not designed to handle the additional flow of "groundwater", rain absorbed by the earth which seeps into the sewers through leaks in pipes and sewer walls. After a storm, groundwater seepage can increase the waterflow to deluge proportions, with the result that sewage treatment plants are incapable of processing the swollen flow. When that happens the sluices must be opened, dumping raw sewage into rivers and lakes.

  9. OPIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution. A strategy should be adopted to develop an optimized combined sewer overfl...

  10. Effects Of Leaky Sewers On Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  11. Evaluating Cryptosporidium and Giardia concentrations in combined sewer overflow.

    PubMed

    Arnone, Russell D; Walling, Joyce Perdek

    2006-06-01

    Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, WI outbreak affected more than 400,000 people, the concern over the public health risks linked to protozoan pathogens Cryptosporidium and Giardia has grown. Cryptosporidium and Giardia, found in streams, rivers, groundwater, and soil, form hardy, disinfection-resistant oocysts and cysts. Both organisms are recognized causative agents of gastrointestinal illnesses linked to the consumption of contaminated surface or groundwater. This study, the first in a planned series to estimate the urban contribution to the total Cryptosporidium and Giardia receiving-water loads, focused on combined sewer overflow (CSO). CSOs are discharges of mixed untreated sewage and stormwater released directly into receiving waters during rainfall. This engineered relief is necessary to accommodate hydraulic strain when the combined rain and sanitary flows exceed the system capacity. Limited comprehensive data are available assessing the CSO discharge contribution as a source of these two pathogens. Works by States et al. and Gibson et al. each found Cryptosporidium and much greater Giardia concentrations in CSOs draining parts of Pittsburgh, PA. This project estimated the relative detection frequency and concentration of Cryptosporidium and Giardia in CSO. Analytical results were obtained using a modification of Method 1623, originally developed for much cleaner environmental samples. These data are useful for drinking water treatment plants located downstream of CSOs. It is also significant in determining the potential concentrations of parasites at treatment plant intakes and for assessing health risks for water contact and fishing activities. Commonly monitored indicator organisms (total coliform, fecal coliform, E. coli, Enterococcus, and fecal streptococcus), endospores, and selected physical and chemical parameters were analyzed to further describe the samples. CSO from urban

  12. Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions.

    PubMed

    Jelic, Aleksandra; Rodriguez-Mozaz, Sara; Barceló, Damia; Gutierrez, Oriol

    2015-01-01

    The occurrence of 43 pharmaceuticals and 2 metabolites of ibuprofen was evaluated at the inlet and the outlet of a pressure sewer pipe in order to asses if in-sewer processes affect the pharmaceutical concentrations during their pass through the pipe. The target compounds were detected at concentrations ranging from low ng/L to a few μg/L, which are in the range commonly found in municipal wastewater of the studied area. The changes in concentrations between two sampling points were negligible for most compounds, i.e. from -10 to 10%. A higher decrease in concentrations (25-60 %) during the pass through the pipe was observed for diltiazem, citalopram, clarithromycin, bezafibrate and amlodipine. Negative removal was calculated for sulfamethoxazole (-66 ± 15%) and irbesartan (-58 ± 25%), which may be due to the conversion of conjugates back to their parent compounds in the sewer. The results show that microbial transformation of pharmaceuticals begins in sewer, albeit to different extents for different compounds. Therefore, the in-sewer transformation of pharmaceuticals should be assessed especially when their concentrations are used to estimate and refine the estimation of their per capita consumption in a catchment of interest in the sewage epidemiology approach. PMID:25462720

  13. Characterization of Washoff Behavior of In-Sewer Deposits in Combined Sewer Systems.

    PubMed

    Kim, WeonJae; Furumai, Hiroaki

    2016-06-01

    In-sewer deposits in combined sewer systems (CSSs) are closely related with the behavior of first foul flush and combined sewer overflows. The artificial flushing experiment separating the washoff of in-sewer deposits from the inflow of surface pollutants was carried out to simulate first foul flush in a CSS. The washoff behaviors of each pollutant including chemical pollutants, bacterial indicators, and enteric viruses were intensively investigated. By using several morphological analyses, some of which were suggested through this study, the characteristics of first foul flush were examined. As a result, the washoff behaviors of each pollutant were characterized according to their (i) event load ratios (ELRs), (ii) time-series concentration and load curves, (iii) concentration vs. flow rate curves, and (iv) dimensionless runoff concentrations (DRCs). The first foul flush patterns of each parameter were categorized into 3 typical groups: the strong-, partial-, and no first foul flush group. The order of these groups signifies their different physicochemical properties of in-sewer deposits in CSSs, their strength of first foul flush phenomena, and the washoff priority as well. PMID:27225785

  14. Life cycle analysis and sewer solids.

    PubMed

    Gouda, H; Ashley, R M; Gilmour, D; Smith, H

    2003-01-01

    The search for sustainable ways of living has necessitated a new look at the way in which water services are provided. The new paradigm includes whole-system perspectives for each of the primary criteria groups: social, environmental and economic. Whilst Life Cycle Analysis (LCA) techniques have been used successfully for products, they are much less used to assess processes. Nonetheless there is much to learn from the use of LCA for a much wider range of applications. An application is described whereby LCA has been used to determine energy, mass flows and environmental impacts for a number of sewer-related options for handling sewer solids, using the SimaPro software. This work has been part of a wider study to provide enhanced decision support systems for water utilities. PMID:12666816

  15. Exfiltration from gravity sewers: a pilot scale study.

    PubMed

    Vollertsen, J; Hvitved-Jacobsen, T

    2003-01-01

    Pilot-scale experiments were conducted on exfiltration of wastewater from gravity sewers. The effect of storm events, flushing of pipes and alternating infiltration/exfiltration were simulated. Exfiltration through different types of sewer leaks and into different soils were studied. It was found that the exfiltration rate became constant after some days of exfiltration. It stayed constant for the duration of the experiments, which typically spanned over some weeks. The exfiltration was governed by the development of a clogging zone at the sewer leak and could be characterized by a leakage factor. The leakage factor may then be used to estimate the risk of groundwater pollution from a sewer network.

  16. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt

  17. Assessing the Impact of a Combined Sewer Separation Project on Water Quality in Blackwater Creek, Virginia

    NASA Astrophysics Data System (ADS)

    Pradhan, K.; Warren, K. P.

    2013-12-01

    Over a century ago, the City of Lynchburg constructed a sanitary sewer system to deal with the increasing need for waste water treatment. State and federal environmental mandates require cities to eliminate sewer overflows, so in the 1990s, the City of Lynchburg devised a plan to fix the problem of combined sewer overflow. Since Lynchburg's Combined Sewer Separation (CSS) work began approximately twenty years ago, many of the overflow points have been eliminated, leaving 30 points to be closed in the future. It remains unclear, however, whether Blackwater Creek's freshwater ecosystems have begun to show improvement as a result of the City's CSS separation project. As recently as 2012, the Virginia Department of Environmental Quality characterized Blackwater Creek as a Category 5 Impaired Waterway, as assessed by benthic rapid bioassessment methods. Since 2003, the intro environmental science class at Randolph College has conducted stream assessment and water quality monitoring at two sites in Blackwater Creek, as a required field project. This work has involved nearly 300 students over that time, and includes rapid bioassessment (RBA) of aquatic macroinvertebrates, chemical and physical analysis, and riparian and channel vegetation assessment. Over this same period, the City has progressed through separation of the CSS system in a significant portion of Blackwater Creek's subwatershed, including our study area. We analyzed ten years of stream monitoring data in tandem with a geographic analysis of the progression of the CSS project to determine whether there has been resultant improvement in water quality. When analyzed in conjunction with the progress of the CSS project, the data did not exhibit a detectable difference between data collected before and after 2006. However, a simple linear regression of the data did show improvement in chemical and biological indicators of stream health, with a greater increase in results pertaining to the RBA. Further sampling is

  18. INNOVATIVE METHODS FOR THE OPTIMIZATION OF GRAVITY STORM SEWER DESIGN

    EPA Science Inventory

    The purpose of this paper is to describe a new method for optimizing the design of urban storm sewer systems. Previous efforts to optimize gravity sewers have met with limited success because classical optimization methods require that the problem be well behaved, e.g. describ...

  19. SEWER SEDIMENT GATE AND VACUUM FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly designed vacuum-flushing device in removing sediments from combined sewers and CSO storage tanks. A laboratory hydraulic flune was used to simulate a reach of sewer or storag...

  20. SEWER AND TANK FLUSHING FOR CORROSION AND POLLUTION CONTROL

    EPA Science Inventory

    This paper presents an overview of the causes of sewer deterioration and control methods that can prevent or arrest this deterioration. articular, the paper addresses the use of inline- and combined sewer overflow (CSO) storage tank-flushing systems for removing sediments and mi...

  1. GATE AND VACUUM FLUSHING OF SEWER SEDIMENT: LABORATORY TESTING

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly-designed vacuum-flushing device in removing sediment from combined sewers and CSO storage tanks. A laboratory hydraulic flume was used to simulate a reach of sewer or storag...

  2. 7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND BUILDING F IN THE LEFT BACKGROUND. 8X10 black and white gelatin print. United States Coast Guard, Air Station Contract 1247, Sewer System. 1956. - U.S. Coast Guard Air Station San Francisco, 1020 North Access Road, San Francisco, San Francisco County, CA

  3. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in §...

  4. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in §...

  5. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in §...

  6. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in §...

  7. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in §...

  8. Modelling the viability of heat recovery from combined sewers.

    PubMed

    Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S

    2014-01-01

    Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP. PMID:25051477

  9. Integrated design of sewers and wastewater treatment plants.

    PubMed

    Vollertsen, J; Hvitved-Jacobsen, T; Ujang, Z; Talib, S A

    2002-01-01

    Sewer system design must be integrated with wastewater treatment plant design when moving towards a more sustainable urban wastewater management. This integration allows an optimization of the design of both systems to achieve a better and more cost-effective wastewater management. Hitherto integrated process design has not been an option because the tools to predict in-sewer wastewater transformations have been inadequate. In this study the WATS model--being a new and validated tool for in-sewer microbial process simulations--is presented and its application for integrated sewer and treatment plant design is exemplified. A case study on a Malaysian catchment illustrates this integration. The effects of centralization of wastewater treatment and the subsequently longer transport distances are addressed. The layout of the intercepting sewer is optimized to meet the requirements of different treatment scenarios.

  10. Valuing information for sewer replacement decisions.

    PubMed

    van Riel, Wouter; Langeveld, Jeroen; Herder, Paulien; Clemens, François

    2016-01-01

    Decision-making for sewer asset management is partially based on intuition and often lacks explicit argumentation, hampering decision transparency and reproducibility. This is not to be preferred in light of public accountability and cost-effectiveness. It is unknown to what extent each decision criterion is appreciated by decision-makers. Further insight into this relative importance improves understanding of decision-making of sewer system managers. As such, a digital questionnaire (response ratio 43%), containing pairwise comparisons between 10 relevant information sources, was sent to all 407 municipalities in the Netherlands to analyse the relative importance and assess whether a shared frame of reasoning is present. Thurstone's law of comparative judgment was used for analysis, combined with several consistency tests. Results show that camera inspections were valued highest, while pipe age was considered least important. The respondents were pretty consistent per individual and also showed consistency as a group. This indicated a common framework of reasoning among the group. The feedback of the group showed, however, the respondents found it difficult to make general comparisons without having a context. This indicates decision-making in practice is more likely to be steered by other mechanisms than purely combining information sources. PMID:27533854

  11. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  12. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  13. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  14. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  15. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  16. 21 CFR 1210.14 - Sanitary inspection of plants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  17. 21 CFR 1210.14 - Sanitary inspection of plants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  18. 21 CFR 1210.14 - Sanitary inspection of plants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  19. 21 CFR 1210.14 - Sanitary inspection of plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  20. 5. DETAIL OF BUILDER'S PLATE, WHICH READS '1898, THE SANITARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF BUILDER'S PLATE, WHICH READS '1898, THE SANITARY DISTRICT OF CHICAGO, BOARD OF TRUSTEES, WILLIAM BOLDENWECK, JOSEPH C. BRADEN, ZINA R. CARTER, BERNARD A. ECKART, ALEXANDER J. JONES, THOMAS KELLY, JAMES P. MALLETTE, THOMAS SMYTHE, FRANK WINTER; ISHAM RANDOLPH, CHIEF ENGINEER.' - Santa Fe Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal east of Harlem Avenue, Chicago, Cook County, IL

  1. 21 CFR 110.35 - Sanitary operations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sanitary operations. 110.35 Section 110.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN...

  2. 21 CFR 110.35 - Sanitary operations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sanitary operations. 110.35 Section 110.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN...

  3. 9 CFR 416.4 - Sanitary operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a chemical's use in a food processing environment must be available to FSIS inspection program....4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... SANITATION § 416.4 Sanitary operations. (a) All food-contact surfaces, including food-contact surfaces...

  4. 9 CFR 416.4 - Sanitary operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Sanitary operations. 416.4 Section 416.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... a chemical's use in a food processing environment must be available to FSIS inspection...

  5. 9 CFR 416.4 - Sanitary operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Sanitary operations. 416.4 Section 416.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... a chemical's use in a food processing environment must be available to FSIS inspection...

  6. 9 CFR 416.4 - Sanitary operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sanitary operations. 416.4 Section 416.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... a chemical's use in a food processing environment must be available to FSIS inspection...

  7. 9 CFR 416.4 - Sanitary operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a chemical's use in a food processing environment must be available to FSIS inspection program....4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... SANITATION § 416.4 Sanitary operations. (a) All food-contact surfaces, including food-contact surfaces...

  8. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  9. A sewer ventilation model applying conservation of momentum.

    PubMed

    Ward, M; Hamer, G; McDonald, A; Witherspoon, J; Loh, E; Parker, W

    2011-01-01

    The work presented herein was completed in an effort to characterize the forces influencing ventilation in gravity sewers and to develop a mathematical model, based on conservation of momentum, capable of accounting for friction at the headspace/pipe interface, drag at the air/water interface, and buoyancy caused by air density differences between a sewer headspace and ambient. Experiments were completed on two full scale sewer reaches in Australia. A carbon monoxide-based tracer technique was used to measure the ventilation rate within the sewer headspaces. Additionally, measurements of pressure, relative humidity, and temperature were measured in the ambient air and sewer headspace. The first location was a five kilometre long sewer outfall beginning at a wastewater treatment plant and terminating at the ocean. The second location was a large gravity sewer reach fitted with ventilation fans. At the first location the headspace was entirely sealed except for openings that were controlled during the experiments. In this situation forces acting on the headspace air manifested mostly as a pressure distribution within the reach, effectively eliminating friction at the pipe wall. At the second location, air was forced to move near the same velocity as the wastewater, effectively eliminating drag at the air/water interface. These experiments allowed individual terms of the momentum equation to be evaluated. Experimental results were compared to the proposed mathematical model. Conclusions regarding model accuracy are provided along with model application guidance and assumptions. PMID:22214094

  10. A sewer ventilation model applying conservation of momentum.

    PubMed

    Ward, M; Hamer, G; McDonald, A; Witherspoon, J; Loh, E; Parker, W

    2011-01-01

    The work presented herein was completed in an effort to characterize the forces influencing ventilation in gravity sewers and to develop a mathematical model, based on conservation of momentum, capable of accounting for friction at the headspace/pipe interface, drag at the air/water interface, and buoyancy caused by air density differences between a sewer headspace and ambient. Experiments were completed on two full scale sewer reaches in Australia. A carbon monoxide-based tracer technique was used to measure the ventilation rate within the sewer headspaces. Additionally, measurements of pressure, relative humidity, and temperature were measured in the ambient air and sewer headspace. The first location was a five kilometre long sewer outfall beginning at a wastewater treatment plant and terminating at the ocean. The second location was a large gravity sewer reach fitted with ventilation fans. At the first location the headspace was entirely sealed except for openings that were controlled during the experiments. In this situation forces acting on the headspace air manifested mostly as a pressure distribution within the reach, effectively eliminating friction at the pipe wall. At the second location, air was forced to move near the same velocity as the wastewater, effectively eliminating drag at the air/water interface. These experiments allowed individual terms of the momentum equation to be evaluated. Experimental results were compared to the proposed mathematical model. Conclusions regarding model accuracy are provided along with model application guidance and assumptions.

  11. AOX in sewer slime -- Identification of industrial wastewater discharges into public sewers

    SciTech Connect

    Antusch, E.; Ripp, C.; Hahn, H.H.

    1995-12-31

    In this study, the authors present the measurements of halogenated organic compounds in sewer slimes. Many of the halogenated organic substances are anthropogenic origin, and, although only some are hazardous, their emission into the natural environment should be avoided. Therefore, the summary parameter AOX has become one of the most important criteria for regulating industrial wastewater discharge in German water quality legislation. The discharge limits have a preventative character, as there is no quantitative relation between the concentration of AOX and its toxicity. If an exceeding value is found in the sewer system, one should look for single components to indicate or to exclude toxic substances. The authors used this method to determine total organic halides as chloride by active carbon adsorption and microcoulometric-titration detection. All samples had been run in duplicate and the reliable limit of sensitivity under these conditions was 5 {micro}g/L. The ``sewer-slime-method`` is explained as a useful tool for localization and identification of indirect discharges.

  12. MANAGEMENT OF COMBINED SEWER OVERFLOW: RESEARCH PROGRAM CAPSTONE

    EPA Science Inventory

    Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include visi...

  13. MANAGEMENT OF COMBINED SEWER OVERFLOW RESEARCH PROGRAM CAPSTONE

    EPA Science Inventory


    Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include ...

  14. Factors affecting economies of scale in combined sewer systems.

    PubMed

    Maurer, Max; Wolfram, Martin; Anja, Herlyn

    2010-01-01

    A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.

  15. Exposure to airborne endotoxins among sewer workers: an exploratory study.

    PubMed

    Duquenne, Philippe; Ambroise, Denis; Görner, Pierre; Clerc, Frédéric; Greff-Mirguet, Guylaine

    2014-04-01

    Exploratory bioaerosol sampling was performed in order to assess exposure to airborne endotoxins during sewer work. Personal samples were collected in underground sewer pipes using 37-mm closed-face cassettes containing fibreglass filters (CFC-FG method) or polycarbonate filters (CFC-PC method). Endotoxins were quantified using the limulus amoebocyte lysate assay. Concentrations of airborne endotoxins at sewer workplaces (16-420 EU m(-3)) were higher than those measured outside the sewer network (0.6-122 EU m(-3)). Sewer worker exposure to airborne endotoxins depended on the workplace and on the tasks. Exposure levels were the highest for tasks involving agitation of water and matter, especially for 'chamber cleanup' and 'pipes cleanup' with a high-pressure water jet. Airborne endotoxin levels at the workplace tended to be higher when CFC-FG was used as the sampling method rather than CFC-PC. The adjusted mean of the measured concentrations for CFC-PC represents 57% of the mean observed with CFC-FG. The number of samples collected in the descriptive study was too low for drawing definitive conclusions and further exposure investigations are needed. Therefore, our exploratory study provides new exposure data for the insufficiently documented sewer working environment and it would be useful for designing larger exposures studies.

  16. Hanford 200 area (sanitary) waste water system

    SciTech Connect

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system.

  17. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses

    USGS Publications Warehouse

    Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.

    2010-01-01

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.

  18. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses.

    PubMed

    Hunt, Randall J; Borchardt, Mark A; Richards, Kevin D; Spencer, Susan K

    2010-10-15

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways.

  19. [Modern problems of the application of sanitary regulations concerning sanitary protection zones and sanitary classification of enterprises, buildings and other facilities].

