Science.gov

Sample records for 160mev proton linac

  1. A Superconducting Linac Proton Driver at Fermilab

    NASA Astrophysics Data System (ADS)

    Foster, G. William

    2004-05-01

    A proton driver has emerged as the leading candidate for Fermilab's next near-term accelerator project. The preferred technical solution is an 8 GeV superconducting linac based on technology developed for TESLA and the Spallation Neutron Source (SNS). Its primary mission is to serve as a single-stage H- injector to prepare 2 MW "Super-Beams" for Neutrino experiments using the Fermilab Main Injector. The linac can also accelerate electrons, protons, and relativistic muons, permitting future applications such as a driver for an FEL, a long-pulse spallation source, the driver for an intense 8 GeV neutrino or kaon program, and potential applications to a neutrino factory or muon collider. The technical design of the 8 GeV linac, as well as the design of an alternative synchrotron based proton driver, will be described along with plans for project proposal and construction.

  2. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  3. Conceptual design of a superconducting high-intensity proton linac

    SciTech Connect

    Dominic Chan, K.C.

    1996-09-01

    A SCRF (superconducting RF linac) has been developed for a high-intensity proton linac which will be used as the driver for neutron sources. This design is conservative, using current SCRF technologies. As well as lowering operating cost, the design offers performance advantages in availability, beam loss, and upgradability, which are important for the application as a neutron source.

  4. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  5. Proton linacs for boron neutron capture therapy

    SciTech Connect

    Lennox, A.J. |

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in {approximately}4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented.

  6. High-Power Proton Linac Technology at CERN

    NASA Astrophysics Data System (ADS)

    Gerigk, Frank

    The construction of Linac4, a 160 MeV H- linac started in 2008 and is now in the beam commissioning phase. The RFQ and MEBT line have been successfully commissioned; and installation and beam measurements of the 50 MeV DTL have started in 2014. Linac4 was conceived as the normal conducting front-end for a Superconducting Proton Linac (SPL), providing 5 GeV protons for a future neutrino facility at CERN. In the last 2 years the CERN infrastructure for the construction, surface treatment and testing of superconducting cavities has been upgraded to be compatible with the prototyping of a 4-cavity SPL type cryomodule. The 704 MHz 5-cell Niobium cavities, presently being built and tested at CERN are of interest also for other potential future projects at CERN and therefore the SPL R&D effort is well supported over the coming years. This paper reviews the context and status of Linac4 and SPL and highlights some of the technological developments, which have been done at CERN and which are foreseen within the next years.

  7. H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Galambos, John D; Plum, Michael A; Shishlo, Andrei P

    2012-01-01

    A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

  8. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    SciTech Connect

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O'Neil, M.; Pereira, H.; Paoluzzi, M.; Fantz, U.; Wuenderlich, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O.

    2012-02-15

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  9. Recent developments for high-intensity proton linacs

    SciTech Connect

    Wangler, T.P.; Garnett, R.W.; Gray, E.R.; Nath, S.

    1996-04-01

    High-intensity proton linacs are being proposed for new projects around the world, especially for tritium production, and for pulsed spallation neutron sources. Typical requirements for these linacs include peak beam current of about 100 mA, and final energies of 1 GeV and higher, APT, a tritium production linac, requires cw operation to obtain sufficient average tritium production linac, requires cw operation to obtain sufficient average beam power, and H{sup +} ion sources appear capable of providing the required current and emittances. The pulsed spallation neutron source requires a linac as an injector to one or more accumulator rings, and favors the use of an H{sup minus} beam to allow charge-exchange injection into the rings. For both applications high availability is demanded; the fraction of scheduled beam time for actual production must be 75% or more. Such a high availability requires low beam-loss to avoid radioactivation of the accelerator, and to allow hands-on maintenance that will keep the mean repair and maintenance times short. To keep the accelerator activation sufficiently low, the beam loss should not exceed about 0.1 to 1.0 nA/m, except perhaps for a few localized places, where special design adaptations could be made. The requirement of such small beam losses at such a high intensity presents a new beam physics challenge. This challenge will require greater understanding of the beam distribution, including the low- density beam halo, which is believed to be responsible for most of the beam losses. Furthermore, it will be necessary to choose the apertures so the beam losses will be acceptably low, and because large aperture size is generally accompanied by an economic penalty resulting from reduced power efficiency, an optimized choice of the aperture will be desirable.

  10. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    PubMed

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS. PMID:20192392

  11. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    PubMed

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  12. Design study of a medical proton linac for neutron therapy

    SciTech Connect

    Machida, S.; Raparia, D.

    1988-08-26

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs.

  13. Proton Driver Linac for the Frankfurt Neutron Source

    SciTech Connect

    Wiesner, C.; Chau, L. P.; Dinter, H.; Droba, M.; Heilmann, M.; Joshi, N.; Maeder, D.; Metz, A.; Meusel, O.; Noll, D.; Podlech, H.; Ratzinger, U.; Reichau, H.; Schempp, A.; Schmidt, S.; Schweizer, W.; Volk, K.; Wagner, C.; Mueller, I.

    2010-08-04

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will deliver high neutron fluxes in the energy range of 1 to 500 keV. The Activation Mode provides a high averaged neutron flux created by a cw proton beam of up to 5 mA, while in the Compressor Mode intense neutron pulses of 1 ns length are formed with a repetition rate of up to 250 kHz. The Compressor Mode is well-suited for energy-dependent neutron capture measurements using the Time-of-Flight method in combination with a 4{pi} BaF{sub 2} detector array. The design of the proton driver linac for both operation modes is presented. This includes the volume type ion source, the ExB chopper located in the low energy section, the RFQ-IH combination for beam acceleration and the bunch compressor. Finally, the neutron production at the lithium-7 target and the resulting energy spectrum is described.

  14. Summary of sessions B and F: High intensity linacs and frontend & proton drivers

    SciTech Connect

    Ferdinand, R.; Chou, W.; Galambos, J.; /Oak Ridge

    2005-01-01

    This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

  15. Design and construction of a compact microwave proton source for a proton linac.

    PubMed

    Hong, I S; Park, B S; Jang, J H; Kwon, H J; Cho, Y S; Hwang, Y S

    2010-02-01

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  16. Design and construction of a compact microwave proton source for a proton linac

    SciTech Connect

    Hong, I. S.; Park, B. S.; Jang, J. H.; Kwon, H. J.; Cho, Y. S.; Hwang, Y. S.

    2010-02-15

    A 100 MeV, 20 mA proton linear accelerator is being developed by the Proton Engineering Frontier Project at the Korea Atomic Energy Research Institute. 20 MeV acceleration system using radio frequency quadrupole and drift tube linac was already developed and has been tested. To operate this acceleration system with a long time, more reliable proton source is needed. A compact microwave proton source was proposed and has been designed and constructed as a prototype ion source for the 100 MeV proton linear accelerator. The design of microwave power injection system is based on the microwave proton injector at LANL and CEA. The wave power from a 2.45 GHz, 2 kW magnetron source is introduced into a compact plasma chamber with 7 cm diameter and 5 cm length through a standard tapered, double-ridged waveguide (WRD250) and a quartz window. The microwave power supply is installed on high voltage platform. Axial magnetic fields up to 1 kG can be provided with a water-cooled solenoid coil. A single-hole three electrode extraction system is designed for an extraction current up to 30 mA at a 50 kV extraction voltage. The design and initial operations of the proton source are presented.

  17. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  18. Solenoid-based focusing in a proton linac

    SciTech Connect

    Terechkine, I; DiMarco, J.; Schappert, W.; Sergatskov, d.; Tartaglia, M.; /Fermilab

    2010-09-01

    Development of solenoid-based focusing lenses for the transport channel of an R&D linac front end at FNAL (HINS linac) is in its final stage. Superconducting lenses for the room temperature RF section of the linac are assembled into individual cryostats and certified using a dedicated test stand. During this certification process, the optical axis of each lens relative to the cryogenic vessel is found in the warm and cold state. Lenses for the superconducting RF sections are ready for production, and development of a cryomodule (which contains multiple superconducting lenses and RF cavities) is in progress. Studies have been conducted to measure fringe magnetic field of a lens in the cryomodule, to investigate a laser-based method of alignment, and to evaluate the extent of beam quality degradation due to imperfections in lens construction and alignment. This report presents some results of these studies.

  19. Calculation of acceptance of high intensity superconducting proton linac for Project X

    SciTech Connect

    Saini, A.; Ranjan, K.; Solyak, N.; Mishra, S.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X is the proposed high intensity proton facility to be built at Fermilab, US. Its Superconducting Linac, to be used at first stage of acceleration, will be operated in continuous wave (CW) mode. The Linac is divided into three sections on the basis of operating frequencies & six sections on the basis of family of RF cavities to be used for the acceleration of beam from 2.5 MeV to 3 GeV. The transition from one section to another can limit the acceptance of the Linac if these are not matched properly. We performed a study to calculate the acceptance of the Linac in both longitudinal and transverse plane. Investigation of most sensitive area which limits longitudinal acceptance and study of influence of failure of beam line elements at critical position, on acceptance are also performed.

  20. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  1. Upgrade of the H^--injection system at the DESY proton Linac III

    NASA Astrophysics Data System (ADS)

    Kleffner, C.-M.; Holtkamp, N.; Jacobs, G.; Nagl, M.; Deitinghoff, H.; Paramonov, V.

    1997-05-01

    In the near future an upgrade of the injection system of the proton linac at DESY is foreseen. Two different types of H^--sources are operated at DESY. The new rf-driven volume source is cesium free. On a long-term basis this source is planned to replace the operating magnetron source. For reasons of reliability of the proton linac and further developments of sources parallel operation of two sources should be possible at the the Alvarez linac. Each source has a separate RFQ to accelerate the ions to an energy of 750 keV. A new transport line with one dipole, 8 quadrupoles and one intermediate buncher was designed to match the beam between both RFQs and the Alvarez linac. The codes COPPOC and TRANSPORT were used for determining the length of the transport line and the parameters of the dipole and the buncher. Because of the high currents of more than 20 mA the estimate of the space charge forces is of special interest. The macro-particle-code PARMTRA takes into account the particle-to-particle electric forces among all particles. The properties of the beam line have been studied in connection with the effects of the final beam quality after acceleration with the 50 MeV Alvarez linac.

  2. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    SciTech Connect

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­ high-current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-pass linac or an Energy Recovery Linac in addition to the easier service in a single-pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  3. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    SciTech Connect

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A; Lebedev, Valerie; Laface, Emanuele; Galambos, John D

    2013-01-01

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  4. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  5. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  6. Transport of intense proton beams in an induction linac by solenoid lenses

    NASA Astrophysics Data System (ADS)

    Namkung, W.; Choe, J. Y.; Uhm, H. S.

    1986-01-01

    In the proposed proton induction linac at NSWC, a 100 A and 3 μs proton beam is accelerated to 5 MeV through a series of accelerating gaps. This beam can be effectively focused by solenoid lenses in this low energy regime and can be transported by adjusting the focusing strength in each period. For the transport channel design to reduce the number of independently controlled lenses, a theory of matched beams in the space-charge dominated regime has been developed. This study can be applied to cost efficient designs of induction accelerators for heavy ion fusion and free electron lasers.

  7. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  8. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H‑ beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  9. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  10. RF phase stability in the 100-MeV proton linac operation

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  11. Beam dynamic design of a high intensity injector for proton linac

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; Wang, Zhi-Jun; Jia, Fang-Jian; He, Yuan; Wang, Zhi; Lu, Yuan-Rong

    2016-08-01

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  12. Long-term residual radioactivity in an intermediate-energy proton linac

    NASA Astrophysics Data System (ADS)

    Blaha, J.; La Torre, F. P.; Silari, M.; Vollaire, J.

    2014-07-01

    A new 160 MeV H- linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities.

  13. Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy

    NASA Astrophysics Data System (ADS)

    Berra, Paolo

    2007-12-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.

  14. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ˜16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ˜20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs.

  15. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  16. Results of using the axisymmetric RF focusing by means of field spatial harmonics at 7 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Dyubkov, V. S.

    2016-09-01

    For several decades, axially symmetric channels with RF focusing by means of nonsynchronous spatial harmonics of the accelerating field are offered as an attractive alternative to proven and reliable RFQ linacs. In a number of works an effectiveness of channels with axially symmetric RF focusing by means of the nonsynchronous harmonics of the field was demonstrated in the proton energy range up to 2 MeV. An effectiveness of discussed channels for protons at energies up to 7 MeV is considered in this paper. Numerical simulation results of proton self-consistent dynamics in a channel with axisymmetric RF focusing are presented and discussed in this article.

  17. A Compact Linac for Proton Therapy Based on a Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y -; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2007-10-29

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  18. Activation caused by proton beam losses in Accelerator Production of Tritium LINAC

    SciTech Connect

    Beard, C.A.; Eaton, S.L.; Daemen, L.L.; Waters, L.S.; Wilson, W.B.

    1996-03-01

    A variety of accelerator designs are being considered for the Accelerator Production of Tritium (APT) project at Alamos National Laboratory. Because activation of the structural components of the accelerator is considered a major radiation protection issue, we have developed a computational methodology to estimate quantitatively radionuclide inventories and gamma dose rates resulting from accelerator operation. The work presented here illustrates the use of our computational methodology by focusing on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube LINAC (BCDTL), and the 100 and 1000 MeV sections of the Coupled Cavity LINAC (CCL).

  19. The RIA driver linac.

    SciTech Connect

    Shepard, K. W.

    2002-09-23

    The driver linac for the U.S. RIA project will be a 1.4 GV superconducting linac capable of accelerating the full mass range of ions from 900 MeV protons to 400 MeV/u uranium, and delivering a cw beam of 400 kW shared by at least two targets simultaneously. Elements of the linac are being developed at several U.S. laboratories. The current status of linac design and development is reviewed with emphasis on changes in the baseline design since the last linac conference.

  20. PIC Simulations in Low Energy Part of PIP-II Proton Linac

    SciTech Connect

    Romanov, Gennady

    2014-07-01

    The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.

  1. Proton Linac Front End for High Intensity Neutrino Source at Fermilab

    NASA Astrophysics Data System (ADS)

    Tam, Wai-Ming; Apollinari, Giorgio; Madrak, Robyn; Moretti, Alfred; Ristori, Leonardo; Romanov, Gennady; Steimel, James; Webber, Robert; Wildman, David

    2008-04-01

    Fermilab has recently proposed the construction of an 8 GeV superconducting linac for the exploration of the high intensity frontier. The High Intensity Neutrino Source (HINS) R&D program was established to explore the feasibility of certain technical solutions proposed for the front end of a high intensity linac. The low energy (˜60 MeV) section operates at 325 MHz and comprises an RFQ, two re-buncher cavities, 16 room temperature (RT) and 29 superconducting cross-bar H-type resonators, and superconducting solenoid focusing elements. One of the distinguishing features of this linac is the use of one klystron to feed multiple radio frequency (RF) elements. As an example, the RFQ, the re-bunchers and the 16 RT cavities are powered by a single 2.5 MW pulsed klystron. To achieve individual control over the phase and the voltage amplitude, each of the RF elements is equipped with a high power vector modulator. The RF control system will be discussed. The first RT cavity is completed with a power coupler, two mechanical tuners, vacuum and cooling systems, and has been RF conditioned. Preliminary tests on resonance frequency stability control and tests results of the cavity resonance frequency response to cooling water temperature and tuner position will also be discussed.

  2. Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2016-09-01

    The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.

  3. Developmental Status of Beam Position and Phase Monitor for PEFP Proton Linac

    NASA Astrophysics Data System (ADS)

    Park, Sungju; Park, Jangho; Yu, Inha; Kim, Dotae; Hwang, Jung-Yun; Nam, Sanghoon

    2004-11-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current. (Pulse width and max. repetition rate of 1 ms and 120 Hz respectively.) We have developed the Beam Position and Phase Monitor (BPPM) for the machine that features the button-type PU, the full-analog processing electronics, and the EPICS-based control system. The beam responses of the button-type PU have been obtained using the MAGIC (Particle-In-Cell) code. The processing electronics has been developed in collaboration with Bergoz Instrumentation. In this article, we report the present status of the system developments except the control system.

  4. DESIGN AND FABRICATION OF SCRF CAVITIES FOR THE APT CONTINUOUS-WAVE PROTON LINAC.

    SciTech Connect

    Gentzlinger, R.C.; Haynes, W. B.; Chan, K. D.; Kelley, J. P.; Krawczyk, F. L.; Kuzminski, J.; Mitchell R.; Montoya, D. I.; Rusnak, B.; Safa, H.; Schrage, D. L.; Tajima, T.

    2001-01-01

    At Los Alamos National Laboratory, a prototype design of proton superconducting cavities has been developed for the Accelerator Production of Tritium (APT) project. These cavities are designed for b=0.64. They have five cells and operate at 700 MHz. They will operate at 2.15 K in a liquid-helium bath contained in an unalloyed, Grade 2 titanium vessel. Six cavities were manufactured with RRR-250 niobium, one by Los Alamos and five by industry. This paper discusses both the design and fabrication of the cavity and helium vessel, and the experience gained during the fabrication process.

  5. Study on the microwave ion source of the 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2016-09-01

    A microwave ion source is used as an ion source for the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC). The specifications of the ion source are a 50-keV energy and a 20-mA peak current. The plasma is operated in the CW mode by using a magnetron, and the pulse beam is extracted using a semiconductor switch located in the extraction power supply. The beam characteristics were measured based on the pulse voltage and current. A test stand was also installed to study the beam characteristics of the ion source off-line. In this paper, the pulse beam characteristics of the ion source are presented, and the installation of the test stand is reported.

  6. Treatment plan comparison of linac step and shoot, tomotherapy, rapidarc, and proton therapy for prostate cancer by using the dosimetrical and the biological indices

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Cao, Yuan Jie; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook; Shin, Dongho

    2015-07-01

    The purpose of this study was to use various dosimetrical indices to determine the best intensitymodulated radiation therapy (IMRT) modality - for treating patients with prostate cancer. Ten patients with prostate cancer were included in this study. IMRT plans were designed to include different modalities, including the linac step and shoot, tomotherapy, RapidArc, and proton systems. Various dosimetrical indices, like the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF), were determined to compare the different treatment plans. Biological indices, such as the generalized equivalent uniform dose (gEUD) based the tumor control probability (TCP), and the normal tissue complication probability (NTCP), were also calculated and used to compare the treatment plans. The RapidArc plan attained better PTV coverage, as evidenced by its superior PITV, CI, TCI, MHI, and CN values. Regarding organ at risks (OARs), proton therapy exhibited superior dose sparing for the rectum and the bowel in low dose volumes, whereas the tomotherapy and RapidArc plans achieved better dose sparing in high dose volumes. The QF scores showed no significant difference among these plans (p = 0.701). The average TCPs for prostate tumors in the RapidArc, linac and proton plans were higher than the average TCP for Tomotherapy (98.79%, 98.76%, and 98.75% vs. 98.70%, respectively). Regarding the rectum NTCP, RapidArc showed the most favorable result (0.09%) whereas linac resulted in the best bladder NTCP (0.08%).

  7. The ISS protontherapy LINAC

    NASA Astrophysics Data System (ADS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-02-01

    The TERA foundation stimulated in the past years a comparative study of compact proton accelerators for therapy and at the end of 1995 the Italian National Institute of Health (Istituto Superiore di Sanità, ISS) decided for the construction of a proton linac for its TOP (Terapia Oncologica con Protoni) project. The TOP-LINAC will be composed of a 7 MeV RFQ+DTL injector followed by a 7-65 MeV section of the innovative 3 GHz SCDTL structure and a 65-200 MeV variable energy SCL 3 GHz structure. A 5-cavity model of the SCDTL has been built and measured on a RF test bench while a 11-cavities prototype (accelerating until 12.5 MeV) is under construction and will be assembled within few months. The TOP LINAC whose construction will start at the end of 1996, will be the first linear accelerator dedicated to proton therapy, and the first 3 GHz proton linac. In this paper the accelerator design and the construction schedule will be presented, and the SCDTL structure RF measurements will be discussed.

  8. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    SciTech Connect

    M. LYNCH; S. KWON; ET AL

    2001-06-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within {+-}0.5% and {+-}0.5{sup o} [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin.

  9. Induction linacs

    SciTech Connect

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed. (LEW)

  10. Development of a 110-m-mA, 75-keV proton injector for high-current, CW linacs

    SciTech Connect

    Sherman, J.D.; Bolme, G.O.; Hansborough, L.D.

    1996-09-01

    A dc proton injector is being developed for a 6.7 MeV CW RFQ at Los Alamos. The RFQ input beam requirements are 75 keV energy, 110 mA dc proton current, and 0.20 {pi}mm-mrad rms normalized emittance. The injector has now produced a 75-keV, 117-mA dc proton beam (130 mA total current) with the required emittance. The emittance has been measured after a 2.1 m long two-solenoid beam transport system. The measured emittance can be explained in terms of the ion source emittance and beam transport through the focusing elements. Measured proton fractions are 90-92% of the beam current. Engineering of the accelerating column high-voltage design is being improved to increase the injector reliability. Injector design details and status are presented.

  11. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  12. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    PubMed

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  13. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    PubMed

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented. PMID:26932075

  14. High current induction linacs

    NASA Astrophysics Data System (ADS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge.

  15. Measurements of H/sup 0/ and H/sup +/ ion yields during H/sup -/ acceleration in a 50-MeV linac

    SciTech Connect

    Cho, Y.; Madsen, J.; Shin, S.A.; Stipp, V.

    1981-01-01

    Unlike proton linacs where the only particles that can be transported are protons, an H/sup -/ linac can produce H/sup 0/ and protons by stripping off one or both electrons of H/sup -/ ions during acceleration. We have measured yields of these ions as a function of linac tank pressures.

  16. Beam diagnostic suite for the SNS linac

    NASA Astrophysics Data System (ADS)

    Hardekopf, R. A.; Kurennoy, S. S.; Power, J. F.; Shafer, R. E.; Stovall, J. E.

    2000-11-01

    The Spallation Neutron Source (SNS) is the next-generation pulsed neutron source to be built in the United States. The accelerator chosen to produce the 2 MW beam power on the neutron-producing target is an H- linear accelerator (linac) to 1 GeV, followed by a proton accumulator ring. The ring compresses the 1 ms long beam bunches from the linac to less than 1 μs. The linac is pulsed at 60 Hz with a 6% duty factor. Stringent control of the pulse structure and stability of the high-intensity H- beam is needed to minimize beam loss in the linac and to optimize injection into the accumulator ring. This requires a set of beam diagnostics that can operate at high peak currents (˜52 mA) with high sensitivity and minimum beam interception.

  17. Designs for a Linac-Ring LHeC

    SciTech Connect

    Zimmermann, Frank; Bruning, Oliver; Ciapala, Edmond; Haug, Friedrich; Osborne, John; Schulte, Daniel; Sun, Yipeng; Tomas, Rogelio; Adolphsen, Chris; Calaga, Rama; Litvinenko, Vladimir; Chattopadhyay, Swapan; Dainton, John; Klein, Max; Eide, Anders; /Paris U., VI-VII

    2012-06-21

    We consider three scenarios for the recirculating electron linear accelerator (RLA) of a linac-ring type electron-proton collider based on the LHC (LHeC): (i) a pulsed linac with a final beam energy of 60 GeV ['p-60'], (ii) a higher luminosity configuration with two cw linacs and energy-recovery (ERL) also at 60 GeV ['erl'], and (iii) a high energy option using a pulsed linac with 140-GeV final energy ['p-140']. We discuss parameters, synchrotron radiation, footprints, and performance for the three scenarios.

  18. Physics design of front ends for superconducting ion linacs

    SciTech Connect

    Ostroumov, P.N.; Carneiro, J.P.; /Fermilab

    2009-01-01

    Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H{sup -} beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a {approx}400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space-charge and a compact focusing lattice. As an example, we discuss the SC front-end of the H{sup -} linac for the FNAL Proton Driver.

  19. RFI-Based Ion Linac Systems

    NASA Astrophysics Data System (ADS)

    Swenson, Donald A.

    A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.

  20. A study of the structural activation caused by proton beam loss in the {open_quotes}accelerator production of tritium{close_quotes} LINAC

    SciTech Connect

    Daemen, L.L.; Beard, C.A.; Eaton, S.L.; Waters, L.S.; Wilson, W.B.

    1997-01-01

    The Accelerator Production of Tritium (APT) project at Los Alamos National Laboratory makes use of a high power linear proton accelerator to produce neutrons via spallation reactions m a heavy metal target. The fast spallation neutrons are moderated by a heavy water blanket, and used to produce tritium by means of the reaction: {sup 3}He(n,p)T, APT 1993. Various accelerator designs are currently under consideration. At the time when this study was performed, the project called for a 1 GeV proton linear accelerator with a beam current of 200 mA, i.e., a proton beam power of 200 MW. Given the high power at which the APT accelerator is expected to operate, as well as the heavy maintenance that is likely to be required to keep it operating, it is essential to consider health physics issues at an early stage of the design.

  1. Commissioning Experience for the SNS Linac

    SciTech Connect

    Aleksandrov, A.; Assadi, S.; Campisi, I.; Chu, P.; Cousineau, S.; Danilov, V.; Dodson, B.G.; Galambos, J.; Jeon, D.; Henderson, S.; Holtkamp, N.; Kravchuk, L.; Kim, S.; Plum, M.; Tanke, E.; Stockli, M.

    2005-06-08

    The Spallation Neutron Source accelerator systems will deliver a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60 Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. A 2.5 MeV beam from the Front End is accelerated to 86 MeV in a Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and then to 1 GeV in a Superconducting Linac. The staged beam commissioning of the accelerator complex is proceeding as component installation progresses. The Front End, Drift Tube Linac and part of the Coupled-Cavity Linac have been commissioned at ORNL. The primary design goals of peak current, transverse emittance and beam energy have been achieved. Results and status of the beam commissioning program will be presented.

  2. Magnet innovations for linacs

    SciTech Connect

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs.

  3. CSNS LINAC DESIGN

    SciTech Connect

    FU, S.; FANG, S.; WEI, J.

    2006-08-21

    China Spallation Neutron Source has been approved in principle by the Chinese government. CSNS can provide a beam power of 100kW on the target in the first phase, and then 200kW in the second phase. The accelerator complex of CSNS consists of an H- linac of 81MeV and a rapid cycling synchrotron of 1.6GeV at 25Hz repetition rate. In the second phase, the linac energy will be upgraded to 132MeV and the average current will be doubled. The linac has been designed, and some R&D studies have started under the support from Chinese Academy of Sciences. The linac comprises a H- ion source, an RFQ and a conventional DTL with EMQs. This paper will present our major design results and some progresses in the R&D of the linac.

  4. An energy recovery electron linac-on-ring collider

    SciTech Connect

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-09-14

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33}(per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented.

  5. Wake Field Effects in the APT Linac.

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    1998-04-01

    The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. While wake-field effects are usually considered negligible in proton linacs, an analysis for the APT accelerator has been performed to exclude potential problems at such a high current leading to beam losses. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. The only noticeable effect is the HOM heating of the 5-cell superconducting cavities. However, it has an acceptable level and will be further reduced by HOM couplers.

  6. Interdigital H -mode drift-tube linac design with alternative phase focusing for muon linac

    NASA Astrophysics Data System (ADS)

    Otani, M.; Mibe, T.; Yoshida, M.; Hasegawa, K.; Kondo, Y.; Hayashizaki, N.; Iwashita, Y.; Iwata, Y.; Kitamura, R.; Saito, N.

    2016-04-01

    We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from β =v /c =0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 π and 0.195 π mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

  7. WATER PURITY DEVELOPMENT FOR THE COUPLED CAVITY LINAC (CCL) AND DRIFT TUBE LINAC (DTL) STRUCTURES OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC

    SciTech Connect

    D. KATONAK; J. BERNARDIN; S. HOPKINS

    2001-06-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the proton beam. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems. One of the primary components in the DTL and CCL water cooling systems, is a water purification system that is responsible for minimizing erosion, corrosion, scaling, biological growth, and hardware activation. The water purification system consists of filters, ion exchange resins, carbon beds, an oxygen scavenger, a UV source, and diagnostic instrumentation. This paper reviews related issues associated with water purification and describes the mechanical design of the SNS Linac water purification system.

