Science.gov

Sample records for 16s rdna pcr

  1. [PCR rDNA 16S used for the etiological diagnosis of blood culture negative endocarditis].

    PubMed

    Baty, G; Lanotte, P; Hocqueloux, L; Prazuck, T; Bret, L; Romano, M; Mereghetti, L

    2010-06-01

    We report the case of a 55 year-old man presenting with a double aortic and mitral endocarditis for which resected valve culture was repeatedly negative. Specific PCR made on valves because of highly positive blood tests for Bartonella henselae remained negative. A molecular approach was made with 16S rDNA PCR, followed by sequencing. Bartonella quintana was identified as the etiology of endocarditis. B. quintana, "fastidious" bacteria, even if hard to identify in a laboratory, is often reported as a blood culture negative endocarditis (BCNE) agent. Molecular biology methods have strongly improved the diagnosis of BCNE. We propose a review of the literature focusing on the interest of broad-spectrum PCR on valve for the etiological diagnosis of BCNE.

  2. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  3. Comparison of 16S rDNA analysis and rep-PCR genomic fingerprinting for molecular identification of Yersinia pseudotuberculosis.

    PubMed

    Kim, Wonyong; Song, Mi-Ok; Song, Wonkeun; Kim, Ki-Jung; Chung, Sang-In; Choi, Chul-Soon; Park, Yong-Ha

    2003-01-01

    16S rDNA sequence analysis and repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting were evaluated on 11 type strains of the genus Yersinia and 17 recognized serotype strains of Y. pseudotuberculosis to investigate their genetic relatedness and to establish the value of techniques for the identification of Y. pseudotuberculosis. A phylogenetic tree constructed from 16S rDNA sequences showed that the type strains of Yersinia species formed distinct clusters with the exception of Y. pestis and Y. pseudotuberculosis. Moreover, Y. pestis NCTC 5923T was found to be closely related to Y. pseudotuberculosis serotypes 1b, 3, and 7. Dendrograms generated from REP-PCR, and ERIC-PCR data revealed that members of the genus Yersinia differed from each other with the degree of similarity 62% and 58%, respectively. However, the BOX-PCR results showed that Y. pestis 5923T clustered with the Y. pseudotuberculosis group with a degree of similarity 74%. According to these findings, 16S rDNA sequence analysis was unable to reliably discriminate Y. pseudotuberculosis from Y. pestis. However, REP-PCR and especially ERIC-PCR provided an effective means of differentiating between members of the taxa.

  4. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  5. Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences.

    PubMed

    Sasaki, Y; Yamamoto, K; Kojima, A; Tetsuka, Y; Norimatsu, M; Tamura, Y

    2000-12-01

    Clostridium chauvoei causes blackleg, which is difficult to distinguish from the causative clostridia of malignant edema. Therefore, a single-step PCR system was developed for specific detection of C. chauvoei DNA using primers derived from the 16S-23S rDNA spacer region and partial 23S rDNA sequences. The specificity of the single-step PCR system was demonstrated by testing 37 strains of clostridia and 3 strains of other genera. A 509 bp PCR product, which is a C. choauvoei-specific PCR product, could be amplified from all of the C. chauvoei strains tested, but not from the other strains. Moreover, this single-step PCR system specifically detected C. chauvoei DNA in samples of muscle from mice 24 hr after inoculation with 100 spores of C. chauvoei, and in clinical materials from a cow affected with blackleg. These results suggest that our single-step PCR system may be useful for direct detection of C. chauvoei in culture and in clinical materials from animals affected with blackleg.

  6. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores

    PubMed Central

    Atibalentja, N.; Noel, G. R.; Ciancio, A.

    2004-01-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 × 10⁶ endospores ml-1 were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis. PMID:19262793

  7. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories.

  8. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  9. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

    PubMed

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  10. DNA fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using PCR-amplified 16S-23S rDNA intergenic transcribed spacer (ITS) regions.

    PubMed

    Dingman, Douglas W

    2009-01-01

    Failure to identify correctly the milky disease bacteria, Paenibacillus popilliae and Paenibacillus lentimorbus, has resulted in published research errors and commercial production problems. A DNA fingerprinting procedure, using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS) regions, has been shown to easily and accurately identify isolates of milky disease bacteria. Using 34 P. popilliae and 15 P. lentimorbus strains, PCR amplification of different ITS regions produced three DNA fingerprints. For P. lentimorbus phylogenic group 2 strains and for all P. popilliae strains tested, electrophoresis of amplified DNA produced a migratory pattern (i.e., ITS-PCR fingerprint) exhibiting three DNA bands. P. lentimorbus group 1 strains also produced this ITS-PCR fingerprint. However, the fingerprint was phase-shifted toward larger DNA sizes. Alignment of the respective P. popilliae and P. lentimorbus group 1 ITS DNA sequences showed extensive homology, except for a 108bp insert in all P. lentimorbus ITS regions. This insert occurred at the same location relative to the 23S rDNA and accounted for the phase-shift difference in P. lentimorbus group 1 DNA fingerprints. At present, there is no explanation for this 108bp insert. The third ITS-PCR fingerprint, produced by P. lentimorbus group 3 strains, exhibited approximately eight DNA bands. Comparison of the three fingerprints of milky disease bacteria to the ITS-PCR fingerprints of other Paenibacillus species demonstrated uniqueness. ITS-PCR fingerprinting successfully identified eight unknown isolates as milky disease bacteria. Therefore, this procedure can serve as a standard protocol to identify P. popilliae and P. lentimorbus.

  11. Speciation of Bacillus spp. in honey produced in Northern Ireland by employment of 16S rDNA PCR and automated DNA sequencing techniques.

    PubMed

    Tolba, Ola; Earle, J A Philip; Millar, B Cherie; Rooney, Paul J; Moore, John E

    2007-12-01

    Phenotypic speciation of foodborne Bacillus spp. remains problematic in terms of obtaining a reliable identification. In this study, we wished to identify several bacterial isolates from honey produced in Northern Ireland, and which belonged to the genus Bacillus, through employment of a molecular identification scheme based on PCR amplification of universal regions of the 16S rRNA operon in combination with direct automated sequencing of the resulting amplicons. Seven samples of honey and related materials (propolis) were examined microbiologically and were demonstrated to have total viable counts (TVC) ranging from <100 to 1700 colony-forming units/g. No yeasts or filamentous fungi were isolated from the honey materials. Several bacterial isolates were identified using this method, yielding two different genera (Paenibacillus and Bacillus), as well as four Bacillus species, namely Bacillus pumilus, B. licheniformis, B. subtilis and B. fusiformis, with B. pumilus the most frequently identified species present. When the use of molecular identification methods is justified, employment of partial 16S rDNA PCR and sequencing provides a valuable and reliable method of identification of Bacillus spp. from foodstuffs and negates associated problems of conventional laboratory and phenotypic identification.

  12. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children.

    PubMed

    Rosey, Anne-Laure; Abachin, Eric; Quesnes, Gilles; Cadilhac, Céline; Pejin, Zagorka; Glorion, Christophe; Berche, Patrick; Ferroni, Agnès

    2007-01-01

    The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.

  13. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR).

    PubMed

    Daxboeck, Florian; Dornbusch, Hans Jürgen; Krause, Robert; Assadian, Ojan; Wenisch, Christoph

    2004-01-01

    A small but significant proportion of blood cultures processed by the BACTEC 9000 series systems is signaled positive, while subsequent Gram's stain and culture on solid media yield no pathogens. In this study, 15 "false-positive" vials (7 aerobes, 8 anaerobes) from 15 patients were investigated for the presence of bacteria and fungi by eubacterial 16S rDNA and panfungal 18S rDNA amplification, respectively. All samples turned out negative by both methods. Most patients (7) had neutropenia, which does not support the theory that high leukocyte counts enhance the generation of false-positive results. In conclusion, the results of this study indicate that false-negative results generated by the BACTEC 9000 series are inherent to the automated detection and not due to the growth of fastidious organisms.

  14. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.

  15. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae).

    PubMed

    Guernaoui, S; Garcia, D; Gazanion, E; Ouhdouch, Y; Boumezzough, A; Pesson, B; Fontenille, D; Sereno, D

    2011-03-01

    In this study, we tested the capacity of Temperature Gradient Gel Electrophoresis (TGGE)-based fingerprinting of 16S rDNA PCR fragments to assess bacterial composition in a single isolated sand fly gut. Bacterial content was studied in different life stages of a laboratory-reared colony of Phlebotomus duboscqi and in a wild-caught Phlebotomus papatasi population. Our study demonstrates that a major reorganization in the gut bacterial community occurs during metamorphosis of sand flies. Chloroflexi spp. was dominant in the guts of pre-imaginal stages, although Microbacterium spp. and another as yet unidentified bacteria were detected in the gut of the adult specimen. Interestingly, Microbacterium spp. was also found in all the adult guts of both species. We demonstrate that the analysis of bacterial diversity in an individualized sand fly gut is possible with fingerprinting of 16S rDNA. The use of such methodology, in conjunction with other culture-based methods, will be of great help in investigating the behavior of the Leishmania-bacterial community in an ecological context.

  16. [Numerical taxonomy and 16S rDNA PCR-rFLP analysis of rhizobial strains isolated from root nodules of cowpea and mung bean grown in different regions of China].