    PubMed

    Lomtev, A Iu; Eremin, G B; Mozzhukhina, N A; Kombarova, M Iu; Mel'tser, A V; Giul'mamedov, É Iu

    2013-01-01

    In this paper there was performed an analysis of the application of sanitary norms and rules concerning sanitary protective zones and sanitary classification of enterprises, buildings and other facilities, including requirements for the sufficiency and accuracy of information in the performance of projects in sanitary protection zone (SPZ). There is presented an analysis of regulations that set requirements for implementation of mapping works in drafting the SPZ. The design of the SPZ was shown to be, on the one hand, the element of territorial planning subjects of the Russian Federation, on the other hand, the object of capital construction. The substantiations of requirements for graphic and text content, structure, and composition of data, sources of their obtaining, methods of data convergence are reported. There are revealed inconsistencies in Sanitary Regulations and Norms (SanPins) and in their relationship with the Town Planning and Land Code and other laws, and regulations adopted in their development.

  20. [Modern problems of the application of sanitary regulations concerning sanitary protection zones and sanitary classification of enterprises, buildings and other facilities].

    PubMed

    Lomtev, A Iu; Eremin, G B; Mozzhukhina, N A; Kombarova, M Iu; Mel'tser, A V; Giul'mamedov, É Iu

    2013-01-01

    In this paper there was performed an analysis of the application of sanitary norms and rules concerning sanitary protective zones and sanitary classification of enterprises, buildings and other facilities, including requirements for the sufficiency and accuracy of information in the performance of projects in sanitary protection zone (SPZ). There is presented an analysis of regulations that set requirements for implementation of mapping works in drafting the SPZ. The design of the SPZ was shown to be, on the one hand, the element of territorial planning subjects of the Russian Federation, on the other hand, the object of capital construction. The substantiations of requirements for graphic and text content, structure, and composition of data, sources of their obtaining, methods of data convergence are reported. There are revealed inconsistencies in Sanitary Regulations and Norms (SanPins) and in their relationship with the Town Planning and Land Code and other laws, and regulations adopted in their development. PMID:24624833

  1. Assessing the Role of Sewers and Atmospheric Deposition as Nitrate Contamination Sources to Urban Surface Waters using Stable Nitrate Isotopes

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.

    2009-12-01

    Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by

  2. Postural stability assessment in sewer workers.

    PubMed

    Kuo, W; Bhattacharya, A; Succop, P; Linz, D

    1996-01-01

    In this study, postural stability was measured with a microcomputer-based force platform as an indirect assessment of central nervous system effect in 28 sewer workers (age range 23.4 to 64.5 years, standard deviation of 8.7 years). All workers performed four 30-second postural sway tests. The organic-solvent exposure was measured by a photo-ionization detector. The photo-ionization detector was calibrated to measure volatile organic solvents in total benzene equivalence, and concentrations were measured in various parts of the plant. The mean exposure was .32 parts per million (ppm) benzene equivalent (range of .02 to .95 ppm, standard deviation .19 ppm). Based on a covariate adjusted linear multiple-regression model, a statistically significant (p < .05) positive correlation was demonstrated between postural sway and organic-solvent exposure. These workers also had increased postural sway compared with a nonexposed population. The statistically significant correlation between postural sway determinations and organic-solvent exposure was surprising given the very low exposures measured. It is possible that the organic-solvent exposure might not be the causative agent, but rather that the solvents themselves correlate with some other causative exposure, ie, total volatile organics as implicated in the cause of sick-building syndrome.

  3. [Sanitary and hygienic expert examination of consumer goods: toxicological aspects].

    PubMed

    Zav'ialov, N V; Skvortsova, E L; Chemechev, A P

    2009-01-01

    The paper presents the results of toxicological and sanitary-chemical studies of domestic and imported products subject to sanitary-and-epidemiological assessment. It shows the groups of products that are currently the greatest potential danger to health in terms of toxicological and hygienic parameters. Recommendations are given on programs for manufacturing control over the observance of sanitary rules and the antiepidemic (preventive) actions at the enterprises engaged in the production and turnover of social consumer goods. PMID:20135874

  4. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.

    PubMed

    Montserrat, A; Bosch, Ll; Kiser, M A; Poch, M; Corominas, Ll

    2015-02-01

    Using low-cost sensors, data can be collected on the occurrence and duration of overflows in each combined sewer overflow (CSO) structure in a combined sewer system (CSS). The collection and analysis of real data can be used to assess, improve, and maintain CSSs in order to reduce the number and impact of overflows. The objective of this study was to develop a methodology to evaluate the performance of CSSs using low-cost monitoring. This methodology includes (1) assessing the capacity of a CSS using overflow duration and rain volume data, (2) characterizing the performance of CSO structures with statistics, (3) evaluating the compliance of a CSS with government guidelines, and (4) generating decision tree models to provide support to managers for making decisions about system maintenance. The methodology is demonstrated with a case study of a CSS in La Garriga, Spain. The rain volume breaking point from which CSO structures started to overflow ranged from 0.6 mm to 2.8 mm. The structures with the best and worst performance in terms of overflow (overflow probability, order, duration and CSO ranking) were characterized. Most of the obtained decision trees to predict overflows from rain data had accuracies ranging from 70% to 83%. The results obtained from the proposed methodology can greatly support managers and engineers dealing with real-world problems, improvements, and maintenance of CSSs.

  5. On-line monitoring of methane in sewer air

    PubMed Central

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  6. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.

  7. On-line monitoring of methane in sewer air

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  8. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type. PMID:27390870

  9. Fireplace for heating indoor spaces and water for sanitary use

    SciTech Connect

    Piazzetta, D.

    1984-03-13

    An improved fireplace for heating indoor spaces and sanitary water comprises a hearth whereon wood can be burned such as to define a heat source, and, adjacent the hearth, an air circulating space and a sanitary hot water generating heat exchanger.

  10. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; maintenance. 75.1712-10 Section 75.1712-10 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary...

  11. 30 CFR 71.501 - Sanitary toilet facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sanitary toilet facilities; maintenance. 71.501 Section 71.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities...

  12. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  13. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  14. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  15. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  16. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  17. Ocean waste disposal: Outfall sewers. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning design, construction, and environmental effects of outfall sewers. The citations discuss the impact of domestic sewage on aquatic ecosystems, and pollution control of outfall sewers. Monitoring of pollutants in outfall sewage and sludge, and modeling of outfall sewers are also included. (Contains 250 citations and includes a subject term index and title list.)

  18. Idaho National Engineering Laboratory Sewer System Upgrade Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment for a proposed Sewer System Upgrade Project at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. The proposed action would consist of replacing or remodeling the existing sewage treatment plants at the Central Facilities Area, Test Reactor Area, and Containment Test Facility. Also, a new sewage testing laboratory would be constructed at the Central Facilities Area. Finally, the proposed action would include replacing, repairing, and/or adding sewer lines in areas where needed.

  19. Sanitary engineering and water economy in Europe

    PubMed Central

    Krul, W. F. J. M.

    1957-01-01

    The author deals with a wide variety of aspects of water economy and the development of water resources, relating them to the sanitary engineering problems they give rise to. Among those aspects are the balance between available resources and water needs for various purposes; accumulation and storage of surface and ground water, and methods of replenishing ground water supplies; pollution and purification; and organizational measures to deal with the urgent problems raised by the heavy demands on the world's water supply as a result of both increased population and the increased need for agricultural and industrial development. The author considers that at the national level over-all plans for developing the water economy of countries might well be drawn up by national water boards and that the economy of inter-State river basins should receive international study. In such work the United Nations and its specialized agencies might be of assistance. PMID:13472427

  20. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Sewer use ordinance. 35.927-4 Section 35.927-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  1. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Sewer system evaluation and rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water...

  2. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer use ordinance. 35.927-4 Section 35.927-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  3. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer use ordinance. 35.927-4 Section 35.927-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  4. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer system evaluation and rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water...

  5. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer use ordinance. 35.927-4 Section 35.927-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  6. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Sewer system evaluation survey. 35.927-2 Section 35.927-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water...

  7. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer use ordinance. 35.927-4 Section 35.927-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act §...

  8. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  9. 31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION GROUNDS, DEER ISLAND. METROPOLITAN SEWERAGE COMMISSION, JUNE 1896. Photocopy of image of aperture card 4977-1. Aperture cards and original drawings at Massachusetts Water Resources Authority Archives, Building 39, Charlestown Navy Yard, Boston, MA - Deer Island Pumping Station, Boston, Suffolk County, MA

  10. EXFILTRATION IN SEWER SYSTEMS: IS IT A NATIONAL PROBLEM?

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  11. STREET SURFACE STORAGE FOR CONTROL OF COMBINED SEWER SURCHARGE

    EPA Science Inventory

    One type of Best Management Practices (BMPs) available is the use of street storage systems to prevent combined sewer surcharging and to mitigate basement flooding. A case study approach, based primarily on two largely implemented street storage systems, will be used to explain ...

  12. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  13. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  14. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  15. PERFORMANCE OF OZONE AS A DISINFECTANT FOR COMBINED SEWER OVERFLOW

    EPA Science Inventory

    Disinfection of combined sewer overflow (CSO) minimizes the amount of disease-causing microorganisms (pathogens) released into receiving waters. Currently, the primary disinfecting agent used in the US for wastewater treatment is chlorine (Cl2); however, Cl2 produces problems in ...

  16. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  17. 40 CFR 35.2024 - Combined sewer overflows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved... priority water quality areas in marine bays and estuaries due to the impacts of combined sewer...

  18. 40 CFR 35.2024 - Combined sewer overflows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved... priority water quality areas in marine bays and estuaries due to the impacts of combined sewer...

  19. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  20. Demonstration of Innovative Sewer System Inspection Technology: SL-RAT

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  1. REAL TIME CONTROL OF SEWERS: US EPA MANUAL

    EPA Science Inventory

    The problem of sewage spills and local flooding has traditionally been addressed by large scale capital improvement programs that focus on construction alternatives such as sewer separation or construction of storage facilities. The cost of such projects is often high, especiall...

  2. COMBINED SEWER OVERFLOW CONTROL USING STORAGE IN SEAWATER

    EPA Science Inventory

    This paper describes the flow balance method facility (FBM) used to control a combined sewer overflow (CSO) and a statistically based efficiency evaluation for the system. he FBM uses containment within a receiving water body (in this case seawater) to store CSO followed by pumpb...

  3. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  4. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  5. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  6. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  7. Incorporating Storm Sewer Exfiltration into SWMM: Proof of Concept

    EPA Science Inventory

    This study evaluates the peak flow and volume reduction achieved by exfiltration from a perforated storm sewer in an urban catchment. There are three related objectives: [1] quantify peak flow and volume reduction; [2] demonstrate adaptability to climate change; and [3] evaluate ...

  8. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems

    PubMed Central

    Auguet, O.; Pijuan, M.; Batista, J.; Gutierrez, O.

    2015-01-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1 day−1), whereas emissions of CH4 remained low (17.9 ± 15.9 mg COD-CH4 liter−1 day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4 liter−1 day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  9. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.

    PubMed

    Auguet, O; Pijuan, M; Batista, J; Borrego, C M; Gutierrez, O

    2015-10-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7±72.3 mg S-H2S liter(-1) day(-1)), whereas emissions of CH4 remained low (17.9±15.9 mg COD-CH4 liter(-1) day(-1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6±16.6 mg COD-CH4 liter(-1) day(-1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  10. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  11. Cold Vacuum Drying facility sanitary sewage collection system design description (SYS 27)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank.

  12. SANITARY VULNERABILITY OF A TERRITORIAL SYSTEM IN HIGH SEISMIC AREAS

    NASA Astrophysics Data System (ADS)

    Teramo, A.; Termini, D.; de Domenico, D.; Marino, A.; Marullo, A.; Saccà, C.; Teramo, M.

    2009-12-01

    An evaluation procedure of sanitary vulnerability of a territorial system falling within a high seismic risk area, related to casualty treatment capability of hospitals after an earthquake, is proposed. The goal of the study is aimed at highlighting hospital criticalities for the arrangement of a prevention policy on the basis of territorial, demographic and sanitary type specific analyses of a given area. This is the first step of a procedure of territorial context reading within a damage scenario, addressed to a verification of preparedness level of the territorial system to a sanitary emergency referable both to a natural disaster and anthropic one. The results of carried out surveys are shown, at a different scale, on several sample areas of Messina Province (Italy) territory, evaluating the consistency of damage scenario with the number of casualties, medical doctors, available beds for the implementation of a emergency sanitary circuit.

  13. Factors concerned with sanitary landfill site selection: General discussion

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Stone, L. J.

    1972-01-01

    A general view of factors affecting site selection for sanitary landfill sites is presented. Examinations were made of operational methods, possible environment pollution, types of waste to be disposed, base and cover materials, and the economics involved in the operation.

  14. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie; Yuan, Zhiguo

    2015-02-01

    Methanethiol (MT) is considered one of the predominant odorants in sewer systems. Therefore, understanding MT transformation in sewers is essential to sewer odor assessment and abatement. In this study, we investigated the degradation of MT in laboratory anaerobic sewers. Experiments were carried out in seven anaerobic sewer reactors with biofilms at different stages of development. MT degradation was found to be strongly dependent on the methanogenic activity of sewer biofilms. The MT degradation rate accelerated with the increase of methanogenic activity of sewer biofilms, resulting in MT accumulation (i.e. net production) in sewer reactors with relatively low methanogenic activities, and MT removal in reactors with higher methanogenic activities. A Monod-type kinetic expression was developed to describe MT degradation kinetics in anaerobic sewers, in which the maximum degradation rate was modeled as a function of the maximum methane production rate through a power function. It was also found that MT concentration had a linear relationship with acetate concentration, which may be used for preliminary assessment of MT presence in anaerobic sewers. PMID:25437340

  15. Poison-based commensal rodent control strategies in urban ecosystems: some evidence against sewer-baiting.

    PubMed

    Mughini Gras, Lapo; Patergnani, Matteo; Farina, Marco

    2012-03-01

    Sewers are historically considered the main reservoir for commensal rodents, posing threats to urban ecosystem health. Aboveground rodent signs are often assumed to give clues to high sewer infestation, which can chronically restock surface areas. Thus, current sewer-baiting programmes are mostly reactive, responding to increased surface infestation. Conversely, proactive sewer-baiting (regardless of infestation levels) is often disregarded because cost-effectiveness is not always addressed. We explored the extent to which the surface infestation is related to rodent feeding activity on sewer and surface baits by analysing a set of proactive bait records in Bologna city, Italy. Sewer bait intakes were significantly lower than surface ones, suggesting that proactive sewer-baiting is generally less effective. As surface infestation increased, probability of recording surface bait intake increased significantly but this was not reflected by increased sewer bait intake, suggesting that surface infestation is not always a reliable indicator of sewer infestation. This should discourage the use of reactive sewer-baiting as a routine strategy. Poison-based control programmes by themselves are scarcely predictable and strategically limited, and ideally they should be handled within an ecologically based integrated pest management approach for achieving satisfactory results. PMID:22395957

  16. Sulfide and methane production in sewer sediments: Field survey and model evaluation.

    PubMed

    Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo

    2016-02-01

    Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths.

  17. Charles Dickens and the movement for sanitary reform.

    PubMed

    Litsios, Socrates

    2003-01-01

    Charles Dickens's adult life parallels the period when the movement for sanitary reform took root in England. Although he was not one of its leaders, he became in time one of its most outspoken advocates. This essay describes Dickens's growing involvement in the sanitary movement and looks at one of the most important ways he supported it--articles published in his weekly journal Household Words PMID:12721520

  18. Study for Reliability Assessment considering the Sedimentation in Urban Sewer Networks

    NASA Astrophysics Data System (ADS)

    Song, Yangho; Park, Moojong; Lee, Jungho

    2016-04-01

    In this study, analysis of reliability of sewer network was progressed with the number of overflow nodes and overflow volume simultaneously for urban areas considering sedimentation. Reliability analysis shows that it is possible to quantify the difference in the phenomenon of the destruction of sedimentation in urban sewer system under the same design frequency. This study focuses on the release to bed of sedimentations having being accumulated inside a urban sewer network. It is proposed as one of the indicators evaluated as full reliability for sewer system. To analyze detailed changes in conduit designs in urban sewer networks, tried to reduction of sedimentation in sewer networks using modified pipe slope in Bujeon-dong catchment, Busan. The various sewer designs were applied and then, the most effective improvement of reliability over 10%. Suggested reliability process can produce the quantitative evaluations about sewer systems using the results of the system simulations and use of possible the objective function for the sewer network designed with a relative evaluation. Sewer network is designed to pass the inflow rate depending on the design frequency smoothly. However, taking a look at the example of flooding generated in urban area shows that an increase in the generation and damage of flooding can be often caused by the deposition of sediment in the sewer. This is a problem in the maintenance of sewers, but this implies that the effect of sediment deposition should be considered to some degree for the design of a conduit itself in another aspect. Thus, it is necessary to realize design in a direction to reduce flood damage pursuant to it by considering the deposition aspect of sediment in a conduit when designing a storm sewer.

  19. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect

    Starr, R.C.; Green, T.S.; Hull, L.C.

    2001-02-28

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  20. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect

    Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

    2001-02-01

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  1. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  2. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  3. Sanitary engineering aspects of nuclear energy developments*

    PubMed Central

    Kenny, A. W.

    1962-01-01

    So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214

  4. Stormwater quality modelling in combined sewers: calibration and uncertainty analysis.

    PubMed

    Kanso, A; Chebbo, G; Tassin, B

    2005-01-01

    Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low. PMID:16206845

  5. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow. PMID:22864433

  6. Quality of local control for simple sewer networks

    NASA Astrophysics Data System (ADS)

    Kolechkina, Alla; van Nooijen, Ronald

    2016-04-01

    Combined sewer networks, where both foul water and storm water are transported through the same system, tend to develop into complex networks due to expansion of towns and villages. The transport capacity of these systems is always limited, so occasional controlled spills into surface water, combined sewer overflows (CSO), are part of the normal operating procedure. Occasionally the ideas and rules present in the original design are not respected when the system is extended to cover a larger area. One way to deal with this problem is to implement central control. Another is to add pipes and hardware to bring the extended system into line with the original rules and ideas. We show that for a design rule often followed in the Netherlands, local control does quite well as long as the rule is respected and there are no large variations in precipitation intensity over the area covered by the system.

  7. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  8. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS.

  9. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS. PMID:25839834

  10. Investigation of sewer exfiltration using integral pumping tests and wastewater indicators

    NASA Astrophysics Data System (ADS)

    Leschik, Sebastian; Musolff, Andreas; Martienssen, Marion; Krieg, Ronald; Bayer-Raich, Marti; Reinstorf, Frido; Strauch, Gerhard; Schirmer, Mario

    2009-11-01

    Leaky sewers affect urban groundwater by the exfiltration of untreated wastewater. However, the impact of sewer exfiltration on the groundwater is poorly understood. Most studies on sewer exfiltration focus on water exfiltration, but not on the impact on groundwater quality. In this paper we present a new monitoring approach to estimate mass flow rates Mex of different wastewater indicators (WWIs) from leaky sewers by applying integral pumping tests (IPTs). The problem of detecting and assessing heterogeneous concentrations in the vicinity of leaky sewers can be overcome with the IPT approach by the investigation of large groundwater volumes up- and downstream of leaky sewers. The increase in concentrations downstream of a leaky sewer section can be used to calculate Mex with a numerical groundwater model. The new monitoring approach was first applied using four IPT wells in Leipzig (Germany). Over a pumping period of five days we sampled five inorganic WWIs: B , Cl -, K +, NO 3-, NH 4+ and three xenobiotics: bisphenol-a, caffeine and tonalide. The resulting concentration-time series indicated an influence of wastewater at one IPT well downstream of the leaky sewer. We defined ranges of Mex by implementing the uncertainty of chemical analyses. The results showed a Mex of 0-10.9 g m - 1 d - 1 . The combination of Mex with wastewater concentrations from the target sewer yielded an exfiltration rate Qex of 28.0-63.9 L m - 1 d - 1 for the conservative ion Cl -. Most non-conservative WWIs showed reduced mass flow rates in the groundwater downstream of the leaky sewer that indicate a mass depletion during their passage from the sewer to the pumping well. Application of the IPT methodology at other field sites is possible. The IPT monitoring approach provides reliable Mex values that can help to assess the impact of leaky sewers on groundwater.