  8. Compendium of Scientific Linacs

    SciTech Connect

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  9. Design of the driver linac for the Rare Isotope Accelerator.

    SciTech Connect

    Ostroumov, P. N.; Nolen, J. A.; Shepard, K. W.; Physics

    2006-01-01

    The proposed design of the Rare Isotope Accelerator (RIA) driver linac is a cw, fully superconducting, 1.4 GV linac capable of accelerating uranium ions up to 400 MeV/u and protons to 1 GeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems of the RIA facility. In particular, record intensities of heavy ion beams have been demonstrated with the ECR ion source VENUS at LBNL, the driver front end systems including two-charge-state Low Energy Beam Transport (LEBT) and RFQ are being tested, and a set of SC accelerating structures to cover velocity range from 0.02c to 0.7c have been developed and prototyped. Newly developed high-performance SC cavities will provide the required voltage for the driver linac using 300 cavities designed for six different geometrical betas.

  10. New high power linacs and beam physics

    SciTech Connect

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-08-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design.

  11. Superconducting Cavities for Proton and Ion Linacs

    SciTech Connect

    Jean Delayen

    2005-05-22

    In the last decade, one of the most active areas in the applications of the superconducting rf (SRF) technology has been for the acceleration of ions to medium energy ({approx}1 GeV/amu) and high power. One such accelerator is under construction in the US while others are being proposed in the US, Japan, and Europe. These new facilities require SRF accelerating structures operating in a velocity region that has until recently been unexplored, and new types of structures optimized for the velocity range from {approx}0.2 to {approx}0.8 c have been developed. We will review the requirements imposed by such applications, the properties of the low- and intermediate-velocity structures which have been developed for them and the status of their development.

  12. High intensity SRF proton linac workshop (vugraphs)

    SciTech Connect

    Rusnak, B.A.

    1995-11-01

    The meeting is divided into four sections. The first section is the general introduction and included opening remarks and an overview of APT (accelerator product of tritium). The second section contains vugraphs from the cavity-structures working group. The third section is comprised of vugraphs from the couplers and rf working group. And the fourth section contains vugraphs of the system integration group.

  13. Basis for low beam loss in the high-current APT linac

    SciTech Connect

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-12-31

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value.

  14. Special SLC linac developments

    SciTech Connect

    Seeman, J.T.; Sheppard, J.C.

    1986-04-01

    The linac of the SLAC Linear Collider (SLC) is required to accelerate several intense electron and positron bunches to high energy while maintaining their small transverse dimensions and energy spectra. Many of the linac systems have been upgraded to the new stringent SLC design criteria. The remaining systems will be completed in the summer of 1986. Special instruments and controls have been developed to monitor and manipulate these small but potent beams. A brief review of the SLC requirements is given. A broad survey of the recent development is made encompassing longitudinal and transverse wakefield reductions, Landau damping, energy and position feedback systems, beam diagnostic and beam current fluctuations.

  15. The Fermilab Linac Upgrade

    SciTech Connect

    Noble, R.J.

    1991-02-01

    The Fermilab Linac Upgrade is planned to increase the energy of the H- linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which can limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHz drift-tube tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MHz side-coupled cavity modules operating at an average axial field of abut 7.5 MV/m. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a klystron-based rf power supply. A prototype rf modulator has been built and tested at Fermilab, and a prototype 12 MW klystron is being fabricated by Litton Electron Devices. Fabrication of production accelerator modules is in progress. 8 figs., 4 tabs.

  16. Electron Induction Linacs

    NASA Astrophysics Data System (ADS)

    Caporaso, George J.; Chen, Yu-Jiuan

    Electron induction linacs have been used for over four decades for a variety of applications. As discussed in Chap. 8, these include basic studies in magnetically confined fusion, transport of intense electron beams in various gases, the generation of electromagnetic radiation from free electron lasers, radiation processing of materials and food, and flash X-ray radiography sources.

  17. Recirculated and Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2003-05-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams from an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible from either a conventional linac, or from storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend from high power free-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  18. An Energy Recovery Electron Linac On Ring Collider

    SciTech Connect

    Nikolitsa Merminga; Geoffrey Krafft; Valeri Lebedev; Ilan Ben-Zvi

    2001-09-01

    Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33} (per nucleon) level have been proposed recently as a means for studying hadronic structure. Electron beam polarization appears to be crucial for many of the experiments. Two accelerator design scenarios have been examined in detail: colliding rings and recirculating linac-on-ring. Although the linac-on-ring scenario is not as well developed as the ring-ring scenario, comparable luminosities appear feasible. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations; (2) reduction of the synchrotron radiation load in the detectors; (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. This technology has been demonstrated at Jefferson Lab's IR FEL with cw current up to 5 mA and beam energy up to 50 MeV. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at higher currents (a few hundred mA) and higher energies (a few GeV) as well. The report begins with a brief overview of Jefferson Lab's experience with energy recovery and summarize its benefits. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented next. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed next and a list of required R and D for the realization of such a design is presented.

  19. Design of a Marx-Topology Modulator for FNAL Linac

    SciTech Connect

    Butler, T. A.; Garcia, F. G.; Kufer, M. R.; Pfeffer, H.; Wolff, D.

    2015-04-28

    The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.

  20. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  1. Linac quadrupole connections

    SciTech Connect

    Stiening, R.

    1984-07-12

    Linac type QC and QCH quadrupoles are mounted on the accelerator with their power connection side facing the injector. The connections are on the top of the magnet. The correct polarity for magnets is shown. The magnetic centers of all magnets are measured. If the magnetic center is above the geometric center, the distance delta y is positive. If the magnetic center is to the right of the geometric center, the distance delta x is positive.

  2. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  3. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  4. Commercial Superconducting Electron Linac for Radioisotope Production

    SciTech Connect

    Grimm, Terry Lee; Boulware, Charles H.; Hollister, Jerry L.; Jecks, Randall W.; Mamtimin, Mayir; Starovoitova, Valeriia

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  5. Alignment and steering scenarios for the APT linac

    SciTech Connect

    Stovall, J.E.; Gray, E.R.; Nath, S.; Takeda, H.; Wood, R.L.; Young, L.M.; Crandall, K.R.

    1996-09-01

    The Accelerator for the Production of Tritium (APT) requires a very high proton beam current (100 mA cw). Requirement for hands-on maintenance limits the beam spill to less than 0.2 nA/m along most of the linac. To achieve this, it is important to understand the effects of fabrication, installation and operational errors, establish realistic tolerances, and develop techniques for mitigating their consequences. A new code, PARTREX, statistically evaluates the effects of alignment, quadrupole field, and rf phase and amplitude errors in the linac. This paper reviews the effects of quadrupole misalignments and present two steering algorithms that minimize the potential for particle loss from the beam halo. These algorithms were tested on the 8-to-20 MeV portion of the APT linac.

  6. Features Of The J-PARC Linac

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya

    2011-06-01

    Japan Proton Accelerator Research Complex (J-PARC) will be one of the highest intensity proton accelerators in the world aiming to realize 1 MW class of the beam power. The accelerator consists of a 400-MeV linac, a 3-GeV rapid-cycling synchrotron (RCS) and a main ring synchrotron (MR), and the accelerated beam is applied to several experimental facilities. The linac, which is the injector for the RCS, has about 50 cavity modules to accelerate the beam up to 400 MeV. The acceleration field error in all of them should be within ±1% in amplitude and ±1 degree in phase because the momentum spread of the RCS injection beam is required to be within 0.1%. For the cavity field stabilization, a high-stable optical signal distribution system is used as the RF reference, and sophisticated digital feedback and feed-forward system is working well in the low level RF control system. Consequently the providing beam to the RCS is very stable, and the beam commissioning and the experiments of the application facilities have been progressed steadily.

  7. Multiple-linac approach for tritium production and other applications

    SciTech Connect

    Ruggiero, A.G.

    1995-01-10

    This report describes an approach to tritium production based on the use of multiple proton linear accelerators. Features of a single APTT Linac as proposed by the Los Alamos National Laboratory are presented and discussed. An alternative approach to the attainment of the same total proton beam power of 200 MW with several lower-performance superconducting Linacs is proposed and discussed. Although each of these accelerators are considerable extrapolations of present technology, the latter can nevertheless be built at less technical risk when compared to the single high-current APT Linac, particularly concerning the design and the performance of the low-energy front-end. The use of superconducting cavities is also proposed as a way of optimizing the accelerating gradient, the overall length, and the operational costs. The superconducting technology has already been successfully demonstrated in a number of large-size projects and should be seriously considered for the acceleration of intense low-energy beams of protons. Finally, each linear accelerator would represent an ideal source of very intense beams of protons for a variety of applications, such as: weapons and waste actinide transmutation processes, isotopes for medical application, spallation neutron sources, and the generation of intense beams of neutrinos and muons for nuclear and high-energy physics research. The research community at large has obviously an interest in providing expertise for, and in having access to, the demonstration, the construction, the operation, and the exploitation of these top-performance accelerators.

  8. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  9. New medical linacs

    NASA Astrophysics Data System (ADS)

    Schonberg, R. G.; Mishin, A. V.

    1997-02-01

    X-band linacs designed and manufactured by Schonberg Research Corporation that are currently used by two spin-off companies for radiation therapy systems. Accuray employs a basic 6 MeV design with 300 R/min nominal dose rate at 80 cm from a tungsten target. The designed stereoscopic radiosurgery system is known as the Cyberknife. The Cyberknife combines a treatment planning, imaging and treatment delivery features. The treatment delivery system enclosure incorporates an accelerator head, RF components, pulse transformer and electronics mounted on a robotic arm. Intraop Medical, Inc. has introduced a system for intraoperative radiation therapy (IORT) called Mobetron (Mobile Electron Beam Intraoperative Treatment System). Mobetron is based on a 12 MeV two section X-band linac also designed by Schonberg Research Corporation. The accelerator design permits smooth energy variation from 4 to 12 MeV, but will be used at 4 specific energies. A self-shielded concept is applied to the system design. It will be used in conventional operating rooms without added shielding.

  10. Optimization of SRF Linacs

    SciTech Connect

    Powers, Tom

    2013-09-01

    This work describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK several years ago while they were in the process of developing a conceptual design for the New Light Source project.[1] The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs. The work was first published in an ICFA Beam Dynamics News Letter.[2] More recent additions to the software include the ability to save and restore input parameters as well as to adjust the Qo versus E parameters in order to explore the potential costs savings associated with doing so. Additionally, program changes now allow one to model the costs associated with a linac that makes use of energy recovery mode of operation.

  11. Design development of the SCDTL structure for the TOP linac

    NASA Astrophysics Data System (ADS)

    Picardi, L.; Ronsivalle, C.; Spataro, B.

    1999-04-01

    The Side Coupled Drift Tube Linac (SCDTL) is an attractive 3 GHz accelerating structure composed of short DTL tanks coupled together by side coupling cavities, in the course of development of the 200 MeV proton linear accelerator for proton therapy planned for the Terapia Oncologica con Protoni (TOP) program of the Italian National Institute of Health (Istituto Superiore di Sanità, ISS). The TOP Linac will be used to boost to 70 MeV the 7 MeV proton beam from a linac injector. Our main concern is to investigate in detail the characteristics of the structure in terms of RF properties of the accelerating mode, like longitudinal and transverse shunt impedance and quality factor, and of the other modes that cause the origin of the tank dispersion curve, in order to stabilize the behaviour under operating conditions. Calculations performed with the computer three-dimensional (3D) codes MAFIA and SOPRANO on the smallest unit of the system (a single DTL tank without coupling cavities) and experimental measurements made on a prototype have shown good agreement. Two possible supporting stem configurations (single stem and two stems 180° apart for each drift tube) were examined and a comparison of the results in both cases are discussed.

  12. Low-charge-state linac

    SciTech Connect

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  13. Superconducting heavy ion injector linac

    SciTech Connect

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreads of a few keV-nsec. 11 refs, 4 figs.

  14. SLAC Linac Preparations for FACET

    SciTech Connect

    Erickson, R.; Bentson, L.; Kharakh, D.; Owens, A.; Schuh, P.; Seeman, J.; Sheppard, J.C.; Stanek, M.; Wittmer, W.; Yocky, G.; Wienands, U.; /SLAC

    2011-02-07

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  15. LANSCE linac RF performance for a long pulse spallation source

    SciTech Connect

    Lyles, J.; Regan, A.; Bolme, G.

    1996-09-01

    The present LANL Long Pulse Spallation Source (LPSS) design consists of a 1 MW neutron spallation target fed by a pulsed proton beam from the Los Alamos Neutron Science Center (LANSCE, formerly LAMPF) accelerator. This proton beam would have a repetition rate of 60 Hz and a pulse length of 1 ms for a duty factor of 6%. An average/peak currentof 1.25 mA/21 mA would be required foran 800 MeV beam to provide this power at this duty factor. The spallation target would reside in Area A and use the H+ beam. The LANSCE accelerator would also be required to simultaneoulsy deliver H- beams to the Manual Lujan Jr. Neutron Scattering Center (MLNSC) and Weapons Neutron Research (WNR) facility. Presently LANSCE delivers 16.5 mA peak of H+ beam at 120 Hz, with a 625 {mu}S beam pulsewidth; H- beams are also accelerated for MLNSC and WNR. In Nov. 1995, linac operation shifted to LPSS pulse parameters, except for the peak curent which remained at 16.5 mA. In addition to delivering 800 kW H+ proton beam to physics production targets, H- beams were simultaneously delivered to customers for the PSR feeding MLNSC and to researchers using WNR. Performance of the RF powerplants for the 201.25 MHz drift tube linac 805 MHz side coupled linac, and associated electronics is described. Conclusion of the experiment is that the LANSCE linac can be upgraded through modest improvements to drive a 1 MW LPSS.

  16. PERFORMANCE OF THE SNS FRONT END AND WARM LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Allen, Christopher K; Cousineau, Sarah M; Danilov, Viatcheslav; Galambos, John D; Holmes, Jeffrey A; Jeon, Dong-O; Pelaia II, Tom; Plum, Michael A; Shishlo, Andrei P; Stockli, Martin P; Zhang, Yan

    2008-01-01

    The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H{sup -} injector, capable of producing one-ms-long pulses at 60 Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5 MeV beam from the Front End is accelerated to 87 MeV in the Drift Tube Linac, then to 186 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. With the completion of beam commissioning, the accelerator complex began operation in June 2006 and beam power is being gradually ramped up toward the design goal. Operational experience with the injector and linac will be presented including chopper performance, longitudinal beam dynamics study, and the results of a beam loss study.

  17. Optimization of steering elements in the RIA driver linac.

    SciTech Connect

    Lessner, E. S.; Aseev, V. S.; Ostroumov, P. N.; Physics

    2005-01-01

    The driver linac of the projected RIA facility is a versatile accelerator, a 1.4-GV, CW superconducting (SC) linac designed to simultaneously accelerate several heavy-ion charge states, providing beams from proton to uranium at 400 MeV/u at power levels at a minimum of 100 kW and up to 400 kW for most beams. Acceleration of multiple-charge-state uranium beams places stringent requirements on the linac design. A steering algorithm was derived that fulfilled the driver's real estate requirements, such as placement of steering dipole coils on SC solenoids and of beam position monitors outside cryostats, and beam-dynamics requirements, such as coupling effects induced by the focusing solenoids. The algorithm has been fully integrated into the tracking code TRACK and it is used to study and optimize the number and position of steering elements that minimize the multiple-beam centroid oscillations and preserve the beam emittance under misalignments of accelerating and transverse focusing elements in the driver linac.

  18. Status of the Project-X CW Linac Design

    SciTech Connect

    Ostiguy, J-F.; Solyak, N.; Berrutti, P.; Carneiro, J.P.; Lebedev, V.; Nagaitsev, S.; Saini, A.; Stheynas, B.; Yakovlev, V.P.; /Fermilab

    2012-05-01

    Project-X is a proposed proton accelerator complex at Fermilab that would provide particle beams to support a diversified experimental program at the intensity frontier. As currently envisioned, the complex would employ a CW superconducting linac to accelerate a 1 mA average, 5 mA peak H{sup -} beam from 2.1 MeV to 3 GeV. A second superconducting linac, operating in pulsed mode would ultimately accelerate a small fraction of this beam up to 8 GeV. The CW linac is based on five families of resonators operating at three frequencies: half-wave (1 family at 162.5 MHz), spoke (2 families at 325 MHz) and elliptical (2 families at 650 MHz). Accelerating and focusing elements are assembled in cryomodules separated by short warm sections. A long open region ({approx} 15 m) allows beam extraction at 1 GeV in support of a nuclear experimental program. In this paper, we present the latest iteration of the CW linac baseline lattice. We also briefly compare it to an alternative where the 162.5 half-wave resonators are replaced with 325 MHz spoke resonators.

  19. Development of a medium-energy superconducting heavy-ion linac.

    SciTech Connect

    Ostroumov, P. N.; Physics

    2002-03-01

    The Rare Isotope Accelerator (RIA) facility project includes a cw 1.4 GeV driver linac and a 100 MV postaccelerator both based on superconducting (SC) cavities operating at frequencies from 48 to 805 MHz. In these linacs more than 99% of the total voltage is provided by SC cavities. An initial acceleration is provided by room temperature radio frequency quadrupoles. The driver linac is designed for acceleration of any ion species, from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver linac is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. This paper presents design features of a medium-energy SC heavy-ion linac taking the RIA driver linac as an example. The dynamics of single and multiple charge-state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The important design considerations of such linac are presented. Several new conceptual solutions in beam dynamics in SC accelerating structures for heavy-ion applications are discussed.

  20. Induction Linac Pulsers

    SciTech Connect

    Faltens, Andris

    2011-01-07

    The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is reflected back into the

  1. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  2. Lattice Design for the LHEC Recirculating Linac

    SciTech Connect

    Sun, Yipeng; Eide, Anders; Zimmermann, Frank; Adolphsen, Chris; /SLAC

    2011-05-20

    In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating linac. The recirculating linac consists of one roughly 3-km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. In two passes through a pulsed SRF linac the electron beam can get a maximum energy of 140 GeV. Alternatively, in the Energy Recovery Linac (ERL) option the beam passes through a CW linac four times (two passes for acceleration and two for deceleration) for a maximum energy of 60 GeV.

  3. Magnets for high intensity proton synchrotrons

    SciTech Connect

    Jean-Francois Ostiguy, Vladimir Kashikhine and Alexander Makarov

    2002-09-19

    Recently, there has been considerable interest at Fermilab for the Proton Driver, a future high intensity proton machine. Various scenarios are under consideration, including a superconducting linac. Each scenario present some special challenges. We describe here the magnets proposed in a recent study, the Proton Driver Study II, which assumes a conventional warm synchrotron, roughly of the size of the existing FNAL booster, but capable of delivering 380 kW at 8 GeV.

  4. LINACS FOR FUTURE MUON FACILITIES

    SciTech Connect

    Slawomir Bogacz, Rolland Johnson

    2008-10-01

    Future Muon Colliders (MC) and Neutrino Factories (NF) based on muon storage rings will require innovative linacs to: produce the muons, cool them, compress longi-tudinally and ‘shape’ them into a beam and finally to rap-idly accelerate them to multi-GeV (NF) and TeV (MC) energies. Each of these four linac applications has new requirements and opportunities that follow from the na-ture of the muon in that it has a short lifetime (τ = 2.2 μsec) in its own rest frame, it is produced in a tertiary process into a large emittance, and its electron, photon, and neutrino decay products can be more than an annoy-ance. As an example, for optimum performance, the linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring, something as high as 1 kHz for a 40 GeV Neutrino Factory or as low as 20 Hz for a 5 TeV Muon Collider. A superconducting 8 GeV Linac capable of CW operation is being studied as a ver-satile option for muon production [1] for colliders, facto-ries, and muon beams for diverse purposes. A linac filled with high pressure hydrogen gas and imbedded in strong magnetic fields has been proposed to rapidly cool muon beams [2]. Recirculating Linear Accelerators (RLA) are possible because muons do not generate significant syn-chrotron radiation even at extremely high energy and in strong magnetic fields. We will describe the present status of linacs for muon applications; in particular the longitu-dinal bunch compression in a single pass linac and multi-pass acceleration in the RLA, especially the optics and technical requirements for RLA designs, using supercon-ducting RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed linac quadrupoles to allow the maximum number of passes. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

  5. Investigation of alternating-phase focusing for superconducting linacs

    SciTech Connect

    Sagalovsky, L.; Delayen, J.R.

    1992-10-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters: equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-{beta} section of a proton linac.

  6. Investigation of alternating-phase focusing for superconducting linacs

    SciTech Connect

    Sagalovsky, L.; Delayen, J.R.

    1992-01-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters: equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-{beta} section of a proton linac.

  7. PROSPECTS FOR A VERY HIGH POWER CW SRF LINAC

    SciTech Connect

    Robert Rimmer

    2010-06-01

    Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way to reliable cost effective drivers for such applications as neutrino factories, an energy-frontier muon collider, nuclear waste transmutation or accelerator driven subcritical reactors for energy production. In contrast to machines such as ILC that need maximum accelerating gradient, the challenges in these machines are mainly in efficiency, reliability, beam stability, beam loss and of course cost. In this paper the present state of the art is briefly reviewed and options for a multi-GeV, multi-MW CW linac are discussed.

  8. Cavities and Cryomodules for the RIA Driver Linac

    SciTech Connect

    Fuerst, J.D.; Shepard, K.W.; Kedzie, M.; Kelly, M.P.

    2004-06-23

    We describe cavities, cryomodules, and associated subsystem concepts for the Rare Isotope Accelerator (RIA) driver linac baseline design. Some alternative concepts are also presented. Beams from protons to uranium are accelerated with superconducting RF cavities operating from 57.5 MHz to 805 MHz. Substantial cost reduction over the baseline design may be achieved by replacing three classes of elliptical cell structures operating at 2 K by two classes of three-spoke drift tube structures. Cavity count and tunnel length are reduced while efficient cooling at 4.5 K for all linac structures may be possible. Issues include RF power requirements, microphonics, clean handling techniques, separate cavity and insulating vacuum systems, and heat load.

  9. Linac4 low energy beam measurements with negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Scrivens, R.; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  10. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  11. Linac4 low energy beam measurements with negative hydrogen ions.

    PubMed

    Scrivens, R; Bellodi, G; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J-B; Lettry, J; Lombardi, A; Midttun, Ø; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-02-01

    Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  12. Commissioning of the LCLS LINAC

    SciTech Connect

    Loos, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford U., Appl. Phys. Dept.

    2010-06-11

    The Linac Coherent Light Source (LCLS) X-ray free electron laser project is currently under construction at the Stanford Linear Accelerator Center (SLAC). A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac to the undulator is scheduled to start in November 2008 and for the undulator in March 2009 with first light to be expected in July 2009.

  13. Interaction-Region Design Options for a Linac-Ring LHeC

    SciTech Connect

    Zimmermann, Frank; Bettoni, Simona; Bruning, Oliver; Holzer, Bernhard; Russenschuck, Stephan; Schulte, Daniel; Tomas, Rogelio; Aksakal, Husnu; Appleby, Robert; Chattopadhyay, Swapan; Korostelev, Maxim; Ciftci, Abbas; Ciftci, Rena; Zengin, Kahraman; Dainton, John; Klein, Max; Eroglu, Emre; Tapan, Ilhan; Kostka, Peter; Litvinenko, Vladimir; Paoloni, Eugenio; /INFN, Pisa /INFN, Bologna /DESY /SLAC

    2012-06-21

    The interaction-region design for a linac-ring electron-proton collider based on the LHC ('LR-LHeC') poses numerous challenges related to collision scheme, synchrotron radiation, aperture, magnet technology, and optics. We report a first assessment and various options.

  14. Argonne Tandem-Linac Accelerator System

    SciTech Connect

    Bollinger, L.M.

    1983-01-01

    Design considerations and operational experience for the existing heavy-ion accelerator consisting of a tandem injecting into a superconducting linac are summarized, with emphasis on the general features of the system. This introduction provides the basis for a discussion of the objectives and design of ATLAS, a larger tandem-linac system being formed by expanding the existing superconducting linac.

  15. Linac Energy Management for LCLS

    SciTech Connect

    Chu, Chungming; Iverson, Richard; Krejcik, Patrick; Rogind, Deborah; White, Greg; Woodley, Mark; /SLAC

    2012-07-05

    Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

  16. The Linac Coherent Light Source

    SciTech Connect

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  17. The Linac Coherent Light Source

    SciTech Connect

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-04-21

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  18. PROGRESS IN DESIGN OF THE SNS LINAC

    SciTech Connect

    R. HARDEKOPF

    2000-11-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 to achieve higher initial performance and to incorporate desirable upgrade features. The linac will initially produce 2-MW beam power using a combination of radio-frequency quadruple (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-cavity linac (SCL). Designs of each of these elements support the high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design, the cost and performance factors that drove architecture decisions, and the progress made in the R&D program.

  19. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation.

  20. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    SciTech Connect

    Galambos, J.; Garoby, R.; Geer, S.; /Fermilab

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  1. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. PMID:24637084

  2. Wakefields in SLAC linac collimators

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Decker, F.-J.; Smith, H.; Sullivan, M.

    2014-12-01

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  3. LFSC - Linac Feedback Simulation Code

    SciTech Connect

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  4. Linac code benchmarking of HALODYN and PARMILA based on beam experiments

    NASA Astrophysics Data System (ADS)

    Yin, X.; Bayer, W.; Hofmann, I.

    2016-01-01

    As part of the 'High Intensity Pulsed Proton Injector' (HIPPI) project in the European Framework Programme, a program for the comparison and benchmarking of 3D Particle-In-Cell (PIC) linac codes with experiment has been implemented. HALODYN and PARMILA are two of the codes involved in this program. In this study, the initial Twiss parameters were obtained from the results of beam experiments that were conducted using the GSI UNILAC in low-beam-current. Furthermore, beam dynamics simulations of the Alvarez Drift Tube Linac (DTL) section were performed by HALODYN and PARMILA codes and benchmarked for the same beam experiments. These simulation results exhibit some agreements with the experimental results for the low-beam-current case. The similarities and differences between the experimental and simulated results were analyzed quantitatively. In addition, various physical aspects of the simulation codes and the linac design strategy are also discussed.

  5. Status of the Linac Coherent Light Source

    SciTech Connect

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  6. Heavy-ion linac development for the U.S. RIA project.

    SciTech Connect

    Ostroumov, P. N.

    2002-01-29

    The Nuclear Science Community in the Unites States has unanimously concluded that developments in both nuclear science and its supporting technologies make building a world-leading Rare-Isotope Accelerator (RIA) facility for production of radioactive beams the top priority. The RIA development effort involves several US Laboratories (ANL, JLAB, LBNL, MSU, ORNL). The RIA Facility includes a CW 1.4 GeV driver linac and a 100 MV post-accelerator both based on superconducting (SC) cavities operating at frequencies from 48 MHz to 805 MHz. An initial acceleration in both linacs is provided by room temperature RFQs. The driver linac is designed for acceleration of any ion species; from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver linac is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. Basic design concepts of the driver linac are given. Several new conceptual solutions in beam dynamics, room temperature and SC accelerating structures for heavy ion accelerator applications are discussed.

  7. Dual-axis energy recovery linac.

    SciTech Connect

    Wang, C.-x.; Noonan, J.; Lewellen, J.

    2007-01-01

    In this paper we propose a new type of energy-recovery linac (ERL) for ERL applications. The envisioned dualaxis energy-recovery linac allows energy recovery of parallel beams, accelerating/decelerating along different axes, via the same dual-axis superconducting cavity. This new scheme offers many advantages over conventional ERLs in various applications. Preliminary feasibility considerations are presented.

  8. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  9. Induction linacs and pulsed power

    SciTech Connect

    Caporaso, G.J.

    1995-07-11

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology.

  10. Superconducting heavy-ion linac at Argonne

    SciTech Connect

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users.

  11. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  12. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  13. A cryomodule for the RIA driver linac.

    SciTech Connect

    Fuerst, J. D.; Shepard, K. W.