    PubMed

    Zhang, Yong-fa; Wang, Feng-qin; Chen, Wen-xin

    2006-12-01

    Seventy-nine rhizobial strains, isolated from root nodules of cowpea ( Vigna unguiculata ) and mung bean (Vigna radiata ) grown in different regions of China, were studied by a fuzzy cluster analysis of 128 phenotypic characteristics. The phenotypic characterization of these strains showed that most of these strains had high stress resistance. For instance, most of them could grow from pH 5.0 to pH 11.0. Over 85% of these strains could grow well on YMA plate at 37 degrees C and several of them even could grow after a 45 minutes hot shock at 60 degrees C. Some strains had a tolerance to high concentration of Bacitracin (400 microg/mL) . The result of the fuzzy cluster analysis showed that all the strains were clustered into 2 groups, slow growers and fast growers, at the similarity level of 63.5% . At the similarity level of 79 %, there were 7 subgroups further separated. Based upon the result of the numerical taxonomy, these strains together with 22 reference stains were analyzed by the 16S rDNA PCR-RFLP. Thirty-four genotype profiles were obtained from the fingerprinting of the 16S rDNA PCR-RFLP. These strains were analyzed by GelCompare II software and clustered into 7 groups at the similarity level of 91% , which were consonant with the 7 subgroups clustered at the similarity level of 79% in numerical taxonomy. The results of numerical taxonomy and 16S rDNA PCR-RFLP analysis showed that all of the seventy-nine rhizobial Bradyrhizobium, strains isolated from root nodules of cowpea and mung bean were clustered into four genera: Agrobacterium, Rhizobium and Sinorhizobium, respectively. An individual clade without any reference stains, which was composed of CCBAU 45071, CCBAU 45111-1 and CCBAU 45248, might be a new species of Rhizobium. Overall, the study results demonstrated a high phenotypic and phylogenetic diversity of rhizobial strains nodulating cowpea and mung bean grown in different geographic regions of China.

  17. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing.

  18. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  19. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.

  20. Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing

    PubMed Central

    Angeletti, Silvia; Lorino, Giulia; Gherardi, Giovanni; Battistoni, Fabrizio; De Cesaris, Marina; Dicuonzo, Giordano

    2001-01-01

    For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddlE. faecalis and ddlE. faecium primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative. PMID:11158155

  1. Use of single-strand conformation polymorphism of amplified 16S rDNA for grouping of bacteria isolated from foods.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Tanaka, Yuichiro; Mori, Mayumi; Yokoi, Asami; Fujii, Tateo

    2008-04-01

    The grouping method for isolated strains from foods using single-strand conformation polymorphism (SSCP) after PCR amplification of a portion of 16S rDNA was developed. This method was able to group the strains from various food samples based on 16S rDNA sequence. As 97.8% of the isolated strains from various foods were grouped correctly, use of the PCR-SSCP method enables the prompt and labor-saving analysis of microbial population of food-derived bacterial strains. Advantages in speed and accuracy of bacterial population identification by the PCR-SSCP method have practical application for food suppliers and testing laboratories.

  2. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  3. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats

    PubMed Central

    Camacho, H.; Tuero, A. D.; Bacardí, D.; Palenzuela, D. O.; Aguilera, A.; Silva, J. A.; Estrada, R.; Gell, O.; Suárez, J.; Ancizar, J.; Brown, E.; Colarte, A. B.; Castro, J.; Novoa, L. I.

    2016-01-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies. PMID:27382362

  4. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays.

    PubMed

    Warsen, Adelaide E; Krug, Melissa J; LaFrentz, Stacey; Stanek, Danielle R; Loge, Frank J; Call, Douglas R

    2004-07-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.

  5. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities.

    PubMed

    Logares, Ramiro; Sunagawa, Shinichi; Salazar, Guillem; Cornejo-Castillo, Francisco M; Ferrera, Isabel; Sarmento, Hugo; Hingamp, Pascal; Ogata, Hiroyuki; de Vargas, Colomban; Lima-Mendez, Gipsi; Raes, Jeroen; Poulain, Julie; Jaillon, Olivier; Wincker, Patrick; Kandels-Lewis, Stefanie; Karsenti, Eric; Bork, Peer; Acinas, Silvia G

    2014-09-01

    Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.

  6. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.

  7. Mitochondrial 16S rDNA analysis of Tunisian androctonus species (Scorpions, Buthidae): phylogenetic approach.

    PubMed

    Ben Othmen, A; Said, K; Ben Alp, Z; Chatti, N; Ready, P D

    2006-01-01

    Tunisian Androctonus species, for long time discussed, were recognized on the basis of mitochondrial 16S rDNA sequences. Although the analysed nucleotide sequence is rather short (about 300 bp), the obtained phlogenetic trees revealed that A. amoreuxi and A. aeneas form two well-supported sister clades against A. australis haplotypes. Each specimen of the very rare species A. aeneas showed a specific haplotype, but together formed a well-defined clade. Some A. amoreuxi specimens highlighted unidirectional mitochondrial introgression from neighbouring A. australis population. Within A. australis, previously described, subspecies subdivision (A. a .hector and A. a. garzonii) was not supported.

  8. Characterization of the dominant bacterial communities during storage of Norway lobster and Norway lobster tails (Nephrops norvegicus) based on 16S rDNA analysis by PCR-DGGE.

    PubMed

    Bekaert, Karen; Devriese, Lisa; Maes, Sara; Robbens, Johan

    2015-04-01

    The aim of this study was to investigate the microbial quality of whole Norway lobster (Nephrops norvegicus) and Norway lobster tails to optimize handling conditions. This was done by assessing the total viable count (TVC) and characterizing the dominant microbiota. The cultivable microorganisms were quantified via classical microbiological plating methods. To characterize as many bacterial species present as possible, we performed advanced molecular identification techniques (PCR-DGGE). The initial TVC of fresh Norway lobster meat was high (3.0 log cfu/g) as compared to fish. No significant difference between whole Norway lobster and Norway lobster tails could be found during the storage period. From day 6 of storage, a significant difference between Plate Count Agar (PCA) and Marine Agar (MA) was observed. The microbiota of Norway lobster was dominated by members of the Gram-negative genera such as Psychrobacter spp., Pseudoalteromonas spp., Pseudomonas spp., Luteimonas spp., and Aliivibrio spp. From these bacteria, mainly Psychrobacter spp. and Pseudomonas spp. remained present until the end of the storage period. These are known spoilage organisms in fishery products. Other known spoilage organisms of crustaceans such as Photobacterium spp. could not be identified.

  9. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses.

  10. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  11. 16S-23S rDNA internal transcribed spacer regions in four Proteus species.

    PubMed

    Cao, Boyang; Wang, Min; Liu, Lei; Zhou, Zhemin; Wen, Shaoping; Rozalski, Antoni; Wang, Lei

    2009-04-01

    Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.

  12. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    PubMed

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  13. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  14. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    PubMed

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  15. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  16. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  17. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR.

    PubMed

    Ochsenreiter, Torsten; Selezi, Drazenka; Quaiser, Achim; Bonch-Osmolovskaya, Liza; Schleper, Christa

    2003-09-01

    Novel phylogenetic lineages of as yet uncultivated crenarchaeota have been frequently detected in low to moderate-temperature, marine and terrestrial environments. In order to gain a more comprehensive view on the distribution and diversity of Crenarchaeota in moderate habitats, we have studied 18 different terrestrial and freshwater samples by 16S rDNA-based phylogenetic surveys. In seven different soil samples of diverse geographic areas in Europe (forest, grassland, ruderal) and Asia (permafrost, ruderal) as well as in two microbial mats, we have consistently found one particular lineage of crenarchaeota. The diversity of Crenarchaeota in freshwater sediments was considerably higher with respresentative 16S rDNA sequences distributed over four different groups within the moderate crenarchaeota. Systematic analysis of a 16S rDNA universal library from a sandy ecosystem containing 800 clones exclusively revealed the presence of the soil-specific crenarchaeotal cluster. With primers specific for non-thermophilic crenarchaeota we established a rapid method to quantify archaeal 16S rDNA in real time PCR. The relative abundance of crenarchaeotal rDNA was 0.5-3% in the bulk soil sample and only 0.16% in the rhizosphere of the sandy ecosystem. A nearby agricultural setting yielded a relative abundance of 0.17% crenarchaeotal rDNA. In total our data suggest that soil crenarchaeota represent a stable and specific component of the microbiota in terrestrial habitats.

  18. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  19. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  20. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  1. [Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI].

    PubMed

    Wang, Jian-Yan; Zhen, Yu; Wang, Guo-shan; Mi, Tie-Zhu; Yu, Zhi-gang

    2013-03-01

    Taking the moon jellyfish Aurelia sp. commonly found in our coastal sea areas as test object, its genome DNA was extracted, the partial sequences of mt-16S rDNA (650 bp) and mt-COI (709 bp) were PCR-amplified, and, after purification, cloning, and sequencing, the sequences obtained were BLASTn-analyzed. The sequences of greater difference with those of the other jellyfish were chosen, and eight specific primers for the mt-16S rDNA and mt-COI of Aurelia sp. were designed, respectively. The specificity test indicated that the primer AS3 for the mt-16S rDNA and the primer AC3 for the mt-COI were excellent in rapidly detecting the target jellyfish from Rhopilema esculentum, Nemopilema nomurai, Cyanea nozakii, Acromitus sp., and Aurelia sp., and thus, the techniques for the molecular identification and detection of moon jellyfish were preliminarily established, which could get rid of the limitations in classical morphological identification of Aurelia sp. , being able to find the Aurelia sp. in the samples more quickly and accurately.