  11. Impact of water source management practices in residential areas on sewer networks - a review.

    PubMed

    Marleni, N; Gray, S; Sharma, A; Burn, S; Muttil, N

    2012-01-01

    Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified.

  12. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    PubMed

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  13. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    PubMed

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  14. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems

    NASA Astrophysics Data System (ADS)

    van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François

    2016-07-01

    Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.

  15. Contact dermatitis associated with the use of Always sanitary napkins.

    PubMed Central

    Eason, E L; Feldman, P

    1996-01-01

    OBJECTIVE: To report a clinical association between vulvar irritation or contact dermatitis and the use of Always sanitary napkins. DESIGN: Case series. SETTING: A gynecology practice in Montreal. PATIENTS: Women presenting between September 1991 and September 1994 with itching or burning of areas that would be in contact with a sanitary napkin (mons pubis, external surfaces of the vulva and perineum) beginning at least 1 day after the use of the napkins was started and less than 5 days after the use was stopped. RESULTS: Twenty-eight women experienced vulvar itching and burning, often associated with eruptions resembling contact dermatitis, of the vulvar and perineal surfaces after using Always sanitary napkins. Twenty-six reported that symptoms disappeared after they stopped using that brand of sanitary napkin. Seven women who later used the same brand again reported a recurrence of the vulvar irritation. CONCLUSION: The findings of this case series reveal Always sanitary napkins as a potentially important cause of recurrent vulvitis. Physician awareness of the association will enable effective advice and relief for a large number of women suffering "chronic vaginitis". PMID:8612252

  16. Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1988-01-01

    When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer

  17. Interactive design and presentation of ceramic sanitary products

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Yin, Guofu; Pan, Zhigeng

    2003-04-01

    Contemporary demands on ceramic sanitary products tend more and more to emphasize diversification and individuation. How to provide effective techniques to support interactive design and presentation of ceramic sanitary products has become a great challenge for vendors. This paper presents a general framework for ceramic sanitary products design. Some dynamic adjustment algorithms of curves to support surface parameterized modeling of toilet bowl, which is one of the most complex ceramic products, are proposed. Furthermore, the VR-based display and customization environment is also illustrated. With the VRML and Java, our system not only offers users different products, but also allows users to reset selected bathroom scene through replacing products from modeling database and modifying attributes of different products, such as colors, positions, etc. Then a brief discussion and future research directions are put forward in the last part of this paper.

  18. [Sanitary regulation in Mexico and the Free Trade Treaty].

    PubMed

    Juan-López, M

    1994-01-01

    In this paper are discussed essential issues about the concept, characteristics and general functions of sanitary regulation, as well as the principles and main lines of action contained in the Program of Modernization of the Sanitary Regulation, which is being implemented by the Ministry of Health of Mexico. In addition, some considerations are offered regarding the supporting role of such a program, in the context of the free trade era that Mexico is undergoing. After 40 years of an outdated sanitary regulation based in a non-functional licensing concept, the new and improved scheme relies on several ammendments to the General Health Law. Thus, the present approach, focuses on a set of flexible, simple and efficient rules, strengthened by proven scientific and technical procedures.

  19. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Systems: Utilizing a Distributed Lag Model

    EPA Science Inventory

    Combined sewer systems collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These combined sewer over...

  20. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    SciTech Connect

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  1. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    SciTech Connect

    Chase, J.

    1999-07-29

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  2. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  3. Sanitary Transportation of Human and Animal Food. Final rule.

    PubMed

    2016-04-01

    The Food and Drug Administration (FDA or we) is issuing a final rule to establish requirements for shippers, loaders, carriers by motor vehicle and rail vehicle, and receivers engaged in the transportation of food, including food for animals, to use sanitary transportation practices to ensure the safety of the food they transport. This action is part of our larger effort to focus on prevention of food safety problems throughout the food chain and is part of our implementation of the Sanitary Food Transportation Act of 2005 (2005 SFTA) and the Food Safety Modernization Act of 2011 (FSMA).

  4. Sanitary Landfill groundwater monitoring report. Second quarter 1993

    SciTech Connect

    Not Available

    1993-08-01

    This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  5. Sanitary landfill groundwater monitoring report: Third quarter 1996

    SciTech Connect

    1996-11-01

    This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  6. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  7. Sanitary landfill groundwater monitoring report (U): second quarter 1996

    SciTech Connect

    1996-08-01

    This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  8. Sanitary Landfill groundwater monitoring report: Third quarter 1994

    SciTech Connect

    Not Available

    1994-11-01

    This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

  9. Sanitary Landfill groundwater monitoring report. First quarter 1993

    SciTech Connect

    Not Available

    1993-05-01

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  10. Sanitary Landfill groundwater monitoring report. Third quarter 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  11. Sanitary Landfill groundwater monitoring report. Second quarter 1994

    SciTech Connect

    Not Available

    1994-08-01

    This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  12. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  13. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  14. Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination

    EPA Science Inventory

    This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...

  15. SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...

  16. SEWER SEDIMENT CONTROL: AN OVERVIEW OF THE EPA WET WEATHER FLOW (WWF) RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an overview of EPA WWF Research Program projects related to causes of sewer solids deposition and control methods that can prevent accumulation of sewer sediments. In particular, discussion will focus on the relationship of wastewater characteristics to flow ...

  17. Flood Grouting for Infiltration Reduction on Private Side Sewers (WERF Report INFR5R11)

    EPA Science Inventory

    The sewers in Seattle’s Broadview neighborhood, built in the 1950s, experience significant inflow and infiltration. Intense wet weather events have resulted in sewer overflows into private residences and the environment and previous work indicates that the majority of this excess...

  18. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer use ordinance and evaluation/rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer use ordinance and evaluation/rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Sewer use ordinance and evaluation/rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION...

  1. STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Kaehrle, William R.

    1986-01-01

    A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.

  2. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    NASA Astrophysics Data System (ADS)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  3. Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method.

    PubMed

    Kessili, Abdelhak; Benmamar, Saadia

    2016-01-01

    The aim of this paper is to develop a methodology for the prioritization of sewer rehabilitation projects for Algiers (Algeria) sewer networks to support the National Sanitation Office in its challenge to make decisions on prioritization of sewer rehabilitation projects. The methodology applies multiple-criteria decision making. The study includes 47 projects (collectors) and 12 criteria to evaluate them. These criteria represent the different issues considered in the prioritization of the projects, which are structural, hydraulic, environmental, financial, social and technical. The analytic hierarchy process (AHP) is used to determine weights of the criteria and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) method is used to obtain the final ranking of the projects. The model was verified using the sewer data of Algiers. The results have shown that the method can be used for prioritizing sewer rehabilitation projects. PMID:26819383

  4. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    PubMed

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place. PMID:16206860

  5. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    PubMed

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.

  6. [Research on pollution load of sediments in storm sewer in Beijing district].

    PubMed

    Li, Hai-Yan; Xu, Bo-Ping; Xu, Shang-Ling; Cui, Shuang

    2013-03-01

    Based on the investigation of sewer sediments in Xi Cheng district in Beijing, scour-release pollution load in one rainfall from sewer sediments was studied by monitoring the pollutants in the run-off of manhole's section. It was shown that the contribution of scour-release pollutants from sewer sediments to sewer outflow was obvious. The contribution rate of the sediments pollution load to runoff outflow in the 84 m pipeline in one rainfall (9 Jul., 2010) was as follows: TN 8.5%, TP 8.2%, COD 18.3%, SS 7.7%, respectively. And the pollutant contribution rate in the 295 m pipeline in another rainfall (4 Aug., 2010) was TN 23.12%, TP 60.01%, COD 33.78%, SS 31.89%. Therefore, it is important to control the pollution from sewer sediments for the improvement of water environment.

  7. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition.

    PubMed

    Stanić, N; de Haan, C; Tirion, M; Langeveld, J G; Clemens, F H L R

    2013-01-01

    Sewer systems are costly to construct and even more costly to replace, requiring proper asset management. Sewer asset management relies to a large extent on available information. In sewer systems where pipe corrosion is the dominant failure mechanism, visual inspection by closed circuit television (CCTV) and core sampling are among the methods mostly applied to assess sewer pipe condition. This paper compares visual inspection and drill core analysis in order to enhance further understanding of the limitations and potentials of both methods. Both methods have been applied on a selected sewer reach in the city of The Hague, which was reportedly subject to pipe corrosion. Results show that both methods, visual inspection and core sampling, are associated with large uncertainties and that there is no obvious correlation between results of visual inspection and results of drill core analysis.

  8. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Disposal by release into sanitary sewerage. 20.2003... Disposal § 20.2003 Disposal by release into sanitary sewerage. (a) A licensee may discharge licensed material into sanitary sewerage if each of the following conditions is satisfied: (1) The material...

  9. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bathing facilities; change rooms; sanitary... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush...

  10. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush...

  11. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush...

  12. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush...

  13. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush...

  14. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or... equipped with adequate sanitary facilities and accommodations including, but not limited to: (a) Water supply. The water supply shall be sufficient for the operations intended and shall be derived from...

  15. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., piping systems that discharge waste water or sewage and piping systems that carry water for food or food... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sanitary facilities and controls. 110.37 Section 110.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  16. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... equipped with adequate sanitary facilities and accommodations including, but not limited to: (a) Water supply. The water supply shall be sufficient for the operations intended and shall be derived from an adequate source. Any water that contacts food or food-contact surfaces shall be safe and of...

  17. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... equipped with adequate sanitary facilities and accommodations including, but not limited to: (a) Water supply. The water supply shall be sufficient for the operations intended and shall be derived from an adequate source. Any water that contacts food or food-contact surfaces shall be safe and of...

  18. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    ERIC Educational Resources Information Center

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  19. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste..., piping systems that discharge waste water or sewage and piping systems that carry water for food or food... equipped with adequate sanitary facilities and accommodations including, but not limited to: (a)...

  20. Interim Sanitary Landfill Groundwater Monitoring Report (1998 Annual Report)

    SciTech Connect

    Wells, D.

    1999-03-18

    The SRS Interim Sanitary Landfill opened in Mid-1992 and operated until 1998 under Domestic Waste Permit No. 025500-1120. Several contaminants have been detected in the groundwater beneath the unit.The well sampling and analyses were conducted in accordance with Procedure 3Q5, Hydrogeologic Data Collection.

  1. 46 CFR 189.25-40 - Sanitary inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Sanitary inspection. 189.25-40 Section 189.25-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... for certification and periodic inspection, the quarters, toilets, and washing spaces, galleys,...

  2. Urban flood risk assessment using sewer flooding databases.

    PubMed

    Caradot, Nicolas; Granger, Damien; Chapgier, Jean; Cherqui, Frédéric; Chocat, Bernard

    2011-01-01

    Sustainable water management is a global challenge for the 21st century. One key aspect remains protection against urban flooding. The main objective is to ensure or maintain an adequate level of service for all inhabitants. However, level of service is still difficult to assess and the high-risk locations difficult to identify. In this article, we propose a methodology, which (i) allows water managers to measure the service provided by the urban drainage system with regard to protection against urban flooding; and (ii) helps stakeholders to determine effective strategies for improving the service provided. One key aspect of this work is to use a database of sewer flood event records to assess flood risk. Our methodology helps urban water managers to assess the risk of sewer flooding; this approach does not seek to predict flooding but rather to inform decision makers on the current level of risk and on actions which need to be taken to reduce the risk. This work is based on a comprehensive definition of risk, including territorial vulnerability and perceptions of urban water stakeholders. This paper presents the results and the methodological contributions from implementing the methodology on two case studies: the cities of Lyon and Mulhouse.

  3. [New methodical approaches in the projection of zones of sanitary protection of water sources].

    PubMed

    Fridman, K B; Romantsova, V L; Voroniuk, G I; Bashketova, N S

    2014-01-01

    In the projection of sanitary protection zones of water sources it is extremely important to determine the specific boundaries of the established zones of sanitary protection due to the solution of property issues and responsibilities. In the paper projection of data with account of required scaling it is not possible to do. In this case, the use of geographic information systems is appropriate and useful. In addition there is necessary an adjustment of the existing sanitary calculations in relation to zones of sanitary protection of water sources in the part of specification of the order of approval of projects of sanitary protection zones and organization of the control for their implementation. PMID:25950064

  4. Erosion resistance and behaviour of highly organic in-sewer sediment.

    PubMed

    Seco, I; Gómez Valentín, M; Schellart, A; Tait, S

    2014-01-01

    Reliable prediction of time-varying pollutant loads in combined sewer systems during storm periods can aid better management of the release of pollution into natural environments as well as enhancing storage tank design. Better understanding of the behaviour of sewer sediments is crucial for the development of models that adequately describe the transport of in-sewer solids and accurately predict the changes in pollutant concentration within combined sewers during storm events. This paper reports on the results of a test programme to examine the erosion of highly organic sewer sediment under the application of time-varying shear stress. The tests were carried out with and without supplying oxygen, and varying simulated dry-weather periods. The aim was to investigate the behaviour of real in-sewer sediment with a high organic content (around 80%) in an attempt to improve prediction of the transport rates under the particular Mediterranean conditions of long dry-period/build-up and intense rainfall/wash-off, and understand how this environment affects the erosional resistance and subsequent sediment release. Results have been compared with previous work on lower organic content sewer sediments and artificial organic sediment.

  5. The effect of extended in-sewer storage on wastewater treatment plant performance.

    PubMed

    Ashley, R M; Dudley, J; Vollertsen, J; Saul, A J; Jack, A; Blanksby, J R

    2002-01-01

    A project funded by UKWIR is under way in the UK to develop a relatively simple methodology whereby the effects of the introduction of extended in-sewer storage at CSOs on downstream sewerage and treatment can be assessed. Recent legislation (UK and European) has compelled many sewer system operators to introduce systems which increase in-sewer retention times, and also retain more flow and load within sewer networks. The project has reviewed existing knowledge about the interaction between in-sewer flow and treatment plants, together with available models. The study is utilising a "benchmark" of 3 configurations of treatment plant and dynamic simulation using the WRc STOAT software, with minor modifications to ensure that effects on odour generation and nutrient removal processes are adequately modelled. As no existing sewer flow quality model can represent the range of conditions possible in sewer networks, a combined application of the Hydroworks model and a new model developed at Aalborg University is being used for this part of the study.

  6. Parsimonious hydrological modeling of urban sewer and river catchments

    NASA Astrophysics Data System (ADS)

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, D. A.

    2012-09-01

    SummaryA parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the “flashy” response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

  7. Method of filtering sewer scum and apparatus therefor

    SciTech Connect

    Irving, R.

    1981-02-03

    The method of treating sewer scum including combustibles and debris includes the steps of collecting the scum from sewage, delivering it to a perforated filter drum, continuously rotating the drum upon an inclined longitudinal axis, applying heated air under pressure to the exterior of the drum along its length inwardly of the perforations, discharging the debris continuously and collecting the filtered combustibles. Apparatus for filtering said scum includes an elongated cylindrical perforated drum rotatable on an inclined axis receiving scum at its upper end and discharging debris at its lower end. A cylindrical shell sealingly encloses the perforated portion of the drum for providing a pressure chamber above the drum and a collection chamber below the drum. An elongated air channel along the interior of the shell delivers high pressure heated air to said pressure chamber and filtered scum accumulates in the collection chamber.

  8. Gamma and beta logging of underground sewer and process lines

    SciTech Connect

    Rangel, M.J.; Martz, D.E.; Langner, G.H. Jr.

    1989-11-01

    The GammaSnake can be useful for locating uranium mill tailings used as backfill for sewer lines or storm drains where the lines can be readily accessed from a cleanout access port or other opening. The time required to determine if contamination is present using the GammaSnake method is considerably less than when using the delta gamma or drilling methods. There is, also, less potential hazard to the equipment operators when using the GammaSnake method. The GammaSnake method is generally limited to a distance of 100 feet or less. Used with the MAC-51B line locator, the GammaSnake method can provide useful information without extensive drilling or surveying. 7 figs., 2 tabs.

  9. Hybrid modeling and receding horizon control of sewer networks

    NASA Astrophysics Data System (ADS)

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2014-11-01

    In this work, a control-oriented sewer network model is presented based on a hybrid linear modeling framework. The model equations are described independently for each network element, thus allowing the model to be applied to a broad class of networks. A parameter calibration procedure using data obtained from simulation software that solves the physically based model equations is described and validation results are given for a case study. Using the control model equations, an optimal control problem to minimize flooding and pollution is formulated to be solved by means of mixed-integer linear or quadratic programming. A receding horizon control strategy based on this optimal control problem is applied to the case study using the simulation software as a virtual reality. Results of this closed-loop simulation tests show the effectiveness of the proposed approach in fulfilling the control objectives while complying with physical and operational constraints.

  10. Real-time control of sewer systems using turbidity measurements.

    PubMed

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.

  11. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.

    2015-12-01

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater

  12. Mathematical modelling of landfill gas migration in MSW sanitary landfills.

    PubMed

    Martín, S; Marañón, E; Sastre, H

    2001-10-01

    The laws that govern the displacement of landfill gas in a sanitary landfill are analysed. Subsequently, a 2-D finite difference flow model of a fluid in a steady state in a porous medium with infinite sources of landfill gas is proposed. The fact that landfill gas is continuously generated throughout the entire mass of the landfill differentiates this model from others extensively described in the literature and used in a variety of different applications, such as oil recovery, groundwater flow, etc. Preliminary results are then presented of the application of the model. Finally, the results obtained employing data from the literature and experimental assays carried out at the La Zoreda sanitary landfill (Asturias, Spain) are discussed and future lines of research are proposed.

  13. Interim sanitary landfill groundwater monitoring report. 1995 annual report

    SciTech Connect

    Bagwell, L.

    1996-04-24

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled biannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500- 1120 (formerly DWP-087A) and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane was elevated in one downgradient and one sidegradient well during 1995. Barium, 1, 1- dichloroethylene, specific conductance, and zinc exceeded standards in one well each. The elevated level of 1, 1-dichloroethylene occurred in a downgradient well. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 190 ft/year during first quarter 1995 and 150 ft/yr during third quarter 1995.

  14. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect

    1995-06-01

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  15. The economic and social aspects of sanitary landfill site selection

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Rogers, J. R.

    1972-01-01

    The factors involved in the selection of suitable sites for sanitary land fills are discussed. The economic considerations and problems of social acceptance are considered the most important. The subjects discussed are: (1) accessibility of land, (2) availability of cover material, (3) expected capacity of site, (4) cover material and compaction, (5) fire protection, (6) site location with respect to residential and industrial areas, and (7) land usage after landfill completion.

  16. Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999

    SciTech Connect

    Chase, J.

    1999-05-26

    This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  17. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    SciTech Connect

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  18. [The sanitary question in the modernity-postmodernity debate].

    PubMed

    Iriart, C; Spinelli, H

    1994-12-01

    This work analyzes the sanitary question in the modernity-postmodernity debate. Such analyses are performed form a philosophical position that states the crisis of Modernity and questions the ideological twist that to itself propitiates postmodernity, shutting out questioning views or visions. It propitiates an alternative view of politics, thinking of it from the potency plane and giving a role to the subject in the decision of producing transformations.

  19. Sanitary landfills. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    This bibliography contains citations concerning refuse disposal in sanitary landfills. Among the topics reviewed are site selection criteria, leachate analysis and treatment, and economic and management aspects. Hydrologic studies pertaining to contaminant transport, and the use of liners and covers are discussed. Considerable attention is given to gas generation and recovery, and specific operations are described. Citations pertaining specifically to hazardous and industrial waste materials are excluded. (Contains 250 citations and includes a subject term index and title list.)

  20. Sanitary landfill groundwater monitoring report: First quarter 1997

    SciTech Connect

    Chase, J.A.

    1997-05-01

    This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

  1. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.