    2002-10-25

    We present a cryomodule design for the superconducting linacs for the proposed Rare Isotope Accelerator Facility (RIA). This paper discusses the design of a cryomodule for all the drift-tube-loaded superconducting cavities required for the machine. The same basic design will be used for the low and medium velocity sections of the driver linac and also for sections of the radioactive ion beam (RIB) linac. Fundamental design choices such as separate vs. common beam and insulating vacuum spaces are driven by the clean fabrication techniques required for optimum cavity performance. The design can be adapted to a variety of cavity geometries.

  14. Vacuum simulation and characterization for the Linac4 H- source

    NASA Astrophysics Data System (ADS)

    Pasquino, C.; Chiggiato, P.; Michet, A.; Hansen, J.; Lettry, J.

    2013-02-01

    At CERN, the 160 MeV H- Linac4 will soon replace the 50 MeV proton Linac2. In the H- source two major sources of gas are identified. The first is the pulsed injection at about 0.1 mbar in the plasma chamber. The second is the constant H2 injection up to 10-5 mbar in the LEBT for beam space charge compensation. In addition, the outgassing of materials exposed to vacuum can play an important role in contamination control and global gas balance. To evaluate the time dependent partial pressure profiles in the H- ion source and the RFQ, electrical network - vacuum analogy and test particle Monte Carlo simulation have been used. The simulation outcome indicates that the pressure requirements are in the reach of the proposed vacuum pumping system. Preliminary results show good agreement between the experimental and the simulated pressure profiles; a calibration campaign is in progress to fully benchmark the implemented calculations. Systematic outgassing rate measurements are on-going for critical components in the ion source and RFQ. Amongst them those for the Cu-coated SmCo magnet located in the vacuum system of the biased electron dump electrode, show results lower to stainless steel at room temperature.

  15. Performance characteristics of a 425 MHz RFQ linac

    SciTech Connect

    Stovall, J.E.; Crandall, K.R.; Hamm, R.W.

    1980-01-01

    A radio-frequency quadrupole (RFQ) focused proton linac has been developed and successfully tested at the Los Alamos Scientific Laboratory (LASL) for the purpose of evaluating its performance and applicability as a low-beta accelerator. The geometry of the structure was designed to accept a 100-keV beam, focus, bunch, and accelerate it to 640 keV in 1.1 m with a high-capture efficiency and minimum emittance growth. The accelerator test facility includes an injector, low-energy transport section for transverse matching, and a high-energy transport section for analysis of the beam properties. The accelerator cavity is exited through a manifold powered by a 450-MHz klystron. Diagnostic instrumentation was prepared to facilitate operation of the accelerator and to analyze its performance. Measurements of the beam properties are presented and compared with the expected properties resulting from numerical calculations of the beam dynamics.

  16. Injector linac for the MESA facility

    SciTech Connect

    Heine, R.

    2013-11-07

    In this paper we present several possible configurations of an injector linac for the upcoming Mainz Energy-recovering Superconducting Accelerator (MESA) [1] and discuss their suitability for the project.

  17. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  18. Advanced Light Source Linac subharmonic buncher cavities

    SciTech Connect

    Lo, C.C.; Taylor, B.; Lancaster, H.; Guigli, J.

    1989-03-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunches of 50 MeV electrons for the booster synchrotron. Three bunchers are used in the Linac. The 3 GHz S band buncher has been described elsewhere. This report deals with the two lower subharmonic bunchers. One operates at 124.914 MHz while the other operates at 499.654 MHz. 12 refs., 2 figs.

  19. Scaling of Wakefield Effects in Recirculating Linacs

    SciTech Connect

    L. Merminga; G. R. Neil; B. C. Yunn; J. J. Bisognano

    2001-07-01

    Expressions for the induced energy spread and emittance degradation of a single bunch due to the longitudinal and transverse impedance of rf cavities at the end of a linac structure are presented. Scaling of the formulae with rf frequency is derived. Scaling of the threshold current for the multibunch, multipass beam breakup (BBU) instability in recirculating linacs with accelerator and beam parameters is also derived.

  20. Simulation of large acceptance LINAC for muons

    SciTech Connect

    Miyadera, H; Kurennoy, S; Jason, A J

    2010-01-01

    There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept 'mixed buncher/acceleration'. The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6- or 8-cm-radius aperture window; injection of a broad range of pion/muon energies, 10-100 MeV, and acceleration to 150 - 200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched.

  1. RF system developments for CW and/or long pulse linacs

    SciTech Connect

    Lynch, M.

    1998-12-31

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued.

  2. Update on RF System Studies and VCX Fast Tuner Work for the RIA Drive Linac

    SciTech Connect

    Rusnak, B; Shen, S

    2003-05-06

    The limited cavity beam loading conditions anticipated for the Rare Isotope Accelerator (RIA) create a situation where microphonic-induced cavity detuning dominates radio frequency (RF) coupling and RF system architecture choices in the linac design process. Where most superconducting electron and proton linacs have beam-loaded bandwidths that are comparable to or greater than typical microphonic detuning bandwidths on the cavities, the beam-loaded bandwidths for many heavy-ion species in the RIA driver linac can be as much as a factor of 10 less than the projected 80-150 Hz microphonic control window for the RF structures along the driver, making RF control problematic. While simply overcoupling the coupler to the cavity can mitigate this problem to some degree, system studies indicate that for the low-{beta} driver linac alone, this approach may cost 50% or more than an RF system employing a voltage controlled reactance (VCX) fast tuner. An update of these system cost studies, along with the status of the VCX work being done at Lawrence Livermore National Lab is presented here.

  3. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  4. Experimental results of the laserwire emittance scanner for LINAC4 at CERN

    NASA Astrophysics Data System (ADS)

    Hofmann, Thomas; Boorman, Gary E.; Bosco, Alessio; Bravin, Enrico; Gibson, Stephen M.; Kruchinin, Konstantin O.; Raich, Uli; Roncarolo, Federico; Zocca, Francesca

    2016-09-01

    Within the framework of the LHC Injector Upgrade (LIU), the new LINAC4 is currently being commissioned to replace the existing LINAC2 proton source at CERN. After the expected completion at the end of 2016, the LINAC4 will accelerate H- ions to 160 MeV. To measure the transverse emittance of the H- beam, a method based on photo-detachment is proposed. This system will operate using a pulsed laser with light delivered via an optical fibre and subsequently focused onto the H- beam. The laser photons have sufficient energy to detach the outer electron and create H0/e- pairs. In a downstream dipole, the created H0 particles are separated from the unstripped H- ions and their distribution is measured with a dedicated detector. By scanning the focused laser beam across the H- beam, the transverse emittance of the H- beam can be reconstructed. This paper will first discuss the concept, design and simulations of the laser emittance scanner and then present results from a prototype system used during the 12 MeV commissioning of the LINAC4.

  5. Measurement of optical emission from the hydrogen plasma of the Linac4 ion source and the SPL plasma generator

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Bertolo, S.; Castel, A.; Chaudet, E.; Ecarnot, J.-F.; Favre, G.; Fayet, F.; Geisser, J.-M.; Haase, M.; Habert, A.; Hansen, J.; Joffe, S.; Kronberger, M.; Lombard, D.; Marmillon, A.; Balula, J. Marques; Mathot, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Prever-Loiri, L.; Arias, J. Sanchez; Schmitzer, C.; Steyaert, R. Scrivens D.; Vestergard, H.; Wilhelmsson, M.

    2011-09-01

    At CERN, a non caesiated H- ion volume source derived from the DESY ion source is being commissioned. For a proposed High Power Superconducting Proton Linac (HP-SPL), a non caesiated plasma generator was designed to operate at the two orders of magnitude larger duty factor required by the SPL. The commissioning of the plasma generator test stand and the plasma generator prototype are completed and briefly described. The 2 MHz RF generators (100 kW, 50 Hz repetition rate) was successfully commissioned; its frequency and power will be controlled by arbitrary function generators during the 1 ms plasma pulse. In order to characterize the plasma, RF-coupling, optical spectrometer, rest gas analyzer and Langmuir probe measurements will be used. Optical spectrometry allows direct comparison with the currently commissioned Linac4 H- ion source plasma. The first measurements of the optical emission of the Linac4 ion source and of the SPL plasma generator plasmas are presented.

  6. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  7. Linac4 H⁻ ion sources.

    PubMed

    Lettry, J; Aguglia, D; Alessi, J; Andersson, P; Bertolo, S; Briefi, S; Butterworth, A; Coutron, Y; Dallocchio, A; David, N; Chaudet, E; Faircloth, D; Fantz, U; Fink, D A; Garlasche, M; Grudiev, A; Guida, R; Hansen, J; Haase, M; Hatayama, A; Jones, A; Koszar, I; Lallement, J-B; Lombardi, A M; Machado, C; Mastrostefano, C; Mathot, S; Mattei, S; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Paoluzzi, M; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Voulgarakis, G

    2016-02-01

    CERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. PMID:26932021

  8. Linac4 H- ion sources

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Briefi, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Faircloth, D.; Fantz, U.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Voulgarakis, G.

    2016-02-01

    CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ṡ mm ṡ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  9. New high power 200 MHz RF system for the LANSCE drift tube linac

    SciTech Connect

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-12-31

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H{sup +} proton beam, and injects H{sup {minus}} to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode{reg_sign} is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed.

  10. Conceptual design of the Project-X 1.3 GHz 3-8 GeV pulsed linac

    SciTech Connect

    Solyak, N.; Eidelman, Y.; Nagaitsev, S.; Ostiguy, J.-F.; Vostrikov, A.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X, a multi-MW proton source, is under development at Fermilab. It enables a Long Baseline Neutrino Experiment via a new beam line pointed to DUSEL in Lead, South Dakota, and a broad suite of rare decay experiments. The initial acceleration is provided by a 3-GeV 1-mA CW superconducting linac. In a second stage, about 5% of the H{sup -} beam is accelerated up to 8 GeV in a 1.3 GHz SRF pulsed linac and injected into the Recycler/Main Injector complex. In order to mitigate problems with stripping foil heating during injection, higher current pulses are accelerated in the CW linac in conjunction with the 1 mA beam which is separated and further accelerated in the pulsed linac. The optimal current in the pulsed linac is discussed as well as the constraints that led to its selection. A conceptual design which covers optics and RF stability analysis is presented. Finally, the need for HOM damping is discussed.

  11. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  12. Acceptance scan technique for the drift tube linac of the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Jeon, D.; Stovall, J.; Takeda, H.; Nath, S.; Billen, J.; Young, L.; Kisselev, I.; Shishlo, A.; Aleksandrov, A.; Assadi, S.; Chu, C. M.; Cousineau, S.; Danilov, V.; Galambos, J.; Henderson, S.; Kim, S.; Kravchuk, L.; Tanke, E.

    2007-01-01

    For high intensity proton accelerators, it is vital to reduce the machine activation by minimizing the beam loss from many sources. One of such sources is longitudinal mismatch. To minimize a potential mismatch, it is important to set accurately the rf set-point (rf field amplitude and phase) of a high-intensity linac such as the drift tube linac (DTL) of the spallation neutron source. A widely used technique called the acceptance scan was studied extensively and applied successfully to tune the DTL tanks since the initial commissioning. From the acceptance scan one can obtain the longitudinal beam profile at the entrance of each DTL tank. But except tank 1, acceptance scan alone cannot determine the incoming beam energy deviation, leading to small uncertainties in the rf set point.

  13. PILAC: A pion linac facility for 1-GeV pion physics at LAMPF

    SciTech Connect

    Thiessen, H.A.

    1991-01-01

    A design study or a Pion Linac (PILAC) at LAMPF is underway at Los Alamos. We present here a reference design for a system of pion sources, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4--1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beamlines simultaneously with independent sign and energy control. Because the pionlinac acts like an rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination. 4 refs., 6 figs.

  14. EXPERIENCE WITH THE SNS SC LINAC

    SciTech Connect

    Zhang, Yan; Aleksandrov, Alexander V; Allen, Christopher K; Campisi, Isidoro E; Cousineau, Sarah M; Danilov, Viatcheslav; Galambos, John D; Holmes, Jeffrey A; Jeon, Dong-O; Kim, Sang-Ho; Pelaia II, Tom; Plum, Michael A; Shishlo, Andrei P

    2008-01-01

    The SNS superconducting linac (SCL) is designed to deliver 1 GeV, up to 1.56-MW pulsed H- beams for neutron production. Commissioning of the accelerator systems was completed in June 2006, and the maximum beam energy achieved was approximately 952 MeV. In 2007, the SCL was successfully tuned for 1.01-GeV beam during a test operation. In the linac tune-up, phase scan signature matching, drifting beam measurement, and linac radio frequency cavity phase scaling were applied. In this paper, we will introduce the experiences with the SCL, including the tune-up, beam loss, and beam activation, and briefly discuss beam parameter measurements

  15. BEAM TRANSVERSE ISSUES AT THE SNS LINAC

    SciTech Connect

    Zhang, Yan; Allen, Christopher K; Holmes, Jeffrey A; Galambos, John D; Wang, Jian-Guang

    2010-01-01

    The Spallation Neutron Source (SNS) linac system is designed to deliver 1 GeV pulsed H- beams up to 1.56 MW. As beam power was increased from 10 kW to 680 kW in less than three years, beam loss in the accelerator systems C particularly in the superconducting linac (SCL), became more critical. In the previous studies, beam loss in the SCL was mainly attributed to longitudinal problems. However, our most recent simulations have focused on the transverse issues. These include multipole components from magnet imperfections and from dipole corrector windings of the SNS linac quadrupoles. The effects of these multipoles coupled with other transverse errors and a new possible cause of beam loss will be discussed.

  16. Induced radioisotopes in a linac treatment hall.

    PubMed

    Vega-Carrillo, Héctor René; de Leon-Martinez, Héctor Asael; Rivera-Perez, Esteban; Luis Benites-Rengifo, Jorge; Gallego, Eduardo; Lorente, Alfredo

    2015-08-01

    When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer.

  17. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  18. ARIEL e-LINAC: Commissioning and Development

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  19. S-Band Loads for SLAC Linac

    SciTech Connect

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  20. Diagnostics For Recirculating And Energy Recovered Linacs

    SciTech Connect

    Geoffrey A. Krafft; Jean-Claude Denard

    2002-12-18

    In this paper, the electron beam diagnostics developed for recirculating electron accelerators will be reviewed. The main novelties in dealing with such accelerators are: to have sufficient information and control possibilities for the longitudinal phase space, to have means to accurately set the recirculation path length, and to have a means to distinguish the beam passes on measurements of position in the linac proper. The solutions to these problems obtained at Jefferson Laboratory and elsewhere will be discussed. In addition, more standard instrumentation (profiling and emittance measurements) will be reviewed in the context of recirculating linacs. Finally, and looking forward, electron beam diagnostics for applications to high current energy recovered linacs will be discussed.

  1. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  2. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  3. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; Byrd, J.; /LBL, Berkeley

    2007-10-04

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  4. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  5. Neutron sources based on medical Linac

    NASA Astrophysics Data System (ADS)

    Costa, M.; Durisi, E.; Monti, V.; Visca, L.; Zanini, A.; Giannini, G.

    2016-11-01

    The paper proposes the study of a novel photo-neutron source based on a medical high-energy electron Linac. Previous studies by the authors already demonstrated the possibility to obtain with this technique a thermal neutron flux of the order of 107 cm-2 s-1 . This paper shows possible Linac's setup and a new photo-converter design to reach a thermal neutron flux around 6×107 cm-2 s-1 , keeping a reasonable high quality of the beam with respect to fast neutron and gamma contaminations.

  6. Multipass Beam Breakup in Energy Recovery Linacs

    SciTech Connect

    Eduard Pozdeyev; Christopher Tennant; Joseph Bisognano; M Sawamura; R. Hajima; T.I. Smith

    2005-03-19

    This paper is a compilation of several presentations on multipass beam breakup (BBU) in energy recovery linacs (ERL) given at the 32nd Advanced ICFA Beam Workshop on ERLs. The goal of this paper is to summarize the progress achieved in analytical, numerical, and experimental studies of the instability and outline available and proposed BBU mitigation techniques. In this paper, a simplified theory of multipass BBU in recirculating linacs is presented. Several BBU suppression techniques and their working principles are discussed. The paper presents an overview of available BBU codes. Results of experimental studies of multipass BBU at the Jefferson Laboratory (JLab) FEL Upgrade are described.

  7. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  8. Novel linac structures for low-beta ions and for muons

    SciTech Connect

    Kurennoy, Sergey S

    2010-01-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  9. Novel Linac Structures For Low-Beta Ions And For Muons

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2011-06-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  10. First results of proton injection commissioning of the AGS Booster synchrotron

    SciTech Connect

    Reece, R.K.; Ahrens, L.; Alessi, J.; Bleser, E.; Brennan, J.M.; Luccio, A.; Skelly, J.; Soukas, A.; van Asselt, W.; Weng, W.T.; Witkover, R.

    1991-01-01

    Beam performance for the injection phase of proton beam commissioning of the AGS Booster synchrotron will be presented. The beam from the 200 MeV Linac is transported through a new beam line into the Booster. This Linac-to Booster (LTB) beam line includes a 126{degree} bend and brings the injected beam onto the Booster injection orbit through the backleg of a main ring dipole magnet. Transfer of beam from the Linac to the Booster, spiralling beam and closing the orbit in the Booster ring are discussed. Injection and transport through one sector of the ring has been accomplished. 8 refs., 1 fig.

  11. Error analysis in post linac to driver linac transport beam line of RAON

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2016-07-01

    We investigated the effects of magnet errors in the beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator in Korea (RAON). The P2DT beam line is bent by 180-degree to send the radioactive Isotope Separation On-line (ISOL) beams accelerated in Linac-3 to Linac-2. This beam line transports beams with multi-charge state 132Sn45,46,47. The P2DT beam line includes 42 quadrupole, 4 dipole and 10 sextupole magnets. We evaluate the effects of errors on the trajectory of the beam by using the TRACK code, which includes the translational and the rotational errors of the quadrupole, dipole and sextupole magnets in the beam line. The purpose of this error analysis is to reduce the rate of beam loss in the P2DT beam line. The distorted beam trajectories can be corrected by using six correctors and seven monitors.

  12. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  13. A Stability of LCLS Linac Modulators

    SciTech Connect

    Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

    2012-06-13

    Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

  14. Design of post linac to driver linac transport beam line in rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state 132Sn+45,+46,+47 beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  15. Design of post linac to driver linac transport beam line in rare isotope accelerator.

    PubMed

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state (132)Sn(+45,+46,+47) beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  16. Proton therapy

    MedlinePlus

    ... direction of the tumor. A machine called a synchrotron or cyclotron creates and speeds up the protons. ... redness in the radiation area, and temporary hair loss. AFTER THE PROCEDURE Following proton therapy, you should ...

  17. Cryogenic Topics Associated with the Superconducting Linac Proposed for the Cosy-Facility

    SciTech Connect

    Eichhorn, R.; Esser, F.; Laatsch, B.; Lennartz, M.; Schug, G.; Stassen, R.

    2004-06-23

    An upgrade of the existing proton and deuteron accelerator facility COSY at the Forschungszentrum Juelich, based on a superconducting linac is under investigation. This paper will report on the cryogenic aspects of the project: The cryomodule layout will be shown and special emphasis will put on the short cold-warm transition, the heat transfer of which was calculated using finite element simulation techniques. The cavity tuner, based on fast piezo-electric actuators to adjust the resonators' frequency, will be shown as well as the adjustable power coupler that uses a cold siphon-shaped window to prevent surface contamination of the cavity during assembly and operation.

  18. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  19. Solid state power amplifier as 805 MHz master source for the LANSCE coupled-cavity linac

    SciTech Connect

    Lyles, J.; Davis, J.

    1998-12-31

    From 100 to 800 MeV, the Los Alamos Neutron Science Center (LANSCE) proton linac receives RF power from forty-four 1.25 MW klystrons at 805 Megahertz (MHz). A single master RF source provides a continuous high level phase reference signal which drives the klystrons along the 731 meter-long linac through a coaxial transmission line. A single point failure of this system can deenergize the entire coupled-cavity linac (CCL) RF plant. The authors replaced a physically large air-cooled tetrode amplifier with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each 600 Watt pallet utilizes eight push-pull bipolar power transistor pairs operated in class AB. Four of these can easily provide the 2000 watt reference carrier from the stable master RF source. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after two years of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  20. Study of effects of failure of beamline elements and their compensation in CW superconducting linac

    SciTech Connect

    Saini, A.; Ranjan, K.; Solyak, N.; Mishra, S.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X is the proposed high intensity proton facility to be built at Fermilab, US. First stage of the Project-X consists of superconducting linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.

  1. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    SciTech Connect

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D.; Midttun, Ø.; Valerio-Lizarraga, C. A.

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  2. Commissioning the Linac Coherent Light Source injector

    NASA Astrophysics Data System (ADS)

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.

    2008-03-01

    The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL) project presently under construction at SLAC [J. Arthur , SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  3. High Current Energy Recovery Linac at BNL

    SciTech Connect

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  4. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  5. LLRF System Upgrade for the SLAC Linac

    SciTech Connect

    Hong, Bo; Akre, Ron; Pacak, Vojtech; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is in full user operation and has met the stability goals for stable lasing. The 250pC bunch can be compressed to below 100fS before passing through an undulator. In a new mode of operation a 20pC bunch is compressed to about 10fS. Experimenters are regularly using this shorter X-ray pulse and getting pristine data. The 10fS bunch has timing jitter on the order of 100fS. Physicists are requesting that the RF system achieve better stability to reduce timing jitter. Drifts in the RF system require longitudinal feedbacks to work over large ranges and errors result in reduced performance of the LCLS. A new RF system is being designed to help diagnose and reduce jitter and drift in the SLAC linac.

  6. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect

    Geoffrey A. Krafft

    2005-09-01

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  7. LINAC for ADS application - accelerator technologies

    SciTech Connect

    Garnett, Robert W; Sheffreld, Richard L

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  8. Linac Coherent Light Source Monte Carlo Simulation

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  9. Photocathodes for the energy recovery linacs

    SciTech Connect

    Rao, T; Burrill, A; Chang, X Y; Smedley, J; Nishitani, T; Garcia, C Hernandez; Poelker, M; Seddon, E; Hannon, F E; Sinclair, C K; Lewellen, J; Feldman, D

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  10. PHOTOCATHODES FOR THE ENERGY RECOVERY LINACS.

    SciTech Connect

    RAO, T.; BURRILL, A.; CHANG, X.Y.; SMEDLEY, J.; ET AL.

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  11. Beam dynamics in heavy ion induction LINACS

    SciTech Connect

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  12. Advanced RF power sources for linacs

    SciTech Connect

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  13. Prototype of linac BLM at NSRL

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Li, Yuxiong; Gong, Guanghua; Li, Juexin; Shao, Beibei; Zhao, Zhengguo

    2007-08-01

    A prototype of the Beam Loss Monitoring (BLM) System for the linac and transportation line has been built up in National Synchrotron Radiation Laboratory. Different from the storage ring, the radiation field around linac and transportation line have a duty factor of 10 -6 and a dose rate of hundreds Gy/h. The Monte-Carlo calculation gave the dose, flux, energy and direction distributions of the radiation field. According to the simulation result, the proper type of detector was chosen and the installation positions were selected accordingly. The widely used ionization chamber is not suitable to give accurate and real-time information of beam loss due to its large dimension and slow respond speed. Several PIN silicon diode-based detectors were designed and tested, and a charge-balanced integrating amplifier circuit was applied to read out the charge. A distributed data acquisition system based on embedded Ethernet technology was implemented in the prototype, which can offer a web server from the microcontroller. From preliminary tests, this new prototype was proved to be sensitive to the change of the linac status, and is a useful tool for monitoring and adjusting machine parameters. Further analyses are required to achieve a more accurate measurement of the beam loss.

  14. Wake fields in SLAC Linac Collimators

    SciTech Connect

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  15. Resonance frequency control for the KOMAC 100-MeV drift tube linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2015-02-01

    A 100-MeV proton accelerator has been developed, and the operation and beam service started at the Korea Multi-purpose Accelerator Complex (KOMAC) in July 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio-frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The resonance frequencies of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), installed at every DTL tank. Until now, the RCCS has been operating in the constant temperature mode. If the system is to be stabilized better, the RCCS must be operated in the frequency control mode. For this purpose, studies, including the relation between the resonance frequency and RCCS operation temperature, were done under various conditions. In this paper, the preparations for the frequency control loop of the RCCS are described.

  16. S-band linac-based X-ray source with π/2-mode electron linac

    NASA Astrophysics Data System (ADS)

    Deshpande, Abhay; Araki, Sakae; Dixit, Tanuja; Fukuda, Masafumi; Krishnan, R.; Pethe, Sanjay; Sakaue, Kazuyuki; Terunuma, Nobuhiro; Urakawa, Junji; Washio, Masakazu

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the π/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the π/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  17. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing {ge}10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is {approx} 1 W.

  18. Proton Therapy

    NASA Astrophysics Data System (ADS)

    Oelfke, Uwe

    Proton therapy is one of the most rapidly developing new treatment technologies in radiation oncology. This treatment approach has — after roughly 40 years of technical developments — reached a mature state that allows a widespread clinical application. We therefore review the basic physical and radio-biological properties of proton beams. The main physical aspect is the elemental dose distribution arising from an infinitely narrow proton pencil beam. This includes the physics of proton stopping powers and the concept of CSDA range. Furthermore, the process of multiple Coulomb scattering is discussed for the lateral dose distribution. Next, the basic terms for the description of radio-biological properties of proton beams like LET and RBE are briefly introduced. Finally, the main concepts of modern proton dose delivery concepts are introduced before the standard method of inverse treatment planning for hadron therapy is presented.

  19. SNS LINAC Wire Scanner System : Signal Levels and Accuracy.

    SciTech Connect

    Plum, M. A.; Christensen, W.; Myer, R. E.; Rose, C. R.

    2002-01-01

    The linac wire scanner system for the Spallation Neutron Source (SNS) at Oak Ridge, TN, USA, calls for 5 units in the medium energy beam transport (MEBT), 5 in the drift tube linac (DTL), and 10 in the coupled cavity linac (CCL). In this paper we present expected signal levels and an analysis of the error in the beam size measurement as functions of wire position and electrical signal errors.

  20. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  1. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

    PubMed

    Chibani, Omar; Ma, Chang-Ming Charlie

    2003-08-01

    The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to

  2. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  3. Observation of Coherent Optical Transition Radiation in the LCLS Linac

    SciTech Connect

    Loosy, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford

    2008-09-18

    The beam diagnostics in the linac for the Linac Coherent Light Source (LCLS) X-ray FEL project at SLAC includes optical transition radiation (OTR) screens for measurements of transverse and longitudinal beam properties. We report on observations of coherent light emission from the OTR screens (COTR) at visible wavelengths from the uncompressed and compressed electron beam at various stages in the accelerator.

  4. Laser system for a subpicosecond electron linac.

    SciTech Connect

    Crowell, R. A.

    1998-09-25

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions.

  5. High density harp for SSCL linac

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  6. Fermilab Linac Upgrade: Module conditioning results

    SciTech Connect

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 [times] 10[sup 6] pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator.

  7. Fermilab Linac Upgrade: Module conditioning results

    SciTech Connect

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 {times} 10{sup 6} pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator.

  8. Numerical simulation of coupler cavities for linacs

    SciTech Connect

    Ng, C.K.; Derutyer, H.; Ko, K.

    1993-04-01

    We present numerical procedures involved in the evaluation of the performance of coupler cavities for linacs. The MAFIA code is used to simulate an X-Band accelerator section in the time domain. The input/output coupler cavities for the structure arc of the symmetrical double-input design. We calculate the transmission properties of the coupler and compare the results with measurements. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak field gradient in the computer.

  9. Commissioning of the SPPS Linac Bunch Compressor

    SciTech Connect

    Krejcik, Patrick

    2003-05-21

    First results and beam measurements are presented for the recently installed linac bunch compressor chicane. The new bunch compressor produces ultra-short electron bunches for the Sub-Picosecond Photon Source (SPPS) and for test beams such as the E164 Plasma Wakefield experiment. This paper will give an overview of the first experiences with tuning and optimizing the compressor together with a description of the beam diagnostics and beam measurements. These measurements form the basis for further detailed study of emittance growth effects such as CSR and wakefields in a previously unmeasured regime of ultra-short bunch lengths.