  2. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  3. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  4. Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Sasaki, Y; Yamamoto, K; Amimoto, K; Kojima, A; Ogikubo, Y; Norimatsu, M; Ogata, H; Tamura, Y

    2001-12-01

    Amplification of the 16S-23S rDNA spacer region by polymerase chain reaction (PCR) was used for the rapid detection of Clostridium chauvoei and C septicum. To assess its specificity, PCR was performed with total DNA from 42 strains of clostridia and three strains of other genera. PCR products specific to C chauvoei or to C septicum were generated from homologous cultures only. Clostridium chauvoer-specific or C septicum-specific amplicons were also generated from tissues of cows experimentally infected with C chauvoei or C septicum and in DNA samples from cows clinically diagnosed as having blackleg or malignant oedema. These results suggest that a species-specific PCR may be useful for the rapid and direct detection of C chauvoei and C septicum in clinical specimens.

  5. Usefulness of 16S rDNA sequencing for the diagnosis of infective endocarditis caused by Corynebacterium diphtheriae.

    PubMed

    Pathipati, Padmaja; Menon, Thangam; Kumar, Naveen; Francis, Thara; Sekar, Prem; Cherian, Kotturathu Mammen

    2012-08-01

    We report a rare case of infective endocarditis caused by Corynebacterium diphtheriae in an 8-year-old boy, 2 years after a right ventricular outflow tract reconstruction with a bovine Contegra valved conduit. The patient recovered well after an RV-PA conduit enblock explantation and replacement with an aortic homograft with antibiotic treatment. All bacteriological cultures of excised tissue and blood were negative. The aetiological agent was identified as C. diphtheriae subsp. gravis by 16s rDNA sequencing.

  6. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  7. Molecular analysis of the 16S-23S rDNA internal spacer region (ISR) and truncated tRNA(Ala) gene segments in Campylobacter lari.

    PubMed

    Hayashi, K; Tazumi, A; Nakanishi, S; Nakajima, T; Matsubara, K; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-06-01

    Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.

  8. Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.

    PubMed

    Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S

    2013-07-15

    Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products.

  9. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory.

  10. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  11. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  12. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    PubMed

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  13. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem.

    PubMed

    Rieu-Lesme, Françoise; Delbès, Céline; Sollelis, Lauriane

    2005-11-01

    Human feces collected from 10 healthy teenagers was analyzed for the presence of Crenarchaeota. After a first polymerase chain reaction (PCR) with Archaea-specific primers, a nested real-time PCR was performed using Crenarchaeota-specific primers. Real-time Crenarchaeotal PCR products detected from four subjects were cloned and the sequencing revealed that most of the partial 16S rRNA gene sequences were highly similar (> or = 97% homology) to sequences affiliated to the Sulfolobus group of the Crenarchaeota phylum. Our findings suggest for the first time that Crenarchaeota might be present in the microbiota of the human digestive ecosystem in which this phylum has never been found yet.

  14. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  15. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  16. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K‐t; Fung, A M Y; Woo, G K S; Chan, K‐m; Que, T‐l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non‐duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  17. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  18. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy.

    PubMed

    Coolen, Marco J L; Talbot, Helen M; Abbas, Ben A; Ward, Christopher; Schouten, Stefan; Volkman, John K; Damsté, Jaap S Sinninghe

    2008-07-01

    Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in (13)C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake approximately 3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake.

  19. Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16S rDNA sequencing.

    PubMed

    Yilmaz, Fadime; Orman, Nazlı; Serim, Gamze; Kochan, Ceren; Ergene, Aysun; Icgen, Bulent

    2013-12-01

    Four Staphylococcus isolates having both multidrug- and multimetal-resistant ability were isolated from surface water. Further identification of the isolates was obtained through biochemical tests and 16S rDNA gene sequencing. One methicillin-resistant and two methicillin-sensitive isolates were determined as Staphylococcus aureus. The other isolate was identified as Staphylococcus warneri. The antibiotic and heavy metal resistance profiles of the Staphylococcus isolates were determined by using 26 antibiotics and 17 heavy metals. S. aureus isolates displayed resistance to most of the β-lactam antibiotics tested. All Staphylococcus isolates were resistant to heavy metals including silver, lithium, and barium. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  20. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  1. Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotizing enterocolitis.

    PubMed Central

    Millar, M R; Linton, C J; Cade, A; Glancy, D; Hall, M; Jalal, H

    1996-01-01

    The purpose of the present study was to determine the extent to which bacteria not detected by culture contribute to the microbial flora of the bowel of preterm infants with and without neonatal necrotizing enterocolitis (NEC). Fecal samples from 32 preterm infants in special care baby units including samples from 10 infants with NEC were examined by culture and PCR amplification of the 16S rRNA gene (rDNA). The 16S rDNA V3 region was amplified with eubacterial primers, and the amplification products derived from the fecal sample DNA were compared with the products from individual cultured isolates by PCR and denaturing gradient gel electrophoresis (PCR-DGGE), allowing the DNA from uncultured bacteria to be identified. For the 22 infants without NEC weekly samples were examined for a mean of 5.3 postnatal weeks. The total number of types detected by culture combined with PCR-DGGE was 10.1 per infant, of which PCR-DGGE contributed 10.4% of the types identified. Additional types detected by PCR-DGGE were found in 14 (63.6%) of the 22 infants. The majority of the sequences associated with uncultured bacteria showed > 90% 16S rDNA sequence identity with sequences from culturable human enteric flora, and all were found in single infants with the exception of sequences indistinguishable by DGGE from seven infants. These sequences showed > 90% sequence identity with the 16S rDNA of Streptococcus salivarius and may have been derived from upper gastrointestinal or respiratory tract flora. In the present study uncultured bacteria detected by PCR-DGGE were no more frequent in fecal samples from infants with NEC than in samples from infants without NEC, although these findings do not exclude the possibility of unrecognized bacteria associated with the mucosa of the small intestine of infants with NEC. PMID:8880510

  2. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).

  3. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing.

    PubMed

    Jordan, Jeanne A; Durso, Mary Beth; Butchko, Allyson R; Jones, Judith G; Brozanski, Beverly S

    2006-07-01

    Although the rate of early onset sepsis in the near-term neonate is low (one to eight of 1,000 cases), the rate of mortality and morbidity is high. As a result, infants receive multiple, broad-spectrum antibiotic therapy, many for up to 7 days despite blood cultures showing no growth. Maternal intrapartum antibiotic prophylaxis and small blood volume collections from infants are cited as reasons for the lack of confidence in negative culture results. Incorporating an additional, more rapid test could facilitate a more timely diagnosis in these infants. To this end, a 16S rDNA polymerase chain reaction (PCR) assay was compared to blood culturing for use as a tool in evaluating early onset sepsis. Of 1,751 neonatal intensive care unit admissions that were screened, 1,233 near-term infants met inclusion criteria. Compared to culture, PCR demonstrated excellent analytical specificity (1,186 of 1,216, 97.5%) and negative predictive value (1,186 of 1,196, 99.2%); however, PCR failed to detect a significant number of culture-proven cases. These findings underscore the cautionary stance that should be taken at this time when considering the use of a molecular amplification test for diagnosing neonatal sepsis. The experience gained from this study illustrates the need for changes in sample collection and preparation techniques so as to improve analytical sensitivity of the assay.

  4. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies

    PubMed Central

    Klindworth, Anna; Pruesse, Elmar; Schweer, Timmy; Peplies, Jörg; Quast, Christian; Horn, Matthias; Glöckner, Frank Oliver

    2013-01-01

    16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of ‘best available’ primer pairs for Bacteria and Archaea for three amplicon size classes (100–400, 400–1000, ≥1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies. PMID:22933715

  5. [Sequence analysis of 16S rDNA gene of endosymbiont of Acanthamoeba sp. CB/S1 isolated from soil].

    PubMed

    Xuan, Ying-hua; Cui, Chun-quan; Zheng, Shan-zi

    2011-04-30

    The endosymbiont of Acanthamoeba sp. CB/SI was identified by orcein-carmine staining and 16S rDNA sequence analysis. The endosymbiont bacteria were rod-shaped and darkly stained, and irregularly localized within the cytoplasm. The length of the 16S rDNA was 1534 bp and its DNA sequence was closely related to those of Candidatus Amoebophilus asiaticus and Acanthamoeba sp. KA/E21 with 98% homology. Phylogenetic analysis showed that the endosymbiont of CB/SI, the endosymbiont of KA/E21, Candidatus Amoebophilus asiaticus, the endosymbiont of Ixodes scapularis, and the endosymbiont of Encarsia pergandiella constitute a monophyletic lineage in phylogenetic tree.

  6. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra.

    PubMed

    Ota-Tsuzuki, C; Brunheira, A T P; Mayer, M P A

    2008-10-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes.

  7. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra

    PubMed Central

    Ota-Tsuzuki, C.; Brunheira, A.T.P.; Mayer, M.P.A.

    2008-01-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes. PMID:24031274

  8. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing.

    PubMed

    Wolcott, Randall D; Hanson, John D; Rees, Eric J; Koenig, Lawrence D; Phillips, Caleb D; Wolcott, Richard A; Cox, Stephen B; White, Jennifer S

    2016-01-01

    The extent to which microorganisms impair wound healing is an ongoing controversy in the management of chronic wounds. Because the high diversity and extreme variability of the microbiota between individual chronic wounds lead to inconsistent findings in small cohort studies, evaluation of a large number of chronic wounds using identical sequencing and bioinformatics methods is necessary for clinicians to be able to select appropriate empiric therapies. In this study, we utilized 16S rDNA pyrosequencing to analyze the composition of the bacterial communities present in samples obtained from patients with chronic diabetic foot ulcers (N = 910), venous leg ulcers (N = 916), decubitus ulcers (N = 767), and nonhealing surgical wounds (N = 370). The wound samples contained a high proportion of Staphylococcus and Pseudomonas species in 63 and 25% of all wounds, respectively; however, a high prevalence of anaerobic bacteria and bacteria traditionally considered commensalistic was also observed. Our results suggest that neither patient demographics nor wound type influenced the bacterial composition of the chronic wound microbiome. Collectively, these findings indicate that empiric antibiotic selection need not be based on nor altered for wound type. Furthermore, the results provide a much clearer understanding of chronic wound microbiota in general; clinical application of this new knowledge over time may help in its translation to improved wound healing outcomes.