    PubMed

    Alani, Amir M; Faramarzi, Asaad

    2015-06-10

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes.

  2. Effect of environmental conditions on the erosional resistance of cohesive sediment deposits in sewers.

    PubMed

    Tai, S J; Marion, A; Camuffo, G

    2003-01-01

    The potential to adjust sewer network operation in order to control the level of transported sediment in sewage so as to enhance the performance of end-of-pipe treatment works is now being investigated. However for this to become a practical management option there is a need to be able to understand the processes which control the movement of sediments that are found in many combined sewers. Crucial to this understanding is an ability to predict how sediments from in-sewer deposits, are released by the action of vigorous flows. This paper reports on a laboratory investigation that aimed to investigate the effect that the environmental conditions during deposit formation can have on the ability of fine-grained organic sediment within in-sewer deposits to resist erosion and subsequent release into transport.

  3. ANFIS-based approach for predicting sediment transport in clean sewer

    PubMed Central

    Azamathulla, H. Md.; Ab. Ghani, Aminuddin; Fei, Seow Yen

    2012-01-01

    The necessity of sewers to carry sediment has been recognized for many years. Typically, old sewage systems were designated based on self-cleansing concept where there is no deposition in sewer. These codes were applicable to non-cohesive sediments (typically storm sewers). This study presents adaptive neuro-fuzzy inference system (ANFIS), which is a combination of neural network and fuzzy logic, as an alternative approach to predict the functional relationships of sediment transport in sewer pipe systems. The proposed relationship can be applied to different boundaries with partially full flow. The present ANFIS approach gives satisfactory results (r2 = 0.98 and RMSE = 0.002431) compared to the existing predictor. PMID:22389640

  4. ENVIRONMENTAL FOOTPRINT OF PHARMACEUTICALS - THE SIGNIFICANCE OF FACTORS BEYOND DIRECT EXCRETION TO SEWERS

    EPA Science Inventory

    The combined excretion of active pharmaceutical ingredients (APIs) via urine and feces is considered the primary route by which APIs from human pharmaceuticals enter the environment. Disposal of unwanted, leftover medications by flushing into sewers has been considered a secondar...

  5. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  6. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas - slides

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  7. USING VISUAL PLUMES PREDICTIONS TO MODULATE COMBINED SEWER OVERFLOW (CSO) RATES

    EPA Science Inventory

    High concentrations of pathogens and toxic residues in creeks and rivers can pose risks to human health and ecological systems. Combined Sewer Overflows (CSOs) discharging into these watercourses often contribute significantly to elevating pollutant concentrations during wet weat...

  8. Optimization of the central automatic control of a small Dutch sewer system

    NASA Astrophysics Data System (ADS)

    Kolechkina, A. G.; Hoes, O. A. C.

    2012-04-01

    A sewer control system was developed in the context of a subsidized project aiming at improvement of surface water quality by control of sewer systems and surface water systems. The project was coordinated by the local water board, "Waterschap Hollandse Delta". Other participants were Delft University of Technology, Deltares and the municipalities Strijen, Cromstrijen, Westmaas, Oud Beijerland and Piershil. As part of the project there were two pilot implementations where a central automatic controller was coupled to the existing SCADA system. For these two pilots the system is now operational. A Dutch urban area in the western part of the Netherlands is usually part of a polder, which is effectively an artificially drained catchment. The urban area itself is split into small subcatchments that manage runoff in different ways. In all cases a large fraction goes into the natural hydrological cycle, but, depending on the design of the local sewer system, a larger or smaller part finds its way into the sewer system. Proper control of this flow is necessary to control surface water quality and to avoid health risks from flow from the sewer into the streets. At each time step the controller switches pumps to distribute the remaining water in the system at the end of the time step over the different subcatchments. The distribution is created based on expert judgment of the relative vulnerability and subcatchment sewer system water quality. It is implemented in terms curves of total system stored volume versus subcatchment stored volume. We describe the process of the adaptation of a controller to two different sewer systems and the understanding of the artificial part of the catchment we gained during this process. In the process of adaptation the type of sewer system (combined foul water and storm water transport or separate foul water and storm water transport) played a major role.

  9. Remaining Sites Verification Package for the 100-F-31, 144-F Sanitary Sewer System, Waste Site Reclassification Form 2006-033

    SciTech Connect

    L. M. Dittmer

    2006-08-24

    The 100-F-31 waste site is a former septic system that supported the inhalation laboratories, also referred to as the 144-F Particle Exposure Laboratory (132-F-2 waste site), which housed animals exposed to particulate material. The 100-F-31 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  10. Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2006-055

    SciTech Connect

    L. M. Dittmer

    2007-03-21

    The 1607-B2 waste site is a former septic system associated with various 100-B facilities, including the 105-B, 108-B, 115-B/C, and 185/190-B buildings. The site was evaluated based on confirmatory results for feeder lines within the 100-B-14:2 subsite and determined to require remediation. The 1607-B2 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  11. Remaining Sites Verification Package for the 1607-F5 Sanitary Sewer System (124-F-5), Waste Site Reclassification Form 2006-043

    SciTech Connect

    L. M. Dittmer

    2006-09-14

    The 1607-F5 waste site is a former septic tank, tile field, and associated pipeline located within the 100-FR-1 Operable Unit that received sewage from the former 181-F Pumphouse. Lead, gamma-chlordane, and heptachlor epoxide were identified within or around the septic system at concentrations exceeding the direct exposure cleanup criteria. Multiple metal and pesticide constituents were also identified as exceeding the groundwater and river protection cleanup criteria. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  12. A solvent-free approach to extract the lipid fraction from sewer grease for biodiesel production.

    PubMed

    Tu, Qingshi; Wang, Jingjing; Lu, Mingming; Brougham, Andrew; Lu, Ting

    2016-08-01

    Fats, oils and greases (FOG) are the number one cause of sewer pipe blockage and have been mostly disposed of as a waste until recently. This study investigated a low cost and environmentally friendly approach to extract the lipid fraction (fatty acids and glycerides for biodiesel production) from sewer grease (SG), i.e., FOGs obtained from wastewater treatment plants (WWTPs). The lipid fraction of the sewer grease was primarily in the form of free fatty acid (FFA), at 20.7wt%. An innovative solvent-free extraction approach was developed using waste cooking oil (WCO) to overcome the challenges of emulsion, impurities and high moisture content of the sewer grease. A 95% extraction yield of sewer grease was achieved under the optimum operating condition of 3.2:1 WCO-SG ratio (wt/wt), 70°C and 240min. In addition, the reusability of the WCO was also investigated. WCO can be used two to three times for sewer grease extraction with more than 90% extraction efficiency. PMID:27256783

  13. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions.

    PubMed

    Del Giudice, G; Padulano, R; Siciliano, D

    2016-01-01

    The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements. PMID:26901717

  14. [THE IMPROVEMENT OF CITIES AND SANITARY CONTROL IN RUSSIA IN LATE XIX--EARLY XX CENTURIES].

    PubMed

    Sherstneva, E V

    2015-01-01

    The article considers activity of municipal self-governments of Russia concerning support of sanitary epidemiological well-being of cities in the late XIX--early XX centuries. The acuteness of problem of sanitary conditions of urban settlements particularly became visible in post-reform period due to increasing of number of urban population, alteration of setup and rhythm of life in cities, appearance of new forms of worker's daily chores. Al this, against the background of underdevelopment of communal sphere aggravated epidemiological situation in cities. The impulse to improvement and development of sanitary control was made by the city regulations of 1870 presenting to town authorities the right to deal with sanitary issues. The significant input into improvement of cities was made first of all at the expense of construction of water supplies and sewerage and support of sanitary control of these spheres of municipal economy. Under town councils of many cities the sanitary commissions were organized to support permanent sanitary control in town. The development of town sanitation followed the way of specialization. The housing and communal, trade and food, school and sanitary and sanitary and veterinary control were organized. PMID:26399074

  15. Chemical pretreatment of combined sewer overflows for improved UV disinfection.

    PubMed

    Gibson, J; Farnood, R; Seto, P

    2016-01-01

    The aim of this research was to better understand chemical pre-treatment of combined sewer overflows (CSOs) for subsequent ultraviolet (UV) disinfection. Approximately 200 jar tests were completed. Alum (Al2(S04)3·12H2O) resulted in a higher UV light transmission (UVT), and equivalent total suspended solids (TSS) removal, than ferric chloride (FeCl3). An alum dose of 20 mg/L increased the UVT of the raw CSO from 30 to 60% after settling. The addition of 100 mg/L of alum maximized UVT reaching approximately 85%. Flocculation did not increase UVT. However, it did improve the removal of TSS. Cationic polymers worked quickly compared with metal coagulants, but only reached a UVT of 60%. A high positive charge density on the polymer improved the removal of turbidity when compared with low charge, but did not affect UVT. If the goal is to maximise UVT, a very high alum dose may be preferred. If the goal is to minimize coagulant dose with moderate UV performance, cationic polymer at approximately 3 mg/L is recommended. PMID:26819393

  16. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  17. Impact of reduced water consumption on sulfide and methane production in rising main sewers.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Bustamante, Heriberto; Yuan, Zhiguo

    2015-05-01

    Reduced water consumption (RWC), for water conservation purposes, is expected to change the wastewater composition and flow conditions in sewer networks and affect the in-sewer transformation processes. In this study, the impact of reduced water consumption on sulfide and methane production in rising main sewers was investigated. Two lab-scale rising main sewer systems fed with wastewater of different strength and flow rates were operated to mimic sewers under normal and RWC conditions (water consumption reduced by 40%). Sulfide concentration under the RWC condition increased by 0.7-8.0 mg-S/L, depending on the time of a day. Batch test results showed that the RWC did not change the sulfate-reducing activity of sewer biofilms, the increased sulfide production being mainly due to longer hydraulic retention time (HRT). pH in the RWC system was about 0.2 units lower than that in the normal system, indicating that more sulfide would be in molecular form under the RWC condition, which would result in increased sulfide emission to the atmosphere as confirmed by the model simulation. Model based analysis showed that the cost for chemical dosage for sulfide mitigation would increase significantly per unit volume of sewage, although the total cost would decrease due to a lower sewage flow. The dissolved methane concentration under the RWC condition was over two times higher than that under the normal flow condition and the total methane discharge was about 1.5 times higher, which would potentially result in higher greenhouse gas emissions. Batch tests showed that the methanogenic activity of sewer biofilms increased under the RWC condition, which along with the longer HRT, led to increased methane production.

  18. Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.

    PubMed

    Penn, Roni; Friedler, Eran; Ostfeld, Avi

    2013-10-01

    Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions.

  19. [The sanitary protection of Armed Forces employed abroad].

    PubMed

    Pasini, W

    2006-01-01

    After recalling the numerous peace expeditions of the Italian Armed Forces in foreign countries, the author underlines the several health risk factors that such missions imply. The assessment of the biological risk should be based on the knowledge of the local sanitary situation and on the analysis of the operative characteristics of the mission: prevention is based on vaccinations (with plans based on the operative tasks and destinations) and on antimalaric chemoprophylaxis, carried out following WHO indications. In conclusion, the current organization of military field hospitals is briefly described. PMID:16705892

  20. Methods of Sensing Land Pollution from Sanitary Landfills

    NASA Technical Reports Server (NTRS)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  1. [The sanitary protection of Armed Forces employed abroad].

    PubMed

    Pasini, W

    2006-01-01

    After recalling the numerous peace expeditions of the Italian Armed Forces in foreign countries, the author underlines the several health risk factors that such missions imply. The assessment of the biological risk should be based on the knowledge of the local sanitary situation and on the analysis of the operative characteristics of the mission: prevention is based on vaccinations (with plans based on the operative tasks and destinations) and on antimalaric chemoprophylaxis, carried out following WHO indications. In conclusion, the current organization of military field hospitals is briefly described.

  2. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    PubMed

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found.

  3. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat.

  4. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. PMID:24216228

  5. A different approach for predicting H(2)S((g)) emission rates in gravity sewers.

    PubMed

    Lahav, Ori; Sagiv, Amitai; Friedler, Eran

    2006-01-01

    All detrimental phenomena (mal odors, metal corrosion, concrete disintegration, health hazard) associated with hydrogen sulfide in gravity sewers depend on the rate of H(2)S emission from the aqueous phase to the gas phase of the pipe. In this paper a different approach for predicting H(2)S((g)) emission rates from gravity sewers is presented, using concepts adapted from mixing theory. The mean velocity gradient (G=gamma SV/micro; S is the slope, V the mean velocity), representing mixing conditions in gravity flow, was used to quantify the rate of H(2)S((g)) emission in part-full gravity sewers. Based on this approach an emission equation was developed. The equation was verified and calibrated by performing 20 experiments in a 27-m gravity-flow experimental-sewer (D=0.16 m) at various hydraulic conditions. Results indicate a clear dependency of the sulfide stripping-rate on G(1) (R(2)=0.94) with the following overall emission equation: where S(T) is the total sulfide concentration in the aqueous phase, mg/L; w the flow surface width, m; A(cs) the cross-sectional area, m(2); T the temperature, degrees C; K(H) the Henry's constant, molL(-1)atm(-1); and P(pH2S) the partial pressure of H(2)S((g)) in the sewer atmosphere, atm.

  6. Biogenic acids produced on epoxy linings installed in sewer crown and tidal zones.

    PubMed

    Valix, M; Shanmugarajah, K

    2015-09-01

    In this study the biogenic acids generated by microbes on the surface of Bisphenol A epoxy mortar coupons were investigated for up to 30 months. The epoxy coupons were installed in six sewers in three city locations, Sydney, Melbourne and Perth. Coupons were installed in both the crown and the tidal zones of the sewers to capture the effect of location within the pipe on acid production. The coupons were retrieved approximately every 6 months to provide a dynamic analysis of the biogenic acid production. Our results reveal the colonisation of epoxy mortar by the more aggressive acidophilic bacteria occurred within six months to two years of their installation in the sewer pipes. Biogenic acid generation appear to occur homogeneously from the tidal zone to the crown of the sewer pipes. The reduction in the surface pH of the epoxy lining was supported by the successive growth of microbes beginning with fungi followed be neutrophilic and heterotrophic bacteria and finally by the acidophilic bacteria and the corresponding accumulation of organic and sulphuric acids attributed to these organisms. This study also revealed the potential inhibiting effects on the microbes induced by the accumulation of metabolic products on the epoxy surface. The accumulation of organic acids and H2S coincided with the growth and metabolism inhibition of fungi and acidophilic bacteria. These results provide insights into the microbial interaction and biogenic acids production that contribute to lining degradation and corrosion of concrete in sewer pipes.

  7. Long-term impacts on sewers following food waste disposer installation in housing areas.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking. PMID:25176297

  8. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    PubMed

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  9. Long-term impacts on sewers following food waste disposer installation in housing areas.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  10. [The challenges of nanotechnology for the sanitary vigilance of medication].

    PubMed

    Batista, Ariane de Jesus Sousa; Pepe, Vera Lúcia Edais

    2014-07-01

    The development of effective and safe nanotechnology medication with a high cost-benefit ratio is a strategic imperative for public health in Brazil. The lack of information demands sanitary regulation geared to protecting health and the environment. This study seeks to assess the current stage of development, the regulatory framework and the challenges facing nanotechnology medication in Brazil, emphasizing sanitary surveillance. Document analysis was conducted in national and international regulatory agency sites. Despite the incipient regulation for this type of medication, 7 registered nanotechnology products were found in Brazil, without clear identification on leaflets or packaging regarding their nanotechnology composition, as well as 4 similar products. Risk assessment and regulation of such medication requires specialized personnel and equipment, as well as the participation of society in the formulation and implementation of regulatory policies. The suggestion proposed is that the regulatory framework should follow the precautionary principle, whereby products are registered as new medication with clear information on the labeling and controlled usage, until further results on the assessment of risk are obtained.

  11. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    SciTech Connect

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996.

  12. [The sanitary conditions in the old Korcula Statute].

    PubMed

    Milović, Dorde; Milović-Karić, Grozdana

    2009-01-01

    Korcula's Code of Statutory regulations (from 1214, 1265, 1271 and later) contained very interesting rules of sanitary conditions in Korcula of that time. To protect the spreading of plague is prohibited contact with persons from the contaminated areas; it prohibited also entry into contaminated regions and rivers. The persons from the plague-stricken places were not allowed to enter the city. As was the custom, to preserve sanitary-hygienic conditions the shoe-markers were forbidden to pollute the town with leather tanning. It was also forbidden to keep pigs in the city and to do washing in the pools. The place and time for throwing rubbish away were strictly controlled. To protect the citizens' lives and health the preparing of plant poisons was considered a felony. Capital punishment, burning at the stake, followed a case where somebody died or lost a limb as a result of plant poisoning. In a case less serious, such as fainting, the Prince meets out punishment according to his judgement of the crime. If the criminal absconds with exile the confiscation of all his property could follow.

  13. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas With and Without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff discharge into waterbodies potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme pre...

  14. 76 FR 34145 - Safety Zone, Barrier Testing Operations, Chicago Sanitary and Ship Canal, Romeoville, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Sanitary and Ship Canal, Romeoville, IL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Chicago Sanitary and Ship Canal (CSSC... proven history, which does not overtly interfere with navigation in the canal. A demonstration...

  15. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Disposal by release into sanitary sewerage. 20.2003 Section 20.2003 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste... sanitary sewerage system in a year does not exceed 5 curies (185 GBq) of hydrogen-3, 1 curie (37 GBq)...

  16. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Disposal by release into sanitary sewerage. 20.2003 Section 20.2003 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste... sanitary sewerage system in a year does not exceed 5 curies (185 GBq) of hydrogen-3, 1 curie (37 GBq)...

  17. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Disposal by release into sanitary sewerage. 20.2003 Section 20.2003 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste... sanitary sewerage system in a year does not exceed 5 curies (185 GBq) of hydrogen-3, 1 curie (37 GBq)...

  18. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Disposal by release into sanitary sewerage. 20.2003 Section 20.2003 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste... sanitary sewerage system in a year does not exceed 5 curies (185 GBq) of hydrogen-3, 1 curie (37 GBq)...

  19. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401... sources and operations and the distribution of safe drinking water. (c) The sanitary survey must include... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Sanitary surveys for ground...

  20. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401... sources and operations and the distribution of safe drinking water. (c) The sanitary survey must include... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Sanitary surveys for ground...

  1. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401... sources and operations and the distribution of safe drinking water. (c) The sanitary survey must include... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Sanitary surveys for ground...

  2. 46 CFR 35.01-5 - Sanitary condition and crew quarters-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Sanitary condition and crew quarters-T/ALL. 35.01-5 Section 35.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Special Operating Requirements § 35.01-5 Sanitary condition and crew quarters—T/ALL. It shall be the duty of...

  3. PLANNING FOR SSO CONTROL: HENRICO COUNTY, VA - CASE STUDY

    EPA Science Inventory

    The nation's sanitary-sewer infrastructure is aging with some sewers over 100 years. There are more than 19,500 municipal sanitary-sewer collecton systems nationwide serving 150M people comprising 500,000 sewer miles. About 40,000 sanitary-sewer overflow (SSO) events nationwide y...

  4. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences

    NASA Astrophysics Data System (ADS)

    Mailhot, A.; Talbot, G.; Lavallée, B.

    2015-04-01

    Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.

  5. 78 FR 9908 - Notice of Availability of the Draft Issuance of the Small Municipal Separate Storm Sewer System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Wildlife v. Browner, 191 F.3d 1159, 1166-67 (9th Cir. 1999); 64 FR 68722, 68753, 68788 (Dec. 8, 1999... AGENCY Notice of Availability of the Draft Issuance of the Small Municipal Separate Storm Sewer System... Storm Sewer Systems (MS4s) to certain waters of the State of New Hampshire. The draft NPDES...

  6. Application of morphological segmentation to leaking defect detection in sewer pipelines.

    PubMed

    Su, Tung-Ching; Yang, Ming-Der

    2014-05-16

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically identified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines.