  10. 10MeV 25KW industrial electron LINAC

    NASA Astrophysics Data System (ADS)

    Kamino, Y.

    1998-06-01

    A 10MeV 25KW plus class electron LINAC was developed for sterilisation of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated travelling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analysing magnet with 10MeV plus-minus 1 MeV energy slit. The practical maximum beam power reached 29 KW and this demonstrated the LINAC as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and the "One-Button Operation" is realised, which is valuable for easy operation as a plant system. 2 systems have been delivered and are being operated stably.

  11. Linac design for the LCLS project at SLAC

    SciTech Connect

    Bharadwaj, V.K.; Bane, K.; Clendenin, J.

    1997-05-01

    The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5{pi} mm-mr and an rms bunch length of 20 {mu}m. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described.

  12. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  13. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  14. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  15. RIA Superconducting Drift Tube Linac R & D

    SciTech Connect

    J. Popielarski; J. Bierwagen; S. Bricker; C. Compton; J. DeLauter; P. Glennon; T. Grimm; W. Hartung; D. Harvell; M. Hodek; M. Johnson; F. Marti; P. Miller; A. Moblo; D. Norton; L. Popielarski; J. Wlodarczak; R. C. York; A. Zeller

    2009-05-22

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focussing. Active and passive shielding is required to ensure that the solenoids’ field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  16. Linac Coherent Light Source - Status and Prospects

    SciTech Connect

    Galayda, John N.; /SLAC

    2005-11-09

    The Linac Coherent Light Source (LCLS) Project will be an x-ray free-electron laser. It is intended to produce pulses of 800-8,000 eV photons. Each pulse, produced with a repetition frequency of up to 120 Hz, will provide >10{sup 12} photons within a duration of less than 200 femtoseconds. The project employs the last kilometer of the SLAC linac to provide a low-emittance electron beam in the energy range 4-14 GeV to a single undulator. Two experiment halls, located 100m and 350m from the undulator exit, will house six experiment stations for research in atomic/molecular physics, pump-probe dynamics of materials and chemical processes, x-ray imaging of clusters and complex molecules, and plasma physics. Engineering design activities began in 2003, and the project is to be completed in March 2009. The project design permits straightforward expansion of the LCLS to multiple undulators.

  17. Linac-driven spallation-neutron source

    SciTech Connect

    Jason, A.J.

    1995-05-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications.

  18. PHYSICS RESULTS OF THE NSLS-II LINAC FRONT END TEST STAND

    SciTech Connect

    Fliller R. P.; Gao, F.; Yang, X.; Rose, J.; Shaftan, T.; Piel, C

    2012-05-20

    The Linac Front End Test Stand (LFETS) was installed at the Source Development Laboratory (SDL) in the fall of 2011 in order to test the Linac Front End. The goal of these tests was to test the electron source against the specifications of the linac. In this report, we discuss the results of these measurements and the effect on linac performance.

  19. Niobium cavity development for the high-energy linac of the rare isotope accelerator

    SciTech Connect

    D. Barni; C. Pagani; P. Pierini; C. Compton; T. Grimm; W. Hartung; H. Podlech; R. York; G. Ciovati; P. Kneisel

    2001-08-01

    The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research [1]. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying velocity of the ion beam along the linac, a number of different types of superconducting structures are needed. The RIA linac will accelerate heavy ions over the same velocity range as the proton linac for the Spallation Neutron Source (SNS). It was decided to use the 6-cell axisymmetric 805 MHz cavities and cryostats of SNS for the downstream portion of the RIA linac, thereby saving the non-recurring development and engineering costs. For additional cost saving, it was decided to extend the SNS multi-cell axisymmetric cavity design to lower velocity, {beta} = v/c = 0.4, using the same cryostats and RF systems. Axisymmetric cavities will thus constitute about three-quarters of RIA's total accelerating voltage, and most of that voltage will be provided by cavities already developed for SNS. The axisymmetric cavities will accelerate the RIA beam from {beta} = 0.4 to {beta} = 0.72. This velocity range can be efficiently covered with two different types of 6-cell cavities, one with a geometric {beta}, {beta}{sub g}, of 0.47, and the other with a {beta}{sub g} of 0.61. The {beta}{sub g} = 0.61 cavity will be of the existing SNS design; some {beta}{sub g} = 0.81 SNS cavities may also be desired at the end of the RIA linac for acceleration of light ions above 400 MeV per nucleon. Prototypes for both {beta}{sub g} = 0.61 and {beta}{sub g} = 0.81 have been fabricated and tested [2]. The {beta}{sub g} = 0.47 cavity is the focus of the present work. The reduction in {beta}{sub g} to 0.47 results in less favourable electromagnetic and mechanical properties, and opens up the possibility of multipacting, but several groups have already designed and prototyped cavities in this range. These

  20. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    NASA Astrophysics Data System (ADS)

    Ullmann, C.; Berezov, R.; Fils, J.; Chauvin, N.; Delferriere, O.; Hollinger, R.; Kester, O.; Vinzenz, W.

    2014-02-01

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 1010 cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 1016 protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms).

  1. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  2. PERFORMANCE OF THE DIAGNOSTICS FOR NSLS-II LINAC COMMISSIONING

    SciTech Connect

    Fliller III, R.; Padrazo, D.; Wang, G.M.; Heese, R.; Hseuh H.-C.; Johanson, M.; Kosciuk, B.N.; Pinayev, I.; Rose, J.; Shaftan, T.; Singh, O.

    2011-03-28

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The transfer lines not only provide a means to deliver the beam from one machine to another, they also provide a suite of diagnostics and utilities to measure the properties of the beam to be delivered. In this paper we discuss the suite of diagnostics that will be used to commission the NSLS-II linac and measure the beam properties. The linac to booster transfer line can measure the linac emittance with a three screens measurement or a quadrupole scan. Energy and energy spread are measured in a dispersive section. Total charge and charge uniformity are measured with wall current monitors in the linac and transformers in the transfer line. We show that the performance of the diagnostics in the transfer line will be sufficient to ensure the linac meets its specifications and provides a means of trouble shooting and studying the linac in future operation.

  3. LOW LOSS DESIGN OF THE LINAC AND ACCUMULATOR RING FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect

    RAPARIA,D.

    2003-02-03

    The Spallation Neutron Source (SNS) is a second generation pulsed neutron source and is presently in the fourth year of a seven-year construction cycle at Oak Ridge National Laboratory. A collaboration of six national laboratories (ANL, BNL, LANL, LBNL, ORNL, TJNAF) is responsible for the design and construction of the various subsystems. The operation of the facility will begin in 2006 and deliver a 1.0 GeV, 1.4 MW proton beam with pulse length of 650 nanosecond at a repetition rate of 60 Hz, on a liquid mercury target. It consists of an RF volume H{sup -} source of 50 mA peak current at 6% duty; an all electrostatic Low-Energy Beam Transport (LEBT) which also serves as a first stage beam chopper with {+-} 25 ns rise/fall time; a 402.5 MHz, 4-vane Radio-Frequency Quadrupole (RFQ) for acceleration up to 2.5 MeV; a Medium Energy Beam Transport (MEBT) housing a second stage chopper (<{+-} 10ns rise/fall), an adjustable beam halo scraper, and diagnostics devices; a 6-tank Drift Tube Linac (DTL) with permanent magnet quadrupoles up to 87 MeV; an 805 MHz, 4-module, Side Coupled Cavity Linac (CCL) up to 186 MeV; an 805 MHz, superconducting RF (SRF) linac with eleven medium beta ({beta} = 0.61) cryo-modules and twelve high beta ({beta} = 0.81) cryo-modules accelerating the beam to the full energy; a High Energy Beam transport (HEBT) for diagnostics, transverse and longitudinal collimation, energy correction, painting and matching; an accumulator ring compressing the 1 GeV, 1 ms pulse to 650 ns for delivery onto the target through a Ring to Target Beam Transport (RTBT) with transverse collimators.

  4. R&D Energy Recovery Linac at Brookhaven National Laboratory

    SciTech Connect

    Litvinenko, Vladimir; Beavis, D.; Ben-Zvi, Ilan; Blaskiewicz, Michael; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Drees, K.A.; Ganetis, G.; Gamble, Michael; Hahn, H.; Hammons, L.R.; Hershcovitch, A.; Hseuh, H.C.; Jain, A.K.; Kayran, A.; Kewisch, Jorg; Lambiase, R.F.; Lederle, D.L.; Mahler, G.J.; McIntyre, G.; Meng, W.; Nehring, T.C.; Oerter, B.; Pai, C.; Pate, D.; Phillips, Daniel; Pozdeyev, Eduard; Rao, Triveni; Reich, J.; Roser, Thomas; Russo, T.; Smith, K.; Tuozzolo, Joseph; Weiss, D.; Williams, N.W.W.; Yip, Kin; Zaltsman, A.; Bluem, Hans; Cole, Michael; Favale, Anthony; Holmes, D.; Rathke, John; Schultheiss, Tom; Delayen, Jean; Funk, L.; Phillips, H.; Preble, Joseph

    2008-07-01

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.

  5. Using basic electromagnetism to introduce LINAC4 (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon; Vretenar, Maurizio

    2016-07-01

    The LHC is the last element of CERN’s accelerator complex, which is a succession of machines with increasingly higher energies. Everything starts in the 50 MeV linear accelerator (LINAC2), but a new linear accelerator, the 160 MeV LINAC4, will replace LINAC2 in 2018, upgrading LHC injectors to higher intensity and eventually increasing the luminosity of LHC. The aim of this article is briefly introducing this new accelerator, and presenting a simple application of some fundamental laws of magnetism to be taken to the secondary school classrooms.

  6. High-Performance Beam Simulator for the LANSCE Linac

    SciTech Connect

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-05-14

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  7. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, Joseph; Stevens, Ralph R.; Schneider, J. David; Zaugg, Thomas

    1995-09-15

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos will be given.

  8. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  9. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  10. Radiation processing with the Messina electron linac

    NASA Astrophysics Data System (ADS)

    Auditore, L.; Barnà, R. C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifirò, A.; Trimarchi, M.

    2008-05-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations.

  11. Neutron Spectra in a 15 MV LINAC

    SciTech Connect

    Vega-Carrillo, H. R.; Chu, Wei-Han; Tung, Chuan-Jong; Lan, Jen-Hong

    2010-12-07

    Neutron spectra were calculated inside the treatment hall of a 15 MV LINAC, calculations were carried out using Monte Carlo methods. With a Bonner sphere spectrometer with pairs of thermoluminiscent dosimeters the neutron spectrum at 100 cm from the isocenter was measured and compared with the calculated spectrum. All the spectra in the treatment hall show the presence of evaporation and knock-on neutrons; also the room-return due to the hall features is shown. In the maze the large contribution are due to epithermal and thermal neutrons. A good agreement between the calculated and measured spectrum at 100 cm was noticed, from this comparison the differences are attributed to the water content in the concrete of the hall.

  12. LANSCE 201.25 MHz drift tube linac RF power status

    SciTech Connect

    Lyles, J.T.M.; Friedrichs, C.C., Jr.

    1996-09-01

    The Los Alamos Neutron Science Center linac provides high power proton beams for neutron science, tritium target development, nuclear physics, material science, isotope production, and weapons research. Number of simultaneous beam users places heavy demands on the RF powerplant, espcially the 201.25 MHz power amplifiers (PA) driving four drift tube linac cavities. Designed nearly 30 years ago, these amplifiers have operated at up to 3 Megawatts with duty factors of 12%. The number of power tubes, age of cooling and control subsystems, tube manufacturing problems, and operation near maximum PA tube ratings have all affected system reliability. By monitoring final power amplifier plate dissipation and tube vcauum, improved operating procedures have raised RF system reliability above 95% for operation periods in 1993-95. Higher beam current for a proposed Long Pulse Spallation Source (LPSS) cannot be delivered simultaneously with other beams at high duty factor, however. Plans are underway to develop a new final power amplifier which can use low-level RF modulations for amplitude control. With only a few power tubes, the system will deliver high peak power and duty factor, with improved DC to RF efficiency, and a simplified cooling system.

  13. Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

    NASA Astrophysics Data System (ADS)

    Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki; Ikegami, Masanori

    2015-02-01

    In the J-PARC (Japan Proton Accelerator Research Complex) linac, an energy-upgrade project has started to achieve a design beam power of 1 MW at the exit of the downstream synchrotron. To account for the significant beam parameter upgrades, we will use the newly-fabricated beam monitors for the beam commissioning. This paper discusses the design and assembly of the beam position monitor, phase monitor, current monitor, transverse profile monitor, and beam loss monitor for the energy-upgraded linac. We periodically installed the newly-fabricated monitors for the upgraded beam line, as well as for longitudinal matching, because of the frequency jump between the original RF cavity and the newly-developed cavity. We employed two debunchers to correct for momentum spread and jitter. To account for the new debunchers, we fabricated and installed additional pairs of phase monitors in order to tune the debunchers to the adequate RF set point. Finally, we propose commissioning plans to support the beam monitor check. We will begin to establish the 181-MeV operation to confirm the proper functioning of beam monitors. Herein, we will examine the response to changes of the knobs that control the quadrupole magnets after the energy upgrade. After proper functioning of the beam monitors is confirmed, we will use the new beam monitors to establish the 400-MeV acceleration operation.

  14. A Program for Optimizing SRF Linac Costs

    SciTech Connect

    Powers, Thomas J.

    2013-04-01

    Every well-designed machine goes through the process of cost optimization several times during its design, production and operation. The initial optimizations are done during the early proposal stage of the project when none of the systems have been engineered. When a superconducting radio frequency (SRF) linac is implemented as part of the design, it is often a difficult decision as to the frequency and gradient that will be used. Frequently, such choices are made based on existing designs, which invariably necessitate moderate to substantial modifications so that they can be used in the new accelerator. Thus the fallacy of using existing designs is that they will frequently provide a higher cost machine or a machine with sub-optimal beam physics parameters. This paper describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK [1] several years ago while they were in the process of developing a conceptual design for the New Light Source project. The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs.

  15. Heavy-Ion Driver Linac for the RIA Facility and the Feasibility of Producing Multi-Megawatt Beams

    SciTech Connect

    Ostroumov, P.N.; Nolen, J.A.; Shepard, K.W.

    2005-06-08

    The Rare-Isotope Accelerator (RIA) facility is a top priority project in the U.S. RIA is a next generation facility for basic research with radioactive beams that utilizes both standard isotope-separator on-line and in-flight fragmentation methods with novel approaches to handle high primary-beam power and remove existing limitations in the extraction of short-lived isotopes. A versatile primary accelerator, a 1.4-GV, CW superconducting linac, will provide beams from protons at 1 GeV to uranium at 400 MeV/u at power levels of 400 kW. Novel features include the acceptance of two charge states of heavy ions from the ion source and the acceleration of five charge states following the stripper foils. To achieve these goals, comprehensive beam dynamics studies have been performed to optimize the design of the driver linac. Recently we have investigated the feasibility of increasing the currents of light ions to deliver megawatts of beam power. This option is entirely possible from the beam dynamics point of view. It would require higher power from the rf system, as well as, increased shielding at the beam loss points with respect to the existing baseline design. Preliminary indications of the limitations of beam power for this class of CW superconducting linac for light ion beams will be presented.

  16. Heavy-ion driver linac for the RIA facility and the feasibility of producing multi-megawatt beams.

    SciTech Connect

    Ostroumov, P. N.; Nolen, J. A.; Shepard, K. W.; Physics

    2005-01-01

    The Rare-Isotope Accelerator (RIA) facility is a top priority project in the U.S. RIA is a next generation facility for basic research with radioactive beams that utilizes both standard isotope-separator on-line and in-flight fragmentation methods with novel approaches to handle high primary-beam power and remove existing limitations in the extraction of short-lived isotopes. A versatile primary accelerator, a 1.4-GV, CW superconducting linac, will provide beams from protons at 1 GeV to uranium at 400 MeV/u at power levels of 400 kW. Novel features include the acceptance of two charge states of heavy ions from the ion source and the acceleration of five charge states following the stripper foils. To achieve these goals, comprehensive beam dynamics studies have been performed to optimize the design of the driver linac. Recently we have investigated the feasibility of increasing the currents of light ions to deliver megawatts of beam power. This option is entirely possible from the beam dynamics point of view. It would require higher power from the rf system, as well as, increased shielding at the beam loss points with respect to the existing baseline design. Preliminary indications of the limitations of beam power for this class of CW superconducting linac for light ion beams will be presented.

  17. Measurement of optical emission from the hydrogen plasma of the Linac4 ion source and the SPL plasma generator

    SciTech Connect

    Lettry, J.; Bertolo, S.; Castel, A.; Chaudet, E.; Ecarnot, J.-F.; Favre, G.; Fayet, F.; Geisser, J.-M.; Haase, M.; Habert, A.; Hansen, J.; Joffe, S.; Kronberger, M.; Lombard, D.; Marmillon, A.; Balula, J. Marques; Mathot, S.; Midttun, O.; Moyret, P.; Nisbet, D.

    2011-09-26

    At CERN, a non caesiated H{sup -} ion volume source derived from the DESY ion source is being commissioned. For a proposed High Power Superconducting Proton Linac (HP-SPL), a non caesiated plasma generator was designed to operate at the two orders of magnitude larger duty factor required by the SPL. The commissioning of the plasma generator test stand and the plasma generator prototype are completed and briefly described. The 2 MHz RF generators (100 kW, 50 Hz repetition rate) was successfully commissioned; its frequency and power will be controlled by arbitrary function generators during the 1 ms plasma pulse. In order to characterize the plasma, RF-coupling, optical spectrometer, rest gas analyzer and Langmuir probe measurements will be used. Optical spectrometry allows direct comparison with the currently commissioned Linac4 H{sup -} ion source plasma. The first measurements of the optical emission of the Linac4 ion source and of the SPL plasma generator plasmas are presented.

  18. ATPF - a dedicated proton therapy facility

    NASA Astrophysics Data System (ADS)

    Fang, Shou-Xian; Guan, Xia-Ling; Tang, Jing-Yu; Chen, Yuan; Deng, Chang-Dong; Dong, Hai-Yi; Fu, Shi-Nian; Jiao, Yi; Shu, Hang; Ouyang, Hua-Fu; Qiu, Jing; Shi, Cai-Tu; Sun, Hong; Wei, Jie; Yang, Mei; Zhang, Jing

    2010-03-01

    A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning method, the extraction energy can be as many as about 200 between 60 MeV and 230 MeV. A new method - the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.

  19. Status of the RF-driven H⁻ ion source for J-PARC linac.

    PubMed

    Oguri, H; Ohkoshi, K; Ikegami, K; Takagi, A; Asano, H; Ueno, A; Shibata, T

    2016-02-01

    For the upgrade of the Japan Proton Accelerator Research Complex linac beam current, a cesiated RF-driven negative hydrogen ion source was installed during the 2014 summer shutdown period, with subsequent operations commencing on September 29, 2014. The ion source has been successfully operating with a beam current and duty factor of 33 mA and 1.25% (500 μs and 25 Hz), respectively. The result of recent beam operation has demonstrated that the ion source is capable of continuous operation for approximately 1100 h. The spark rate at the beam extractor was observed to be at a frequency of less than once a day, which is an acceptable level for user operation. Although an antenna failure occurred during operation on October 26, 2014, no subsequent serious issues have occurred since then. PMID:26932020

  20. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  1. Commissioning of the LCLS Linac and Bunch Compressors

    SciTech Connect

    Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma#, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Molloy, S.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; /SLAC

    2008-08-20

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009.

  2. A Radiation shielding study for the Fermilab Linac

    SciTech Connect

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  3. High power operational experience with the LANSCE Linac

    SciTech Connect

    Rybarcyk, Lawrence J

    2008-01-01

    The heart of the Los Alamos Neutron Science Center (LANSCE) is a pulsed linear accelerator that is used to simultaneously provide H+ and H- beams to several user facilities. This accelerator contains two Cockcroft-Walton style injectors, a 100-MeV drift tube linac and an 800-MeV coupled cavity linac. This presentation will touch on various aspects of the high power operation including performance, tune-up strategy, beam losses and machine protection.

  4. Effect of cooling water on stability of NLC linac components

    SciTech Connect

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  5. The Proton

    NASA Astrophysics Data System (ADS)

    Canal, Carlos Garcia; Sassot, Rodolfo

    2003-10-01

    In this talk we present a collection of selected topics concerning the structure of the proton and the fundamental interactions as seen inside it. These topics have been thoroughly covered by high energy experiments with ever increasing precision in recent years and beautifully illustrate our present knowledge of the standard model.

  6. Proton Radiobiology

    PubMed Central

    Tommasino, Francesco; Durante, Marco

    2015-01-01

    In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed. PMID:25686476

  7. The 400 MeV Linac Upgrade at Fermilab

    SciTech Connect

    Noble, R.J.

    1992-12-01

    The Fermilab Linac Upgrade in planned to increase the energy of the H{sup {minus}} linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHs drift-tube linac (DTL) tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MRs side-coupled cavity modules operating at an average axial field of about 7.5 MV/meter. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a 12 MW klystron-based rf power supply. Three of seven accelerator modules have been fabricated, power tested and installed in their temporary location adjacent to the existing DTL. All seven RF Modulators have been completed and klystron installation has begun. Waveguide runs have completed from the power supply gallery to the accelerator modules. The new linac will be powered in the temporary position without beam in order to verify overall system reliability until the laboratory operating schedule permits final conversion to 400 MeV operation.

  8. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect

    Miracoli, R.; Gammino, S.; Celona, L.; Mascali, D.; Castro, G.; Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F.; Ciavola, G.

    2012-05-15

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  9. A novel electron gun for inline MRI-linac configurations

    PubMed Central

    Constantin, Dragoş E.; Holloway, Lois; Keall, Paul J.; Fahrig, Rebecca

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  10. A novel electron gun for inline MRI-linac configurations

    SciTech Connect

    Constantin, Dragoş E. Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-02-15

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  11. Design of an alternating phase focusing Interdigital H-mode Drift-Tube-Linac with low injection energy

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Pang, J.; He, X.; Ying, Z.; Shi, J.

    2016-01-01

    An Inter-digital H-mode (IH) Drift Tube Linac (DTL) was designed to accelerate a proton beam in the low energy region with high RF efficiency and high gradient. The IH DTL is 1.078 m long and operates at 200 MHz. Protons could be accelerated from 0.04 MeV to 2.4 MeV (the β range is from 0.0092 to 0.0714). The method of alternating phase focusing (APF) was applied for beam focusing. The simulation results show that the transmission is 38% and the longitudinal acceptance is approximately 140°. The shunt impedance of the entire cavity is 365 MΩ/m. Adjustments of the electric-field were performed, and the beam dynamics design was described. The beam loss and voltage sensitivity were calculated.

  12. Induction linac drivers: Prospects for the future

    SciTech Connect

    Keefe, D.

    1988-06-01

    This review is intended to place in perspective our current view of the parameter ranges for induction linac drivers that lead to attractive scenarios for civilian electrical power plants; there is a surprising degree of choice (a factor of two or so in most parameters) before any significant impact on the cost of energy results. The progress and goals of the US Heavy Ion Accelerator Research (HIFAR) program are reviewed. The step between the realization of the HIFAR goals and a full-scale driver is seen to be very large indeed and will require one or more significant intermediate steps which can be justified only by a commitment to advance the HIF method towards a true fusion goal. Historical anomalies in the way that fusion programs for both military and civilian applications are administered will need to be resolved; the absence of any presently perceived energy crisis results in little current sense of urgency to develop vigorous long-term energy solutions. 12 refs., 3 figs., 1 tab.

  13. Electron gun system for NSC KIPT linac

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; He, Da-Yong; Chi, Yun-Long

    2014-06-01

    In the NSC KIPT linac, a neutron source based on a subcritical assembly driven by a 100 MeV/100 kW electron linear accelerator is under design and development. The linear accelerator needs a new high current electron gun. In this paper, the physical design, mechanical fabrication and beam test of this new electron gun are described. The emission current is designed to be higher than 2 A for the pulse width of 3 μs with repetition rate of 50 Hz. The gun will operate with a DC high voltage power supply that can provide a high voltage up to 150 kV. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport line. The test results of high voltage conditioning and beam test are presented. The operation status of the electron gun system is also included. The basic test results show that the design, manufacture, and operation of the new electron system are basically successful.

  14. Development of head docking device for linac-based radiosurgery with a Neptun 10 PC linac.

    PubMed

    Khoshbin Khoshnazar, Alireza; Bahreyni Toossi, Mohammad Taghi; Hashemian, Abdolreza; Salek, Roham

    Stereotactic radiosurgery is a method for focused irradiation of intracranial lesions. Linac-based radiosurgery is currently performed by two techniques: couch mounted and pedestal mounted. In the first technique a device is required to affix the patient's head to the couch and neoreover to translate it accurately. Structure of such a device constructed by the authors plus acceptance test performed for evaluation is described in the article. A head docking device has been designed and constructed according to geometry of linac's couch and also desired functions. The device is cornpletely made from aluminum and consists of four major components: attachment bar, lower structure with four moveing accuracy mechanical stability and isocentric accuracy were assessed in the frame of acceptance test. Translating accuracy, mechanical stability and isocentric accuracy were found to be respectively: 1 mm, 1.64 mm and 3.2 mm with accuracy of 95%. According to AAPM report no. 54, a head docking device should translate head with an accuracy of 1 mm; this recommendation has been met. Moreover, we have demonstrated that the isocentric accuracy and mechanical stability of the device are sufficient that the device on confidently be used in stereotactic treatment. PMID:17664152

  15. Higher order beam jitter in the SLC linac

    SciTech Connect

    Decker, F.-J.; Adolphsen, C.E.; Podobedov, B.; Raimondi, P.

    1996-08-01

    The pulse-to-pulse behavior of the beams in the SLC linac is dominated by wakefields which can amplify any other sources of jitter. A strong focusing lattice combined with BNS damping controls the amplitude of oscillations which otherwise would grow exponentially. Measurements of oscillation amplitude along the linac show beam motion that is up to six times larger than that expected from injection jitter. A search for possible sources of jitter within the linac uncovered some problems such as structure jitter at 8 to 12 Hz, pump vibrations at 59 Hz and 1 Hz aliasing by the feedback systems. These account for only a small fraction of the observed jitter which is dominantly white noise. No source has yet been fully identified but possible candidates are dark current in the linac structures (not confirmed by experiment) or subtle correlations in injection jitter. An example would be a correlated x-z jitter with no net offset visible on the beam position monitors at injection. Such a correlation would cause jitter growth along the linac as wakefields from the head of the bunch deflect the core and tail of the bunch. Estimates of the magnitude of this effect and some possible sources are discussed in this paper.

  16. Concepts and Applications of Energy Recovery Linacs (ERLs)

    SciTech Connect

    Gruner, Sol M.

    2004-05-12

    Energy Recovery Linacs are being explored as next generation synchrotron light sources. The fundamental x-ray beam properties from storage ring sources, such as the source size, brilliance, and pulse duration are limited by the dynamic equilibrium characteristic of the magnetic lattice that is the storage ring. Importantly, the characteristic equilibration time is long, involving thousands of orbits around the ring. Advances in laser-driven photoelectron sources allow the generation of electron bunches with superior properties for synchrotron radiation. ERLs preserve these properties by acceleration with a superconducting linac, followed by transport through a return loop hosting insertion devices, similar to that of a 3rd generation storage ring. The loop returns bunches to the linac 180 deg. out of accelerating phase for deceleration through the linac and disposal. Thus, the electron beam energy is recycled back into the linac RF field for acceleration of new bunches and the equilibrium degradation of bunches never occurs. The superior projected properties of ERLs beams include extraordinary brilliance and small source size, with concomitant high transverse coherence, x-ray pulse durations down to {approx}100 femtoseconds, and flexibility of operation. ERL projects are summarized. ERLs will be capable of hosting practically all experiments now being carried out at storage rings while also enabling new types of experiments.