  9. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.

    PubMed Central

    Black, W C; Piesman, J

    1994-01-01

    Ticks are parasitiform mites that are obligate hematophagous ectoparasites of amphibians, reptiles, birds, and mammals. A phylogeny for tick families, subfamilies, and genera has been described based on morphological characters, life histories, and host associations. To test the existing phylogeny, we sequenced approximately 460 bp from the 3' end of the mitochondrial 16S rRNA gene (rDNA) in 36 hard- and soft-tick species; a mesostigmatid mite, Dermanyssus gallinae, was used as an outgroup. Phylogenies derived using distance, maximum-parsimony, or maximum-likelihood methods were congruent. The existing phylogeny was largely supported with four exceptions. In hard ticks (Ixodidae), members of Haemaphysalinae were monophyletic with the primitive Amblyomminae and members of Hyalomminae grouped within the Rhipicephalinae. In soft ticks (Argasidae), the derived phylogeny failed to support a monophyletic relationship among members of Ornithodorinae and supported placement of Argasinae as basal to the Ixodidae, suggesting that hard ticks may have originated from an Argas-like ancestor. Because most Argas species are obligate bird octoparasites, this result supports earlier suggestions that hard ticks did not evolve until the late Cretaceous. PMID:7937832

  10. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries.

    PubMed

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2015-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis.

  11. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  12. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  13. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  14. Validation of the 16S rDNA and COI DNA barcoding technique for rapid molecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae).

    PubMed

    Yang, Qianqian; Zhao, Shuo; Kucerová, Zuzana; Stejskal, Václav; Opit, George; Qin, Meng; Cao, Yang; Li, Fujun; Li, Zhihong

    2013-02-01

    Psocids are serious storage pests, and their control is hampered by the fact that different species respond differently to insecticides used for the control of stored-product insect pests. Additionally, psocids of genus Liposcelis that are commonly associated with stored-products are difficult to identify using morphological characteristics. The goal of this study was to validate molecular identification of stored-product psocids of genus Liposcelis based on 16S rDNA and cytochrome oxidase I (COI) DNA barcoding. Unidentified liposcelids (Liposcelis DK) imported from Denmark to China were compared with 14 population samples of seven common species (L. bostrychophila, L. brunnea, L. corrodens, L. decolor, L. entomophila, L. mendax, and L. paeta). The explored species (DK) liposcelids shared >98% sequence similarity for both the 16S rDNA and COI genes with the reference L. corrodens samples (98.32 and 98.94% for 16S rDNA and COI, respectively). A neighbor-joining tree revealed that the explored DK sample and the reference L. corrodens samples belong to the same clade. These molecular results were verified by morphological identification of DK specimens, facilitated by SEM microphotography. The DNA barcoding method and the neighbor-joining phylogenetic analyses indicated that both the 16S rDNA and COI genes were suitable for Liposcelis species identification. DNA barcoding has great potential for use in fast and accurate liposcelid identification.

  15. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR.

    PubMed

    Farrell, D J

    1999-02-01

    Certain strains of Neisseria subflava and Neisseria cinerea are known to produce false-positive results with the AMPLICOR Neisseria gonorrhoeae PCR (Roche Diagnostic Systems, Branchburg, N.J.). The analytical sensitivity and analytical specificity of three PCR tests were assessed with 3 geographically diverse N. gonorrhoeae strains and 30 non-N. gonorrhoeae Neisseria spp. The sensitivities of the in-house nested cppB gene and the 16S rRNA PCR methods were greater than that of the AMPLICOR N. gonorrhoeae PCR with purified DNA from all 3 N. gonorrhoeae strains. Six of 14 clinical strains of N. subflava (1 from a vaginal swab, 5 from respiratory sites) produced false-positive AMPLICOR N. gonorrhoeae PCR results and were negative by the two other PCR methods. When applied to 207 clinical specimens selected from a population with a high prevalence ( approximately 9%) of infection, the results for 15 of 96 (15.6%) AMPLICOR-positive specimens and 14 of 17 (82.3%) AMPLICOR-equivocal specimens were not confirmed by the more sensitive nested cppB PCR method. Only 2 of 94 (2.1%) of AMPLICOR N. gonorrhoeae PCR-negative specimens from the same population tested positive by the nested cppB method. These results suggest that for this population the AMPLICOR N. gonorrhoeae PCR test is suitable as a screening test only and all positive results should be confirmed by a PCR method that is more specific and at least as sensitive. This study also illustrates that caution should be used when introducing commercially available nucleic acid amplification-based diagnostic tests into the regimens of tests used for populations not previously tested with these products.

  16. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library.

    PubMed

    Manichanh, Chaysavanh; Chapple, Charles E; Frangeul, Lionel; Gloux, Karine; Guigo, Roderic; Dore, Joel

    2008-09-01

    The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.

  17. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo.

    PubMed

    Paul, S S; Deb, S M; Dey, A; Somvanshi, S P S; Singh, D; Rathore, R; Stiverson, J

    2015-10-01

    The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance.

  18. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  19. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  20. Long-Term Stability of Mercury-Reducing Microbial Biofilm Communities Analyzed by 16S-23S rDNA Interspacer Region Polymorphism.

    PubMed

    Canstein, H.F.; Li, Y.; Felske, A.; Wagner-Döbler, I.

    2001-12-01

    The composition of mercury-reducing communities in two bioreactors retaining Hg(II) from chloralkali electrolysis wastewater for 485 days was analyzed based on effluent community DNA. Packed bed bioreactors with lava chips as carrier of the biofilm were inoculated with nine Hg(II)-resistant isolates that belonged to the alpha and gamma subdivisions of the proteobacteria. A rapid DNA-fingerprinting method was applied, using the intergenic spacer region (ISR) of the 16S-23S rDNA for analysis of the community composition. This allowed discrimination of the inoculum strains down to subspecies level. A merA specific PCR permitted the discrimination of the community's merA genes. During the 485 days of operation, the bioreactors were exposed to various physical stresses (mixing, gas bubbles, temperature increase up to 41 degrees C, increased flow velocity) and repeated high mercury inflow concentrations, resulting in reduced bioreactor performance and decreased culturable cell numbers in the reactor effluent. Nevertheless, the composition of the microbial community remained rather stable throughout the investigated time period. Of the inoculum strains, two could be detected throughout, whereas three were sometimes present with varying periods of nondetection. Two inoculum strains were only detected within the first month. Two strains of gamma-proteobacteria that were able to reduce ionic mercury invaded the bioreactor community. They did not outcompete established strains and had no negative effect on the Hg(II)-retention activity of the bioreactors. The community comprised diverse merA genes. The abundance of merA genes matched the abundance of their respective strains as confirmed by ISR community analysis. The continuously high selection pressure for mercury resistance maintained a stable and highly active mercury-reducing microbial community within the bioreactors.

  1. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  2. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  3. Phylogenetic relationships linking Duttaphrynus (Amphibia: Anura: Bufonidae) species based on 12S and 16S rDNA sequences.

    PubMed

    Pratihar, Suman; Bhattacharya, Manojit; Deuti, Kaushik

    2016-07-01

    Genus Duttaphrynus (Amphibia: Anura: Bufonidae) is endemic to southwestern and southern China and throughout southern Asia. Duttaphrynus phylogeny was also under debate for many years. 12S and 16S rDNAs help us to elucidate Duttaphrynus phylogeny.

  4. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  5. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  6. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Ki, Jang-Seu; Qian, Pei-Yuan

    2008-02-01

    Bacteria, as the most abundant sediment organism, play a major role in the fate of pollutants. Therefore, many pollutant-related bacteria have been studied in harbor sediments, yet the entire bacterial profiles have not been reported. The bacterial diversity and community structures from sediments in Victoria Harbor (Hong Kong), including two polluted (VH and VHW) and two adjacent (open oceanic, TLC; estuary discharge affected, PC) sites, were characterized by analyses of four 16S rDNA clone libraries. Upon comparisons of RFLP patterns from 254 clones in the libraries, 178 unique phylotypes were retrieved. LIBSHUFF and Rarefaction analyses indicated that the sediment bacterial communities at the four sites showed high 16S rDNA richness and were significantly different from each other. Phylogenetic analysis of full-length 16S rDNA revealed 19 bacterial phyla in Victoria Harbor sediments. γ- and δ-proteobacteria, holophaga/acidobacteria, and planctomycetales were recorded in all the libraries. In addition, γ- and δ-proteobacteria were dominant at all sites (33.33-11.67%). Besides these two phyla, ɛ-proteobacteria, firmicutes, aminobacterium, holophaga/acidobacteria and bacteroidetes were judged to be major components of a given library since they constituted 10% or more of the total OTUs of the given library. The cyanobacteria, verrucomicrobia, β-proteobacteria, aminobacterium, chlorofiexi, and candidate division OP1, OP8 were detected in minor proportions in various libraries. A portion of the clones were only distantly related to sequences in the GenBank, suggesting bacteria in Victoria Harbor sediments were unique and diversified.