  7. Application of morphological segmentation to leaking defect detection in sewer pipelines.

    PubMed

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically identified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  8. The role of iron in sulfide induced corrosion of sewer concrete.

    PubMed

    Jiang, Guangming; Wightman, Elaine; Donose, Bogdan C; Yuan, Zhiguo; Bond, Philip L; Keller, Jurg

    2014-02-01

    The sulfide-induced corrosion of concrete sewer is a widespread and expensive problem for water utilities worldwide. Fundamental knowledge of the initiation and propagation of sewer corrosion, especially the interactions between chemical reactions and physical structure changes, is still largely unknown. Advanced mineral analytical techniques were applied to identify the distribution of corrosion products and the micro-cracking that developed along the corrosion boundary. It was found that sewer concrete corrosion caused by reactions with sulfuric acid progressed uniformly in the cement of concrete. In contrast to conventional knowledge, iron rust rather than gypsum and ettringite was likely the factor responsible for cracking ahead of the corrosion front. The analysis also allowed quantitative determination of the major corrosion products, i.e., gypsum and ettringite, with the latter found closer to the corrosion front. The conceptual model based on these findings clearly demonstrated the complex interactions among different chemical reactions, diffusion, and micro-structure changes. PMID:24326021

  9. Coordinated management of combined sewer overflows by means of environmental decision support systems.

    PubMed

    Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel

    2016-04-15

    During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges.

  10. The role of iron in sulfide induced corrosion of sewer concrete.

    PubMed

    Jiang, Guangming; Wightman, Elaine; Donose, Bogdan C; Yuan, Zhiguo; Bond, Philip L; Keller, Jurg

    2014-02-01

    The sulfide-induced corrosion of concrete sewer is a widespread and expensive problem for water utilities worldwide. Fundamental knowledge of the initiation and propagation of sewer corrosion, especially the interactions between chemical reactions and physical structure changes, is still largely unknown. Advanced mineral analytical techniques were applied to identify the distribution of corrosion products and the micro-cracking that developed along the corrosion boundary. It was found that sewer concrete corrosion caused by reactions with sulfuric acid progressed uniformly in the cement of concrete. In contrast to conventional knowledge, iron rust rather than gypsum and ettringite was likely the factor responsible for cracking ahead of the corrosion front. The analysis also allowed quantitative determination of the major corrosion products, i.e., gypsum and ettringite, with the latter found closer to the corrosion front. The conceptual model based on these findings clearly demonstrated the complex interactions among different chemical reactions, diffusion, and micro-structure changes.

  11. Combined-sewer overflow data and methods of sample collection for selected sites, Detroit, Michigan

    USGS Publications Warehouse

    Sweat, M.J.; Wolf, J.R.

    1997-01-01

    From October 1, 1994 through December 31, 1995, four combined-sewer discharging to the Detroit River in Detroit, Michigan were monitored to characterize storm-related water quantity and quality. Water velocity, stage, discharge, and precipitation were measured continuously and recorded at 5-minute intervals. Water-quality samples were collected at discrete times during each storm and analyzed for inorganic and organic pollutants. This report includes the sampling approach, field collection and processing techniques, and methods of chemical analysis, as well as a compilation of combined sewer discharge volumes, chemical data, and quality control data. These data may be used by resource managers and scientists (1) to describe temporal variation for pollutant concentrations in combined-sewage for various overflow events; (2) to describe spatial distribution of selected pollutants in the four combined-sewer overflows discharging to the Detroit River; (3) to calculate pollutant loads to the Detroit River from the four overflow sites for the monitored storm events; (4) to estimate pollutant loadings form other overflow sites; and, (5) to provide data and information which can be used to define appropriate management methods to reduce or eliminate untreated combined-sewer overflows. Selected combined-sewers were sampled between 30 and 82 times for inorganic pollutants, and between 14 and 22 times for organic pollutants, depending on the site. These samples represented between 8 and 17 storms during which one or more combined-sewers overflowed. The monitored pollutants included fecal coliform, fecal streptococci, and Escherichia coli; antimony, arsenic, beryllium, cadmium, hexavalent chromium, total chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, thallium and zinc; and polychlorinated biphenyl congeners, volatile organic compounds, and polynuclear aromatic hydrocarbons. In general, metal and non-metal inorganic pollutants were detected at all

  12. Critical review on the stability of illicit drugs in sewers and wastewater samples.

    PubMed

    McCall, Ann-Kathrin; Bade, Richard; Kinyua, Juliet; Lai, Foon Yin; Thai, Phong K; Covaci, Adrian; Bijlsma, Lubertus; van Nuijs, Alexander L N; Ort, Christoph

    2016-01-01

    Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps. PMID:26618807

  13. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated.

  14. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    PubMed

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change.

  15. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    PubMed

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change. PMID:23039918

  16. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilities, change rooms, and sanitary toilet facilities. 75.1712-3 Section 75.1712-3 Mineral Resources MINE... facilities, change rooms, and sanitary toilet facilities. (a) All bathing facilities, change rooms, and sanitary toilet facilities shall be provided with adequate light, heat, and ventilation so as to maintain...

  17. Effects of wastewater and combined sewer overflows on water quality in the Blue River basin, Kansas City, Missouri and Kansas, July 1998-October 2000

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Blevins, Dale W.

    2002-01-01

    Samples were collected from 16 base-flow events and a minimum of 10 stormflow events between July 1998 and October 2000 to characterize the effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas. Waterquality effects were determined by analysis of nutrients, chloride, chemical and biochemical oxygen demand, and suspended sediment samples from three streams (Blue River, Brush Creek, and Indian Creek) in the basin as well as the determination of a suite of compounds known to be indicative of wastewater including antioxidants, caffeine, detergent metabolites, antimicrobials, and selected over-the-counter and prescription pharmaceuticals. Constituent loads were determined for both hydrologic regimes and a measure of the relative water-quality impact of selected stream reaches on the Blue River and Brush Creek was developed. Genetic fingerprint patterns of Escherichia coli bacteria from selected stream samples were compared to a data base of knownsource patterns to determine possible sources of bacteria. Water quality in the basin was affected by wastewater during both base flows and stormflows; however, there were two distinct sources that contributed to these effects. In the Blue River and Indian Creek, the nearly continuous discharge of treated wastewater effluent was the primary source of nutrients, wastewater indicator compounds, and pharmaceutical compounds detected in stream samples. Wastewater inputs into Brush Creek were largely the result of intermittent stormflow events that triggered the overflow of combined storm and sanitary sewers, and the subsequent discharge of untreated wastewater into the creek. A portion of the sediment, organic matter, and associated constituents from these events were trapped by a series of impoundments constructed along Brush Creek where they likely continued to affect water quality during base flow. Concentrations and loads of most wastewater constituents in

  18. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  19. Integration of sustainable development in sanitary engineering education in Sweden

    NASA Astrophysics Data System (ADS)

    Rydhagen, B.; Dackman, C.

    2011-03-01

    In the Swedish Act for higher education, as well as in the policies of technical universities, it is stated that sustainable development (SD) should be integrated into engineering education. Researchers argue that SD needs to be integrated into the overall course content rather than added as a specific course. In this paper, six engineering lecturers have been interviewed to give their views on how SD can be integrated into teaching water and sanitation engineers. Engineering lecturers seem unsure how to interpret SD in relation to their own specific courses. Students are said to request technical knowledge rather than fuzzy ideas of SD and lecturers struggle to open up the teaching to more problem-based perspectives. Sanitary professionals in work practice relate to SD as a core in water treatment processes and regret that responsibility for SD issues fall between traditional departmental structures in society.

  20. [Cremation plant planning and related hygienic-sanitary aspects].

    PubMed

    Santarsiero, A

    2005-01-01

    The number of cremators is set to grow in Italy owing to current increasing demand for cremation, as a system of burial as well as a system of disposal of non-decomposed human remains resulting from operations of exhumation (as provided by the Circular No. 10 of 31 July of 1998 of the Ministry of Health). Some indications on how town planners need to size up the cremation plant with regard to its capacity to face cremation demand, in order to avoid any hygienic-sanitary inconveniences are given. As a matter of fact, for planning the demand for cremation from Circular No. 10 of 31 July of 1998 it is necessary to assess the decomposition time in burial sites.

  1. [Development of the Bandama Valley. Sanitary and social problems].

    PubMed

    Picot, H

    1976-01-01

    As with all water resources development projects in countries with hot climate, the man-made lake of Kossou in Ivory Coast presents social and sanitary problems. Although the resettlement and the economic recuperation of the inhabitants are well on the way, the health hazards and especially that of the generalization of schistosomiasis calls for an urgent solution. Though well planed in advance, the creation of this man-made lake, illustrates the necessity at the very beginning of a project that will distrub all the ecology of a region, to establish the total disadvantages and health hazards incurved by the people who live there. To the cost of a project should be added that of measures that would contribute to the reduction of these risks before it is too late. PMID:189949

  2. Parasitic diseases of marine fish: epidemiological and sanitary considerations.

    PubMed

    Fioravanti, M L; Caffara, M; Florio, D; Gustinelli, A; Marcer, F; Quaglio, F

    2006-06-01

    Over recent decades, parasitic diseases have been increasingly considered a sanitary and economic threat to Mediterranean aquaculture. In order to monitor the distribution of parasites in cultured marine fish from Italy and study their pathogenic effects on the host, a three-year survey based on parasitological and histopathological exams was carried out on 2141 subjects from eleven fish species and coming from different farming systems (extensive, intensive inland farms, inshore floating cages, offshore floating cages and submersible cages). A number of parasitic species was detected, mostly in European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), mullets (Chelon labrosus, Mugil cephalus, Liza ramada) and sharpsnout sea bream (Diplodus puntazzo), with distribution patterns and prevalence values varying in relation to the farming system, in-season period and size category. The epidemiology and pathological effects of the parasites found during the survey are discussed. PMID:16881387

  3. High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System

    PubMed Central

    Dennis, Paul G.; Keller, Jurg; Tyson, Gene W.

    2012-01-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages. PMID:22843532

  4. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE

    EPA Science Inventory

    This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...

  5. Controlling chemical dosing for sulfide mitigation in sewer networks using a hybrid automata control strategy.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2013-01-01

    Chemicals such as magnesium hydroxide (Mg(OH)2) and iron salts are widely used to control sulfide-induced corrosion in sewer networks composed of interconnected sewer pipe lines and pumping stations. Chemical dosing control is usually non-automatic and based on experience, thus often resulting in sewage reaching the discharge point receiving inadequate or even no chemical dosing. Moreover, intermittent operation of pumping stations makes traditional control theory inadequate. A hybrid automata-based (HA-based) control method is proposed in this paper to coordinate sewage pumping station operations by considering their states, thereby ensuring suitable chemical concentrations in the network discharge. The performance of the proposed control method was validated through a simulation study of a real sewer network using real sewage flow data. The physical, chemical and biological processes were simulated using the well-established SeweX model. The results suggested that the HA-based control strategy significantly improved chemical dosing control performance and sulfide mitigation in sewer networks, compared to the current common practice. PMID:24355844

  6. CHARACTERIZATION OF METALS IN RUNOFF FROM RESIDENTIAL AND HIGHWAY STORM SEWERS

    EPA Science Inventory

    Stormwater runoff was sampled from six storm sewer outfalls in residential and highway settings in Monmouth County, NJ to determine the colloidal and dissolved metal concentrations. Heavy metals, common pollutants in natural waters and stormwater, are known to associate with par...

  7. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.

    PubMed

    Alani, Amir M; Faramarzi, Asaad

    2015-06-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  8. Assessment of the effects of greywater reuse on gross solids movement in sewer systems.

    PubMed

    Penn, R; Schütze, M; Friedler, E

    2014-01-01

    Onsite greywater reuse (GWR) and installation of water-efficient toilets (WETs) reduce urban freshwater demand and thus enhance urban water use sustainability. Research on GWR and WETs has generally overlooked their potential effects on municipal sewer systems: GWR and WETs affect the flow regime in sewers, and consequently also influence gross solids transport. To asses these impacts, a gross solids transport model was developed. The model is based on approaches found in the literature. Hydrodynamic calculations of sewage flow were performed using the SIMBA6 simulator and then used for the gross solid movement models. Flow characteristics in the up- and downstream sections of the sewer network differ. Therefore different approaches were used to model solids movement in each of these two parts. Each model determines whether a solid moves as a result of a momentary sewage flow, and if it moves, calculation of its velocity is possible. The paper shows the adoption and implementation of two gross solids transport models using SIMBA6 and depicts the results of the effects of various GWR and WET scenarios on gross solids movement in sewers for a real case study in Israel.

  9. High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system.

    PubMed

    Cayford, Barry I; Dennis, Paul G; Keller, Jurg; Tyson, Gene W; Bond, Philip L

    2012-10-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages. PMID:22843532

  10. AN ASSESSMENT OF AUTOMATIC SEWER FLOW SAMPLERS (EPA/600/2-75/065)

    EPA Science Inventory

    A brief review of the characteristics of storm and combined sewer flows is given followed by a general discussion of the purposes for and requirements of a sampling program. The desirable characteristics of automatic sampling equipment are set forth and problem areas are outlined...

  11. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  12. High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system.

    PubMed

    Cayford, Barry I; Dennis, Paul G; Keller, Jurg; Tyson, Gene W; Bond, Philip L

    2012-10-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages.

  13. A review of sulfide emissions in sewer networks: overall approach and systemic modelling.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2016-01-01

    The problems related to hydrogen sulfide in terms of deterioration of sewer networks, toxicity and odor nuisance have become very clear to the network stakeholders and the public. The hydraulic and (bio)chemical phenomena and parameters controlling sulfide formation, emission and their incidences in sewer networks are very complex. Recent research studies have been developed in gravity and pressure sewers and some transfer models have been published. Nevertheless, the models do not take into account all the physical phenomena influencing the emission process. After summing up the main scientific knowledge concerning the production, oxidation, transfer and emission processes, the present review includes: (i) a synthetic analysis of sulfide and hydrogen sulfide emission models in sewer networks, (ii) an estimation of their limit, (iii) perspectives to improve the modelling approach. It shows that sulfide formation and uptake models still need refinements especially for some phenomena such as liquid to gas mass transfer. Transfer models that have been published so far are purposely simplified and valid for simple systems. More efforts have to be undertaken in order to better understand the mechanisms and the dynamics of hydrogen sulfide production and emission in real conditions. PMID:27003062

  14. Controlling chemical dosing for sulfide mitigation in sewer networks using a hybrid automata control strategy.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2013-01-01

    Chemicals such as magnesium hydroxide (Mg(OH)2) and iron salts are widely used to control sulfide-induced corrosion in sewer networks composed of interconnected sewer pipe lines and pumping stations. Chemical dosing control is usually non-automatic and based on experience, thus often resulting in sewage reaching the discharge point receiving inadequate or even no chemical dosing. Moreover, intermittent operation of pumping stations makes traditional control theory inadequate. A hybrid automata-based (HA-based) control method is proposed in this paper to coordinate sewage pumping station operations by considering their states, thereby ensuring suitable chemical concentrations in the network discharge. The performance of the proposed control method was validated through a simulation study of a real sewer network using real sewage flow data. The physical, chemical and biological processes were simulated using the well-established SeweX model. The results suggested that the HA-based control strategy significantly improved chemical dosing control performance and sulfide mitigation in sewer networks, compared to the current common practice.

  15. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2016-07-01

    Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice.

  16. Trace element carriers in combined sewer during dry and wet weather: an electron microscope investigation.

    PubMed

    El Samrani, A G; Lartiges, B S; Ghanbaja, J; Yvon, J; Kohler, A

    2004-04-01

    The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.

  17. Measuring Flow Reductions in a Combined Sewer System Using Green Infrastructure

    EPA Science Inventory

    A green infrastructure (GI) design approach was used in CSO Basin #130, a 17-acre sewershed in the Butchertown section of Louisville, Kentucky, to reduce combined sewer overflows (CSOs). For the design year, the modeled design was expected to reduce the CSO frequency from 34 to ...

  18. 40 CFR 35.2122 - Approval of user charge system and proposed sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Approval of user charge system and... Treatment Works § 35.2122 Approval of user charge system and proposed sewer use ordinance. If the project is... obtain the Regional Administrator's approval of its user charge system (§ 35.2140) and proposed...

  19. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  20. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  1. Water Sensitive Urban Design retrofits in Copenhagen - 40% to the sewer, 60% to the city.

    PubMed

    Fryd, O; Backhaus, A; Birch, H; Fratini, C F; Ingvertsen, S T; Jeppesen, J; Panduro, T E; Roldin, M; Jensen, M B

    2013-01-01

    Water Sensitive Urban Design (WSUD) is emerging in Denmark. This interdisciplinary desk study investigated the options for WSUD retrofitting in a 15 km(2) combined sewer catchment area in Copenhagen. The study was developed in collaboration with the City of Copenhagen and its water utility, and involved researchers representing hydrogeology, sewer hydraulics, environmental chemistry/economics/engineering, landscape architecture and urban planning. The resulting catchment strategy suggests the implementation of five sub-strategies. First, disconnection is focused within sites that are relatively easy to disconnect, due to stormwater quality, soil conditions, stakeholder issues, and the provision of unbuilt sites. Second, stormwater runoff is infiltrated in areas with relatively deep groundwater levels at a ratio that doesn't create a critical rise in the groundwater table to the surface. Third, neighbourhoods located near low-lying streams and public parks are disconnected from the sewer system and the sloping terrain is utilised to convey runoff. Fourth, the promotion of coherent blue and green wedges in the city is linked with WSUD retrofits and urban climate-proofing. Fifth, WSUD is implemented with delayed and regulated overflows to the sewer system. The results are partially adopted by the City of Copenhagen and currently under pilot testing.

  2. Mechanisms of Fat, Oil and Grease (FOG) Deposit Formation in Sewer Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FOG deposits in sewer systems recently have been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. Batch tests were performed to elucidate ...

  3. Small diameter gravity sewers: self-cleansing conditions and aspects of wastewater quality.

    PubMed

    Dias, S P; Matos, J S

    2001-01-01

    The construction of conventional sewerage systems in small communities, with pipes laid on a uniform slope and manholes regularly spaced, is sometimes not economically feasible, because of the high costs of sewer installation. Under those circumstances, the small diameter gravity sewers (SDGS) have often proven to be substantially less costly than conventional sewers. Typically, in SDGS systems the wastewater from one or more households is discharged into an interceptor tank (or a single compartment septic tank). The settled effluent is discharged afterwards into small diameter sewers operating under gravity. In this paper, special emphasis is given to the analysis of self-cleansing conditions and to the analysis of risks of sulphide generation and occurrence of septic conditions in SDGS systems. For the evaluation of the self-cleansing conditions, the critical velocity and the critical shear stress were computed according to the Shields equation. The forecasting of dissolved oxygen concentrations and sulphide build-up along the lines, for different flow conditions, was done running an established wastewater quality model. PMID:11379122

  4. Research of trace metals as markers of entry pathways in combined sewers.

    PubMed

    Gounou, C; Varrault, G; Amedzro, K; Gasperi, J; Moilleron, R; Garnaud, S; Chebbo, G

    2011-01-01

    Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.

  5. THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL

    EPA Science Inventory

    This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...

  6. Demonstration of Green/Gray Infrastructure for Combined Sewer Overflow Control

    EPA Science Inventory

    This project is a major national demonstration of the integration of green and gray infrastructure for combined sewer overflow (CSO) control in a cost-effective and environmentally friendly manner. It will use Kansas City, MO, as a case example. The project will have a major in...

  7. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    PubMed

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis. PMID:27488195

  8. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    PubMed Central

    Alani, Amir M.; Faramarzi, Asaad

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  9. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2016-07-01

    Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice. PMID:27124127

  10. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    PubMed

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis.

  11. Constructing and dismantling frameworks of disease etiology: the rise and fall of sewer gas in America, 1870-1910.

    PubMed Central

    An, Perry G.