  17. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  18. Beam dynamics studies of the 8 GeV Linac at FNAL

    SciTech Connect

    Ostroumov, P.N.; Mustapha, B.; Carneiro, J.-P.; /Fermilab

    2008-11-01

    The proposed 8-GeV proton driver (PD) linac at FNAL includes a front end up to {approx}420 MeV operating at 325 MHz and a high energy section at 1300 MHz. A normal conducting RFQ and short CH type resonators are being developed for the initial acceleration of the H-minus or proton beam up to 10 MeV. From 10 MeV to {approx}420 MeV, the voltage gain is provided by superconducting (SC) spoke-loaded cavities. In the high-energy section, the acceleration will be provided by the International Linear Collider (ILC)-style SC elliptical cell cavities. To employ existing, readily available klystrons, an RF power fan out from high-power klystrons to multiple cavities is being developed. The beam dynamics simulation code TRACK, available in both serial and parallel versions, has been updated to include all known H-minus stripping mechanisms to predict the exact location of beam losses. An iterative simulation procedure is being developed to interact with a transient beam loading model taking into account RF feedback and feedforward systems.

  19. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  20. Thirty-five years of drift-tube linac experience

    SciTech Connect

    Knowles, H.B.

    1984-10-01

    The history of the drift-tube linear accelerator (linac) for the first 35 years of its existence is briefly reviewed. Both US and foreign experience is included. Particular attention is given to technological improvements, operational reliability, capital investment, and number of personnel committed to drift-tube linac (DTL) development. Preliminary data indicate that second- and third-generation (post-1960) DTLs have, in the US alone, operated for a combined total period of more than 75 machine-years and that very high reliability (>90%) has been achieved. Existing US drift-tube linacs represent a capital investment of at least $250 million (1983). Additional statistical evidence, derived from the proceedings of the last 11 linear accelerator conferences, supports the view that the DTL has achieved a mature technological base. The report concludes with a discussion of important recent advances in technology and their applications to the fourth generation of DTLs, many of which are now becoming operational.

  1. Investigations of Slow Motions of the SLAC Linac Tunnel

    SciTech Connect

    Seryi, Andrei

    2000-08-31

    Investigations of slow transverse motion of the linac tunnel of the Stanford Linear Collider have been performed over period of about one month in December 1999--January 2000. The linac laser alignment system, equipped with a quadrant photodetector, allowed submicron resolution measurement of the motion of the middle of the linac tunnel with respect to its ends. Measurements revealed two major sources responsible for the observed relative motion. Variation of the external atmospheric pressure was found to be the most significant cause of short wavelength transverse motion of the tunnel. The long wavelength component of the motion has been also observed to have a large contribution from tidal effects. The measured data are essential for determination of parameters for the Next Linear Collider.

  2. Collective electron driven linac for high energy physics

    SciTech Connect

    Seeman, J.T.

    1983-08-01

    A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can be accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.

  3. Design considerations for high-current superconducting ion linacs

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-08-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context.

  4. Heavy ion induction linac drivers for inertial confinement fusion

    SciTech Connect

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab.

  5. R and D energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect

    Litvinenko,V.N.; Beavis, D.; Ben-Zvi, I.; Blaskiewicz, M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Drees, A.; Ganetis, G.; Gassner, D.; Hahn, H.; Hammons, L.; Hershcovitch, A.; Hseuh, H-C.; Jain, A.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, D.; Mahler, G.; McIntyre, G.; Meng, W.; Nehring, T.; Oerter, B.; Pai, C.; Pate, D.; Phillips, D.; Pozdeyev, E.; Rao, T.; Reich, J.; Roser, T.; Russo, T.; Smith, K.; Tuozzolo, J.; Weiss, D.; Williams, N.; Yip, K.; Zaltsman, A.; Favale, A.; Bluem, H.; Cole, M.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.; Delayen, J.; Funk, L.; Phillips, L.; Preble, J.

    2008-06-23

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R and D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel ZigZag-type merger. Recent development in the R and D ERL plans include gun and 5-cell cavity (G5) test and possibility of using R and D ERL for proof-of-principle test of Coherent Electron Cooling at RHIC.

  6. A hot-spare injector for the APS linac.

    SciTech Connect

    Lewellen, J. W.

    1999-04-13

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades.

  7. Billion particle linac simulations for future light sources

    SciTech Connect

    Ryne, R. D.; Venturini, M.; Zholents, A. A.; Qiang, J.

    2008-09-25

    In this paper we report on multi-physics, multi-billion macroparticle simulation of beam transport in a free electron laser (FEL) linac for future light source applications. The simulation includes a self-consistent calculation of 3D space-charge effects, short-range geometry wakefields, longitudinal coherent synchrotron radiation (CSR) wakefields, and detailed modeling of RF acceleration and focusing. We discuss the need for and the challenges associated with such large-scale simulation. Applications to the study of the microbunching instability in an FEL linac are also presented.

  8. BEAM SIMULATIONS USING VIRTUAL DIAGNOSTICS FOR THE DRIVER LINAC

    SciTech Connect

    R. C. York; X. Wu; Q. Zhao

    2011-12-21

    End-to-end beam simulations for the driver linac have shown that the design meets the necessary performance requirements including having adequate transverse and longitudinal acceptances. However, to achieve reliable operational performance, the development of appropriate beam diagnostic systems and control room procedures are crucial. With limited R&D funding, beam simulations provide a cost effective tool to evaluate candidate beam diagnostic systems and to provide a critical basis for developing early commissioning and later operational activities. We propose to perform beam dynamic studies and engineering analyses to define the requisite diagnostic systems of the driver linac and through simulation to develop and test commissioning and operational procedures.

  9. Equivalent circuit for postcoupler stabilization in a drift tube linac

    NASA Astrophysics Data System (ADS)

    Grespan, Francesco

    2012-01-01

    Postcouplers (PCs) are devices used in order to reduce the effect of perturbations on the operating mode of a drift tube linac (DTL), using the resonant coupling stabilization method. In this article an equivalent circuit for a DTL equipped with PCs is presented, together with a 3D simulation analysis, which can explain the principle of postcoupler stabilization and define a new tuning strategy for DTL cavities. The PC tuning procedure based on the equivalent circuit and on frequency measurements has been tested and validated with measurements on the Linac4 DTL aluminum model, present at CERN.

  10. Phase transfer measurements at the Jefferson Lab recirculated linacs

    NASA Astrophysics Data System (ADS)

    Krafft, G. A.; Bowling, B. A.; Crofford, M. T.; Hovater, J. C.

    2006-02-01

    Bunch length or longitudinal phase space distribution measurements are often used to evaluate if the electron beam meets RF criteria for a recirculated linac. Unfortunately, in many instances when the beam fails to meet the needed criteria, such measurements provide little guidance as to which machine element is problematic. All of the Jefferson Lab recirculated linacs have employed longitudinal phase transfer measurement systems to provide both useful information on the initial understanding of the dynamics of the longitudinal phase space in these accelerators, and much more useful diagnosis of out-of-specification performance of machine RF elements. These systems can provide precision transfer function measurements in time scales convenient for machine operations.

  11. LINAC BEAM DYNAMICS SIMULATIONS WITH PY-ORBIT

    SciTech Connect

    Shishlo, Andrei P

    2012-01-01

    Linac dynamics simulation capabilities of the PyORBIT code are discussed. PyORBIT is an open source code and a further development of the original ORBIT code that was created and used for design, studies, and commissioning of the SNS ring. The PyORBIT code, like the original one, has a two-layer structure. C++ is used to perform time-consuming computations, and the program flow is controlled from a Python language shell. The flexible structure makes it possible to use PyORBIT also for linac dynamics simulations. A benchmark of PyORBIT with Parmila and the XAL Online model is presented.

  12. SRF cavities for CW option of Project X Linac

    SciTech Connect

    Solyak, N.; Gonin, I.; Khabiboulline, T.; Lunin, A.; Perunov, N.; Yakovlev, V.; /Fermilab

    2009-09-01

    Alternative option of Project X is based on the CW SC 2GeV Linac with the average current 1mA. Possible option of the CW Linac considered in the paper includes low energy part consisted of a few families SC Spoke cavities (from 2.5 MeV to 466 MeV) and high energy part consisted of 2 types of elliptical cavities (v/c=0.81 and v/c=1). Requirements and designed parameters of cavities are considered.

  13. Tranverse beam break up in a periodic linac

    SciTech Connect

    Decker, G.; Wang, J.M.

    1987-01-01

    The problem of cumulative beam break up in a periodic linac for a general impedance is discussed, with the effects of acceleration included. The transverse equations of motion for a set of identical point like bunches moving along the length of the linac are cast into a simple form using a smooth approximation. This results in a working formula that is used to analyze beam breakup. Explicit expressions for the transverse motion in the case of a single resonance impedance are found using saddle point integration. This is done first with no external focusing, and again in the strong focusing limit.

  14. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-01-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff. PMID:26737878

  15. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    SciTech Connect

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  16. Argonne CW Linac (ACWL)—legacy from SDI and opportunities for the future

    NASA Astrophysics Data System (ADS)

    McMichael, G. E.; Yule, T. J.

    1995-09-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPB) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D- to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D- injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  17. WE-G-17A-06: A Water Calorimeter for Use in MRI Linacs

    SciTech Connect

    De Prez, L; De Pooter, J; Jansen, B

    2014-06-15

    Purpose: At VSL, Dutch Metrology Institute, a new water calorimeter was developed with the purpose to replace the existing primary standard for absorbed dose to water in the Netherlands. The new water calorimeter is designed to be operable in medium- to high energy photon beams, electrons, protons as well as MRI integrated linear accelerators. VSL has operated a water calorimeter since 2001. This calorimeter formed the basis for the NCS-18 dosimetry protocol, which is commonly applied by medical physicists in the Netherlands and Belgium. Methods: The unit Gray is the unit of interest for measurement of the absorbed dose to water. Water calorimetry involves the measurement of a small temperature rise (0.24 mK/Gy) with an uncertainty of less than 1 μK/Gy at a temperature of 4 °C. Using extensive multi-physics simulations the new calorimeter's thermal performance was simulated before it was constructed at the end of 2013. With the advent of radiotherapy treatment units incorporating MR imaging the performance of the thermistor temperature sensors were characterized in a 1.5 T magnetic field. Results: A change of thermistor resistance was observed of less than 0.004% as a Result of the magneto-resistance effect in a 1.5 T magnetic field. Although a magneto-resistance effect was detectable, the effect on the temperature response in the water calorimeter was found to be negligible. Conclusion: With the realization of the new calorimeter operable in MRI linacs and designed for use in a variety of beam modalities, VSL is ready for accurate dosimetry in new advanced radiotherapy modalities. Due to the small form factor the calorimeter can be used on location in the actual therapy beam inside a 68 cm linac bore. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  18. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  19. A Cure for Multipass Beam Breakup in Recirculating Linacs

    SciTech Connect

    Byung C. Yunn

    2004-07-02

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  20. Intensity Effects of the FACET Beam in the SLAC Linac

    SciTech Connect

    Decker, F.-J.; Lipkowitz, N.; Sheppard, J.; White, G.R.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-07-03

    The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ('chirp') along the linac, so it can be compressed in two chicanes, one at the midpoint in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 3 {micro}m-rad in Sector 2 blew up to 150 {micro}m-rad in Sector 11 but could be reduced to about 6-12 {micro}m-rad, for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.

  1. A METHOD TO CONTROL MULTIPASS BEAM BREAKUP IN RECIRCULATING LINACS

    SciTech Connect

    Byung Yunn

    2003-05-01

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  2. Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    SciTech Connect

    Wangler, T P; Kurennoy, S S; Billen, J H; Crandall, K R; Qiang, J; Ryne, R D; Mustapha, B; Ostroumov, P; Zhao, Q; York, and R. C.

    2008-03-26

    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package.

  3. Physical design of scanning gantry for proton therapy facility

    SciTech Connect

    Jiao, Y.; Satogata, T.; Guan, X-L.; Fang, S-X.; Wie, J.; Tang, J-Y.; Chen, Y.; Qui, J.; Shu, H.

    2010-03-01

    A proton therapy facility based on a linac injector and a slow cycling synchrotron is proposed. To achieve effective treatment of cancer, a scanning gantry is required. The flexible transmission of beam and high beam position accuracy are the most basic requirements for a gantry. The designed gantry optics and scanning system are presented. Great efforts are put into studying the sensitivity of the beam position in the isocenter to the element misalignments. It shows that quadrupole shift makes the largest contribution and special attention should be paid to it.

  4. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  5. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  6. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  7. Study on transient beam loading compensation for China ADS proton linac injector II

    NASA Astrophysics Data System (ADS)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  8. Broad-band chopper for a CW proton linac at Fermilab

    SciTech Connect

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  9. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  10. Longitudinal stability in multiharmonic standing wave linacs

    NASA Astrophysics Data System (ADS)

    Carver, L. R.; Jones, R. M.; Jiang, Y.; Hirshfield, J. L.

    2016-09-01

    Accelerating cavities that excite multiple modes at integer harmonics of the fundamental frequency have the potential to be used to suppress the onset of rf breakdown and reduce the pulsed surface heating at high accelerating gradients. Understanding the effect of an additional harmonic cavity mode on the longitudinal beam dynamics is important to their development and use. A Hamiltonian that describes the longitudinal motion of a particle as it traverses a chain of multiharmonic cavities has been derived and is applied to the case of a second harmonic cavity. The Hamiltonian is based upon formalisms found in literature for the fundamental harmonic and is extended to include different longitudinal field distributions and harmonic frequencies. The study initially explores the longitudinal motion for moderate accelerating gradients with high-β protons, as this will allow fundamental properties of the stable region (acceptance and shape of the rf bucket) to be determined. High accelerating gradients are also investigated but the focus will be on phase stability throughout. This work concludes by considering the longitudinal dynamics of a modified European Spallation Source accelerator, comprised of multiharmonic cavities that has specifications broadly consistent with the accelerator.

  11. Design of a post linac for an energy upgrade of a heavy-ion injector

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Noda, K.

    2014-07-01

    A post linac is being designed for an energy upgrade of a heavy-ion injector. This post linac is to be installed downstream of the formerly developed compact injector, consisting of an Electron-Cyclotron-Resonance Ion-Source (ECRIS), the Radio-Frequency-Quadrupole (RFQ) linac and the Alternating-Phase-Focused Interdigital H-mode Drift-Tube-Linac (APF IH-DTL). It is aimed to increase the output energy of a heavy-ion injector. Carbon ions are initially accelerated with the compact injector to 4 MeV/u, and further accelerated with the post linac up to 8 MeV/u. The three linacs have the same operating frequency of 200 MHz. For beam focusing of the post linac, the APF method is used. Iterative simulations of beam dynamics were performed to determine the optimum array of synchronous phases in each gap. The results of the simulations provided that the calculated efficiency of beam transmission through the post linac is as high as 98.4%. The total length of this APF post linac is estimated to be approximately 3 m. A design overview of the injector system including the post linac is presented.

  12. MODEL BENCHMARK WITH EXPERIMENT AT THE SNS LINAC

    SciTech Connect

    Shishlo, Andrei P; Aleksandrov, Alexander V; Liu, Yun; Plum, Michael A

    2016-01-01

    The history of attempts to perform a transverse match-ing in the Spallation Neutron Source (SNS) superconduct-ing linac (SCL) is discussed. The SCL has 9 laser wire (LW) stations to perform non-destructive measurements of the transverse beam profiles. Any matching starts with the measurement of the initial Twiss parameters, which in the SNS case was done by using the first four LW stations at the beginning of the superconducting linac. For years the consistency between data from all LW stations could not be achieved. This problem was resolved only after significant improvements in accuracy of the phase scans of the SCL cavities, more precise analysis of all available scan data, better optics planning, and the initial longitudi-nal Twiss parameter measurements. The presented paper discusses in detail these developed procedures.

  13. Status of the Linac based positron source at Saclay

    NASA Astrophysics Data System (ADS)

    Rey, J.-M.; Coulloux, G.; Debu, P.; Dzitko, H.; Hardy, P.; Liszkay, L.; Lotrus, P.; Muranaka, T.; Noel, C.; Pérez, P.; Pierret, O.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    Low energy positron beams are of major interest for fundamental science and materials science. IRFU has developed and built a slow positron source based on a compact, low energy (4.3 MeV) electron linac. The linac-based source will provide positrons for a magnetic storage trap and represents the first step of the GBAR experiment (Gravitational Behavior of Antimatter in Rest) recently approved by CERN for an installation in the Antiproton Decelerator hall. The installation built in Saclay will be described with its main characteristics. The ultimate target of the GBAR experiment will be briefly presented as well as the foreseen development of an industrial positron source dedicated for materials science laboratories.

  14. Assessment of Alternative RF Linac Structures for APT

    SciTech Connect

    1997-03-26

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturing schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties.

  15. Focusing solenoids for the HINS Linac front end

    SciTech Connect

    Terechkine, I.; Appollinari, G.; Di-Marco, J.; Huang, Y.; Orris, D.; Page, T.; Rabehl, R.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2008-10-01

    The low energy part of a linac for the High Intensity Neutrino Source (HINS) project at Fermilab will use superconducting solenoids as beam focusing elements (lenses). While the lenses for the conventional DTL-type accelerating section of the front end require individual cryostats, in the superconducting accelerating sections solenoids will be installed inside RF cryomodules. Some of the lenses in the conventional and in the superconducting sections are equipped with horizontal and vertical steering dipoles. Lenses for the DTL section are in the stage of production with certification activities ongoing at Fermilab. For the superconducting sections of the linac, a prototype lens has been built and tested. Each lens will be installed in the transport channel of the accelerator so that its magnetic axis is on the beamline. Corresponding technique has been developed at Fermilab and is used during the certification process. This report summarizes design features, parameters, and test results of the focusing lenses.

  16. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  17. Multi-beam RFQ linac structure for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Ishibashi, Takuya; Ito, Taku; Hattori, Toshiyuki

    2009-07-01

    Both the RF linear accelerator (linac) and the linear induction accelerator have been considered as injectors in a driver system for heavy ion fusion (HIF). In order to relax beam defocusing by space charge effect in the low-energy region, the accelerating beams that were merged and had their beam currents increased by the funnel tree system are injected into storage rings. A multi-beam linac that accelerates multiple beams in an accelerator cavity has the advantages of cost reduction and downsizing of the system. We modeled the multi-beam Interdigital-H type radio frequency quadruple (IH-RFQ) cavities with the different beam numbers and evaluated the electromagnetic characteristics by simulation. As a result, the reasonable ranges of their configuration were indicated for a practical use.

  18. Maximizing Number of Passes in Recirculating Energy Recovery Linacs

    NASA Astrophysics Data System (ADS)

    Bogacz, S. Alex

    2016-03-01

    The next generation of high energy recirculating linear accelerators (RLAs) will rely on the energy recovery (ER) process for their extreme high current operation. Here, we discuss optimum design of multi-pass linac optics for an RLA based on a large scale superconducting linac. Initial strategy used in the design of 60 GeV, 6 pass RLA for the LHeC, has been extended to 10 passes for the proposed CEBAF ER experiment. The presented optimization scheme addresses overall beam transport performance, as well as specific beam dynamics issues, such as, beam stability due to collective effects. Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

  19. Beam-based alignment measurements of the LANSCE linac

    SciTech Connect

    McCrady, R. C.; Rybarcyk, L. J.

    2004-01-01

    We have made measurements of the alignment of the Los Alamos Neutron Science Center (LANSCE) Drift Tube linac (DTL) and Side Coupled linac (SCL) using beam position measurements and analyzing them with linear models. In the DTL, we varied the injection steering and focusing lattice strengths, measured the beam position after each DTL tank, and analyzed the data with a linear model using R-matrices that were either computed by the Trace-3D computer program or extracted from analysis of the data. The analysis model allowed for tank-to-tank misalignments. The measurements were made similarly in the SCL, where the analysis model allowed for misalignments of each quadrupole doublet lens. We present here the analysis techniques and the resulting beam-based alignment measurements.

  20. Accelerator control system at KEKB and the linac

    NASA Astrophysics Data System (ADS)

    Akiyama, Atsuyoshi; Furukawa, Kazuro; Kadokura, Eiichi; Kurashina, Miho; Mikawa, Katsuhiko; Nakamura, Tatsuro; Odagiri, Jun-ichi; Satoh, Masanori; Suwada, Tsuyoshi

    2013-03-01

    KEKB has completed all of the technical milestones and has offered important insights into the flavor structure of elementary particles, especially CP violation. The accelerator control system at KEKB and the injector linac was initiated by a combination of scripting languages at the operation layer and EPICS (experimental physics and industrial control system) at the equipment layer. During the project, many features were implemented to achieve extreme performance from the machine. In particular, the online linkage to the accelerator simulation played an essential role. In order to further improve the reliability and flexibility, two major concepts were additionally introduced later in the project, namely, channel access everywhere and dual-tier controls. Based on the improved control system, a virtual accelerator concept was realized, allowing the single injector linac to serve as three separate injectors to KEKB's high-energy ring, low-energy ring, and Photon Factory, respectively. These control technologies are indispensable for future particle accelerators.

  1. Waveguide-coupled cavities for energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Nguyen, D. C.; Young, L. M.

    2004-08-01

    A novel scheme for energy recovery linacs used as FEL drivers is proposed. It consists of two parallel beam lines, one for electron beam acceleration and the other for the used beam that is bent after passing through a wiggler. The used beam is decelerated by the structure and feeds the cavity fields. The main feature of the scheme is that RF cavities are coupled with waveguides between these two linacs. The waveguide cut through the two beam pipes provides an efficient mechanism for energy transfer. The superconducting RF cavities in the two accelerators can be shaped differently, with an operating mode at the same frequency. This provides HOM detuning and therefore reduces the beam break-up effects. Another advantage of the proposed two-beam scheme is easy tuning of the cavity coupling by changing the waveguide length.

  2. Vacuum requirements for heavy ion recirculating induction linacs

    SciTech Connect

    Barnard, J.J.; Yu, S.S. ); Faltens, A. )

    1990-12-01

    We examine the requirements of the vacuum system for the LLNL/LBL recirculating induction linac concept. We reexamine processes, including beam stripping, background gas ionization, intra-beam charge exchange and desorption of gas molecules from the wall due to the incident ionized gas molecules and stripped ions, in the context of the proposed recirculator. We discuss implications for the vacuum system layout and estimate the cost of such a system. 18 refs., 2 figs., 1 tab.

  3. Beam based alignment of sector-1 of the SLC linac

    SciTech Connect

    Emma, P.

    1992-03-01

    A technique is described which uses the beam to simultaneously measure quadrupole magnet and beam position monitor (BPM) transverse misalignments. The technique is applied to sector-1 of the SLC linac where simultaneous acceleration of electron and positron beams with minimal steering elements and BPMs makes quadrupole alignment critical for high transmission of the large transverse emittance positron beam. Simulation results as well as measurements are presented.

  4. Literature Review on LINACs and FFAGs for Hadron Therapy

    NASA Astrophysics Data System (ADS)

    Verdú-Andrés, Silvia; Amaldi, Ugo; Faus-Golfe, Ángeles

    The document summarizes the recent papers, presentations and other public information on Radio-Frequency (RF) Linear Accelerators (linacs) and Fixed-Field Alternating-Gradient (FFAG) accelerators for hadron therapy. The main focus is on technical aspects of these accelerators. This report intends to provide a general overview of the state-of-the-art in those accelerators which could be used in short and middle-term for treating cancer.

  5. CERN's Linac4 H- sources: Status and operational results

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D.; Gil-Flores, J.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lehn, T.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Sanchez Alvarez, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Zelenski, A.

    2015-04-01

    Two volume sources equipped with DESY and CERN plasma generators and a low voltage electron dump were operated at 45 kV in the Linac4 tunnel and on a dedicated test stand. These volume sources delivered approximately 20 mA and ensured the commissioning of the Radio Frequency Quadrupole accelerator and of the first section of the Drift Tube Linac. CERN's prototype of a cesiated surface source equipped with this electron dump was operated continuously from November 2013 to April 2014 on the ion source test stand and is being commissioned in the Linac4 tunnel. Before cesiation, the prototype conditioned in volume mode provided up to 30 mA H- beam. Short cesiations, of the order of 10 mg effectively reduced the intensity of co-extracted electrons down to 2 - 8 times the H- current; this cesiated surface operation mode delivered up to 60 mA H- beam. An H- beam of the order of 40 mA was sustained up to four weeks operation with 500 μs pulses at 1.2s spacing. A new extraction was designed to match these beam properties. A copy of BNL's magnetron produced at CERN was tested at BNL and delivered at 40 kV H- beam exceeding Linac4's nominal intensity of 80 mA. In this contribution, the performances, dynamic response to cesiation, stability and availability of these prototypes are described. The needed optimization of the emittance of H- beam above 40 mA is presented, which requires an evolution of the front end that encompasses implementation of a large ceramic insulator.

  6. Simulation of waveguide FEL oscillator using RF linac

    SciTech Connect

    Kuruma, S.; Asakawa, M.; Imasaki, K.

    1995-12-31

    One dimensional multifrequency simulation code for waveguide mode FEL has been developed. Using this simulation code, we analyzed the spontaneous emission from electron micropulse from RF Linac. It is found that some parameters both high and low frequency waveguide modes are growing simultaneously, so the two radiation pulses are generated and amplified. And the experimental data for cavity length detuning of the radiation power are analyzed.

  7. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    NASA Astrophysics Data System (ADS)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  8. Ion sources for induction linac driven heavy ion fusion

    SciTech Connect

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented.

  9. Status and operation of the Linac4 ion source prototypes

    SciTech Connect

    Lettry, J. Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; O’Neil, M.; and others

    2014-02-15

    CERN's Linac4 45 kV H{sup −} ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H{sup −} beam of 16–22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  10. Commissioning the FELI linac and UV-FEL facility

    SciTech Connect

    Tomimasu, T.; Saeki, K.; Miyauchi, Y.

    1995-12-31

    The FELI 165-MeV linac and UV-FEL facility are in the commissioning, stage. A thermionic triode gun of the 6-MeV injector emits 500-ps pulses of 2.3A at 22.3125MHz. These pulses are compressed to 60AX 7ps by a 714-MHz prebuncher and a 2856-MHz buncher and seven ETL type accelerating waveguides with a length of 2.93m. The length of the linac including bending sections of two S-type BT systems for two undulators used for IR-FEL oscillations is 46m. The buncher and these accelerating waveguides are powered by two klystrons (E3729, 2856MHz, total 48MW, 24-{mu}s flat top long pulses). The flatness of our klystron modulator pulses is 0.067% at 24-{mu}s duration. An rf-ageing for new four accelerating waveguides will be started in May. An S-type BT line for 165-MeV beam from the linac will be installed in the end of April. A 2.68-m undulator ({lambda}u=4.0cm, N=67, Kmax gap length {ge}16mm) and an optical cavity (Lc=6.72m) will be installed early in July. The beam conditionings for UV-FEL experiments will be started in July.

  11. High-brightness beam diagnostics for the APS linac.

    SciTech Connect

    Lumpkin, A. H.

    1999-04-20

    The Advanced Photon Source (APS) injector includes an S-band linac with the capability to accelerate beams to 650 MeV. The linac has recently been upgraded with the installation of an rf thermionic gun in addition to the standard DC thermionic gun. The rf gun is predicted to have lower emittance (5{pi}mm mrad) and may be used to support the APS self-amplified spontaneous emission (SASE) experiments. The critical characterization of this gun's beam has begun with a beam diagnostics station at the end of the linac that can address beam transverse size, emittance, and bunch length (peak current). This station uses both an optical transition radiation (OTR) screen at 45{degree} to the beam direction and a Ce-doped YAG single crystal normal to the beam with a 45{degree} mirror behind it. The visible light images are detected by a Vicon CCD camera and a Hamamatsu C5680 synchroscan streak camera. Spatial resolution of about 30 {micro}m ({sigma}) and temporal resolution of 1 ps ({sigma}) have been demonstrated. Examples of rf gun beam characterization at 220 MeV are reported.

  12. Recent improvements to software used for optimization of SRF linacs

    SciTech Connect

    Powers, Tom J.

    2014-12-01

    This work describes a software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, where operation costs includes the cost of the electrical utilities but not the labor or other costs. The program includes estimates for the associated cryogenic facility, and controls hardware. The software interface provides the ability to vary the cost of the different aspects of the machine as well as to change the cryomodule and cavity types. Additionally, this work will describe the recent improvements to the software that allow one to estimate the costs of energy-recovery based linacs and to enter arbitrary values of the low field Q0 and Q0 slope. The initial goal when developing the software was to convert a spreadsheet format to a graphical interface and to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand tradeoffs. An example of how it was used to independently investigate cost optimization tradeoffs for the LCLS-II linac will also be presented.