  7. The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA.

    PubMed

    Tsuboi, Shun; Amemiya, Takashi; Seto, Koji; Itoh, Kiminori; Rajendran, Narasimmalu

    2013-05-01

    Based on quantification and qualification of bacterial 16S rDNA, we verified the bacterial ecological characteristics of surface sediments of Lakes Shinji and Nakaumi, which are representative of coastal lagoons in Japan. Quantification and qualification of the 16S rDNA sequences was carried out using real time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis and non-metric multidimensional scaling, respectively. The results revealed that the copy number per gram of sediment ranged from 8.33 × 10(8) (Lake Nakaumi) to 1.69 × 10(11) (Honjo area), suggesting that bacterial carbon contributed only 0.05-9.64 % of the total carbon content in the samples. Compared with other aquatic environments, these results indicate that sedimentary bacteria are not likely to be important transporters of nutrients to higher trophic levels, or to act as carbon sinks in the lagoons. The bacterial compositions of Lake Shinji and Lake Nakaumi and the Honjo area were primarily influenced by sediment grain sizes and salinity, respectively. Statistical comparisons of the environmental properties suggested that the areas that were oxygen-abundant (Lake Shinji) and at a higher temperature (Honjo area) presented efficient organic matter degradation. The 16S rDNA copy number per gram of carbon and nitrogen showed the same tendency. Consequently, the primary roles of bacteria were degradation and preservation of organic materials, and this was affected by oxygen and temperature. These roles were supported by the bacterial diversity rather than the differences in the community compositions of the sedimentary bacteria in these coastal lagoons.

  8. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing.

    PubMed

    Armougom, F; Bittar, F; Stremler, N; Rolain, J-M; Robert, C; Dubus, J-C; Sarles, J; Raoult, D; La Scola, B

    2009-09-01

    Recent studies using 16S rRNA gene amplification followed by clonal Sanger sequencing in cystic fibrosis demonstrated that cultured microorganisms are only part of the infecting flora. The purpose of this paper was to compare pyrosequencing and clonal Sanger sequencing on sputum. The sputum of a patient with cystic fibrosis was analysed by culture, Sanger clone sequencing and pyrosequencing after 16S rRNA gene amplification. A total of 4,499 sequencing reads were obtained, which could be attributed to six consensus sequences, but the length of reads leads to fastidious data analysis. Compared to clonal Sanger sequencing and to cultivation results, pyrosequencing recovers greater species richness and gives a more reliable estimate of the relative abundance of bacterial species. The 16S pyrosequencing approach expands our knowledge of the microbial diversity of cystic fibrosis sputum. The current lack of phylogenetic resolution at the species level for the GS 20 sequencing reads will be overcome with the next generation of pyrosequencing apparatus.

  9. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis.

    PubMed

    Delgado, Susana; Suárez, Adolfo; Mayo, Baltasar

    2006-04-01

    The aim of this work was to examine by culturing the changes in the total and indicator populations of the feces of two individuals over 1 year and to identify the dominant microbial components of a single sample of feces from each donor. Populations and dominant bacteria from a sample of colonic mucosa from a further individual were also assessed. The culture results were then compared to those obtained with the same samples by 16S rDNA cloning and sequencing. High interindividual variation in representative microbial populations of the gastrointestinal tract (GIT) was revealed by both the culture and the culture-independent techniques. Species belonging to Clostridium clusters (XIVa, IV, and XVIII) predominated in both the fecal and the mucosal samples (except in the mucose cultured isolates), members of Clostridium coccoides cluster XIVa being the most numerous microorganisms. Species of gamma-proteobacteria (Escherichia coli and Shigella spp.), bifidobacteria, and actinobacteria appeared in lower numbers than those of clostridia. From the mucosal cultured sample, only facultative anaerobes and bifidobacteria were recovered, suggesting destruction of the anaerobe population during processing. In accordance with this, the microbial diversity revealed by 16S rDNA sequence analysis was greater than that revealed by culturing. Despite large interindividual differences, distinct human communities may have group-associated GIT microbiota characteristics, such as the low number of Bacteroides seen in the subjects in this study.

  10. Microbial Diversity of Cold-Seep Sediments in Sagami Bay, Japan as Determined by 16S rDNA and Lipid Analyses

    NASA Astrophysics Data System (ADS)

    Fang, J.; Arakawa, S.; Kato, C.; Schouten, S.

    2006-12-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan were characterized by using 16S rDNA sequencing and lipid biomarker analysis. Characterization of 16S rDNA isolated from these samples suggested a predominance of bacterial phylotypes related to γ- (57-64%) and δ-subclasses (27-29%) of the Proteobacteria. The ɛ-subclass of the Proteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. There are significantly different archaeal phylotypes between Calyptogena sediment and microbial mat; the former contains only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones including the ANME-2a and ANME-2c archaeal groups. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggests the presence of sulfate-reducing and sulfur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether (GDGT) lipid analysis indicate the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold seep environments.

  11. Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China, based on COI and 16S rDNA gene sequences.

    PubMed

    Guo, Yadong; Cai, Jifeng; Chang, Yunfeng; Li, Xiang; Liu, Qinlai; Wang, Xinghua; Wang, Xiang; Zhong, Ming; Wen, Jifang; Wang, Jiangfeng

    2011-11-01

    Insects attracted to cadavers may provide important indications of the postmortem interval (PMI). However, use of the flesh flies (Diptera: Sarcophagidae) for PMI estimation is limited as the species are often not morphologically distinct, especially as immatures. In this study, 23 forensically important flesh flies were collected from 13 locations in 10 Chinese provinces. Then, a 278-bp segment of the cytochrome oxidase subunits one (COI) gene and a 289-bp segment of the 16S rDNA gene of all specimens were successfully sequenced. Phylogenetic analysis of the sequenced segments showed that all sarcophagid specimens were properly assigned into four species (Boerttcherisca peregrina [Robineau-Desvoidy, 1830], Helicophagella melanura [Meigen, 1826], Parasarcophaga albiceps [Meigen, 1826], and Parasarcophaga dux [Thompson, 1869]) with relatively strong supporting values, thus indicating that the COI and 16S rDNA regions are suitable for identification of sarcophagid species. The difference between intraspecific threshold and interspecific divergence confirmed the potential of the two regions for sarcophagid species identification.

  12. Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening.

    PubMed

    Singh, Shalini Thakur; Priya, Natarajan Gayatri; Kumar, Jitendra; Rana, Vipin Singh; Ellango, R; Joshi, Adita; Priyadarshini, Garima; Asokan, R; Rajagopal, Raman

    2012-03-01

    Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed no correlation between the host genetic group and the endosymbiont diversity. These results suggest that the bacterial endosymbiont diversity of B. tabaci is much larger and complex than previously perceived and probably N. Indian strains of the bacterial symbionts could have evolved from some other ancestor.

  13. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  14. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  15. An unusual case of seronegative, 16S PCR positive Brucella infection

    PubMed Central

    Backhouse, Lucy; Rawat, David; Naik, Sandhia; Millar, Michael

    2016-01-01

    Introduction: Brucella is a zoonotic infection commonly diagnosed by isolation of the organism from blood culture or positive serological testing. It is an uncommon cause of a pyrexia of unknown origin in the United Kingdom. Case presentation: We describe the case of a 14-year-old girl with no history of travel who presented with pyrexia, weight loss, arthralgia, multiple splenic abscesses and a subsequent pleural effusion, the latter of which isolated a Brucella species on 16S rRNA PCR. The patient responded well to initiation of treatment for brucellosis and on repeat imaging, after 3 months, the splenic abscesses had resolved. Conclusion: This unique case demonstrates uncommon complications of brucellosis and the challenges of diagnosing the organism, the latter of which can be alleviated by the utilization of molecularbased technologies. This patient had a negative serology result for brucellosis, which highlights the need to interpret serology results with caution in non-endemic regions for brucellosis. PMID:28348782

  16. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences.

    PubMed

    Munson, M A; Baumann, P; Moran, N A

    1992-03-01

    A portion of the gene coding for the 16S ribosomal RNA from the endosymbionts of three species of mealybugs [Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus maritimus (Ehrhorn), and Dysmicoccus neobrevipes (Beardsley)] was cloned, sequenced, and compared to a homologous fragment from bacteria representative of aphid endosymbionts as well as major subdivisions of the Proteobacteria. Parsimony analysis of the sequences indicated that the mealybug endosymbionts are related and belong to the beta-subdivision; in contrast, previous studies showed that aphid endosymbionts are part of the gamma-subdivision. These findings suggest that the endosymbiosis of mealybugs is a consequence of a single bacterial infection and indicate that this ancestor was different from the ancestor involved in aphid endosymbiosis.