    2004-01-01

    For roughly forty years, from 1870 to 1910, Americans recognized and feared gases emanating from sewers, believing that they were responsible for causing an array of diseases. Fears of sewer gas arose from deeper anxieties toward contact with decomposing organic matter and the vapors emitted from such refuse. These anxieties were exacerbated by the construction of sewers across the country during the mid-to-late-nineteenth century, which concentrated waste emanations and connected homes to one another. The result was the birth of sewer gas and the attribution of sickness and death to it, as well as the development of a host of plumbing devices and, especially, bathroom fixtures, to combat sewer gas. The rise of the germ theory, laboratory science, and belief in disease specificity, however, transformed the threat of sewer gas, eventually replacing it (and the larger fear of miasmas) with the threat of germs. The germ theory framework, by 1910, proved more suitable than the sewer gas framework in explaining disease causation; it is this suitability that often shapes the relationship between science and society. PMID:15829149

  12. Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage.

    PubMed

    Auguet, Olga; Pijuan, Maite; Borrego, Carles M; Gutierrez, Oriol

    2016-04-15

    Bioproduction of hydrogen sulfide (H2S) and methane (CH4) under anaerobic conditions in sewer pipes causes detrimental effects on both sewer facilities and surrounding environment. Among the strategies used to mitigate the production of both compounds, the addition of nitrite (NO2(-)) has shown a greater long-term inhibitory effect compared with other oxidants such as nitrate or oxygen. The aim of this study was to determine the effectiveness of a new method, the Downstream Nitrite Dosage strategy (DNO2D), to control H2S and CH4 emissions in sewers. Treatment effectiveness was assessed on H2S and CH4 abatement on the effluent of a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer. The experiment was divided in three different periods: system setup (period 1), nitrite addition (period 2) and system recovery (period 3). Different process and molecular methods were combined to investigate the impact of NO2(-) addition on H2S and CH4 production. Results showed that H2S load was reduced completely during nitrite addition when compared to period 1 due to H2S oxidation but increased immediately after nitrite addition stopped. The H2S overproduction during recovery period was associated with the bacterial reduction of different sulfur species (elemental sulfur/thiosulfate/sulfite) accumulated within the sewer biofilm matrix. Oxidation of CH4 was also detected during period 2 but, contrary to sulfide production, re-establishment of methanogenesis was not immediate after stopping nitrite dosing. The analysis of bulk and active microbial communities along experimental treatment showed compositional changes that agreed with the observed dynamics of chemical processes. Results of this study show that DNO2D strategy could significantly reduce H2S and CH4 emissions from sewers during the addition period but also suggest that microbial agents involved in such processes show a high resilience towards chemical stressors, thus favoring the re

  13. Getting the max out of past investments in sewer systems by using RTC

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Loenen, Arnejan; van Leeuwen, Elgard; van Nooyen, Ronald; van Velzen, Edwin

    2013-04-01

    We discuss a project in which water quality improvements of surface waters are realised by replacing local control of sewer pumps by central control. The paper focuses on the effect of implementation of real-time control in a specific group of sewer systems in the Netherlands, namely the systems that have been upgraded in the past as a result of new standards. Since these upgrades were often solely based on straightforward so-called upgrade rules and theoretical simulation studies, a thorough analysis of the real life systems by means of measurements to study the system performance or calibrate the models was rarely performed. As a result the potential of many systems is not used to the full. Because of the structure of these systems, (suboptimal distribution of storage and pump capacities) the effect of RTC is much larger than would be expected in the case of a completely new design. But because of implementation of RTC, it was required to do this thorough analysis of the sewer systems. This study focuses on the estimation of this additional RTC effect. RTC both improves the return on past investments and provides the benefits of central information and control. The project considered the sewer systems in the Hoeksche Waard area, south of Rotterdam, the Netherlands. Three RTC improvements have been implemented whereby the abovementioned effects have been achieved. There were many technological challenges to overcome during the project, such as relatively high rates of data communication needed for in systems with relatively small storage capacities, connections to multiple types of SCADA and information systems, the integration of meteo forecasts and the RTC backup architecture based on the use of multiple control modes. The potential of the RTC has been proved as such in the HoekscheWaard area. On the basis of this implementation in a typical dutch sewer system, we expect RTC to have the same potential at a national scale.

  14. Use of iron salts to control dissolved sulfide in trunk sewers

    SciTech Connect

    Padival, N.A.; Kimbell, W.A.; Redner, J.A.

    1995-11-01

    Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

  15. Research and development of intelligent controller for high-grade sanitary ware

    NASA Astrophysics Data System (ADS)

    Bao, Kongjun; Shen, Qingping

    2013-03-01

    With the social and economic development and people's living standards improve, more and more emphasis on modern society, people improve the quality of family life, the use of intelligent controller applications in high-grade sanitary ware physiotherapy students. Analysis of high-grade sanitary ware physiotherapy common functions pointed out in the production and use of the possible risks, proposed implementation of the system hardware and matching, given the system software implementation process. High-grade sanitary ware physiotherapy intelligent controller not only to achieve elegant and beautiful, simple, physical therapy, water power, deodorant, multi-function, intelligent control, to meet the consumers, the high-end sanitary ware market, strong demand, Accelerate the enterprise product Upgrade and improve the competitiveness of enterprises.

  16. [The features of the establishment of zones of sanitary protection of the water source].

    PubMed

    Lopatin, S A; Redko, A A; Terentyev, V I

    2014-01-01

    There are regulatory gaps in sanitary laws, which specify the procedure of approval of projects of sanitary protection zones (SPZ) of water objects. It goes without saying that natural complexes, where water intake is organized, should have a special ecological status, which plays a substantial role in the creation of favorable conditions for human health. Some recommendations are given to improve sanitary legislations. Sanitary regulations and standards (SanPin) 2.1.4.1110-02 as well as the Water Code of the Russian Federation do not fully take into account the statements of some Federal laws regarding the protection of water objects. E.g. according to the Federal law No 33- FL of 14.03.1995 "On specially protected natural reservations" there is a legal base for increasing the status of SPZ of water sources by enlarging the list of Specially Protected Natural Reservations by including SPZ therein. PMID:25306692

  17. 78 FR 63270 - Request for Public Comments To Compile the Report on Sanitary and Phytosanitary Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Phytosanitary Measures. With this notice, the Trade Policy Staff Committee (TPSC) is requesting interested... Chair, Trade Policy Staff Committee. BILLING CODE 3290-F3-P ... TRADE REPRESENTATIVE Request for Public Comments To Compile the Report on Sanitary and...

  18. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    PubMed

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests.

  19. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    PubMed

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests. PMID:25633938

  20. [Incidence of intestinal parasites in municipal sanitary workers in Malatya].

    PubMed

    Karaman, Ulkü; Atambay, Metin; Aycan, Ozlem; Yoloğlu, Saim; Daldal, Nilgün

    2006-01-01

    The incidence of intestinal parasites is closely related to such factors as the socio-economic level of the society, nutritional and hygienic habits, climate, environmental conditions, infrastructure and degree of literacy. In this study, the municipal sanitary workers who are regarded as a high risk group in Malatya were examined for intestinal parasites. Cellophane slides and fecal samples from 241 workers were examined and intestinal parasites were found in 93 (39.0%). The most common parasite was Entamoeba coli (34). Other parasites detected include Enterobius vermicularis (32), Giardia intestinalis (22), Blastocystis hominis (8), Iodamoeba butschlii (5), Entamoeba histolytica (2), Taenia sp. (2), Chilomastix mesnili (2), Dientamoeba fragilis (2), Entamoeba hartmanni (1), Trichomonas intestinalis (1) Hymenolepis nana (1), and Ascaris lumbricoides (1). A training seminary was conducted in order to inform all the workers about means of protection. The workers were given suitable treatment and were called for control after a month. The examinations revealed a significant decrease in the incidence rate of parasites (qui-square test in dependent samples P<0.05). It was concluded that offering training seminaries for certain occupational groups under risk is efficient in terms of protection. PMID:17160847

  1. Preliminary control technology assessment of Mansfield Sanitary, Incorporated, Errysville, Ohio

    SciTech Connect

    Cooper, T.

    1982-03-01

    A visit was made to the Mansfield Sanitary Facility, Perrysville, Ohio to evaluate control methods in place at the site to protect workers from on the job hazards. This facility used a variety of clays, parting compounds, and color additives to blend, form, dry, fire, package, and ship as ceramic plumbing products. Clays used include feldspar, pearless china clay, and nepheline syenite from various suppliers. Other raw materials included Millwood sand, gum, cultozine-fuchsine, industrial plaster, stain, glaze, magnesium aluminum silicate, talc, feldspar, and zirconium silicate. The company made good use of several ventilation techniques at loading stations, transfer points, automatic assembly lines, and the glazing stations. Parting dust became airborne when applied to the molds and while the mold was being dried. Exhaust-ventilation booths used for the spraying of glaze appeared to be very effective. Several areas in which dust-control methods appeared inadequate were noted. The author recommends that some of the work practices and personal protective equipment used as controls should be examined in an in-depth evaluation and documentation.

  2. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Facilities: Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer systems (CSS) collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These c...

  3. RATES OF GASTROINTESTINAL ILLNESS AMONG AREAS IMPACTED BY COMBINED SEWER FACILITIES: ANALYSIS OF MASSACHUSETTS DATA, 2003-2007

    EPA Science Inventory

    Previous studies have reported a temporal association between heavy rainfall and gastrointestinal infection (GI). Combined sewer systems (CSSs), which are present in many urban areas in the US, were designed to collect rainwater runoff, domestic sewage, and industrial wastewater ...

  4. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. PMID:25840844

  5. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems.

  6. Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine.

    PubMed

    Buerge, Ignaz J; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf

    2006-07-01

    Continuous progress in wastewater treatment technology and the growing number of households connected to wastewater treatment plants (WWTPs) have generally resulted in decreased environmental loading of many pollutants. Nonetheless, further reduction of pollutant inputs is required to improve the quality of surface waters in densely populated areas. In this context, the relative contribution of combined sewer overflows as sources of wastewater-derived contaminants has attracted more and more attention, but the quantitative importance of these overflows has barely been investigated. In this study, caffeine was successfully used as a chemical marker to estimate the fraction of sewer overflows in the catchment area of lake Greifensee, Switzerland. Caffeine is a ubiquitous compound in raw, domestic wastewater with typical per capita loads of approximately 16 mg person(-1) d(-1). In WWTPs of the Greifensee region, caffeine is largely eliminated (>99%), resulting in much smaller loads of < or = 0.15 mg person(-1) d(-1) in treated wastewater. However, in receiving streams as in the inflows to Greifensee, caffeine loads (0.1-1.6 mg person(-1) d(-1)) were higher than those in WWTP effluents, indicating additional sources. As the loads in the streams correlated with precipitation during sampling, it was concluded that combined sewer overflows were the most likely source of caffeine. Using a mass balance approach, it was possible to determine the fraction of wastewater (in dry weather equivalents) discharged untreated to the receiving streams (up to 10%, annual mean, approximately 2-3%). The concept of caffeine as a marker for combined sewer overflows was then applied to estimate phosphorus inputs to Greifensee with untreated and treated wastewater (approximately 1.5 and 2.0 t P y(-1), respectively), which corresponded well with P inputs determined in a separate study based on hydraulic considerations. For compounds with high elimination in WWTPs such as phosphorus (96-98% in

  7. A vision-based tool for the control of hydraulic structures in sewer systems

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.

    2009-04-01

    During rain events, the total amount of the wastewater/storm-water mixture cannot be treated in the wastewater treatment plant; the overflowed water goes directly into the environment (lakes, rivers, streams) via devices called combined sewers overflows (CSOs). This water is untreated and is recognized as an important source of pollution. In most cases, the quantity of overflowed water is unknown due to high hydraulic turbulences during rain events; this quantity is often significant. For this reason, the monitoring of the water flow and the water level is of crucial environmental importance. Robust monitoring of sewer systems is a challenging task to achieve. Indeed, the environment inside sewers systems is inherently harsh and hostile: constant humidity of 100%, fast and large water level changes, corrosive atmosphere, presence of gas, difficult access, solid debris inside the flow. A flow monitoring based on traditional probes placed inside the water (such as Doppler flow meter) is difficult to conduct because of the solid material transported by the flow. Probes placed outside the flow such as ultrasonic water level probes are often used; however the measurement is generally done on only one particular point. Experience has shown that the water level in CSOs during rain events is far from being constant due to hydraulic turbulences. Thus, such probes output uncertain information. Moreover, a check of the data reliability is impossible to achieve. The HydroPix system proposes a novel approach to the monitoring of sewers based on video images, without contact with the water flow. The goal of this system is to provide a monitoring tool for wastewater system managers (end-users). The hardware was chosen in order to suit the harsh conditions of sewers system: Cameras are 100% waterproof and corrosion-resistant; Infra-red LED illumination systems are used (waterproof, low power consumption); A waterproof case contains the registration and communication system. The

  8. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.

    PubMed

    Jiang, Guangming; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2015-09-01

    The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The

  9. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.

    PubMed

    Jiang, Guangming; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2015-09-01

    The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The

  10. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    PubMed Central

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  11. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively.

  12. [Design of software and hardware complex of automated systems for the management of the State Sanitary and Epidemiological Surveillance].

    PubMed

    Mel'nichenko, P I; Muzychenko, F V; Malinovskiĭ, A A; Leont'ev, L Iu; Ustiukhin, N V

    2005-05-01

    A new information system (IS) - the software and hardware complex for controlling the state sanitary-and-epidemiological inspection (SSEI) was created. The system represents the aggregate of automated working places of RF MD chief state sanitary physician arid specialists from the department of state sanitary-and-epidemiological inspection of the Main Military Medical Headquarters. They interact through communications with working places of specialists from SSEI Main Center, chief state sanitary physicians from the Armed Forces, military districts (fleets) and RFAF CSSEI. The special software provides automation of the following technological processes: operative sanitary-and epidemiological and epidemiological monitoring; the epidemiological analysis of infectious diseases; the evaluation of quality and efficiency of sanitary-and epidemiological work. At present the complex works in the regime of experimental exploitation when the adjustment of communications and special software is performed.

  13. [The sanitary and hygienic state of solid garbage burial grounds in the stages of a life cycle].

    PubMed

    Zomarev, A M; Vaĭsman, Ia I; Zaĭtseva, T A; Glushankova, I S

    2010-01-01

    The purpose of the study was to assess the sanitary-and-hygienic state of solid garbage (SG) burial grounds in the Perm Territory in different stage of a life cycle. This paper presents the results of the study of deposited waste, forming dump soil, and SG ground emissions by general sanitary and sanitary-microbiological parameters and their effect on environmental objects. The performed studies of the sanitary-and-hygienic situation on some grounds of the Perm Territory suggest that there is a need for setting up a system for sanitary-and-monitoring of SG ground and for elaborating engineering, organizational, and prophylactic measures to assure the sanitary-and-hygienic safety of objects and to control the quality and quantity of waste to be buried and the currents of emissions (ground body degassing, filtrating sewage drainage and purification). PMID:20373712

  14. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    NASA Astrophysics Data System (ADS)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  15. Reducing pathogens in combined sewer overflows using ozonation or UV irradiation.

    PubMed

    Tondera, Katharina; Klaer, Kassandra; Gebhardt, Jens; Wingender, Jost; Koch, Christoph; Horstkott, Marina; Strathmann, Martin; Jurzik, Lars; Hamza, Ibrahim Ahmed; Pinnekamp, Johannes

    2015-11-01

    Fecal contamination of water resources is a major public health concern in densely populated areas since these water bodies are used for drinking water production or recreational purposes. A main source of this contamination originates from combined sewer overflows (CSOs) in regions with combined sewer systems. Thus, the treatment of CSO discharges is urgent. In this study, we explored whether ozonation or UV irradiation can efficiently reduce pathogenic bacteria, viruses, and protozoan parasites in CSOs. Experiments were carried out in parallel settings at the outflow of a stormwater settling tank in the Ruhr area, Germany. The results showed that both techniques reduce most hygienically relevant bacteria, parasites and viruses. Under the conditions tested, ozonation yielded lower outflow values for the majority of the tested parameters.

  16. The acoustic attenuation and hydraulic roughness in a large section sewer pipe with periodical obstacles.

    PubMed

    Horoshenkov, K V; Yin, Y A; Schellart, A; Ashley, R M; Blanksby, J R

    2004-01-01

    The acoustic attenuation, relative sound pressure levels and the equivalent Nikuradse wall roughness under variable flow conditions in a 600 mm concrete sewer pipe are experimentally investigated. The values of the acoustic attenuation are obtained in the case of airborne sound propagation in the dry pipe. A range of values of the equivalent wall roughness is artificially generated by deploying a periodical array of engineering bricks. A novel method of rapid evaluation of the acoustic attenuation is proposed. The method relies upon sound reflections from the adjacent manholes. The results demonstrate that the acoustic attenuation depends strongly on the value of the equivalent wall roughness. This work can pave the way to the efficient methodology for the in-situ, physical evaluation of the equivalent hydraulic roughness of new and existing sewer networks.

  17. Case study of a fast propagating bacteriogenically induced concrete corrosion in an Austrian sewer system

    NASA Astrophysics Data System (ADS)

    Grengg, Cyrill; Mittermayr, Florian; Baldermann, Andre; Böttcher, Michael; Leis, Albrecht; Koraimann, Günther; Dietzel, Martin

    2015-04-01

    Reaction mechanisms leading to microbially induced concrete corrosion (MICC) are highly complex and often not fully understood. The aim of the present case study is to contribute to a deeper understanding of reaction paths, environmental controls, and corrosion rates related to MICC in a modern Austrian sewer system by introducing an advanced multi proxy approach that comprises gaseous, hydro-geochemical, bacteriological, and mineralogical analyses. Various crucial parameters for detecting alteration features were determined in the field and laboratory, including (i) temperature, pH, alkalinity, chemical compositions of the solutions, (ii) chemical and mineralogical composition of solids, (iii) bacterial analysis, and (iv) concentrations of gaseous H2S, CH4 and CO2 within the sewer pipe atmosphere. An overview of the field site and analytical results, focusing on reaction mechanisms causing the corrosion, as well as possible remediation strategies will be presented.

  18. Surface water sewer misconnections in England and Wales: Pollution sources and impacts.

    PubMed

    Ellis, J B; Butler, D

    2015-09-01

    In urban areas served by separate sewerage consisting of separate pipe systems it is not uncommon for misconnections to be made either accidentally or deliberately, whereby the wrong effluent is connected to the wrong sewer. The main focus of this problem has been on in-household appliances that are wrongly connected to separate surface water sewers, potentially leading to pollution of receiving waters and non-compliance with statutory water quality standards. This paper examines the available evidence to evaluate the potential scale, severity and cost of the problem in England and Wales in comparison to that reported from investigations in the United States. The particular difficulties associated with distinguishing specific sewage sources in the wastewater "cocktail" discharged at polluted surface water outfalls are reviewed. The deficiencies of existing legislation and enforcing compliance with respect to misconnections are also discussed and the pollution potential resulting from domestic misconnections is explored based on sampled data. PMID:25918897

  19. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

    PubMed

    Fistarol, Giovana O; Coutinho, Felipe H; Moreira, Ana Paula B; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E M; Coutinho, Ricardo; de Moura, Rodrigo L; Valentin, Jean Louis; Tenenbaum, Denise R; Paranhos, Rodolfo; do Valle, Rogério de A B; Vicente, Ana Carolina P; Amado Filho, Gilberto M; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E; Thompson, Cristiane C; Salomon, Paulo S; Thompson, Fabiano L

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  20. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro

    PubMed Central

    Fistarol, Giovana O.; Coutinho, Felipe H.; Moreira, Ana Paula B.; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E. M.; Coutinho, Ricardo; de Moura, Rodrigo L.; Valentin, Jean Louis; Tenenbaum, Denise R.; Paranhos, Rodolfo; do Valle, Rogério de A. B.; Vicente, Ana Carolina P.; Amado Filho, Gilberto M.; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E.; Thompson, Cristiane C.; Salomon, Paulo S.; Thompson, Fabiano L.