  13. Reliability and availability studies in the RIA driver linac.

    SciTech Connect

    Lessner, E. S.; Ostroumov, P. N.; Physics

    2005-01-01

    The Rare Isotope Accelerator (RIA) facility will include various complex systems and must provide radioactive beams to many users simultaneously. The availability of radioactive beams for most experiments at the fully-commissioned facility should be as high as possible within design cost limitations. To make a realistic estimate of the achievable reliability a detailed analysis is required. The RIA driver linac is a complex machine containing a large number of superconducting (SC) resonators and capable of accelerating multiple-charge-state beams [1]. At the pre-CDR stage of the design it is essential to identify critical facility subsystem failures that can prevent the driver linac from operating. The reliability and availability of the driver linac were studied using expert information and data from operating machines such as ATLAS, APS, JLab, and LANL. Availability studies are performed with a Monte-Carlo simulation code previously applied to availability assessments of the NLC facility [2] and the results used to identify subsystem failures that most affect the availability and reliability of the RIA driver, and guide design iterations and component specifications to address identified problems.

  14. Status and operation of the Linac4 ion source prototypes

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.

    2014-02-01

    CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  15. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  16. A High Intensity Linac for the National Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Jason, A.; Bhatia, T.; Billen, J.; Schrage, D.; Kurennoy, S.; Krawczyk, F.; Lynch, M.; Nath, S.; Shafer, R.; Takeda, H.; Tallerico, P.; Wangler, T.; Wood, R.; Young, L.; Grand, P.; McKenzie-Wilson, R.

    1997-05-01

    The National Spallation Neutron Source to be constructed at Oak Ridge National Laboratory, requires a linac capable of delivering up to 5 MW of beam power to an accumulator ring with a nominal 6.2% duty factor and an energy of 1 GeV. Los Alamos, responsible for the linac design, has developed an appropriate room-temperature linac that consists of a drift-tube section from 2.5 to 20 MeV, a coupled-cavity drift-tube section to 100 MeV, and a coupled-cavity section to 1 GeV. The initial scenario requires an average 1.1-mA beam current with a corresponding 28 mA peak current and a 1.2-Mhz chopped time structure corresponding to the ring period. Upgrade to a 4.4 mA average current requires funneling with a peak current of 112 mA in the high-energy sections. Further parameters are presented along with beam dynamics and structure choices and mechanical and rf engineering considerations.

  17. ACCELERATORS: Emittance coupling driven by space charge in the CSNS linac

    NASA Astrophysics Data System (ADS)

    Yin, Xue-Jun; Fu, Shi-Nian; Peng, Jun

    2009-09-01

    In the conventional design of RF linacs, the bunched beams are not in thermal equilibrium. The space charge forces couple the particle motions between the transverse and the longitudinal directions. Furthermore it will cause the equipartitioning process which leads to emittance growth and halo formation. In the design of the China Spallation Neutron Source (CSNS) linac, three cases are investigated using the Hofmann stability charts. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac.

  18. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  19. Comparison of accelerating structures for the first cavity of the main part of the INR linac

    NASA Astrophysics Data System (ADS)

    Rybakov, I. V.; Kalinin, Y. Z.; Leontev, V. N.; Naboka, A. N.; Paramonov, V. V.; Serov, V. L.; Feschenko, A. V.

    2016-09-01

    For the beam power improvement of the hydrogen-ion INR linac replacement of the first four-section cavity in the main part of linac is required. Existent cavity is realized using DAW structure on 991 MHz operating frequency. The new cavity should at least not lose in parameters to the current structure and essential changes in other linac systems are not wish able. Parameters of accelerating structures possible for such application are compared.

  20. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  1. What's In a Proton?

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  2. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  3. What's In a Proton?

    SciTech Connect

    Brookhaven Lab

    2009-07-08

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  4. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  5. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  6. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. PMID:24074929

  7. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  8. TU-C-BRE-03: Aggregation of Linac Measurement Data

    SciTech Connect

    Kerns, J; Alvarez, P; Followill, D; Lowenstein, J; Molineu, A; Summers, P; Kry, S

    2014-06-15

    Purpose: Accurate data of linear accelerator radiation characteristics is important for treatment planning system commissioning as well as regular quality assurance of the machine. The RPC has performed site visits of numerous machines . Data gathered from Varian machines from the past 15 years are presented. The data collected can be used as a secondary check or when commissioning a new machine to verify that values are reasonable. Methods: Data from the past 15 years of RPC site visits was compiled and analyzed. Data was composed from measurements from approximately 400 Varian machines. Each dataset consists of several point measurements at various locations in a water phantom to measure percentage depth dose, output factors, including small MLC fields, off-axis factors, and wedge factors if applicable. Common statistical values are presented for each machine type. Where applicable, data was compared to other reference data given by the vendor or a select number of previous researchers. Results: Data is separated by energy and parameter and then analyzed by machine class. Data distributions of the parameter data were normal except occasionally at the tails. Distributions of the data for each class and parameter are tabulated to give not simply a singular reference value, but metrics about the distribution: 5th and 95th percentile values and the standard deviation as well as the median. Conclusion: The RPC has collected numerous data on Varian linacs and presented the finding of the past 15 years. The data can be used as a reference data set for physicists to compare against. A linac that deviates from the values does not necessarily indicate there is a problem as long as the treatment planning system correlates to the machine. Comparison of linac and treatment planning system data to external reference data can prevent serious treatment errors.

  9. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, P.

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  10. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, Pavel

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  11. Status of the Kansas State University superconducting linac project

    NASA Astrophysics Data System (ADS)

    Gray, Tom J.

    1986-05-01

    Funding for the construction of the superconducting linac at Kansas State University was approved by the Department of Energy on May 15, 1985. The project is funded out of the Division of Chemical Sciences, USDOE. Initial design and staff technical training was initiated during 1984-85 with laboratory personnel working at both Florida State University and Argonne National Laboratory. The linac under construction is based upon the Nb split-ring resonator technology developed at Argonne National Laboratory for ATLAS. The linac at Kansas State University will have 14 superconducting resonators with nine low-β (β=0.06) and five high-β (β=0.105) units operating at 97 MHz. Work has progressed on both of the single-resonator cryostats for time bunching and energy rebunching, respectively, with the major cryostat components presently under construction by C. E. Raymond Enterprise Manufacturing, a division of Combustion Engineering, with scheduled delivery of the single resonator cryostat vacuum housings, LN2-cooled heat shields, and LHe Dewars on January 17, 1986. Orders for all Nb-clad Cu resonators have been placed with Argonne National Laboratory and two low-β units are currently under construction. Requests for quotations for a 300-W LHe refrigerator (expandable to 500 W) 1000-l storage Dewar and LHe distribution system have been issued. The building addition which includes a new accelerator/experimental hall (˜6000 ft2 basement structure) and ground-level laboratory support space including additional experimental setup space, additional machine shop space, and mechanical equipment space, is currently under construction with a completion date scheduled for May 1986. Additional personnel training on LHe refrigeration systems is scheduled for January 1986, at the Texas Accelerator Center and at Florida State University.

  12. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    SciTech Connect

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  13. Dedicated Linac for Radioneurosurgery at the National Institute of Neurology and Neurosurgery of Mexico

    NASA Astrophysics Data System (ADS)

    Celis-López, Miguel A.; Lárraga-Gutiérrez, José M.

    2003-09-01

    The objective is to present a description and the main clinical applications of this dedicated Linac for benign and malignant tumors in the central nervous system. The Novalis (BrainLab, Germany) is a 6 MV dedicated linac for a single high dose Radiosurgery (RS) and for fractionated doses in Stereotactic Radiotherapy with a high level of precision at the isocenter.

  14. Noncoplanarity effects in proton-proton bremsstrahlung

    SciTech Connect

    Li, Y.; Liou, M.K.; Timmermans, R.; Gibson, B.F.

    1998-10-01

    Noncoplanarity in proton-proton bremsstrahlung is investigated. Significant effects are observed for certain photon polar angles, {psi}{sub {gamma}}. Such noncoplanarity effects, not of dynamical origin, are possibly responsible for past disagreements between theory and experiment. The Harvard noncoplanar coordinate system, which avoids kinematic singularities in the cross section, is used in our calculations and is recommended for use in the analysis of experimental data. Alternative methods of presenting cross sections are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  15. Neutron Spectra and H*(10) in a 15 MV Linac

    SciTech Connect

    Benites, J.; Vega-Carrillo, H. R.; Hernandez-Davila, V. M.; Rivera, T.; Carrillo, A.; Mondragon, R.

    2010-12-07

    Neutron spectra and the ambient dose equivalent were calculated inside the bunker of a 15 MV Varian linac model CLINAC iX. Calculations were carried out using Monte Carlo methods. Neutron spectra in the vicinity of isocentre show the presence of evaporation and knock-on neutrons produced by the source term, while epithermal and thermal neutron remain constant regardless the distance respect to isocentre, due to room return. Along the maze neutron spectra becomes softer as the detector moves along the maze. The ambient dose equivalent is decreased but do not follow the 1/r{sup 2} rule due to changes in the neutron spectra.

  16. Rf breakdown studies in copper electron linac structures

    SciTech Connect

    Wang, J.W.; Loew, G.A.

    1989-03-01

    This paper presents a summary of rf breakdown-limited electric fields observed in experimental linac structures at SLAC and a discussion of how these experiments can be interpreted against the background of existing, yet incomplete, theories. The motivation of these studies, begun in 1984, is to determine the maximum accelerating field gradients that might be used safely in future e/sup /+-// colliders, to contribute to the basic understanding of the rf breakdown mechanism, and to discover if a special surface treatment might make it possible to supersede the field limits presently reachable in room temperature copper structures. 6 refs., 4 figs., 1 tab.

  17. AMPERE AVERAGE CURRENT PHOTOINJECTOR AND ENERGY RECOVERY LINAC.

    SciTech Connect

    BEN-ZVI,I.; BURRILL,A.; CALAGA,R.; ET AL.

    2004-08-17

    High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. We describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode, an accelerator cavity, both capable of producing of the order of one ampere average current and plans for an ERL based on these units.

  18. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  19. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  20. The Development of the Linac Coherent Light Source RF Gun

    SciTech Connect

    Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

    2008-09-24

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  1. OPERATIONAL ASPECTS OF HIGH POWER ENERGY RECOVERY LINACS

    SciTech Connect

    Stephen Benson; David Douglas; Pavel Evtushenko; Kevin Jordan; George Neil; Paul Powers

    2006-08-21

    We have been operating a high-power energy-recovery linac (ERL) at Jefferson Lab for several years. In the process we have learned quite a bit about both technical and physics limitations in high power ERLs. Several groups are now considering new ERLs that greatly increase either the energy, the current or both. We will present some of our findings on what to consider when designing, building, and operating a high power ERL. Our remarks for this paper are limited to lattice design and setup, magnets, vacuum chamber design, diagnostics, and beam stability.

  2. Optical laser systems at the Linac Coherent Light Source

    PubMed Central

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R.

    2015-01-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS. PMID:25931064

  3. Neutron Spectra and H*(10) in a 15 MV Linac

    NASA Astrophysics Data System (ADS)

    Benites, J.; Vega-Carrillo, H. R.; Hernandez-Davila, V. M.; Rivera, T.; Carrillo, A.; Mondragon, R.

    2010-12-01

    Neutron spectra and the ambient dose equivalent were calculated inside the bunker of a 15 MV Varian linac model CLINAC iX. Calculations were carried out using Monte Carlo methods. Neutron spectra in the vicinity of isocentre show the presence of evaporation and knock-on neutrons produced by the source term, while epithermal and thermal neutron remain constant regardless the distance respect to isocentre, due to room return. Along the maze neutron spectra becomes softer as the detector moves along the maze. The ambient dose equivalent is decreased but do not follow the 1/r2 rule due to changes in the neutron spectra.

  4. Stability Study of ATF 80MeV Injector Linac

    SciTech Connect

    McCormick, Douglas

    2003-06-09

    A beam stability test was carried out at ATF 80 MeV injector linac. The test was performed by taking data of each monitor in pulse to pulse base. A data acquisition system which consists of a PC and a GPIB network was used for the test. In order to analyze the data, ''Correlation Plot'' method is used which is effective to find out some source of the observed beam fluctuation. This paper describes the result of the stability measurement and the comparison between ATF injector and SLC injector.

  5. A microwave power driver for linac colliders: Gigatron

    SciTech Connect

    Bizek, H.M.; Elliott, S.M.; McIntyre, P.M.; Nassiri, A.; Popovic, M.B.; Raparia, D.; Gray, H.F. . Dept. of Physics; Naval Research Lab., Washington, DC )

    1988-11-18

    The gigatron is a new rf amplifier tube designed for linac collider applications. Three design features permit extension of the lasertron concept to very high frequencies. First, a gated field-emitter array is employed for the modulated cathode. Second, a ribbon beam geometry mitigates space charge depression and facilitates efficient output coupling. Third, a traveling wave output coupler is used to obtain optimum coupling to the ribbon beam. This paper describes recent developments in the gigatron design, and progress towards experimental tests. 9 refs., 8 figs., 1 tab.

  6. Analysis of beam loss mechanism in the Project X linac

    SciTech Connect

    Carneiro, J.-P.; Lebedev, V.; Nagaitsev, S.; Ostiguy, J.-F.; Solyak, N.; /Fermilab

    2011-03-01

    Minimization of the beam losses in a multi-MW H{sup -} linac such as ProjectX to a level below 1 W/m is a challenging task. The impact of different mechanism of beam stripping, including stripping in electric and magnetic fields, residual gas, blackbody radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignements of beamline elements and errors in RF fields and phases. We present in this paper requirements for dynamic errors and correction schemes to keep beam losses under control.

  7. Optical laser systems at the Linac Coherent Light Source.

    PubMed

    Minitti, Michael P; Robinson, Joseph S; Coffee, Ryan N; Edstrom, Steve; Gilevich, Sasha; Glownia, James M; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E; Fry, Alan R

    2015-05-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump-probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump-probe experiments to be performed at LCLS.

  8. Beam dynamics verification in linacs of linear colliders

    SciTech Connect

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs.

  9. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  10. Overview and Status Update of the Fermilab HINS Linac R&D Program

    SciTech Connect

    Webber, R.C.; Apollinari, G.; /Fermilab

    2009-05-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is continuing efforts to construct a first-of-a-kind superconducting H{sup -} linac. The goal of the HINS linac is to demonstrate, for the first time, acceleration of high intensity beam with superconducting spoke cavities, control of beam halo growth by use of solenoidal focusing optics throughout, and operation of many cavities from a single high-power RF source for acceleration of non-relativistic particles. The HINS effort is relevant to any future high brightness, high intensity linac and, in particular, to the linac proposed as part of Fermilab Project X to serve the next generation of neutrino physics and future muon storage ring/collider experiments. This paper updates the technical status of the various components being developed, built, and commissioned as a part of HINS and presents the outlook for the HINS program.

  11. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  12. Time-resolved imaging for the APS linac beams.

    SciTech Connect

    Lumpkin, A. H.

    1998-09-29

    The particle-beam imaging diagnostics for the Advanced Photon Source (APS) injector lime have been enhanced by the installation of optical transition radiation (OTR) screens and the use of Ce-doped YAG crystals as beam profile monitors. Both converters have improved spatial resolution and time responses compared to the standard Chromox (Al{sub 2}O{sub 3}:Cr) screens used elsewhere in the linac. These enhancements allow us to address the smaller beam sizes (< 100 {micro}m) and the critical micropulse bunch length of higher brightness gun sources For the Linac macropulse of 30-ns duration composed of 86 micropulses at S-band frequency intervals, only the OTR mechanism is prompt enough to separate individual micropulses and to allow streak camera measurements of the micropulse averaged bunch length. Tests have been performed at 400 to 625 MeV using the gated DC thermionic gun source. Beam sizes less than {sigma}{sub x} = 30 {micro}m have been observed with a micropulse bunch length of {sigma} = 2-3 ps using OTR. First results on the lower-emittance rf thermionic gun are briefly discussed.

  13. Remarks on the concept of dispersion in a curved linac

    SciTech Connect

    Ostiguy, Jean-Francois; /Fermilab

    2009-01-01

    A next-generation linear collider is expected to span tens of kilometers in length. For various reasons, it may be desirable to house such an accelerator in a tunnel that follows the earth's curvature rather that in a 'laser-straight' tunnel. One side effect of opting for a curved linac is the introduction of vertical dispersion. In recent years, much work has been dedicated to understand and evaluate the impact of the presence of dispersion on emittance preservation. While performing simulations with our in-house code (CHEF) we observed a discrepancy between the dispersion function it produces and that computed using other codes in use within the accelerator community. Understanding the origin and the meaning of this discrepancy required a re-examination of the meaning of the concept of dispersion in the context of a linac. The object of this note is to document our findings. We establish that the default dispersion algorithm used by CHEF corresponds to a different, and ultimately more appropriate, definition of the dispersion in presence of acceleration. Not surprisingly, a consistent definition of dispersion restores agreement between codes.

  14. Neutron multiplicity measurements during LINAC interrogation of safeguards accountable material

    SciTech Connect

    Brunson, G.S.; Coop, K.L.

    1988-07-01

    The authors used a LINAC to interrogate some arbitrary sample arrays to learn if enriched uranium can be detected when it is embedded in depleted uranium and /sup 6/LiD. Whether the interrogation is by bremsstrahlung or photoneutrons, the interrogating pulse causes fission in any uranium present, leaving delayed neutron precursors embedded wherever fissions have occurred. In the interval between LINAC pulses, we detected neutron multiplicities arising from /sup 235/U fissions caused by delayed neutrons. Because almost all delayed neutrons have energies below the fission threshold of /sup 238/U, a negligible number of fissions occur if /sup 235/U is not present in quantity. We are able to detect a 1-kg cylinder of enriched uranium metal behind approx. 2.3 cm of depleted uranium metal and approx. 2.9 cm of /sup 6/LiD. For this configuration, the threshold for detecting /sup 235/U is approx. 1/3 kg. The results are sensitive to the shape of the uranium sample.

  15. CABOTO, a high-gradient linac for hadrontherapy

    PubMed Central

    Verdú-Andrés, Silvia; Amaldi, Ugo; Faus-Golfe, Ángeles

    2013-01-01

    The field of hadrontherapy has grown rapidly in recent years. At present the therapeutic beam is provided by a cyclotron or a synchrotron, but neither cyclotrons nor synchrotrons present the best performances for hadrontherapy. The new generation of accelerators for hadrontherapy should allow fast active energy modulation and have a high repetition rate, so that moving organs can be appropriately treated in a reasonable time. In addition, a reduction of the dimensions and cost of the accelerators for hadrontherapy would make the acquisition and operation of a hadrontherapy facility more affordable, which would translate into great benefits for the potential hadrontherapy patients. The ‘cyclinac’, an accelerator concept that combines a cyclotron with a high-frequency linear accelerator (linac), is a fast-cycling machine specifically conceived to allow for fast active energy modulation. The present paper focuses on CABOTO (CArbon BOoster for Therapy in Oncology), a compact, efficient high-frequency linac that can accelerate C6+ ions and H2 molecules from 150–410 MeV/u in ∼24 m. The paper presents the latest design of CABOTO and discusses its performances. PMID:23824121

  16. RF system considerations for large high-duty-factor linacs

    SciTech Connect

    Lynch, M.T.; Ziomek, C.D.; Tallerico, P.J.; Regan, A.H.; Eaton, L.; Lawrence, G.

    1994-09-01

    RF systems are often a major cost item for linacs, but this is especially true for large high-duty-factor linacs (up to and including CW) such as the Accelerator for Production of Tritium (APT) or the Accelerator for Transmutation of nuclear Waste (ATW). In addition, the high energy and high average beam current of these machines (approximately 1 GeV, 100--200 mA) leads to a need for excellent control of the accelerating fields in order to minimize the possibility of beam loss in the accelerator and the resulting activation. This paper will address the key considerations and limitations in the design of the RF system. These considerations impact the design of both the high power RF components and the RF controls. As might be expected, the two concerns sometimes lead to conflicting design requirements. For example minimum RF operating costs lead to a desire for operation near saturation of the high power RF generators in order to maximize the operating efficiency. Optimal control of the RF fields leads to a desire for maximum overdrive capability in those same generators in order to respond quickly to disturbances of the accelerator fields.

  17. 400 MeV upgrade for the Fermilab linac

    SciTech Connect

    MacLachlan, J.A.

    1989-03-24

    Fermilab has plans for a comprehensive accelerator upgrade to open new possibilities for both the fixed target and collider experimental programs. An early step in this program is to increase the energy of the linac from 200 to 400 MeV by replacing the last four of its nine 201 MHz Alvarez tanks with twenty-eight 805 MHz side-coupled cavity chains operating at about 8 MV/m average axial field. The principal purpose is to reduce the incoherent spacecharge tuneshift at injection into the Booster which currently limits both the brightness of the beam, an important determinant of collider luminosity, and total intensity to produce both the antiprotons for the collider and the beams to fixed target experimental areas. Other consequences of higher Booster injection energy expected to contribute to some degree of higher intensity limits and improved operational characteristics include improved quality of the guide field at injection, reduced frequency swing for the rf systems, and smaller emittance for the injected beam. The linac upgrade project has moved from a 1986 study through a development project including structure models and numerical studies to a full-feature module prototyping starting this year.

  18. Linac cryogenic distribution system maintenance and upgrades at Jlab

    SciTech Connect

    Dixon, Kelly D.; Wright, Mathew C.; Ganni, Venkatarao

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  19. Linac cryogenic distribution system maintenance and upgrades at JLab

    SciTech Connect

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-29

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  20. Linac Alignment Algorithm: Analysis on 1-to-1 Steering

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In a linear accelerator, it is important to achieve a good alignment between all of its components (such as quadrupoles, RF cavities, beam position monitors et al.), in order to better preserve the beam quality during acceleration. After the survey of the main linac components, there are several beam-based alignment (BBA) techniques to be applied, to further optimize the beam trajectory and calculate the corresponding steering magnets strength. Among these techniques the most simple and straightforward one is the one-to-one (1-to-1) steering technique, which steers the beam from quad center to center, and removes the betatron oscillation from quad focusing. For a future linear collider such as the International Linear Collider (ILC), the initial beam emittance is very small in the vertical plane (flat beam with {gamma}{epsilon}{sub y} = 20-40nm), which means the alignment requirement is very tight. In this note, we evaluate the emittance growth with one-to-one correction algorithm employed, both analytically and numerically. Then the ILC main linac accelerator is taken as an example to compare the vertical emittance growth after 1-to-1 steering, both from analytical formulae and multi-particle tracking simulation. It is demonstrated that the estimated emittance growth from the derived formulae agrees well with the results from numerical simulation, with and without acceleration, respectively.

  1. A Mini Linac Based Positron Source at CEA-Saclay

    SciTech Connect

    Debu, P.; Perez, P.; Rey, J.-M.; Sacquin, Y.; Blideanu, V.; Curtoni, A.; Delferriere, O.; Dupre, P.; Muranaka, T.; Ruiz, N.

    2009-09-02

    We are installing at CEA-Saclay a demonstration setup for an intense positron source. It is based on a compact 5.5 MeV electron linac used to produce positrons via pair production on a tungsten target. A relatively high current of 0.15 mA compensates for low positron efficiencies at low energy, which is below the neutron activation threshold. The expected production rate is 5centre dot10{sup 11} fast positrons per second. A set of coils is arranged to select the fast positrons from the diffracted electron beam in order to study the possibility of using a rare gas cryogenic moderator away from the main flux of particles. The commissioning of the linac is under way. This setup is part of a project to demonstrate the feasibility of an experiment to produce the H{sup +} ions for a free fall measurement of neutral antihydrogen (H). Its small size and cost could be of interest for material science applications, after adaptation of the time structure.

  2. Recirculating Linac Acceleration - End-to-End Simulation

    SciTech Connect

    Alex Bogacz

    2010-03-01

    A conceptual design of a high-pass-number Recirculating Linear Accelerator (RLA) for muons is presented. The scheme involves three superconducting linacs (201 MHz): a single pass linear Pre-accelerator followed by a pair multi-pass (4.5-pass) 'Dogbone' RLAs. Acceleration starts after ionization cooling at 220 MeV/c and proceeds to 12.6 GeV. The Pre-accelerator captures a large muon phase space and accelerates muons to relativistic energies, while adiabatically decreasing the phase-space volume, so that effective acceleration in the RLA is possible. The RLA further compresses and shapes up the longitudinal and transverse phase-spaces, while increasing the energy. Appropriate choice of multi-pass linac optics based on FODO focusing assures large number of passes in the RLA. The proposed 'Dogbone' configuration facilitates simultaneous acceleration of both mu± species through the requirement of mirror symmetric optics of the return 'droplet' arcs. Finally, presented end-to-end simulation validates the efficiency and acceptance of the accelerator system.

  3. Design of two-beam-type IH-RFQ linac

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2009-07-01

    In order to obtain high-intensity ion beams from a linear accelerator (linac) in a stable manner, it is necessary to suppress the defocusing force due to the space charge effect. The defocusing force is extremely strong in low-energy and high-intensity beams. Therefore, high-intensity ion beam acceleration in the low-energy region is one of the most difficult conditions to achieve. One solution is to suppress the defocusing force by dividing the high-intensity beam into several beams. Thus, a multibeam Interdigital-H (IH)-type Radio Frequency Quadrupole (IH-RFQ) linac has been proposed for a heavy ion inertial fusion (HIF) injector system. In particular, we have been developing a two-beam-type IH-RFQ cavity as a prototype of the multibeam-type IH-RFQ. This prototype has the capability of accelerating charged particles to a mass ratio ( q/ A) greater than {1}/{6} from 5 up to 60 keV/u. In the design, the expected total output current is about 87 mA for the total input beam current of 120 mA.

  4. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect

    Tennant, Chris

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity's Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  5. Control of beam dynamics in high energy induction linacs

    SciTech Connect

    Caporaso, G.J.

    1986-07-29

    The Advent of laser-ion-guiding in the Advanced test Accelerator along with the development of accelerator cavities optimized with respect to beam breakup coupling impedence now make it possible to consider a new class of high current, high emergy linear induction accelerators. The control of the beam breakup and other instabilities by laser guiding and by various magnetic focusing schemes will be discussed along with the scaling laws for the design of such machines to minimize the growth of the beam breakup instability. Many linacs, particularly induction linacs are limited in performance by the beam breakup (BBU) instability. The instability is found in two forms. In the first form the accelerating cavities communicate with one another through interaction with the beam and through propagation of cavity fields through the accelerator structure. In the second form which is the more virulent of the two, the cavities couple to each other only through their interactions with the beam. It is this second form of PPU that will be discussed in this paper.

  6. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  7. Dosimetric algorithm to reproduce isodose curves obtained from a LINAC.

    PubMed

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  8. Beam Position-Phase Monitors for SNS Linac

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    Electromagnetic modeling with MAFIA of the combined beam position-phase monitors (BPPMs) for the Spallation Neutron Source (SNS) linac has been performed. Time-domain 3-D simulations are used to compute the signal amplitudes and phases on the BPPM electrodes for a given processing frequency, 402.5 MHz or 805 MHz, as functions of the beam transverse position. Working with a summed signal from all the BPPM electrodes provides a good way to measure accurately the beam phase. While for an off-axis beam the signal phases on the individual electrodes can differ from those for a centered beam by a few degrees, the phase of the summed signal is found to be independent of the beam transverse position inside the device. Based on the analysis results, an optimal BPPM design with 4 one-end-shorted 60-degree electrodes has been chosen. It provides a good linearity and sufficient signal power for both position and phase measurements, while satisfying the linac geometrical constrains and mechanical requirements.