  17. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s rDNA

    PubMed Central

    Oikonomou, Georgios; Machado, Vinicius Silva; Santisteban, Carlos; Schukken, Ynte Hein; Bicalho, Rodrigo Carvalho

    2012-01-01

    Dairy cow mastitis is an important disease in the dairy industry. Different microbial species have been identified as causative agents in mastitis, and are traditionally diagnosed by bacterial culture. The objective of this study was to use metagenomic pyrosequencing of bacterial 16S rRNA genes to investigate bacterial DNA diversity in milk samples of mastitic and healthy dairy cows and compare the results with those obtained by classical bacterial culture. One hundred and thirty-six milk samples were collected from cows showing signs of mastitis and used for microbiological culture. Additionally, 20 milk samples were collected from healthy quarters. Bacterial DNA was isolated from the same milk samples and the 16S rRNA genes were individually amplified and pyrosequenced. Discriminant analysis showed that the groups of samples that were most clearly different from the rest and thus easily discriminated were the normal milk samples from healthy cows and those characterised by culture as Trueperella pyogenes and Streptococcus spp. The mastitis pathogens identified by culture were generally among the most frequent organisms detected by pyrosequencing, and in some cases (Escherichia coli, Klebsiella spp. and Streptococcus uberis mastitis) the single most prevalent microorganism. Trueperella pyogenes sequences were the second most prevalent sequences in mastitis cases diagnosed as Trueperella pyogenes by culture, Streptococcus dysgalactiae sequences were the second most prevalent sequences in mastitis cases diagnosed as Streptococcus dysgalactiae by culture, and Staphyloccocus aureus sequences were the third most prevalent in mastitis cases diagnosed as Staphylococcus aureus by culture. In samples that were aerobic culture negative, pyrosequencing identified DNA of bacteria that are known to cause mastitis, DNA of bacteria that are known pathogens but have so far not been associated with mastitis, and DNA of bacteria that are currently not known to be pathogens. A

  18. Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences.

    PubMed

    Kisand, Veljo; Wikner, Johan

    2003-08-01

    The phylogenetic affiliation of 91 operational taxonomic units, randomly sampled from three aquatic microcosm experiments, was investigated by two PCR based and one culture dependent method. The occurrence of multiple melting domains and poor coupling between Tm and DGGE retardation was demonstrated to cause poor resolution at the species level in PCR-DGGE analysis of microbial communities. We also showed that the problem of multiple melting domains was particularly prone for brackish water bacterioplankton in the Flavobacterium genus, providing characteristic band morphology for this genus. Banding patterns from DGGE analysis may therefore be misinterpreted in terms of the species richness in natural bacterial communities, when using commonly applied universal primers.

  19. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    PubMed Central

    GÖKMEN, Tülin GÜVEN; SOYAL, Ayben; KALAYCI, Yıldız; ÖNLEN, Cansu; KÖKSAL, Fatih

    2016-01-01

    SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM), serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT) and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP) of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively). The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01%) than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis. PMID:27680169

  20. Sequence-Based Identification of Mycobacterium Species Using the MicroSeq 500 16S rDNA Bacterial Identification System

    PubMed Central

    Patel, Jean Baldus; Leonard, Debra G. B.; Pan, Xai; Musser, James M.; Berman, Richard E.; Nachamkin, Irving

    2000-01-01

    We evaluated the MicroSeq 500 16S rDNA Bacterial Sequencing Kit (PE Applied Biosystems), a 500-bp sequence-based identification system, for its ability to identify clinical Mycobacterium isolates. The organism identity was determined by comparing the 16S rDNA sequence to the MicroSeq database, which consists primarily of type strain sequences. A total of 113 isolates (18 different species), previously recovered and identified by routine methods from two clinical laboratories, were analyzed by the MicroSeq method. Isolates with discordant results were analyzed by hsp65 gene sequence analysis and in some cases repeat phenotypic identification, AccuProbe rRNA hybridization (Gen-Probe, Inc., San Diego, Calif.), or high-performance liquid chromatography of mycolic acids. For 93 (82%) isolates, the MicroSeq identity was concordant with the previously reported identity. For 18 (16%) isolates, the original identification was discordant with the MicroSeq identification. Of the 18 discrepant isolates, 7 (six unique sequences) were originally misidentified by phenotypic analysis or the AccuProbe assay but were correctly identified by the MicroSeq assay. Of the 18 discrepant isolates, 11 (seven unique sequences) were unusual species that were difficult to identify by phenotypic methods and, in all but one case, by molecular methods. The remaining two isolates (2%) failed definitive phenotypic identification, but the MicroSeq assay was able to definitively identify one of these isolates. The MicroSeq identification system is an accurate and rapid method for the identification of Mycobacterium spp. PMID:10618095

  1. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  2. Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2003-10-01

    Phthiraptera (chewing and sucking lice) and Psocoptera (booklice and barklice) are closely related to each other and compose the monophyletic taxon Psocodea. However, there are two hypotheses regarding their phylogenetic relationship: (1) monophyletic Psocoptera is the sister group of Phthiraptera or (2) Psocoptera is paraphyletic, and Liposcelididae of Psocoptera is the sister group of Phthiraptera. Each hypothesis is supported morphologically and/or embryologically, and this problem has not yet been resolved. In the present study, the phylogenetic position of Phthiraptera was examined using mitochondrial 12S and 16S rDNA sequences, with three methods of phylogenetic analysis. Results of all analyses strongly supported the close relationship between Phthiraptera and Liposcelididae. Results of the present analyses also provided some insight into the elevated rate of evolution in mitochondrial DNA (mtDNA) in Phthiraptera. An elevated substitution rate of mtDNA appears to originate in the common ancestor of Phthiraptera and Liposcelididae, and directly corresponds to an increased G+C content. Therefore, the elevated substitution rate of mtDNA in Phthiraptera and Liposcelididae appears to be directional. A high diversity of 12S rDNA secondary structure was also observed in wide range of Phthiraptera and Liposcelididae, but these structures seem to have evolved independently in different clades.

  3. Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 (Acari: Ixodidae): hosts, distribution and 16S rDNA sequences.

    PubMed

    Guglielmone, A A; Estrada-Peña, A; Mangold, A J; Barros-Battesti, D M; Labruna, M B; Martins, J R; Venzal, J M; Arzua, M; Keirans, J E

    2003-05-01

    DNA sequences of Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 were obtained to determine genetic differences between these tick species. Collections of these species are discussed in relation to distribution and hosts. Seven ticks collections (four from Brazil, one from Argentina, one from Uruguay and one from USA) house a total of 1272 A. aureolatum (224 males, 251 females, 223 nymphs and 574 larvae) and 1164 A. ovale (535 males, 556 females, 66 nymphs and 7 larvae). The length of the sequenced mitochondrial 16S rRNA gene fragment for A. aureolatum was 370bp and for A. ovale was 373bp. The DNA sequence analysis showed a 13.1% difference between the two species. Apart from one male A. ovale found on a toad, all adult ticks were found on mammals. The majority of adult specimens of both tick species were removed from Carnivora (96.1 and 84.3% of A. aureolatum and A. ovale, respectively), especially from dogs (53.1% of A. aureolatum, and 46.4% of A. ovale). Collections on wild Canidae were higher for A. aureolatum (23.3%) than for A. ovale (7.1%). On the other hand, collections of A. ovale adults on wild Felidae were higher (18.3%) than findings of A. aureolatum (9.2%). The contribution of other mammalian orders as hosts for adults of A. aureolatum and A. ovale was irrelevant, with the exception of Perissodactyla because Tapiridae contributed with 13.0% of the total number of A. ovale adults. Adults of both tick species have been found occasionally on domestic hosts (apart of the dog) and humans. Most immature stages of A. aureolatum were found on Passeriformes birds, while rodents and carnivores were the most common hosts for nymphs and larvae of A. ovale. A. aureolatum has been found restricted to the Neotropical region, covering the eastern area of South America from Uruguay to Surinam, including northeastern Argentina, eastern Paraguay, southeastern Brazil and French Guiana. A. ovale showed a distribution that covers the Neotropical region

  4. [16S rDNA diversity analysis of 30 Streptomycetes isolates displaying significant cytotoxic activity against B16 cell from near-shore sediments of Hainan Island].

    PubMed

    Yan, Li-Ping; Hong, Kui; Hu, Shen-cai; Liu, Li-hua

    2005-04-01

    A total of 354 isolates of actinomycetes, of which 76 were detected cytotoxic activity was isolated from near-shore marine samples collected at Wenchang mangrove, DanZhou harbor and YanPu harbor. Four isolation methods were employed, which are SDS pretreatment, phenol pretreatment, heating pretreatment and potassium dichromate selection culture, and media such as'Yeast extract-Malt extract (YE), Glucose-Asprine (GA), Starch-Casin (SC), Starch-KNO3 (Gause) were used. It was showed that heating pretreatment and potassium dichromate selection culture were more considerable methods for extensive isolation of actinomycetes. Medium YE and Gause showed best results in both the total number of actinomycetes and the number of active isolates against tumor cell B16. The genotypic diversity of 30 strains of Streptomycetes possessing strong cytotoxic activity against B16 cell (ID50 > or =200) was analyzed by 16S ARDRA, which resulted in 17 RFLP types, and indicated relatively rich genotypic diversity among these Streptomycetes. 16S rDNA sequence analysis of three strains, 050642, 060386 and 060524 (ID50 > or = 1200) further confirmed that they all belong to Streptomyces genus and strain 050642 was suggested a novel Streptomyces. Spp with the highest similarity of 95% to Streptomyces cattleya.

  5. Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes

    PubMed Central

    Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza

    2017-01-01

    Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826

  6. Preliminary evaluation of the use of soil bacterial 16S rDNA DNA markers in sediment fingerprinting in two small endorheic lagoons in southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Landa del Castillo, Blanca; Guzman, Gema; Petticrew, Ellen L.; Owens, Phillip N.