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  1. Risk assessment study of dioxins in sanitary napkins produced in Japan.

    PubMed

    Ishii, Satoko; Katagiri, Ritsuko; Kataoka, Toshiyuki; Wada, Mitsuhiro; Imai, Shigeo; Yamasaki, Kanji

    2014-10-01

    A risk assessment study of dioxins in sanitary napkins produced in Japan was performed. The daily estimated exposure volume to dioxins was compared with the tolerable daily intake (TDI). The concentrations of dioxins such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) in seven sanitary napkins were measured using gas chromatography and mass spectroscopy analytical methods. Among the seven napkins, a range of 0.0044-0.076pg TEQ/g dioxins was measured. Daily estimated exposure volume from sanitary napkins was calculated as follows: (dioxin volumes in a sanitary napkin (0.0044-0.076pg TEQ/g)×pulp weight in a sanitary napkin (11.2g)×used napkin numbers/d (7.5)×the number of days/month that women use sanitary napkins (7)×skin absorption rate (0.03)×used years (40))/(average body weight of women (50kg)×the number of days in the month (30)×life years (86)). Daily exposure volumes were estimated to be 0.000024-0.00042pg TEQ/kg/d. For hazard assessment, we used 0.7pg TEQ/kg/d which was the lowest level of TDI among TDI values reported by international agencies. When the daily exposure volume was compared with the TDI, the former was approximately 1666-29,166 times less than the latter. This fact indicated that the risk of exposure to dioxins from sanitary napkins produced in Japan was negligible.

  2. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia.

    PubMed

    Jiang, Guangming; Keating, Anthony; Corrie, Shaun; O'halloran, Kelly; Nguyen, Lam; Yuan, Zhiguo

    2013-09-01

    Intermittent dosing of free nitrous acid (FNA), with or without the simultaneous dosing of hydrogen peroxide, is a new strategy developed recently for the control of sulfide production in sewers. Six-month field trials have been carried out in a rising main sewer in Australia (150 mm in diameter and 1080 m in length) to evaluate the performance of the strategy that was previously demonstrated in laboratory studies. In each trial, FNA was dosed at a pumping station for a period of 8 or 24 h, some with simultaneous hydrogen peroxide dosing. The sulfide control effectiveness was monitored by measuring, on-line, the dissolved sulfide concentration at a downstream location of the pipeline (828 m from the pumping station) and the gaseous H2S concentration at the discharge manhole. Effective sulfide control was achieved in all nine consecutive trials, with sulfide production reduced by more than 80% in 10 days following each dose. Later trials achieved better control efficiency than the first few trials possibly due to the disrupting effects of FNA on sewer biofilms. This suggests that an initial strong dose (more chemical consumption) followed by maintenance dosing (less chemical consumption) could be a very cost-effective way to achieve consistent control efficiency. It was also found that heavy rainfall slowed the recovery of sulfide production after dosing, likely due to the dilution effects and reduced retention time. Overall, intermittent dose of FNA or FNA in combination with H2O2 was successfully demonstrated to be a cost-effective method for sulfide control in rising main sewers.

  3. Storm and combined sewer overflow: An overview of EPA's Research Program. Book chapter

    SciTech Connect

    Field, R.

    1993-01-01

    The report represents an overview of the EPA's Storm and Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers Program involvements in the development of a diverse technology including pollution-problem assessment/solution methodology and associated instrumentation and stormwater management models, best management practices, erosion control, infiltration/inflow, control, control-treatment technology and the associated sludge and solids residuals handling and many others.

  4. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks.

    PubMed

    Wolf, Leif; Zwiener, Christian; Zemann, Moritz

    2012-07-15

    There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes.

  5. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia.

    PubMed

    Jiang, Guangming; Keating, Anthony; Corrie, Shaun; O'halloran, Kelly; Nguyen, Lam; Yuan, Zhiguo

    2013-09-01

    Intermittent dosing of free nitrous acid (FNA), with or without the simultaneous dosing of hydrogen peroxide, is a new strategy developed recently for the control of sulfide production in sewers. Six-month field trials have been carried out in a rising main sewer in Australia (150 mm in diameter and 1080 m in length) to evaluate the performance of the strategy that was previously demonstrated in laboratory studies. In each trial, FNA was dosed at a pumping station for a period of 8 or 24 h, some with simultaneous hydrogen peroxide dosing. The sulfide control effectiveness was monitored by measuring, on-line, the dissolved sulfide concentration at a downstream location of the pipeline (828 m from the pumping station) and the gaseous H2S concentration at the discharge manhole. Effective sulfide control was achieved in all nine consecutive trials, with sulfide production reduced by more than 80% in 10 days following each dose. Later trials achieved better control efficiency than the first few trials possibly due to the disrupting effects of FNA on sewer biofilms. This suggests that an initial strong dose (more chemical consumption) followed by maintenance dosing (less chemical consumption) could be a very cost-effective way to achieve consistent control efficiency. It was also found that heavy rainfall slowed the recovery of sulfide production after dosing, likely due to the dilution effects and reduced retention time. Overall, intermittent dose of FNA or FNA in combination with H2O2 was successfully demonstrated to be a cost-effective method for sulfide control in rising main sewers. PMID:23764584

  6. Effect of temperature on the substrate utilization profiles of microbial communities in different sewer sediments.

    PubMed

    Biggs, Catherine A; Olaleye, Omolara I; Jeanmeure, Laurent F C; Deines, Peter; Jensen, Henriette S; Tait, Simon J; Wright, Phillip C

    2011-01-01

    Sewer systems represent an essential component of modern society. They have a major impact on our quality of life by preventing serious illnesses caused by waterborne diseases, by protecting the environment, and by enabling economic and social development through reducing flood risk. In the UK, systems are normally large and complex and, because of the long lifespan of these assets, their performance and hence their management are influenced by long-term environmental and urban changes. Recent work has focussed on the long-term changes in the hydraulic performance of these systems in response to climate change, e.g. rainfall and economic development. One climate-related driver that has received little attention is temperature, which may in itself have a complex dependence on factors such as rainfall. This study uses Biolog EcoPlates to investigate the effect of different temperatures (4 degrees C, 24 degrees C and 30 degrees C) on the carbon substrate utilization profiles of bacterial communities within sewer sediment deposits. Distinct differences in the metabolic profiles across the different temperatures were observed. Increasing temperature resulted in a shift in biological activity with an increase in the number of different carbon sources that can be utilized. Certain carboxylic and amino acids, however, did not support growth, regardless of temperature. Distinct differences in carbon utilization profiles were also found within sewers that have similar inputs. Therefore, this study has demonstrated that the carbon utilization profile for microbial communities found within sewer sediment deposits is dependent on both temperature and spatial variations. PMID:21473276

  7. DESIGN MANUAL: ODOR AND CORROSION CONTROL IN SANITARY SEWERAGE SYSTEMS AND TREATMENT PLANTS

    EPA Science Inventory

    Wastewater is known to the public for its potential to create odor nuisance. Sometimes it is the odors escaping from sewer manholes that cause complaints; more commonly, the odor source is a wastewater treatment facility. Yet there are wastewater treatment facilities that are fr...

  8. Sewer system design moving into the 21st century--a UK perspective.

    PubMed

    Ashley, R M; Tait, S J; Styan, E; Cashman, A; Luck, B; Blanksby, J; Saul, A; Sandlands, L

    2007-01-01

    Change in external factors, such as environmental legislation and climate change, will mean the future of sewerage systems is likely to be different from the past. Combined sewerage systems comprise the vast majority of existing sewers in countries such as the UK. A study funded by UK Water Industry Research Ltd has reviewed the current state of sewerage within the UK, the likely drivers for change and the consequent future impacts over a 75 year timescale. Potential responses to address the anticipated changes have also been considered. It is concluded that due to the wide extent and value of existing sewer systems, these will continue to be used for the foreseeable future. However, in order to meet the major challenges as a result of changing external factors, these need to be operated more effectively, new ideas need to be explored and moves to develop better and more integrated water management systems need to be started if sewer systems in the UK are to provide the anticipated required levels of service well into the 21st century.

  9. Surface models for coupled modelling of runoff and sewer flow in urban areas.

    PubMed

    Ettrich, N; Steiner, K; Thomas, M; Rothe, R

    2005-01-01

    Traditional methods fail for the purpose of simulating the complete flow process in urban areas as a consequence of heavy rainfall and as required by the European Standard EN-752 since the bi-directional coupling between sewer and surface is not properly handled. The new methodology, developed in the EUREKA-project RisUrSim, solves this problem by carrying out the runoff on the basis of shallow water equations solved on high-resolution surface grids. Exchange nodes between the sewer and the surface, like inlets and manholes, are located in the computational grid and water leaving the sewer in case of surcharge is further distributed on the surface. Dense topographical information is needed to build a model suitable for hydrodynamic runoff calculations; in urban areas, in addition, many line-shaped elements like houses, curbs, etc. guide the runoff of water and require polygonal input. Airborne data collection methods offer a great chance to economically gather densely sampled input data.

  10. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona.

    PubMed

    Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J

    2009-01-01

    This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control. PMID:19700825

  11. Combined sewer system versus separate system--a comparison of ecological and economical performance indicators.

    PubMed

    De Toffol, S; Engelhard, C; Rauch, W

    2007-01-01

    This paper aims at comparing the cost-effectiveness of the two main types of urban drainage systems, that is, the combined sewer system and the separate sewer system, based on the analysis of simulations. The problem of which of the two systems is better was heavily discussed over the years and the answer given to the question was usually: 'it depends'. In this work, specific impacts are investigated in terms of a cause-effect analysis. The results are subsequently summarized and can help in the choice of the system to be implemented. Despite earlier reasoning, studies on river water quality strongly indicate that the separate system is not always the preferable solution because the polluted runoff from the street, containing e.g. different heavy metals, is discharged directly into the river. This analysis aims to compare the two different sewer systems on the basis of literature data and simulation of specific cases. The results are evaluated, as suggested in the EU-Water Framework Directive, on the basis of different assessment criteria: river water quality and morphology impacts, emissions and costs.

  12. An obstacle to China's WWTPs: the COD and BOD standards for discharge into municipal sewers.

    PubMed

    Liao, Zhenliang; Hu, Tiantian; Roker, Scott Albert C

    2015-11-01

    In 2001, a construction campaign regarding wastewater treatment plants (WWTPs) occurred in China. Unfortunately, the treatment has not yet achieved anticipated effectiveness. A critical reason for this is that the influent chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentrations in WWTPs are unacceptably low. This paper indicates that a fundamental, but commonly overlooked contributing factor to this problem is that a large portion of easily degradable COD and BOD is degraded prematurely before entering municipal sewers, and this is directly correlated to China's standards for pollutant discharging into municipal sewers. This perspective is further unfolded through retrospection of the history of Chinese wastewater treatment and the investigation of standards among developed zones and districts. This paper suggests that in China, the standards for pollutant discharging into municipal sewers should be relaxed. Meanwhile, unnecessary pretreatment of COD and BOD should cease for the purpose of ensuring that easily degradable COD and BOD can be transferred to WWTPs to improve treatment efficiency. Moreover, additional alternatives are presented to resolve this problem.

  13. EPA SSOAP Toolbox Application for Condition and Capacity Assessment of Wastewater Collection Systems - Paper

    EPA Science Inventory

    The nation’s sanitary sewer infrastructure is aging, with some sewers dating back more than 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events ...

  14. EPA SSOAP Toolbox Application for Condition and Capacity Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per ...

  15. EPA SSOAP Toolbox – Evolution and Applications

    EPA Science Inventory

    The nation’s sanitary sewer infrastructure is aging, with some sewers dating back more than 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ...

  16. [Activity of sanitary surveillances/offices in Warsaw at the time of the second republic of Poland].

    PubMed

    Berner, Włodzimierz

    2006-01-01

    At the time of the Second Republic of Poland, Warsaw, the capital of the rebirth country, was a neglected town as regards sanitary conditions. The genesis of this situation dates back to the period of the national bondage by the Russian partitioner, and since 1915 by the German invader who did not care about the problems associated with public health. The sanitary and hygienic conditions worsened significantly in 1916, after incorporating into Warsaw large out-of-town regions whose housing was of the rural character with numerous wooden cottages, field roads, without any sanitary sewage system. Poor municipal sanitary-maintenance conditions and infectious diseases spreading in Warsaw made the Town Authorities implement preventive action and entrust sanitary surveillances with this difficult task. These surveillances were set up at the time of the First World War, and after 1920 were changed into sanitary offices. Their duties included control of acute infectious diseases, sanitary inspection of living quarters, sites of production and selling of food articles, plants, service outlets, shops of a different character, as well as surveillance of food purchased by the inhabitants. In each sanitary office a doctor was employed who supervised the work of one, two or three sanitary inspectors. PMID:17682766

  17. [Activity of sanitary surveillances/offices in Warsaw at the time of the second republic of Poland].

    PubMed

    Berner, Włodzimierz

    2006-01-01

    At the time of the Second Republic of Poland, Warsaw, the capital of the rebirth country, was a neglected town as regards sanitary conditions. The genesis of this situation dates back to the period of the national bondage by the Russian partitioner, and since 1915 by the German invader who did not care about the problems associated with public health. The sanitary and hygienic conditions worsened significantly in 1916, after incorporating into Warsaw large out-of-town regions whose housing was of the rural character with numerous wooden cottages, field roads, without any sanitary sewage system. Poor municipal sanitary-maintenance conditions and infectious diseases spreading in Warsaw made the Town Authorities implement preventive action and entrust sanitary surveillances with this difficult task. These surveillances were set up at the time of the First World War, and after 1920 were changed into sanitary offices. Their duties included control of acute infectious diseases, sanitary inspection of living quarters, sites of production and selling of food articles, plants, service outlets, shops of a different character, as well as surveillance of food purchased by the inhabitants. In each sanitary office a doctor was employed who supervised the work of one, two or three sanitary inspectors.

  18. [Activity of sanitary surveillances in Vilnius at the time of the Second Republic of Poland].

    PubMed

    Berner, Włodzimierz

    2009-01-01

    At the time of the Second Republic of Poland, in March 1922, the city of Vilnius together with the Vilnius Region was incorporated into Poland. Sanitary and health negligence was one of the main problems of the city. The genesis of that situation dates back to the 120-year national bondage, when the city was under the Russian rule. Since 1915 it was occupied by the German invader, and from January to April 1919 it belonged to Soviet Russia. The legacy left by this epoch concerned bad housing conditions, problems with removal of impurities, scarcity of fresh water supply, uneven and dirt roads, which along with other bionegative factors resulted in dissemination of contagious diseases and occurrence of other health risks. In Vilnius of the interwar period, similarly to other big cities in Poland, sanitary surveillances played a significant role in controlling acute contagious diseases, inspecting sanitary conditions of living quarters, service outlets, industrial plants, sites of production and selling food articles, as well as surveillance of food. Municipal doctors supervised the work of sanitary inspectors in each sanitary office. PMID:19899609

  19. [Evaluation of the sanitary-and-epidemiological hazard of solid garbage in Astana].

    PubMed

    Gumarova, Zh Zh; Bekshin, Zh M; Aushakhmetova, Z T

    2008-01-01

    According to the national plan of actions on environmental protection, industrial garbage recycling is to be introduced in Almaty and Astana for the sustainable development of the Republic of Kazakhstan. Integrated assessment of the hazard of garage is made by the sanitary-and-chemical and sanitary-and-epidemiological indices to provide the hygienic and ecological reliability of a procedure for neutralization and utilization of solid garbage (SG). According to the data obtained, Astana SG Astana in summer is characterized by the high total level of bacterial contamination. The indices of microbial contamination of SG and soil near the dustbins correlate with the density of population and the maturity of an infrastructure. Comparison of the sanitary-and-epidemiological indices of different types of SG (wastes from housing facilities, wholesale and retail outlays, and education, culture, and entertainment institutions) revealed no significant differences. According to the sanitary-and-helmintological indices, the Astana soil should be classified as pure (noninvasive). Involvement of SG into industrial recycling should be accompanied by a hygienic assessment of the hazard of waste and the reliability of used technologies in the context of warning and on-going sanitary surveillance. PMID:19202607

  20. [Evaluation of the sanitary-and-epidemiological hazard of solid garbage in Astana].

    PubMed

    Gumarova, Zh Zh; Bekshin, Zh M; Aushakhmetova, Z T

    2008-01-01

    According to the national plan of actions on environmental protection, industrial garbage recycling is to be introduced in Almaty and Astana for the sustainable development of the Republic of Kazakhstan. Integrated assessment of the hazard of garage is made by the sanitary-and-chemical and sanitary-and-epidemiological indices to provide the hygienic and ecological reliability of a procedure for neutralization and utilization of solid garbage (SG). According to the data obtained, Astana SG Astana in summer is characterized by the high total level of bacterial contamination. The indices of microbial contamination of SG and soil near the dustbins correlate with the density of population and the maturity of an infrastructure. Comparison of the sanitary-and-epidemiological indices of different types of SG (wastes from housing facilities, wholesale and retail outlays, and education, culture, and entertainment institutions) revealed no significant differences. According to the sanitary-and-helmintological indices, the Astana soil should be classified as pure (noninvasive). Involvement of SG into industrial recycling should be accompanied by a hygienic assessment of the hazard of waste and the reliability of used technologies in the context of warning and on-going sanitary surveillance.

  1. 3D geological model developed to analyse the aquifer - sewer network interaction in Bucharest city

    NASA Astrophysics Data System (ADS)

    Serpescu, I.; Radu, E.; Gogu, R. G.; Priceputu, A.; Boukhemacha, M. A.; Bica, I.; Gaitanaru, D.

    2012-04-01

    Due to the fact that several important Bucharest city sewer segments drain the groundwater and provide high input flow-rates for the existing waste-water treatment plant, their rehabilitation is necessary. A hydrogeological model, currently under development, will permit to compute the groundwater-sewer network interaction allowing the simulation of distinct design solutions to prevent city disturbances. For groundwater modelling the geological model represents the fundament of understanding the aquifers system behaviour. In this respect a 3D accurate and detailed geological model, covering a region of about 75 km2 has been developed to identify its contact with the major collecting sewer conduit. The shallow aquifer stratum of quaternary formations called Colentina is made of gravels and sands. This unconfined aquifer can be found mainly in the Bucharest city region at depths up to 20 m. A clayey-marl layer is located between Colentina and a lower confined aquifer called Mostistea. This second one is located at depths between 25 m and 70 m and is made of fine and medium sands with gravel intercalations. It overlays on a very thick sequence (40 m to 150 m) of marl and clay layers with slim sandy intercalations. The geological model has been developed on the basis of a large number of geological and geotechnical boreholes. A set of 400 boreholes with depths between 5m to 200 m showing a detailed geological and lithological description stored in a geospatial database have been used. The geological analysis has been performed using a software platform that integrates the spatial database and a set of tools and methodologies developed in a GIS environment with the aim of facilitating the development of 3D geological models for sedimentary media. Taking into account the first 50 m in depth, 25 geological profiles have been interpreted on the basis of chronostratigraphycal, lithological, and sedimentological criteria to delineate the geological formations and assess

  2. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    USGS Publications Warehouse

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed

  3. Computer simulation of leachate quality by recirculation in a sanitary landfill bioreactor.

    PubMed

    Chanthikul, S; Qasim, S R; Mukhopadhyay, B; Chiang, W W

    2004-01-01

    Sanitary Landfills are the most widely used method of solid waste disposal around the world. Modern sanitary landfills are designed with impervious liners, and leachate collection, removal, and treatment systems to minimize the potential for groundwater contamination. Leachate recycle through the landfill is an effective method of leachate treatment, and to enhance solid waste stabilization. A mathematical model is developed to simulate the release of contaminants from solid wastes, and their movement into the percolating liquid. Two differential equations are used that express the mass balance of the contaminants in the percolating water and those in the solid wastes. These simultaneous linear differential equations are solved numerically using a fourth-order Runge-Kutta algorithm with many physical and process parameters. The model results are used to estimate the active life of landfill with and without leachate recirculation. Such information is valuable in the operation, maintenance, and closure plan of a sanitary landfill.