  9. Dosimetric Algorithm to Reproduce Isodose Curves Obtained from a LINAC

    PubMed Central

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  10. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    SciTech Connect

    Limborg-Deprey, C.; Emma, P.; /SLAC

    2006-03-17

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10-ps long electron bunches of 1 nC with a normalized projected transverse emittance smaller than 1.2 mm-mrad at 135 MeV. Tolerances and regulation requirements are tight for this tuning. Half of the total emittance at the end of the injector comes from the ''cathode emittance'' which is 0.7 mm-mrad for our nominal 1nC tuning. As the ''cathode emittance'' scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2 nC charge, we believe we can achieve an emittance closer to 0.4 mm-mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the 1 nC case. In the second half of this paper, we discuss optimum laser pulse shapes. We demonstrate that the benefits of the ellipsoidal shapes seem to be important enough so that serious investigations should be carried out in the production of such pulses.

  11. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    SciTech Connect

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander; Sheffield, Richard L.

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  12. The Schwarzschild Proton

    SciTech Connect

    Haramein, Nassim

    2010-11-24

    We review our model of a proton that obeys the Schwarzschild condition. We find that only a very small percentage ({approx}10{sup -39}%) of the vacuum fluctuations available within a proton volume need be cohered and converted to mass-energy in order for the proton to meet the Schwarzschild condition. This proportion is equivalent to that between gravitation and the strong force where gravitation is thought to be {approx}10{sup -38} to 10{sup -40} weaker than the strong force. Gravitational attraction between two contiguous Schwarzschild protons can accommodate both nucleon and quark confinement. We calculate that two contiguous Schwarzschild protons would rotate at c and have a period of 10{sup -23} s and a frequency of 10{sup 22} Hz which is characteristic of the strong force interaction time and a close approximation of the gamma emission typically associated with nuclear decay. We include a scaling law and find that the Schwarzschild proton data point lies near the least squares trend line for organized matter. Using a semi-classical model, we find that a proton charge orbiting at a proton radius at c generates a good approximation to the measured anomalous magnetic moment.

  13. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  14. Viscous liquid barrier demonstration at the Brookhaven National Laboratory Linac Isotope Producer

    SciTech Connect

    HEISER,J.H.; SULLIVAN,T.; LUDEWIG,H.; BROWER,J.; NORTH-ABBOTT,M.; MANCHESTER,K.; ZALUSKI,M.; PENNY,G.

    2000-02-27

    Groundwater monitoring has detected tritium ({sup 3}H) and {sup 22}Na contamination down gradient from the Brookhaven LINAC Isotope Producer (BLIP), located at Brookhaven National Laboratory (BNL). Site characterization studies indicate that the BLIP is the source of contamination. The highest measured values for {sup 3}H were 52,400 pCi/L recorded less than 100 feet south (down gradient) of the BLIP facility. The BLIP produces radioisotopes that are crucial in nuclear medicine for both research and clinical use. The BLIP also supports research on diagnostic and therapeutic radiopharmaceuticals. During operation a proton beam impinges a target (typically salts encapsulated in stainless steel) to produce the required radioisotopes. The proton beam is completely absorbed prior to reaching the soils surrounding the target shaft. However, secondary neutrons are produced that reach the soil causing activation products to form. Among the longer-lived isotopes of concern are tritium and {sup 22}Na. Both of these isotopes have the potential to negatively impact the groundwater below the BLIP. Several corrective actions have been implemented at the BLIP facility in response to tritium detection in the groundwater. The first actions were to improve surface water management (e.g. storm water down spouts) and the installation of a gunite cap around the BLIP facility. These measures are designed to minimize water flow through the activated soils in the vicinity of BLIP. In conjunction with these improvements, BNL is installing a close-proximity subsurface barrier in the activated soils beneath the BLIP facility. The barrier will prevent water migration through the activated soil zone as well as prevent activation product migration out of the zone. To minimize impacts on the operation of the BLIP requires in-situ barrier installation using low energy techniques that will not disturb the alignment of the BLIP or nearby accelerator beams. BNL chose an innovative barrier technology

  15. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  16. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  17. Medical Applications: Proton Radiotherapy

    NASA Astrophysics Data System (ADS)

    Keppel, Cynthia

    2009-05-01

    Proton therapy is a highly advanced and precise form of radiation treatment for cancer. Due to the characteristic Bragg peak associated with ion energy deposition, proton therapy provides the radiation oncologist with an improved method of treatment localization within a patient, as compared with conventional radiation therapy using X-rays or electrons. Controlling disease and minimizing side effects are the twin aims of radiation treatment. Proton beams enhance the opportunity for both by facilitating maximal dose to tumor and minimal dose to surrounding tissue. In the United States, five proton radiotherapy centers currently treat cancer patients, with more in the construction phase. New facilities and enabling technologies abound. An overview of the treatment modality generally, as well as of the capabilities and research planned for the field and for the Hampton University Proton Therapy Institute in particular, will be presented.

  18. Single Spoke Cavities for Low-energy Part of CW Linac of Project X.

    SciTech Connect

    Gonin, Ivan; Champion, Mark; Khabiboulline, Timergali; Lunin, Andrei; Perunov, Nikolay; Solyak, Nikolay; Yakovlev, Vyacheslav; /Fermilab

    2010-05-01

    In the low-energy part of the Project X H-linac three families of 325 MHz SC single spoke cavities will be used, having {beta} = 0.11, 0.21 and 0.4. Single spoke cavity was selected for the linac because of higher r/Q. Results of optimization of all cavities are presented. Results of the beam dynamics optimization for initial stage of the linac with beta=0.11 single spoke cavity are presented at poster MOPEC082 (this conference).

  19. STATUS OF R AND D ENERGY RECOVERY LINAC AT BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect

    LITVINENKO,V.; BEN-ZVI, I.; ALDUINO, J.M.; BARTON, D.S.; BEAVIS, D.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    In this paper we present status and plans for the 20-MeV R&D energy recovery linac (ERL), which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in early 2009, aims to address many outstanding questions relevant for high current, high brightness energy recovery linacs.

  20. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, A.; Lunin, A.; Yakovlev, V.; Gonin, I.; Khabiboulline, T.; Saini, A.; Solyak, N.; Yostrikov, A.

    2012-09-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  1. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  2. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  3. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed. PMID:22380224

  4. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe

    SciTech Connect

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Stoeri, H.

    2012-02-15

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H{sup -} volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e{sup -} and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H{sup -} ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H{sup -} ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  5. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  6. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  7. Improved temperature regulation of APS linac RF components.

    SciTech Connect

    Dortwegt, R.

    1998-09-21

    The temperature of the APS S-Band linac's high-power rf components is regulated by water from individual closed-loop deionized (DI) water systems. The rf components are all made of oxygen-free high-conductivity copper and respond quickly to temperature changes. The SLED cavities are especially temperature-sensitive and cause beam energy instabilities when the temperature is not well regulated. Temperature regulation better than {+-} 0.1 F is required to achieve good energy stability. Improvements in the closed-loop water systems have enabled them to achieve a regulation of {+-} 0.05 F over long periods. Regulation philosophy and equipment are discussed and numerical results are presented.

  8. Design study of the SSC-LINAC re-buncher

    NASA Astrophysics Data System (ADS)

    Sun, Lie-Peng; Zhao, Hong-Wei; Sun, Zhou-Ping; He, Yuan; Shi, Ai-Min; Xiao, Chen; Du, Xiao-Nan; Zhang, Cong; Zhang, Zhou-Li

    2013-02-01

    A re-buncher with spiral arms for a heavy ion linear accelerator named as SSC-LINAC at HIRFL (the heavy ion research facility of Lanzhou) has been constructed. The re-buncher, which is used for beam longitudinal modulation and matching between the RFQ and DTL, is designed to be operated in continuous wave (CW) mode at the Medium-Energy Beam-Transport (MEBT) line to maintain the beam intensity and quality. Because of the longitudinal space limitation, the re-buncher has to be very compact and will be built with four gaps. We determined the key parameters of the re-buncher cavity from the simulations using Microwave Studio software, such as the resonant frequency, the quality factor Q and the shunt impedance. The detailed design of a 53.667 MHz spiral cavity and measurement results of its prototype will be presented.

  9. Thermal analysis of DTL in the SSC-LINAC

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Yuan, Ping; He, Yuan; Ma, Li-Zhen; Zhang, Xiao-Qi; Wu, Wei; Yang, Ya-Qing

    2011-10-01

    A linear accelerator as a new injector for the Separated Sector Cyclotron at the Heavy Ion Research Facility of LAN Zhou is being designed. The Drift-Tube-Linac (DTL) has been designed to accelerate 238U34+ from 0.140 MeV/u to 0.97 MeV/u [1]. The 3D finite element analysis of thermal behavior is presented in this paper. During operation, the cavity will produce Joule heat. The cavity will not work normally due to the high temperature and thermal deformation will lead to frequency drift. So it is necessary to perform thermal analysis to ensure the correct working temperature is used. The result of the analysis shows that after the water cooling system is put into the cavity the temperature rise is about 20 degrees and the frequency drift is about 0.15%.

  10. Linac Coherent Light Source: The first five years

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph; Boutet, Sébastien; Fritz, David M.; Huang, Zhirong; Lee, Hae Ja; Lemke, Henrik T.; Robert, Aymeric; Schlotter, William F.; Turner, Joshua J.; Williams, Garth J.

    2016-01-01

    A new scientific frontier opened in 2009 with the start of operations of the world's first x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), at SLAC National Accelerator Laboratory. LCLS provides femtosecond pulses of x rays (270 eV to 11.2 keV) with very high peak brightness to access new domains of ultrafast x-ray science. This article presents the fundamental FEL physics and outlines the LCLS source characteristics along with the experimental challenges, strategies, and instrumentation that accompany this novel type of x-ray source. The main part of the article reviews the scientific achievements since the inception of LCLS in the five primary areas it serves: atomic, molecular, and optical physics; condensed matter physics; matter in extreme conditions; chemistry and soft matter, and biology.

  11. Beam transport for an SRF recirculating-linac FEL

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.

    1995-12-31

    The beam transport system for the CEBAF UV Demo FEL includes a two-pan transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that contact we discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tuneable, nearly-isochronous, large-momentum-acceptance import systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Issues such as injection and final energies, number of passes, linac focusing effects, beam separation, chronicity management, and stability constraints are critical. Various possible designs are discussed. Particle tracking results exploring the design options are also reported.

  12. Energy recovery linacs in high-energy and nuclear physics

    SciTech Connect

    I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

    2005-03-01

    Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

  13. Ampere Average Current Photoinjector and Energy Recovery Linac

    SciTech Connect

    Ilan Ben-Zvi; A. Burrill; R. Calaga; P. Cameron; X. Chang; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; A. Nicoletti; J. Rank; T. Roser; J. Scaduto; K. Smith; T. Srinivasan-Rao; K.-C. Wu; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode, as demonstrated by the spectacular success of the Jefferson Laboratory IR-Demo. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for a different application, that of electron cooling of high-energy hadron beams. I will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode and an accelerator cavity, both capable of producing of the order of one ampere average current.

  14. Nuclear structure and depletion of nuclear isomers using electron linacs

    SciTech Connect

    Carroll, J. J.; Litz, M. S.; Henriquez, S. L.; Burns, D. A.; Netherton, K. A.; Pereira, N. R.; Karamian, S. A.

    2013-04-19

    Long-lived nuclear excited states (isomers) have proven important to understanding nuclear structure. With some isomers having half-lives of decades or longer, and intrinsic energy densities reaching 10{sup 12} J/kg, they have also been suggested for a wide range of applications. The ability to effectively transfer a population of nuclei from an isomer to shorter-lived levels will determine the feasibility of any applications. Here is described a first demonstration of the induced depletion of a population of the 438 year isomer of {sup 108}Ag to its 2.38 min ground state, using 6 MeV bremsstrahlung from a modified medical electron linac. The experiment suggests refinements to be implemented in the future and how a similar approach might be applied to study induced depletion of the 1200 year isomer of {sup 166}Ho.

  15. Ion optics of the Linac--LEB transfer line

    SciTech Connect

    Bhandari, R.K.; Penner, S.

    1990-12-01

    This report describes the ion optical properties of a proposed transfer line to inject a nominal 25 mA H{sup {minus}} beam at 600 MeV from the Linac into the Low Energy Booster (LEB) synchrotron. Ion optical investigations have been carried out in detail using the TRANSPORT, TURTLE and TRACE 3-D codes. The calculations take account of linear space charge effects of up to 50 mA average beam current. These effects have been found to be quite appreciable, especially on the longitudinal phase space. Procedure for their evaluation and optimization are described. Effects of some imperfections in the beam line magnets have been studied. 6 refs., 19 figs., 4 tabs.

  16. Phase Noise Measurement in PEP II and the Linac

    SciTech Connect

    Getaneh, Mesfin

    2003-09-05

    The Goal of this project is to provide a measurement of the phase of the radio frequency (RF) relative to electron beam traveling down the Stanford Linear Accelerator Center (SLAC). Because the Main Drive Line (MDL) supplies the RF drive and phase reference for the entire accelerator system, the phase accuracy and amount of phase noise present in the MDL are very critical to the functionality of the accelerator. Therefore, a Phase Noise Measurement System was built to measure the phase noise in the liner accelerator (Linac) and PEP II. The system was used to determine the stability of the PEP II RF reference system. In this project a low noise Phase Locked Loop system (PLL) was built to measure timing jitter about sub picoseconds level. The phase noise measured in Master Oscillator using PLL indicates that phase noise is low enough for PEP II to run.

  17. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  18. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  19. A 300-nm compact mm-wave linac FEL design

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  20. Klystron modulator operation and upgrades for the APS linac

    SciTech Connect

    Russell, T.J.; Cours, A.

    1995-07-01

    The Advanced Photon Source (APS) linac requires five 100-MW modulators to achieve its required energy. In-house construction of these modulators was under an extremely compressed time schedule and, while the original design was successful, it had a few shortcomings. The operation of the modulators was hindered by excessively sensitive controls and overheating during the hot summer months. The system underwent minor changes that resulted in major improvements. Additionally, improvements have been made to the high voltage circuits to improve the rise time of the output pulse shape. reduce the initial ringing of the pulse, and enhance the reliability of the system. This paper will outline the changes and explain the results of the improvements.

  1. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  2. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  3. THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC

    SciTech Connect

    Williams, Derrick C

    2009-01-01

    The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

  4. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  5. Dose quality assurance for industrial irradiation with an electron linac

    NASA Astrophysics Data System (ADS)

    White, B. F.; Lawrence, C. B.; Lee-Whiting, G. E.; Lord, S.; Mason, V. A.; Smyth, D. L.; Ungrin, J.

    1989-04-01

    In the development of the IMPELA family of electron linacs for industrial radiation processing, the needs for on-line monitoring of exposure dose have been recognized. The diverse applications under consideration demand a broad range of control-system performance and delivered-dose assurance measures appropriate to the sensitivities of the processes. The AAMI Guideline for Electron Beam Radiation Sterilization of Medical Devices points to a probable upper bound to the complexity of such requirements. ASTM and IAEA standards and guidelines for radiation dosimetry define the methods available for off-line verification of absorbed dose. The impact of the requirements for on-line measurements and the limitations inherent to the IMPELA design, are reviewed. The interdependencies of off-line product dosimetry and analyses with the on-line monitoring of process parameters are explored in search of criteria for optimization of cost-effective, flexible industrial irradiators.

  6. Energy stability in recirculating, energy-recovering linacs

    SciTech Connect

    Merminga, L.; Bisognano, J.J.; Delayen, J.R.

    1996-07-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include amplitude and phase feedback, with the transfer function in the feedback path presently modeled as a low-pass filter. The feedback gain and bandwidth required for stability are calculated for the high power UV FEL proposed for construction at CEBAF. 4 refs.

  7. SRF and RF systems for LEReC Linac

    SciTech Connect

    Belomestnykh, S.; Ben-Zvi, I.; Brutus, J. C.; Fedotov, A.; McIntyre, G.; Polizzo, S.; Smith, K.; Than, R.; Tuozzolo, J.; Veshcherevich, V.; Wu, Q.; Xiao, B.; Xu, W.; Zaltsman, A.

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  8. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  9. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    SciTech Connect

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-11-10

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system.

  10. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  11. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  12. Digitally Controlled Four Harmonic Buncher for FSU LINAC

    NASA Astrophysics Data System (ADS)

    Moerland, Daniel S.; Wiedenhoever, Ingo; Baby, Lagy T.; Caussyn, David; Spingler, David

    2012-03-01

    Florida State University's John D. Fox Superconducting Accelerator Laboratory is operating a Tandem-Linac system for heavy ion beams at energies of 5-10 MeV/u. Recently, the accelerator has been used as the driver for the radioactive beam facility RESOLUT, which poses new demands on its high-intensity performance and time-resolution. These demands motivated us to optimize the RF bunching system and to switch the bunch frequency from 48.5 to 12.125 MHz. We installed a four-harmonic resonant transformer to create 3-4 kV potential oscillations across a pair of wire-mesh grids. This setup is modulating the energy of the beam injected into the tandem accelerator, with the aim to create short bunches of beam particles. Asawtooth-like wave-form is created using the Fourier series method, by combining the basis sinusoidal wave of 12.125MHz and its 3 higher order harmonics, in a manner similar to the systems used at ATLAS [1] and other RF-accelerators. A new aspect of our setup is the use of a digital 1GHz function generator, which allows us to optimize and stabilize the synthesized waveform. The control system was realized using labview and integrated into the recently updated controls of the accelerator. We characterize the bunching quality achievedand discuss the optimization of the bunching wave-form. The bunching system has been successfully used in a number of Linac-experiments performed during 2011.[4pt][1] S. Sharamentov, J. Bogaty, B.E. Clifft, R. Pardo, UPGRADE OF THE ATLAS POSITIVE ION INJECTOR BUNCHING SYSTEM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

  13. Flash Proton Radiography

    NASA Astrophysics Data System (ADS)

    Merrill, Frank E.

    Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.

  14. Overview of proton drivers for neutrino super beams and neutrino factories

    SciTech Connect

    Chou, W.; /Fermilab

    2006-06-01

    There has been a world-wide interest in Proton Drivers in the past decade. Numerous design proposals have been presented in Asia, Europe and North America, ranging from low energy rapid cycling synchrotrons, normal or superconducting linacs to high energy slow cycling synchrotrons and FFAGs. One thing in common is that all these machines provide MW beam power and are used primarily for neutrino experiments. This paper gives an overview of these activities. In the last section the author expresses his personal opinion on the future of this field.

  15. Strangeness in the proton

    NASA Astrophysics Data System (ADS)

    Alberg, Mary

    2014-03-01

    Both perturbative and non-perturbative mechanisms contribute to strangeness in the proton sea. We have developed a hybrid model in which non-perturbative contributions are calculated in a meson cloud model which expands the proton in terms of meson-baryon states, and perturbative contributions are calculated in a statistical model which expands the proton in terms of quark-gluon states. The perturbative contributions are represented in the parton distributions of the ``bare'' hadrons in the meson cloud. We compare our results to the recent experimental data of ATLAS and HERMES. This research has been supported in part by NSF Award 1205686.

  16. Are protons nonidentical fermions?

    SciTech Connect

    Mart, T.

    2014-09-25

    We briefly review the progress of our investigation on the electric (charge) radius of the proton. In order to explain the recently measured proton radius, which is significantly smaller than the standard CODATA value, we assume that the real protons radii are not identical, they are randomly distributed in a certain range. To obtain the measured radius we average the radii and fit both the mean radius and the range. By using an averaged dipole form factor we obtain the charge radius r{sub E} = 0.8333 fm, in accordance with the recent measurement of the Lamb shift in muonic hydrogen.

  17. Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy.

    PubMed

    Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin

    2016-01-01

    The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy. PMID:27074464

  18. Parallel Beam Dynamics Simulation Tools for Future Light SourceLinac Modeling

    SciTech Connect

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-06-25

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources.

  19. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    SciTech Connect

    Le Sage, G P

    2002-11-05

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described.

  20. Commissioning and first operational experience of the 400 MeV Linac at Fermilab

    SciTech Connect

    Junck, K.; Allen, L.; Kroc, T.; MacLachlan, J.; McCrory, E.; Moretti, A.; Noble, R.; Popovic, M.; Schmidt, C.

    1994-07-01

    Commissioning of the Fermilab High Energy Linac during September and October of 1993 has increased the energy of the H- linac from 200 to 400 MeV. The Linac Upgrade is one portion of the Fermilab Upgrad and is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster. To accomplish this increase in energy within the existing enclosure, four 201.25 MHz drift-tube linac tankshave been replaced by seven 805 MHz side-coupled cavity modules to accelerate the beam from 116 MeV to 400 MeV. Each module is driven with a klystron amplifier delivering 10 MW of peak power for 60 {mu}sec with a maximum pulse repetition rate of 15 Hz. Nominal beam current is 35 mA with a pulselength of 40 {mu}sec. Results from commissioning and operational experience during Fermilab Collider Run 1B are presented.

  1. First Considerations Concerning an Optimized Cavity Design for the Main Linac of BERLinPro

    SciTech Connect

    B. Riemann, T. Weis, W. Anders, J. Knobloch, A. Neumann, H.-W. Glock, C. Potratz, U. van Rienen, F. Marhauser

    2011-09-01

    The Berlin Energy Recovery Linac Project (BERLinPro) is designed to develop and demonstrate CW linac technology and expertise required to drive next-generation Energy Recovery Linacs. Strongly HOM-damped multicell 1.3 GHz cavities are required for the main linac. The optimization of the cavities presented here is primarily based on the CEBAF 1.5 GHz 5-cell high-current cavity design, including HOM waveguide couplers. The cavity was scaled to 1.3 GHz and extended to 7 cells. Modifications to the end group design have also been studied. An effort was also made to reduce the ratio Epk/Eacc while still permitting HOMs to propagate.

  2. Special design problems and solutions for high powered continuous duty linacs

    SciTech Connect

    Liska, D.; Carlisle, L.; McCauley, G. ); Ellis, S.; Ilg, T.; Smith, P. )

    1993-01-01

    Several high powered linac designs are being considered for various purposes including radioactive waste treatment, tritium production, and neutron factories for materials studies. Since the fractional beam losses must be in the 10[sup [minus

  3. Effect of the transverse parasitic mode on beam performance for the ADS driver linac in China

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Pei, Shi-Lun; Wang, Jiu-Qing; Li, Zhi-Hui

    2015-05-01

    The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper.

  4. Formation of electron bunches with tailored current profiles using multi-frequency linacs

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Stoltz, P.

    2012-12-21

    Tailoring an electron bunch with specific current profile can provide substantial enhancement of the transformer ratio in beam-driven acceleration methods. We present a method relying on the use of a linac with accelerating sections operating at different frequencies followed by a magnetic bunch compressor. The experimental verfification of the technique in a two-frequency linac is presented. The compatibility of the proposed technique with the formation and acceleration of a drive and witness bunches is numerically demonstrated.

  5. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  6. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  7. Design of the NSLS-II Linac Front End Test Stand

    SciTech Connect

    Fliller III, R.; Johanson, M.; Lucas, M.; Rose, J.; Shaftan, T.

    2011-03-28

    The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by Research Instruments Gmbh. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 100 kV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.

  8. Superconducting resonator used as a phase and energy detector for linac setup

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  9. Limits of proton conductivity.

    PubMed

    Kreuer, Klaus-Dieter; Wohlfarth, Andreas

    2012-10-15

    Parasitic current seems to be the cause for the "highest proton conductivity" of a material reported to date. Kreuer and Wohlfarth verify this hypothesis by measuring the conductivity of the same materials after preparing them in a different way. They further explain the limits of proton conductivity and comment on the problems of determining the conductivity of small objects (e.g., whiskers, see picture).

  10. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  11. Proton transport by halorhodopsin

    SciTech Connect

    Varo, G.; Brown, L.S.; Needleman, R.

    1996-05-28

    In halorhodopsin from Natronobacterium pharaonis, a light-driven chloride pump, the chloride binding site also binds azide. When azide is bound at this location the retinal Schiff base transiently deprotonates after photoexcitation with light >530 nm, like in the light-driven proton pump bacteriorhodopsin. As in the photocycle of bacteriorhodopsin, pyranine detects the release of protons to the bulk. The subsequent reprotonation of the Schiff base is also dependent on azide, but with different kinetics that suggest a shuttling of protons from the surface as described earlier for halorhodopsin from Halobacterium salinarium. The azide-dependent, bacteriorhodopsin-like photocycle results in active electrogenic proton transport in the cytoplasmic to extracellular direction, detected in cell envelope vesicle suspensions both with a potential-sensitive electrode and by measuring light-dependent pH change. We conclude that in halorhodopsin an azide bound to the extracellular side of the Schiff base, and another azide shuttling between the Schiff base and the cytoplasmic surface, fulfill the functions of Asp-85 and Asp-96, respectively, in bacteriorhodopsin. Thus, although halorhodopsin is normally a chloride ion pump, it evidently contains all structural requirements, except an internal proton acceptor and a donor, of a proton pump. This observation complements our earlier finding that when a chloride binding site was created in bacteriorhodopsin through replacement of Asp-85 with a threonine, that protein became a chloride ion pump. 52 refs., 9 figs.

  12. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  13. [Proton generator of superhigh frequency].

    PubMed

    Liberman, E A; Eĭdus, V L

    1981-01-01

    Possible mechanism of superhigh frequency (10(10)-10(12) Hz) electromagnetic oscillation generation by an external proton in a system of hydrogen bonds of biomacromolecules is briefly discussed. The external proton in a proton channel deforms the potential profile of the proton of hydrogen bond in such a way, that there appears a possibility of the low frequency proton tunneling along the hydrogen bond. The interaction with the neighbouring bonds leads to further lowering of the generated frequency.

  14. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation

    SciTech Connect

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-11-15

    Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra

  15. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system

    SciTech Connect

    Fallone, B. G.; Murray, B.; Rathee, S.; Stanescu, T.; Steciw, S.; Vidakovic, S.; Blosser, E.; Tymofichuk, D.

    2009-06-15

    The authors report the first magnetic resonance (MR) images produced by their prototype MR system integrated with a radiation therapy source. The prototype consists of a 6 MV linac mounted onto the open end of a biplanar 0.2 T permanent MR system which has 27.9 cm pole-to-pole opening with flat gradients (40 mT/m) running under a TMX NRC console. The distance from the magnet isocenter to the linac target is 80 cm. The authors' design has resolved the mutual interferences between the two devices such that the MR magnetic field does not interfere with the trajectory of the electron in the linac waveguide, and the radiofrequency (RF) signals from each system do not interfere with the operation of the other system. Magnetic and RF shielding calculations were performed and confirmed with appropriate measurements. The prototype is currently on a fixed gantry; however, in the very near future, the linac and MR magnet will rotate in unison such that the linac is always aimed through the opening in the biplanar magnet. MR imaging was found to be fully operational during linac irradiation and proven by imaging a phantom with conventional gradient echo sequences. Except for small changes in SNR, MR images produced during irradiation were visually and quantitatively very similar to those taken with the linac turned off. This prototype system provides proof of concept that the design has decreased the mutual interferences sufficiently to allow the development of real-time MR-guided radiotherapy. Low field-strength systems (0.2-0.5 T) have been used clinically as diagnostic tools. The task of the linac-MR system is, however, to provide MR guidance to the radiotherapy beam. Therefore, the 0.2 T field strength would provide adequate image quality for this purpose and, with the addition of fast imaging techniques, has the potential to provide 4D soft-tissue visualization not presently available in image-guided radiotherapy systems. The authors' initial design incorporates a

  16. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  17. Exotic Protonated Species Produced by UV-Induced Photofragmentation of a Protonated Dimer: Metastable Protonated Cinchonidine.

    PubMed

    Alata, Ivan; Scuderi, Debora; Lepere, Valeria; Steinmetz, Vincent; Gobert, Fabrice; Thiao-Layel, Loïc; Le Barbu-Debus, Katia; Zehnacker-Rentien, Anne

    2015-10-01

    A metastable protonated cinchona alkaloid was produced in the gas phase by UV-induced photodissociation (UVPD) of its protonated dimer in a Paul ion trap. The infrared multiple photon dissociation (IRMPD) spectrum of the molecular ion formed by UVPD was obtained and compared to DFT calculations to characterize its structure. The protonation site obtained thereby is not accessible by classical protonation ways. The protonated monomer directly formed in the ESI source or by collision-induced dissociation (CID) of the dimer undergoes protonation at the most basic alkaloid nitrogen. In contrast, protonation occurs at the quinoline aromatic ring nitrogen in the UVPD-formed monomer. PMID:26347997

  18. Exotic Protonated Species Produced by UV-Induced Photofragmentation of a Protonated Dimer: Metastable Protonated Cinchonidine.