    2016-04-01

    127 % in Dulce and from 80 to 117 % in Zóñar. These rangesare within values reported for other soil chemical and physical properties, although the higher values are above the most commonly reported CVs which tend to be in the range from 30 to 80 %. Some groups, that are relatively stable to the normalization process, can provide enough information for solving a mixing model, although the specific groups vary between the two catchments as expected from previous studies. Overall, all the models for Zóñar tended to provide similar results with low contributions from source areas 1 and 2, and a much larger contribution from source area 3. For this solution, the mixing model was able to replicate the values of all the OTUs included in the model. The predicted values for Dulce were not as stable. The model with 10 OTUs were similar with a very low contribution from source area 2, a moderate contribution from source area 3 and a maximum contribution from source area 1. However, these values differed from those with only three OTUs, and they also differed between themselves when the normalized and non-normalized values were used. This solution also seemed to replicate the averaged measured values of most of the OTÚs included in the model. These preliminary results demonstrate the potential of soil bacterial 16S rDNA in sediment fingerprinting studies, although some questions need to be addressed in more detail, including: the temporal evolution of the distribution of the bacterial markers with soil depth; the implications of selective transport by runoff; and the relatively large variability of counts among samples from the same area. We are currently repeating the sampling in one of the subcatchments to provide some insight into these issues. Key words: sediment, fingerprinting, soil, microbial, DNA, lagoon References Joe-Strack, J.A., Petticrew, E.L. 2012. Use of LH-PCR as a DNA fingerprint technique to trace sediment-associated microbial communities from various land

  7. Identification and Phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing.

    PubMed

    Leu, J Y; McGovern-Traa, C P; Porter, A J; Harris, W J; Hamilton, W A

    1998-06-01

    Thermophilic sulfate-reducing bacteria (SRB) have been recognized as an important source of hydrogen sulfide (H2S) in hydrocarbon reservoirs and in production systems. Four thermophilic SRB enrichment cultures from three different oil field samples (sandstone core, drilling mud, and production water) were investigated using 16S rDNA sequence comparative analysis. In total, 15 different clones were identified. We found spore-forming, low G+C content, thermophilic, sulfate-reducing Desulfotomaculum-related sequences present in all oil field samples, and additionally a clone originating from sandstone core which was assigned to the mesophilic Desulfomicrobium group. Furthermore, three clones related to Gram-positive, non-sulfate-reducing Thermoanaerobacter species and four clones close to Clostridium thermocopriae were found in enrichment cultures from sandstone core and from production water, respectively. In addition, the deeply rooted lineage of two of the clones suggested previously undescribed, Gram-positive, low G+C content, thermophilic, obligately anaerobic bacteria present in production water. Such thermophilic, non-sulfate-reducing microorganisms may play an important ecological role alongside SRB in oil field environments.

  8. Characterization of Lactobacillus from Algerian Goat’S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties

    PubMed Central

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez- Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat’s milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  9. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing.

    PubMed

    Min, Byeng R; Solaiman, Sandra; Shange, Raymon; Eun, Jong-Su

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  10. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    PubMed Central

    Min, Byeng R.; Solaiman, Sandra; Shange, Raymon

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats. PMID:24669219

  11. Direct identification of Mycobacterium abscessus through 16S rDNA sequence analysis and a citrate utilization test: A case report.

    PubMed

    Zou, Ziying; Liu, Yuan; Zhu, Bing; Zeng, Ping

    2014-07-01

    A growing number of nontuberculous mycobacteria infection cases, especially those caused by rapidly growing mycobacteria (RGM), have been reported in the past decade. Conventional methods for mycobacteria diagnosis are inefficient and easily lead to misdiagnosis. New detection methods, such as gene sequencing, have been reported but are not widely used. The aim of the present case report was to provide a quick and exact method of identifying Myobacterium abscessus (M. abscessus) infections. The particular case reported in this study initially manifested as hyperglycemia and papules in the right leg. Routine cultures for fungus were repeatedly negative. However, cultures of the purulent material under aerobic cultivation for five days yielded a rapidly growing, nontuberculous mycobacterium. A Ziehl-Neelsen staining of this mycobacterium revealed the presence of acid-fast bacilli that were finally identified as M. abscessus through 16S rDNA sequence analysis and a citrate utilization test. The current report may help other clinicians to make a quick and accurate diagnosis of RGM infection.

  12. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-12-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.

  13. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    PubMed Central

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-01-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371

  14. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy.

    PubMed

    Oberreuter, Helene; Charzinski, Joachim; Scherer, Siegfried

    2002-05-01

    The intraspecific diversity of 31 strains of Brevibacterium linens, 27 strains of Corynebacterium glutamicum and 29 strains of Rhodococcus erythropolis was determined by partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. As a prerequisite for the analyses, 27 strains derived from culture collections which had carried invalid or wrong species designations were reclassified in accordance with polyphasic taxonomical data. FT-IR spectroscopy proved to be a rapid and reliable method for screening for similar isolates and for identifying these actinomycetes at the species level. Two main conclusions emerged from the analyses. (1) Comparison of intraspecific 16S rDNA similarities suggested that R. erythropolis strains have a very low diversity, B. linens displays high diversity and C. glutamicum occupies an intermediate position. (2) No correlation of FT-IR spectral similarity and 16S rDNA sequence similarity below the species level (i.e. between strains of one species) was observed. Therefore, diversification of 16S rDNA sequences and microevolutionary change of the cellular components detected by FT-IR spectroscopy appear to be de-coupled.

  15. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons.

    PubMed

    Rodrigues, Viviane D; Torres, Tatiana T; Ottoboni, Laura M M

    2014-11-01

    Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.

  16. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis.

    PubMed

    Liu, Aicui; Wang, Chao; Liang, Zhijuan; Zhou, Zhi-Wei; Wang, Lin; Ma, Qiaoli; Wang, Guowei; Zhou, Shu-Feng; Wang, Zhenhai

    2015-01-01

    Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions.

  17. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in patients with ventilator-associated pneumonia.

    PubMed

    Yang, Xiao-Jun; Wang, Yan-Bo; Zhou, Zhi-Wei; Wang, Guo-Wei; Wang, Xiao-Hong; Liu, Qing-Fu; Zhou, Shu-Feng; Wang, Zhen-Hai

    2015-01-01

    Ventilator-associated pneumonia (VAP) is a life-threatening disease that is associated with high rates of morbidity and likely mortality, placing a heavy burden on an individual and society. Currently available diagnostic and therapeutic approaches for VAP treatment are limited, and the prognosis of VAP is poor. The present study aimed to reveal and discriminate the identification of the full spectrum of the pathogens in patients with VAP using high-throughput sequencing approach and analyze the species richness and complexity via alpha and beta diversity analysis. The bronchoalveolar lavage fluid samples were collected from 27 patients with VAP in intensive care unit. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 27 samples of VAP were sequenced using the 454 GS FLX system. A total of 103,856 pyrosequencing reads and 638 operational taxonomic units were obtained from these 27 samples. There were four dominant phyla, including Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. There were 90 different genera, of which 12 genera occurred in over ten different samples. The top five dominant genera were Streptococcus, Acinetobacter, Limnohabitans, Neisseria, and Corynebacterium, and the most widely distributed genera were Streptococcus, Limnohabitans, and Acinetobacter in these 27 samples. Of note, the mixed profile of causative pathogens was observed. Taken together, the results show that the high-throughput sequencing approach facilitates the characterization of the pathogens in bronchoalveolar lavage fluid samples and the determination of the profile for bacteria in the bronchoalveolar lavage fluid samples of the patients with VAP. This study can provide useful information of pathogens in VAP and assist clinicians to make rational and effective therapeutic decisions.

  18. 16S rRNA gene-based identification of bacteria in postoperative endophthalmitis by PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprinting

    PubMed Central

    Navarro-Noya, Yendi; Hernández-Rodríguez, César; Zenteno, Juan C.; Buentello-Volante, Beatriz; Cancino-Díaz, Mario E.; Jan-Roblero, Janet; Cancino-Díaz, Juan C.

    2012-01-01

    Conventional microbiological culture techniques are frequently insufficient to confirm endophthalmitis clinical cases which could require urgent medical attention because it could lead to permanent vision loss. We are proposing PCR-DGGE and 16S rRNA gene libraries as an alternative to improve the detection and identification rate of bacterial species from endophthalmitis cases. PMID:24031830

  19. Nested PCR and RFLP analysis based on the 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...

  20. PCR detection of colonization by Helicobacter pylori in conventional, euthymic mice based on the 16S ribosomal gene sequence.

    PubMed Central

    Smith, J G; Kong, L; Abruzzo, G K; Gill, C J; Flattery, A M; Scott, P M; Bramhill, D; Cioffe, C; Thompson, C M; Bartizal, K

    1996-01-01

    Many animal models of Helicobacter infection have been described, including infection in rhesus monkeys, ferrets, gnotobiotic piglets, and mice. These animal models utilize a combination of detection methods, including culture, urease testing, and histopathology, all of which may be unreliable, insensitive, or labor-intensive. Development of new animal models of Helicobacter pylori requires new methods of detection with increased sensitivity and specificity. We have developed sensitive and specific PCR primers based on the 16S ribosomal gene sequence of H. pylori. The primers detected single-copy 16S DNA representing 0.2 cell of pure H. pylori (2 cells in the presence of mouse stomach mucosal DNA) and did not cross-react with closely related bacteria. We were able to detect colonization by H. pylori in conventional, euthymic, outbred mice up to 4 weeks postinoculation with a high percentage of isolates tested. One isolate of H. pylori was detected by PCR in 100% of the mice at 6 months and 60% of the mice 1 year after inoculation. Approximately 10(3) to 10(4) H. pylori cells per stomach were detected by utilizing this PCR methodology semiquantitatively. These primers and PCR methodology have facilitated detection of H. pylori colonization in conventional, euthymic mice, colonization which may not have been detectable by other methods. PMID:8770506

  1. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  2. Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR.