  4. [Sanitary and epidemiological supply for the Russian Army during the First World War (1914-1918)].

    PubMed

    gorelova, L E; Loktev, A E

    2014-02-01

    At the beginning of the First World War the most typical diseases in the Russian Army were typhoid, typhus, diphtheria, cholera, smallpox and other infectious diseases. At the beginning of the First World War the level of infectious morbidity was significantly low, but further increased and pandemic risk arose. Servicemen were mostly ill with typhus, relapsing fever, flux, cholera, smallpox and typhoid. The highest mortality rate was registered in patients with cholera, typhus and typhoid. According the prewar deployment program of the Russian Army anti-epidemiologic facilities were established. By the end of war were established 110 sanitary-and-hygienic and 90 disinfection units. However, organization of anti-epidemiologic security was unsatisfactory. Due to lack of specialists and equipment anti-epidemiologic facilities of units were under strength. Commanders of sanitary units and sanitary service had not enough resources for operational service in the Forces and facilities of rear area.

  5. Creation of Integrated System of Cosmonauts Sanitary-Hygienic Supply: Researches, Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Shumilina, I.; Krivobok, S.; Shumilina, G.

    The necessity of Integrated System creation for cosmonauts Sanitary - Hygienic Supply has appeared at realization of joint flights on the International Space Station (ISS). Russian hygiene means manufactured and tested in the long space flights conditions and personal hygiene means of foreign manufacture, which were developed without chamber experiments conditions, are mean to use for Integrated System. The realization of Sanitary - Hygienic Water (SHW) regeneration is supposed for water circulation. The researches directed on equipment creation for clothing washing and clothing drying were carried out for the purposes of goods turnover optimization on ISS The variants of possible realization of water procedures (shower-bath, face washing) are studied. New and essentially date are received for an estimation of efficiency of various ways of cosmonauts Sanitary - Hygienic Supply, including results of tests for new generation regeneration SHW systems with Nanofiltration unit on various kinds real SHW. The improvement of washing-up liquids, individual selection of a complex of personal hygiene means with the man skin condition registration allows to raise of preventive measures use efficiency directed on prevention of adverse skin changes and skin diseases. The analysis of the equipment and methods for clothing washing and clothing drying for conditions of long space flight are carried out. The experimental data on textile materials drying are received. The investigations covered a wide range of issues associated with Sanitary - Hygienic Supply Integrated System including Personal Hygiene complex (items and techniques), ways of Sanitary - Hygienic Supply realization, methods of wastewater regeneration. The results of researches are especially urgent for cosmonauts Sanitary - Hygienic Supply System creation for long space flights, in particular, "Mars" flights at impossibility of updating of water stock, clothing stock etc.

  6. Health assessment for Muskego Sanitary Landfill, Muskego, Wisconsin, Region 5. CERCLIS No. WID00713180. Preliminary report

    SciTech Connect

    Not Available

    1988-11-09

    The Muskego Sanitary Landfill site is listed on the National Priority List. The Muskego Sanitary Landfill is located approximately 3 miles southeast of the City of Muskego in Waukesha County. The Old Fill Area is a former sand and gravel pit that was subsequently used as a dumpsite. Ground water under the landfill has shown high levels of contamination with various heavy metals and volatile organic compounds. Based on the available information, the site is considered to be a potential public health concern. The risk to human health is caused by potential exposure to hazardous substances via inhalation and ingestion with contaminated ground water.

  7. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Showers shall be provided with both hot and cold water. (ii) At least one shower head shall be provided..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY... Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.402 Minimum requirements...

  8. Sanitary landfills: Earth fills. January 1981-August 1991 (Citations from the NTIS Data Base). Rept. for Jan 81-Aug 91

    SciTech Connect

    Not Available

    1991-07-01

    The bibliography contains citations concerning the design, operation, and management of sanitary landfills as related to earth fills. Topics include liner materials evaluations, leachate analyses, site studies, environmental monitoring, and solid waste management strategies. Hazardous materials, public health, risk assessment, refuse disposal, sanitary engineering, soil contamination, water pollution, solid waste disposal, and wetlands are considered. (Contains 118 citations with title list and subject index.)

  9. Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test

    NASA Astrophysics Data System (ADS)

    Piatyszek, E.; Voignier, P.; Graillot, D.

    2000-05-01

    One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.

  10. Disparities in Water and Sewer Services in North Carolina: An Analysis of the Decision-Making Process

    PubMed Central

    Gibson, Jacqueline MacDonald

    2015-01-01

    Objectives. We examined the factors that affect access to municipal water and sewer service for unincorporated communities relying on wells and septic tanks. Methods. Using a multisite case study design, we conducted in-depth, semistructured interviews with 25 key informants from 3 unincorporated communities in Hoke, New Hanover, and Transylvania counties, North Carolina, July through September 2013. Interviewees included elected officials, health officials, utility providers, and community members. We coded the interviews in ATLAS.ti to identify common themes. Results. Financing for water and sewer service emerged as the predominant factor that influenced decisions to extend these services. Improved health emerged as a minor factor, suggesting that local officials may not place a high emphasis on the health benefits of extending public water and sewer services. Awareness of failed septic systems in communities can prompt city officials to extend sewer service to these areas; however, failed systems are often underreported. Conclusions. Understanding the health costs and benefits of water and sewer extension and integrating these findings into the local decision-making process may help address disparities in access to municipal services. PMID:26270307

  11. Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems.

    PubMed

    Penn, R; Schütze, M; Friedler, E

    2013-01-15

    On-site greywater reuse (GWR) and installation of water-efficient toilets (WET) reduce urban freshwater demand. Research on GWR and WET has generally overlooked the effects that GWR may have on municipal sewer systems. This paper discusses and quantifies these effects. The effects of GWR and WET, positive and negative, were studied by modelling a representative urban sewer system. GWR scenarios were modelled and analysed using the SIMBA simulation system. The results show that, as expected, the flow, velocity and proportional depth decrease as GWR increases. Nevertheless, the reduction is not evenly distributed throughout the day but mainly occurs during the morning and evening peaks. Examination of the effects of reduced toilet flush volumes revealed that in some of the GWR scenarios flows, velocities and proportional depths in the sewer were reduced, while in other GWR scenarios discharge volumes, velocities and proportional depths did not change. Further, it is indicated that as a result of GWR and installation of WET, sewer blockage rates are not expected to increase significantly. The results support the option to construct new sewer systems with smaller pipe diameters. The analysis shows that as the penetration of GWR systems increase, and with the installation of WET, concentrations of pollutants also increase. In GWR scenarios (when toilet flush volume is not reduced) the increase in pollutant concentrations is lower than the proportional reduction of sewage flow. Moreover, the results show that the spatial distribution of houses reusing GW does not significantly affect the parameters examined.

  12. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol.

    PubMed

    Khan, Usman; Nicell, Jim A

    2012-04-01

    In sewer epidemiology, mass balances are used to back-extrapolate measurements of wastewater influent concentrations of appropriate drug residues to assess the parent illicit drug's level of use in upstream populations. This study focussed on developing and refining mass balances for the use of illicit methamphetamine, amphetamine and tetrahydrocannabinol. As a first step, a multi-criteria evaluation was used to select unchanged methamphetamine, unchanged amphetamine and 11-nor-9-carboxy-tetrahydrocannabinol as the most appropriate drug residues to track a selected population's use of illicit methamphetamine, amphetamine and tetrahydrocannabinol, respectively. For each of these selected drug residues, mass balances were developed by utilizing all disposition data available for their release from all their respective sources, incorporating route-of-administration considerations where relevant, and accounting for variations in the metabolic capacity of users of the various relevant licit and illicit sources. Further, since the selected drug residues for the use of methamphetamine and amphetamine cannot only result from their use but numerous other licit and illicit sources, comprehensive general source models were developed for their enantiomeric-specific release to sewers. The relative importance of the sources identified in the general source model was evaluated by performing national substance flow analyses for a number of countries. Results suggested that licit sources of methamphetamine are expected to be only of significance in populations where its illicit use is minor. Similarly, in populations where the use of illicitly produced amphetamine is currently of relevance, licit contributions to the sewer loads of amphetamine are likely to be of negligible importance. Lastly, the study of tetrahydrocannabinol back-extrapolation mass balances suggested that further research is required to assess the importance of fecal elimination of 11-nor-9-carboxy-tetrahydrocannabinol.

  13. Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches

    NASA Astrophysics Data System (ADS)

    Afshar, M. H.; Rohani, M.

    2012-01-01

    In this article, cellular automata based hybrid methods are proposed for the optimal design of sewer networks and their performance is compared with some of the common heuristic search methods. The problem of optimal design of sewer networks is first decomposed into two sub-optimization problems which are solved iteratively in a two stage manner. In the first stage, the pipe diameters of the network are assumed fixed and the nodal cover depths of the network are determined by solving a nonlinear sub-optimization problem. A cellular automata (CA) method is used for the solution of the optimization problem with the network nodes considered as the cells and their cover depths as the cell states. In the second stage, the nodal cover depths calculated from the first stage are fixed and the pipe diameters are calculated by solving a second nonlinear sub-optimization problem. Once again a CA method is used to solve the optimization problem of the second stage with the pipes considered as the CA cells and their corresponding diameters as the cell states. Two different updating rules are derived and used for the CA of the second stage depending on the treatment of the pipe diameters. In the continuous approach, the pipe diameters are considered as continuous variables and the corresponding updating rule is derived mathematically from the original objective function of the problem. In the discrete approach, however, an adhoc updating rule is derived and used taking into account the discrete nature of the pipe diameters. The proposed methods are used to optimally solve two sewer network problems and the results are presented and compared with those obtained by other methods. The results show that the proposed CA based hybrid methods are more efficient and effective than the most powerful search methods considered in this work.

  14. Assessing the Impacts of Pulp Loading from Non-Dispersible Materials on Downstream Sewer Systems (WERF Report INFR1R14)

    EPA Science Inventory

    Abstract:This study subjected wipes from five different manufacturers to a variety of tests to determine if changes to their physical characteristics occur when introduced into a sewer systemand what effect the shredded material (pulp) has on the downstream sewer. Shredded and no...

  15. Impact of sewer condition on urban flooding: an uncertainty analysis based on field observations and Monte Carlo simulations on full hydrodynamic models.

    PubMed

    van Bijnen, M; Korving, H; Clemens, F

    2012-01-01

    In-sewer defects are directly responsible for affecting the performance of sewer systems. Notwithstanding the impact of the condition of the assets on serviceability, sewer performance is usually assessed assuming the absence of in-sewer defects. This leads to an overestimation of serviceability. This paper presents the results of a study in two research catchments on the impact of in-sewer defects on urban pluvial flooding at network level. Impacts are assessed using Monte Carlo simulations with a full hydrodynamic model of the sewer system. The studied defects include root intrusion, surface damage, attached and settled deposits, and sedimentation. These defects are based on field observations and translated to two model parameters (roughness and sedimentation). The calculation results demonstrate that the return period of flooding, number of flooded locations and flooded volumes are substantially affected by in-sewer defects. Irrespective of the type of sewer system, the impact of sedimentation is much larger than the impact of roughness. Further research will focus on comparing calculated and measured behaviour in one of the research catchments.

  16. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    USGS Publications Warehouse

    Martin, J.D.

    1995-01-01

    Concentrations of dissolved oxygen measured at the station in the middle of the combined-sewer overflows were less than the Indiana minimum ambient water-quality standard of 4.0 milligrams per liter during all storms. Concentrations of ammonia, oxygen demand, copper, lead, zinc, and fecal coliform bacteria at the stations downstream from the combined-sewer overflows were much higher in storm runoff than in base flow. Increased concentrations of oxygen demand in runoff probably were caused by combined-sewer overflows, urban runoff, and the resuspension of organic material deposited on the streambed. Some of the increased concentrations of lead, zinc, and probably copper can be attributed to the discharge and resuspension of filter backwash

  17. Prioritising sewerage maintenance using inferred sewer age: a case study for Edinburgh.

    PubMed

    Arthur, S; Burkhard, R

    2010-01-01

    The reported research project focuses on using a database which contains details of customer contacts and CCTV data for a key Scottish catchment to construct a GIS based sewer condition model. Given the nature of the asset registry, a key research challenge was estimating the age of individual lengths of pipe. Within this context, asset age was inferred using the estimated age of surface developments-this involved overlaying the network in a GIS with historical digital maps. The paper illustrates that inferred asset age can reliably be used to highlight assets which are more likely to fail.

  18. Graph theoretical stable allocation as a tool for central control of sewer systems

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Kolechkina, Alla

    2016-04-01

    Dutch sewer networks consist of multiple sub-networks that serve both to collect waste water and as a link in the transport chain of waste water to the Waste Water Treatment Plant. Within sub-networks transport is by gravity driven flow. The sub-networks are linked by pumping stations. If the network of pipes also serves to collect precipitation then the system is called a combined system. For some of these networks it may be beneficial to implement central control. We study whether the graph theoretical concept of stable allocations can be used as a basis for the algorithm underlying such a central conrol system.

  19. Bacterial degradation of polychlorinted biphenyls in sludge from an industrial sewer lagoon

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Takacs, A. M.; Kuivinen, D. E.

    1983-01-01

    A laboratory experiment was conducted to determine if polychlorinated biphenyls (PCB's) found in an industrial sewer sludge can be effectively degraded by mutant bacteria. The aerated sludge was inoculated daily with mutant bacteria in order to augment the existing bacteria with bacteria that were considered to be capable of degrading PCB's. The pH, nitrogen, and phosphorus levels were monitored daily to maintain an optimum growing medium for the bacteria. A gas chromatographic method was used to determine the PCB concentrations of the sludge initially and also throughout the experiment. Results and discussion of the bacterial treatment of polychlorinated biphenyls are presented.

  20. Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99

    USGS Publications Warehouse

    Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the

  1. Reclamation of sanitary landfills: A case study in Shelby County, Tennessee

    SciTech Connect

    Riddick, P.M.; Kirsch, S.; Kung, Hsiang-Te )

    1992-07-01

    Approximately 30,000 sanitary landfills were in operation in the United States in 1976; today, there are <7,000. The remaining 23,000 closed sites can be reclaimed to actually enhance the surrounding community; cost is the only limiting factor. Abandoned sanitary landfill sites do have problems, namely leachates, methane build-up, and subsidence. However, with modern techniques and planning, these problems can be overcome. Across the nation, old landfills have been converted into golf courses, parks, ski resorts, libraries, and even methane power plants. In some cases, a community's property value has actually increased after reclamation of the local landfill. Shelby County, in southwestern Tennessee, currently has four closed sanitary landfills. Only one site has been fully utilized as a recreational facility. At this site, four soccer fields are home to over 150 league soccer teams. Two sites are home to airplane radio-control clubs, although most land at these sites is currently unused. The fourth site is completely unused and up for sale. All of these closed sanitary landfills have potential use as recreation areas, but, as is often the case, lack of money and initiative is preventing development. 7 refs.

  2. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  3. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  4. 49 CFR 228.311 - Minimum space requirements, beds, storage, and sanitary facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.311 Minimum space requirements, beds, storage, and sanitary facilities. (a) Each camp car used for sleeping purposes must contain at least 80 square feet...

  5. Sanitary quality of the Jordan River in Salt Lake County, Utah

    USGS Publications Warehouse

    Thompson, K.R.

    1984-01-01

    This investigation of the sanitary quality of the Jordan River was conducted from July 1980 to October 1982 using indicator bacteria rather than specific pathogens. A serious sanitary problem was identified. Concentrations of total coliform bacteria often exceeded 5,000 colonies per 100 milliliters and concentrations of fecal coliform bacteria often exceeded 2,000 colonies per 100 milliliters in the lower reaches of the river. At times these levels were greatly exceeded. The most conspicuous aspect of the bacteriological data is its extreme variability. Seven waste-water treatment plants, seven major tributaries, numerous storm conduits, irrigation-return flow, and other sources all contribute to the dynamic system that determines the sanitary quality of the river. Because of this variability the sanitary quality of the river cannot be predicted at any one time. In general, concentrations of all three indicator bacteria increased in a downstream direction. Storm runoff from urban areas contributed large concentrations of indicator bacteria to the river. Regression analysis of 9 years of data collected at 1700 South Street showed a significant positive correlation between both fecal coliform and fecal streptococcal concentrations versus time. Concentrations of fecal coliform and fecal streptococci have both been increasing since 1974 at 1700 South Street. (USGS)

  6. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., an onsite review of the water source(s) (identifying sources of contamination by using results of... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  7. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., an onsite review of the water source(s) (identifying sources of contamination by using results of... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  8. [The sanitary microbiological and biochemical characteristics of the soils under the conditions of urbanization].

    PubMed

    Naprasnikova, E V; Makarova, A P

    1999-01-01

    The study of soils under technogenesis and urbanization has shown that their biogenic properties are preserved. Sanitary assessment of urban soils has demonstrated their moderate and severe pollution, bean plants being found to have self-purifying capacities in the soils.

  9. Sanitary quality, occurrence and identification of Staphylococcus sp. in food services

    PubMed Central

    de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa

    2014-01-01

    Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health. PMID:25477940

  10. Attitudes towards the Use of the Medical and Sanitary Services in Iran

    ERIC Educational Resources Information Center

    Mohseni, Manouchehr

    1977-01-01

    Describes research methodology and findings of a survey in Iran to determine relationships between educational level, age, residence, and other variables involved in attitudes regarding the use of medical and sanitary services. Public health education is seen to be needed. For journal availability, see SO 506 019. (Author/AV)

  11. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    SciTech Connect

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  12. 9 CFR 307.3 - Inspectors to furnish and maintain implements in a sanitary condition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Inspectors to furnish and maintain... to furnish and maintain implements in a sanitary condition. Inspectors shall furnish their own work clothing and implements, such as flashlights and triers, for conducting inspection and shall maintain...

  13. 75 FR 79033 - Proposed Extension of Existing Information Collection; Application for Waiver of Surface Sanitary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine... Waiver of Surface Sanitary Facilities' Requirements (Pertaining to Coal Mines) AGENCY: Mine Safety and..., and the impact of collection requirements on respondents can be properly assessed. Currently, the...

  14. Sanitary quality, occurrence and identification of Staphylococcus sp. in food services.

    PubMed

    de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa

    2014-01-01

    Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health.

  15. Sanitary Survey Training. The Need-to-Know Material. Student's Text.

    ERIC Educational Resources Information Center

    Gardner, Anne, Ed.

    A sanitary survey is an onsite inspection of a public water system by competent personnel who use a standard form, procedure, and method to survey the effectiveness and maintenance of the system and to determine its ability to provide continuously safe water to the consuming public. This text, developed as an aid to providing instruction on how to…

  16. Maintaining a Sanitary Child Care Environment -- Six Tips for Germ Control.

    ERIC Educational Resources Information Center

    Aronson, Susan S.

    2001-01-01

    Recommends keeping body defenses strong, and keeping all surfaces clean and some surfaces sanitary. Urges using federally mandated precautions for blood spills, avoiding germ-trapping artificial or long fingernails and jewelry, practicing good hand washing, and organizing the environment to avoid contamination. Includes table relating child care…

  17. Treatment of sanitary landfill leachates in a lab-scale gradual concentric chamber (GCC) reactor.

    PubMed

    Mendoza, Lourdes; Verstraete, Willy; Carballa, Marta

    2010-03-01

    Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75-80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 degrees C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.

  18. Sanitary quality, occurrence and identification of Staphylococcus sp. in food services.

    PubMed

    de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa

    2014-01-01

    Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health. PMID:25477940

  19. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    SciTech Connect

    Tremaine, Diana; Douglas, Steven G.

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success of these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1

  20. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    SciTech Connect

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F.

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.