    PubMed

    Alata, Ivan; Scuderi, Debora; Lepere, Valeria; Steinmetz, Vincent; Gobert, Fabrice; Thiao-Layel, Loïc; Le Barbu-Debus, Katia; Zehnacker-Rentien, Anne

    2015-10-01

    A metastable protonated cinchona alkaloid was produced in the gas phase by UV-induced photodissociation (UVPD) of its protonated dimer in a Paul ion trap. The infrared multiple photon dissociation (IRMPD) spectrum of the molecular ion formed by UVPD was obtained and compared to DFT calculations to characterize its structure. The protonation site obtained thereby is not accessible by classical protonation ways. The protonated monomer directly formed in the ESI source or by collision-induced dissociation (CID) of the dimer undergoes protonation at the most basic alkaloid nitrogen. In contrast, protonation occurs at the quinoline aromatic ring nitrogen in the UVPD-formed monomer.

  19. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  20. Studying compressed matter physics at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried; Fletcher, Luke; HED science, SLAC National Accelerator Laboratory Team; Lawrence Berkeley Laboratory Team; Lawrence Livermore National Laboratory Team

    2015-03-01

    With the advent of the Matter in Extreme Conditions instrument at the Linac Coherent Light Source a world-unique experimental capability has become available to study the physics of dynamically compressed solids. Our new high-energy-density science program at SLAC is aimed to take advantage of x-ray pulses with the highest peak brightness available today. In a single shot, the x-ray beam delivers 1012 x-ray photons in 50 fs focused to a spot of order 1 μm. This capability allows us to measure plasmons and to visualize the density and pressure evolution across melt lines by resolving correlations at distances comparable to atomic scales. Our data allow direct determination of pressure for validating theoretical models for the thermodynamics at high pressure. We will show how LCLS data test our theoretical models of compressed matter and will discuss future plans for the study of hot and dense matter. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  1. Overview of linac applications at future radioactive beam facilities

    SciTech Connect

    Nolen, J.A.

    1996-11-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the {open_quotes}isotope separator on-line{close_quotes} (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage.

  2. Front end design of the RIA driver LINAC.

    SciTech Connect

    Kolomiets, A. A.; Asseev, V. N.; Ostroumov, P. N.; Pardo, R. C.; Physics; ITEP

    2003-01-01

    This paper describes the front end design for the RIA driver linac which is able to select, separate and accelerate in the RFQ the required ion species of one- or two-charge states. The front end consists of an ECR ion source located on a 100 kV platform, LEBT, RFQ and MEBT. The first section of the LEBT is an achromatic bending system for charge-to-mass analysis and selection. For the heaviest ions with masses above 180, the transport system is able to deliver to the entrance of the first buncher a two-charge-state beam with similar Twiss parameters for both charge states. In order to match two-charge-state ions with different mass to charge ratios, the straight section of the LEBT upstream of the RFQ will be placed on a high-voltage platform. A voltage /spl sim/30 kV is required in order to match velocities of ions with mass to charge ratio less than the design value and to maintain the possibility accelerating two charge states simultaneously. Several beam matching schemes in the transitions LEBT-RFQ and RFQ-MEBT have been studied.

  3. Beam-based Feedback for the Linac Coherent Light Source

    SciTech Connect

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  4. Feasibility studies of a compact mm-wave linac FEL

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.; Song, J.

    1995-12-31

    Short wavelength FELs impose stringent requirements on the quality of the electron beams. The key factor in obtaining a single-pass UV or x-ray FEL is the generation of small emittance electron beams with ultra-high brightness. The pioneering work at Los Alamos National Laboratory in the last decade has resulted in a dramatic improvement in the production of high electron beam brightness and small beam emittance using rf photocathode gun. The lower bound on the emittance of a 1-nC bunch without any emittance compensation is on the order of 3 {pi} mm-mrad. This is well within the emittance requirement being considered here. Although the original R&D work at Argonne, in collaboration with the University of Illinois at Chicago and University of Wisconsin-Madison, has produced encouraging results in the area of rf structure design, x-ray mask fabrication, and LIGA processing (Lithography, Electroforming, and Molding), the goal to prove feasibility has not yet been achieved. In this paper, we will present feasibility studies for a compact single-pass mm-linac FEL based on LIGA technology. This system will consist of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period.

  5. Prospects for very-high-gradient linac-colliders

    SciTech Connect

    Wilson, P.B.

    1981-02-01

    The energy realistically attainable by an electron-positron storage ring is limited by the RF voltage and power requirements imposed by synchrotron radiation to about 100 GeV. To reach energies of 300 x 300 GeV and higher in a colliding beam machine of reasonable dimensions, we must look to the linac-collider operating at an energy gradient on the order of 100 MV/m. Proper choice of an RF structure or such a collider can minimize the total RF power requirement and the effects of longitudinal and transverse single-bunch beam loading. For an operating frequency in the range 4 to 6 GHz, the total RF power requirement for a 300 x 300 GeV collider with a luminosity of 10/sup 32/ cm/sup -2/s/sup -1/ accelerating 10/sup 11/ particles per bunch is on the order of 50 MW. To drive this collider, RF power sources are needed having a peak output power in the range 1-2 GW. Possibilities for attaining these peak power levels by direct generation and by energy storage and fast switching are discussed.

  6. LANSCE Drift Tube Linac Water Control System Refurbishment

    SciTech Connect

    Marroquin, Pilar S.

    2011-01-01

    There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged, see the SNS DTL FDR. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control system (EPICS) software toolkit.

  7. Identifying Longitudinal Jitter Sources in the LCLS Linac

    SciTech Connect

    Decker, Franz-Josef; Akre, Ron; Brachmann, Axel; Craft, Jim; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Huang, Zhirong; Iverson, Richard; Krasnykh, Anatoly; Loos, Henrik; Nuhn, Heinz-Dieter; Ratner, Daniel; Smith, Tonee; Turner, James; Welch, James; White, William; Wu, Juhao; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser (FEL) with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.

  8. Studying Proton-Proton Collisions Using Pythia

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    2004-10-01

    At Brookhaven National Lab, the RHIC experiments are currently investigating, on a subatomic level, what happens when heavy ions collide at high speeds. This is done in order to create such high temperatures and densities that quarks are no longer bound to one another. This state of matter is called the Quark-Gluon Plasma (QGP). Evidence for the existence of the QGP may be the quenching of hadron jets, which occurs when the fast quarks or gluons lose so much energy in the hot, dense medium that they cannot survive. Then the jets of particles that these particles usually result in cannot be made. By studying the particle yield at high transverse momentum (Pt), one can probe what is happening to the jets created during collisions. Using Pythia, a standard model event generator based on the Lund String Model, we study jets of particles created when elementary protons collide. Then we know what should happen to jets at high transverse momentum transfer, when no QGP is present. Comparing the pt spectrum of jet partners generated by Pythia to RHIC results for proton-proton collisions shows that the two do in fact agree. This not only insures that the analysis of RHIC data is correct, but it also establishes a basis for comparison for Au-Au collisions. Comparing d+Au collision data to the Pythia Pt spectrum of jets with leading baryon and meson triggers, we found good agreement. Thus the jet production does not change drastically in nature in the presence of a cold nuclear medium.

  9. Conceptional design of a heavy ion linac injector for HIRFL-CSRm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan

    2014-10-01

    A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.

  10. Attempted RIAPMTQ Benchmarking Study of the ANL RIA Low-Beta LinacDesign

    SciTech Connect

    Billen, J.; Qiang, J.; Wangler, T.

    2007-01-01

    The objective of this work is to compare the simulation results of the RIAPMTQ code with those of the ANL simulation code for the low-beta section of an ANL RIA Driver Linac design. However, the approach taken is not precisely that of a direct comparison of the two simulations of the same linac section, which is what one would normally expect to do. The reason is that the RFQ design approach used by the ANL codes and the LANL codes are approximately but not exactly the same, particularly at the ends of the RFQ, and it did not appear to be easy to make the two RFQ designs exactly identical. The effects on the beam of the different RFQ design approaches are not expected to be large, as long as the beam is properly matched at the transitions. What was done in the RIAPMTQ input file to compensate for the RFQ design difference was to use TRACE3D to adjust the four solenoid strengths and the two matching rf cavities in the MEBT (the beam transport system between the end of the RFQ and the beginning of the superconducting linac) to obtain the same match (Courant-Snyder parameters) into the superconducting linac as was obtained from the ANL code. We also matched the beam into the RFQ. The result is that we generate a RIAPMTQ input file for the low-beta section of the linac, which is not exactly identical to, but should be near to that of the ANL design. Then, what we wish to compare from the two codes are the rms emittances at the beginning of the superconducting linac, and the beam losses in the first or prestripper section of the superconducting (SC) linac. In this report, we describe the procedure and present the results. Section 2 gives the procedures and results, and Section 3 gives the summary.

  11. Comparative analyses of linac and Gamma Knife radiosurgery for trigeminal neuralgia treatments

    NASA Astrophysics Data System (ADS)

    Ma, L.; Kwok, Y.; Chin, L. S.; Yu, C.; Regine, W. F.

    2005-11-01

    Dedicated linac-based radiosurgery has been reported for trigeminal neuralgia treatments. In this study, we investigated the dose fall-off characteristics and setup error tolerance of linac-based radiosurgery as compared with standard Gamma Knife radiosurgery. In order to minimize the errors from different treatment planning calculations, consistent imaging registration, dose calculation and dose volume analysis methods were developed and implemented for both Gamma Knife and linac-based treatments. Intra-arc setup errors were incorporated into the treatment planning process of linac-based deliveries. The effects of intra-arc setup errors with increasing number of arcs were studied and benchmarked against Gamma Knife deliveries with and without plugging patterns. Our studies found equivalent dose fall-off properties between Gamma Knife and linac-based radiosurgery given a sufficient number of arcs (>7) and small intra-arc errors (<0.5 mm) were satisfied for linac-based deliveries. Increasing the number of arcs significantly decreased the variations in the dose fall-off curve at the low isodose region (e.g. from 40% to 10%) and also improved dose uniformity at the high isodose region (e.g. from 70% to 90%). As the number of arcs increased, the effects of intra-arc setup errors on the dose fall-off curves decreased. Increasing the number of arcs also reduced the integral dose to the distal normal brain tissues. In conclusion, linac-based radiosurgery produces equivalent dose fall-off characteristics to Gamma Knife radiosurgery with a high number of arcs. However, one must note the increased treatment time for a large number of arcs and isocentre accuracies.

  12. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  13. Proton charge extensions

    NASA Astrophysics Data System (ADS)

    Stryker, Jesse R.; Miller, Gerald A.

    2016-01-01

    We examine how corrections to S -state energy levels En S in hydrogenic atoms due to the finite proton size are affected by moments of the proton charge distribution. The corrections to En S are computed moment by moment. The results demonstrate that the next-to-leading order term in the expansion is of order rp/aB times the size of the leading order term. Our analysis thus dispels any concern that the larger relative size of this term for muonic hydrogen versus electronic hydrogen might account for the current discrepancy of proton radius measurements extracted from the two systems. Furthermore, the next-to-leading order term in powers of rp/aB that we derive from a dipole proton form factor is proportional to , rather than , as would be expected from the scalar nature of the form factor. The dependence of the finite-size correction on and higher odd-power moments is shown to be a general result for any spherically symmetric proton charge distribution. A method for computing the moment expansion of the finite-size correction to arbitrary order is introduced and the results are tabulated for principal quantum numbers up to n =7 .

  14. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  15. Proton transfer in organic scaffolds

    NASA Astrophysics Data System (ADS)

    Basak, Dipankar

    This dissertation focuses on the fundamental understanding of the proton transfer process and translating the knowledge into design/development of new organic materials for efficient non-aqueous proton transport. For example, what controls the shuttling of a proton between two basic sites? a) Distance between two groups? or b) the basicity? c) What is the impact of protonation on molecular conformation when the basic sites are attached to rigid scaffolds? For this purpose, we developed several tunable proton sponges and studied proton transfer in these scaffolds theoretically as well as experimentally. Next we moved our attention to understand long-range proton conduction or proton transport. We introduced liquid crystalline (LC) proton conductor based on triphenylene molecule and established that activation energy barrier for proton transport is lower in the LC phase compared to the crystalline phase. Furthermore, we investigated the impact of several critical factors: the choice of the proton transferring groups, mobility of the charge carriers, intrinsic vs. extrinsic charge carrier concentrations and the molecular architectures on long-range proton transport. The outcome of this research will lead to a deeper understanding of non-aqueous proton transfer process and aid the design of next generation proton exchange membrane (PEM) for fuel cell.

  16. The use of ionization electron columns for space-charge compensation in high intensity proton accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.; /Fermilab

    2009-01-01

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  17. The Use of Ionization Electron Columns for Space-Charge Compensation in High Intensity Proton Accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.

    2009-01-22

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  18. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  19. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  20. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review.

    PubMed

    Amichetti, Maurizio; Amelio, Dante; Minniti, Giuseppe

    2012-12-14

    Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS.Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons.The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions.Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated.A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique.

  1. Comparison of proton and x-ray conformal dose distributions for radiosurgery applications.

    PubMed

    Serago, C F; Thornton, A F; Urie, M M; Chapman, P; Verhey, L; Rosenthal, S J; Gall, K P; Niemierko, A

    1995-12-01

    Highly focused dose distributions for radiosurgery applications are successfully achieved using either multiple static high-energy particle beams or multiple-arc circular x-ray beams from a linac. It has been suggested that conformal x-ray techniques using dynamically shaped beams with a moving radiation source would offer advantages compared to the use of only circular beams. It is also thought that, generally, charged particle beams such as protons offer dose deposition advantages compared to x-ray beams. A comparison of dose distributions was made between a small number of discrete proton beams, multiple-arc circular x-ray beams, and conformal x-ray techniques. Treatment planning of a selection of radiosurgery cases was done for these three techniques. Target volumes ranged from 1.0-25.0 cm3. Dose distributions and dose volume histograms of the target and surrounding normal brain were calculated. The advantages and limitations of each technique were primarily dependent upon the shape and size of the target volume. In general, proton dose distributions were superior to x-ray distributions; both shaped proton and shaped x-ray beams delivered dose distributions which were more conformal than x-ray techniques using circular beams; and the differences between all proton and x-ray distributions were negligible for the smallest target volumes, and greatest for the larger target volumes. PMID:8746720

  2. Synchrotron radiation from protons

    SciTech Connect

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature.

  3. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  4. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness. PMID:17256178

  5. Proton irradiation and endometriosis

    SciTech Connect

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-08-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references.

  6. Activation of materials proposed for use in superconducting linac applications

    SciTech Connect

    Hanson, A.L.; Snead, C.L.; Greene, G.A.; Chan, K.C.D.; Safa, H.

    1998-01-01

    Samples of construction materials proposed for use in both superconducting and conventional high-power linear accelerators have been activated with 800 and 2,000 MeV protons to study the decay characteristics of these activated materials. Irradiation times ranged from 10 minutes to 18.67 hours. The decay characteristics of these activated materials were measured and compared to calculated decay curves based on simplified assumptions.

  7. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  8. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    SciTech Connect

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  9. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    NASA Astrophysics Data System (ADS)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  10. A PROCEDURE TO SET PHASE AND AMPLITUDE OF THE RF IN THE SNS LINAC'S SUPERCONDUCTING CAVITIES

    SciTech Connect

    L.M. YOUNG

    2001-06-01

    This paper describes a procedure to set the phase and amplitude of the RF fields in the Spallation Neutron Source (SNS) linac's superconducting cavities. The linac uses superconducting cavities to accelerate the H{sup -} ion beam from the normal conducting linac at 185 MeV to a final energy of {approx}1 GeV. There are two types of cavities in the linac, 33 cavities with a geometric beta of 0.61 and 48 cavities with a geometric beta of 0.81. The correct phase setting of any single superconducting cavity depends on the RF phase and amplitude of all the preceding superconducting cavities. For the beam to be properly accelerated it must arrive at each cavity with a relative phase ({phi}{sub s}), called the synchronous phase, of about -20 degrees. That is, it must arrive early with respect to the phase at which it would gain the maximum energy by 20 degrees. This timing provides the longitudinal focusing. Beam particles arriving slightly later gain more energy and move faster relative to the synchronous beam particle. The problem is to set the phase and amplitude of each cavity in the linac so that the synchronous particle arrives at each cavity with the correct phase. The amplitude of each superconducting cavity will be adjusted as high as possible constrained only by the available RF power and the breakdown field of the cavity.

  11. MODEL AND BEAM BASED SETUP PROCEDURES FOR A HIGH POWER HADRON SUPERCONDUCTING LINAC

    SciTech Connect

    Shishlo, Andrei P

    2014-01-01

    This presentation will review methods for experimental determination of optimal operational set points in a multi-cavity superconducting high power hadron linac. A typical tuning process is based on comparison between measured data and the results of simulations from envelope and single-particle models. Presence of significant space charge effects requires simulation and measurement of bunch dynamics in 3 dimensions to ensure low loss beam transport. This is especially difficult in a superconducting linac where use of interceptive diagnostics is usually restricted because of the risk of SRF cavity surface contamination. The procedures discussed here are based on non-interceptive diagnostics such as beam position monitors and laser wires, and conventional diagnostics devices such as wire scanners and bunch shape monitors installed outside the superconducting linac. The longitudinal Twiss analysis based on the BPM signals will be described. The superconducting SNS linac tuning experience will be used to demonstrate problems and their solution for real world linac tune-up procedures

  12. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  13. Predictions of diffractive cross sections in proton-proton collisions

    SciTech Connect

    Goulianos, Konstantin

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  14. Proton Nucleus Elastic Scattering Data.

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  15. Proton therapy in clinical practice

    PubMed Central

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  16. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  17. Towards adaptive IMRT sequencing for the MR-linac.

    PubMed

    Kontaxis, C; Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-03-21

    The MRI linear accelerator (MR-linac) that is currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to track the patient's target(s) and Organ(s) At Risk during radiation delivery. In this paper, we present a treatment planning system for intensity-modulated radiotherapy (IMRT). It is capable of Adaptive Radiotherapy and consists of a GPU Monte Carlo dose engine, an inverse dose optimization algorithm and a novel adaptive sequencing algorithm. The system is able to compensate for patient anatomy changes and enables radiation delivery immediately from the first calculated segment. IMRT plans meeting all clinical constraints were generated for two breast cases, one spinal bone metastasis case, two prostate cases with integrated boost regions and one head and neck case. These plans were generated by the segment weighted version of our algorithm, in a 0 T environment in order to test the feasibility of the new sequencing strategy in current clinical conditions, yielding very small differences between the fluence and sequenced distributions. All plans went through stringent experimental quality assurance on Delta4 and passed all clinical tests currently performed in our institute. A new inter-fraction adaptation scheme built on top of this algorithm is also proposed that enables convergence to the ideal dose distribution without the need of a final segment weight optimization. The first results of this method confirm that convergence is achieved within the first fractions of the treatment. These features combined will lead to a fully adaptive intra-fraction planning system able to take into account patient anatomy updates during treatment. PMID:25749856

  18. Towards adaptive IMRT sequencing for the MR-linac

    NASA Astrophysics Data System (ADS)

    Kontaxis, C.; Bol, G. H.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-03-01

    The MRI linear accelerator (MR-linac) that is currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to track the patient’s target(s) and Organ(s) At Risk during radiation delivery. In this paper, we present a treatment planning system for intensity-modulated radiotherapy (IMRT). It is capable of Adaptive Radiotherapy and consists of a GPU Monte Carlo dose engine, an inverse dose optimization algorithm and a novel adaptive sequencing algorithm. The system is able to compensate for patient anatomy changes and enables radiation delivery immediately from the first calculated segment. IMRT plans meeting all clinical constraints were generated for two breast cases, one spinal bone metastasis case, two prostate cases with integrated boost regions and one head and neck case. These plans were generated by the segment weighted version of our algorithm, in a 0 T environment in order to test the feasibility of the new sequencing strategy in current clinical conditions, yielding very small differences between the fluence and sequenced distributions. All plans went through stringent experimental quality assurance on Delta4 and passed all clinical tests currently performed in our institute. A new inter-fraction adaptation scheme built on top of this algorithm is also proposed that enables convergence to the ideal dose distribution without the need of a final segment weight optimization. The first results of this method confirm that convergence is achieved within the first fractions of the treatment. These features combined will lead to a fully adaptive intra-fraction planning system able to take into account patient anatomy updates during treatment.

  19. Proton bunch compression strategies

    SciTech Connect

    Lebedev, Valeri; /Fermilab

    2009-10-01

    The paper discusses main limitations on the beam power and other machine parameters for a 4 MW proton driver for muon collider. The strongest limitation comes from a longitudinal microwave instability limiting the beam power to about 1 MW for an 8 GeV compressor ring.

  20. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  1. Intensity modulated proton therapy.

    PubMed

    Kooy, H M; Grassberger, C

    2015-07-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of

  2. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  3. Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials.

    PubMed

    van Zijp, H M; van Asselen, B; Wolthaus, J W H; Kok, J M G; de Vries, J H W; Ishakoglu, K; Beld, E; Lagendijk, J J W; Raaymakers, B W

    2016-02-01

    To address the quality assurance (QA) of a MR-linac which is an MRI combined with a linear accelerator (linac), the traditional linac QA-tests need to be redesigned, since the presence of the static magnetic field in the MR-linac alters the electron trajectory. The latter causes the asymmetry in the dose kernel which is introduced by the magnetic field and hinders accurate geometrical QA-tests for the MR-linac. We introduced the use of electron dense materials (e.g. copper) to reduce the size of the dose kernel and thereby the magnetic field effect on the dose deposition. Two examples of QA-tests are presented in which the geometrical accuracy of the MR-linac was addressed; beam profile and star-shot measurements. The introduced setup was compared with a reference setup and both were tested on a conventional and the MR-linac. The results showed that the symmetry of the recorded beam profile was restored in presence of the copper material and that the isocenter size of the MR-linac can be determined accurately with the introduced star-shot setup. The use of electron dense materials is not limited to the presented QA-tests but has a broad application for beam-specific QA-tests in presence of a magnetic field. PMID:26758570

  4. Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials

    NASA Astrophysics Data System (ADS)

    van Zijp, H. M.; van Asselen, B.; Wolthaus, J. W. H.; Kok, J. M. G.; de Vries, J. H. W.; Ishakoglu, K.; Beld, E.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2016-02-01

    To address the quality assurance (QA) of a MR-linac which is an MRI combined with a linear accelerator (linac), the traditional linac QA-tests need to be redesigned, since the presence of the static magnetic field in the MR-linac alters the electron trajectory. The latter causes the asymmetry in the dose kernel which is introduced by the magnetic field and hinders accurate geometrical QA-tests for the MR-linac. We introduced the use of electron dense materials (e.g. copper) to reduce the size of the dose kernel and thereby the magnetic field effect on the dose deposition. Two examples of QA-tests are presented in which the geometrical accuracy of the MR-linac was addressed; beam profile and star-shot measurements. The introduced setup was compared with a reference setup and both were tested on a conventional and the MR-linac. The results showed that the symmetry of the recorded beam profile was restored in presence of the copper material and that the isocenter size of the MR-linac can be determined accurately with the introduced star-shot setup. The use of electron dense materials is not limited to the presented QA-tests but has a broad application for beam-specific QA-tests in presence of a magnetic field.

  5. ARIEL e-linac. Electron linear accelerator for photo-fission

    NASA Astrophysics Data System (ADS)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  6. A Particle-in-cell scheme of the RFQ in the SSC-Linac

    NASA Astrophysics Data System (ADS)

    Xiao, Chen; He, Yuan; Lu, Yuan-Rong; Yuri, Batygin; Yin, Ling; Wang, Zhi-Jun; Yuan, You-Jin; Liu, Yong; Chang, Wei; Du, Xiao-Nan; Wang, Zhi; Xia, Jia-Wen

    2010-11-01

    A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.

  7. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-12-31

    A beam position monitor system has been developed and used in the commissioning of Brookhaven`s Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  8. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  9. Beam Dynamics Study of X-Band Linac Driven X-Ray FELS

    SciTech Connect

    Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; Sun, Y.; /SLAC

    2011-12-13

    Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics

  10. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Sempau, J.; Brualla, L.

    2012-05-01

    A method based on a combination of the variance-reduction techniques of particle splitting and Russian roulette is presented. This method improves the efficiency of radiation transport through linear accelerator geometries simulated with the Monte Carlo method. The method named as ‘splitting-roulette’ was implemented on the Monte Carlo code \\scriptsize{{PENELOPE}} and tested on an Elekta linac, although it is general enough to be implemented on any other general-purpose Monte Carlo radiation transport code and linac geometry. Splitting-roulette uses any of the following two modes of splitting: simple splitting and ‘selective splitting’. Selective splitting is a new splitting mode based on the angular distribution of bremsstrahlung photons implemented in the Monte Carlo code \\scriptsize{{PENELOPE}}. Splitting-roulette improves the simulation efficiency of an Elekta SL25 linac by a factor of 45.

  11. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    SciTech Connect

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  12. The linac and booster RF systems for a dedicated injector for SPEAR

    SciTech Connect

    Weaver, J.N.; Baird, S., Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, H.; Wiedemann, H.; Youngmann, B. . Stanford Synchrotron Radiation Lab.); Miller, R.H. )

    1991-05-01

    A 120 MeV, 2856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The rf system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring rf system are highlighted. 8 refs., 6 figs.

  13. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  14. Beam-based analysis of day-night performance variations at the SLC linac

    SciTech Connect

    Decker, F.J.; Akre, R.; Assmann, R.; Bane, K.L.F.; Minty, M.G.; Phinney, N.; Spence, W.L.

    1998-07-01

    Diurnal temperature variations in the linac gallery of the Stanford Linear Collider (SLC) can affect the amplitude and phase of the rf used to accelerate the beam. The SLC employs many techniques for stabilization and compensation of these effects, but residual uncorrected changes still affect the quality of the delivered beam. This paper presents methods developed to monitor and investigate these errors through the beam response. Variations resulting from errors in the rf amplitude or phase can be distinguished by studying six different beam observables: betatron phase advance, oscillation amplitude growth, rms jitter along the linac, measurements of the beam phase with respect to the rf, changes in the required injection phase, and the global energy correction factor. By quantifying the beam response, an uncorrected variation of 14{sup o} (S-band) during 28 F temperature swings was found in the main rf drive line system between the front and end of the linac.

  15. Beam physics of the 8-GeV H-minus linac

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-11-01

    Fermilab is developing the concept and design of an 8-GeV superconducting H-minus linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high energy section, the acceleration is provided by the International Linear Collider (ILC)-style superconducting elliptical 1.3 GHz cavities. The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA.

  16. SUPERCONDUCTING LINAC UPGRADE PLAN FOR THE SECOND TARGET STATION PROJECT AT SNS

    SciTech Connect

    Kim, Sang-Ho; Doleans, Marc; Galambos, John D; Howell, Matthew P; Mammosser, John

    2015-01-01

    The beam power of the Linac for the Second Target Station (STS) at the Spallation Neutron Source (SNS) will be doubled to 2.8 MW. For the energy upgrade, seven additional cryomodules will be installed in the reserved space at the end of the linac tunnel to produce linac output energy of 1.3 GeV. The cryomodules for STS will have the same physical length but will incorporate some design changes based on the lessons learned from operational experience over the last 10 years and from the high beta spare cryomodule developed in house. The average macro-pulse beam current for the STS will be 38 mA which is about a 40 % increase from the present beam current for 1.4 MW operation. Plans for the new cryomodules and for the existing cryomodules to support higher beam current for the STS are presented in this paper.

  17. Multi-cell disk-and-ring tapered structure for compact RF linacs

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-09-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  18. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak

  19. Exploring universality of transversity in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Ricci, Alessandro M.; Bacchetta, Alessandro; Mukherjee, Asmita

    2016-08-01

    We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR Collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions, and it allows us to test its universality.

  20. Proton radiography and tomography with application to proton therapy

    PubMed Central

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157