    PubMed

    Clifford, Robert J; Milillo, Michael; Prestwood, Jackson; Quintero, Reyes; Zurawski, Daniel V; Kwak, Yoon I; Waterman, Paige E; Lesho, Emil P; Mc Gann, Patrick

    2012-01-01

    Within the paradigm of clinical infectious disease research, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa represent the four most clinically relevant, and hence most extensively studied bacteria. Current culture-based methods for identifying these organisms are slow and cumbersome, and there is increasing need for more rapid and accurate molecular detection methods. Using bioinformatic tools, 962,279 bacterial 16S rRNA gene sequences were aligned, and regions of homology were selected to generate a set of real-time PCR primers that target 93.6% of all bacterial 16S rRNA sequences published to date. A set of four species-specific real-time PCR primer pairs were also designed, capable of detecting less than 100 genome copies of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa. All primers were tested for specificity in vitro against 50 species of Gram-positive and -negative bacteria. Additionally, the species-specific primers were tested against a panel of 200 clinical isolates of each species, randomly selected from a large repository of clinical isolates from diverse areas and sources. A comparison of culture and real-time PCR demonstrated 100% concordance. The primers were incorporated into a rapid assay capable of positive identification from plate or broth cultures in less than 90 minutes. Furthermore, our data demonstrate that current targets, such as the uidA gene in E.coli, are not suitable as species-specific genes due to sequence variation. The assay described herein is rapid, cost-effective and accurate, and can be easily incorporated into any research laboratory capable of real-time PCR.

  3. Rapid identification of veterinary-relevant Mycobacterium tuberculosis complex species using 16S rDNA, IS6110 and Regions of Difference-targeted dual-labelled hydrolysis probes.

    PubMed

    Costa, Pedro; Amaro, Ana; Ferreira, Ana S; Machado, Diana; Albuquerque, Teresa; Couto, Isabel; Botelho, Ana; Viveiros, Miguel; Inácio, João

    2014-12-01

    Members of the Mycobacterium tuberculosis complex (MTC) are causative agents of tuberculosis (TB) in both humans and animals. MTC species are genetically very similar but may differ in their epidemiology, namely geographic distribution and host preferences, virulence traits and antimicrobial susceptibility patterns. However, the conventional laboratory diagnosis does not routinely differentiate between the species of the MTC. In this work we describe a rapid and robust two-step five-target probe-based real-time PCR identification algorithm, based on genomic deletion analysis, to identify the MTC species most commonly associated with TB in livestock and other animals. The first step allows the confirmation of the cultures as MTC members, by targeting their IS6110 element, or as a mycobacterial species, if only a 16S rDNA product is detected in the duplex amplification reaction. If a MTC member is identified, the second amplification step allows the assessment of the presence or absence of the RD1, RD4 and RD9 genomic regions. The correspondent pattern allows us to infer the species of the isolate as M. tuberculosis (if all RDs are present), Mycobacterium caprae (if only RD1 and RD4 are present) and Mycobacterium bovis (if only RD1 is present). The identification algorithm developed presented an almost perfect agreement with the results of the routine bacteriological analysis, with a kappa coefficient of 0.970 (CI(P95%) 0.929-1.000). The assay is able to be adaptable to automation and implementation in the routine diagnostic framework of veterinary diagnostic laboratories, with a particular focus for reference laboratories.

  4. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  5. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  6. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  7. Ralstonia paucula (Formerly CDC Group IV c-2): Unsuccessful Strain Differentiation with PCR-Based Methods, Study of the 16S-23S Spacer of the rRNA Operon, and Comparison with Other Ralstonia Species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum)

    PubMed Central

    Moissenet, Didier; Bidet, Philippe; Garbarg-Chenon, Antoine; Arlet, Guillaume; Vu-Thien, Hoang

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNAIle and tRNAAla genes, which are identical to genes described for R. pickettii and R. solanacearum. PMID:11136807

  8. Ralstonia paucula (Formerly CDC group IV c-2): unsuccessful strain differentiation with PCR-based methods, study of the 16S-23S spacer of the rRNA operon, and comparison with other Ralstonia species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum).

    PubMed

    Moissenet, D; Bidet, P; Garbarg-Chenon, A; Arlet, G; Vu-Thien, H

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNA(Ile) and tRNA(Ala) genes, which are identical to genes described for R. pickettii and R. solanacearum.

  9. Detection of 16S rDNA of Candidatus Liberibacter asiaticus by quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orange juice processed from Huanglongbing (HLB) infected fruit is often associated with bitter taste and/or off-flavor. The widely spread HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to diagnose HLB for citrus tr...

  10. Comparison of 16S rRNA Gene PCR and BACTEC 9240 for Detection of Neonatal Bacteremia

    PubMed Central

    Jordan, J. A.; Durso, M. B.

    2000-01-01

    Ten percent of infants born in the United States are admitted to neonatal intensive care units (NICU) annually. Approximately one-half of these admissions are from term infants (>34 weeks of gestation) at risk for systemic infection. Most of the term infants are not infected but rather have symptoms consistent with other medical conditions that mimic sepsis. The current standard of care for evaluating bacterial sepsis in the newborn is performing blood culturing and providing antibiotic therapy while awaiting the 48-h preliminary result of culture. Implementing a more rapid means of ruling out sepsis in term newborns could result in shorter NICU stays and less antibiotic usage. The purpose of this feasibility study was to compare the utility of PCR to that of conventional culture. To this end, a total of 548 paired blood samples collected from infants admitted to the NICU for suspected sepsis were analyzed for bacterial growth using the BACTEC 9240 instrument and for the bacterial 16S rRNA gene using a PCR assay which included a 5-h preamplification culturing step. The positivity rates by culture and PCR were 25 (4.6%) and 27 (4.9%) positive specimens out of a total of 548 specimens, respectively. The comparison revealed sensitivity, specificity, and positive and negative predictive values of 96.0, 99.4, 88.9, and 99.8%, respectively, for PCR. In summary, this PCR-based approach, requiring as little as 9 h of turnaround time and blood volumes as small as 200 μl, correlated well with conventional blood culture results obtained for neonates suspected of having bacterial sepsis. PMID:10878046

  11. Analysis of 525 Samples To Determine the Usefulness of PCR Amplification and Sequencing of the 16S rRNA Gene for Diagnosis of Bone and Joint Infections

    PubMed Central

    Fenollar, Florence; Roux, Véronique; Stein, Andréas; Drancourt, Michel; Raoult, Didier

    2006-01-01

    The 16S rRNA gene PCR in the diagnosis of bone and joint infections has not been systematically tested. Five hundred twenty-five bone and joint samples collected from 525 patients were cultured and submitted to 16S rRNA gene PCR detection of bacteria in parallel. The amplicons with mixed sequences were also cloned. When discordant results were observed, culture and PCR were performed once again. Bacteria were detected in 139 of 525 samples. Culture and 16S rRNA gene PCR yielded identical documentation in 475 samples. Discrepancies were linked to 13 false-positive culture results, 5 false-positive PCR results, 9 false-negative PCR results, 16 false-negative culture results, and 7 mixed infections. Cloning and sequencing of 16S rRNA gene amplicons in 6 of 8 patients with mixed infections identified 2 to 8 bacteria per sample. Rarely described human pathogens such as Alcaligenes faecalis, Comamonas terrigena, and 21 anaerobes were characterized. We also detected, by 16S rRNA gene PCR, four previously identified bacteria never reported in human infection, Alkanindiges illinoisensis, dehydroabietic acid-degrading bacterium DhA-73, unidentified Hailaer soda lake bacterium, and uncultured bacterium clone HuCa4. Seven organisms representing new potential species were also detected. PCR followed by cloning and sequencing may help to identify new pathogens involved in mixed bone infection. PMID:16517890

  12. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species

    PubMed Central

    2010-01-01

    Background The genus Vibrio is a diverse group of Gram-negative bacteria comprised of 74 species. Furthermore, the genus has and is expected to continue expanding with the addition of several new species annually. Consequently, it is of paramount importance to have a method which is able to reliably and efficiently differentiate the numerous Vibrio species. Results In this study, a novel and rapid polymerase chain reaction (PCR)-based intergenic spacer (IGS)-typing system for vibrios was developed that is based on the well-known IGS regions located between the 16S and 23S rRNA genes on the bacterial chromosome. The system was optimized to resolve heteroduplex formation as well as to take advantage of capillary gel electrophoresis technology such that reproducible analyses could be achieved in a rapid manner. System validation was achieved through testing of 69 archetypal Vibrio strains, representing 48 Vibrio species, from which an 'IGS-type' profile database was generated. These data, presented here in several cluster analyses, demonstrated successful differentiation of the 69 type strains showing that this PCR-based fingerprinting method easily discriminates bacterial strains at the species level among Vibrio. Furthermore, testing 36 strains each of V. parahaemolyticus and V. vulnificus, important food borne pathogens, isolated from a variety of geographical locations with the IGS-typing method demonstrated distinct IGS-typing patterns indicative of subspecies divergence in both populations making this technique equally useful for intraspecies differentiation, as well. Conclusion This rapid, reliable and efficient IGS-typing system, especially in combination with 16S rRNA gene sequencing, has the capacity to not only discern and identify vibrios at the species level but, in some cases, at the sub-species level, as well. This procedure is particularly well-suited for preliminary species identification and, lends itself nicely to epidemiological investigations

  13. Touchdown Enzyme Time Release-PCR for Detection and Identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci Using the 16S and 16S-23S Spacer rRNA Genes

    PubMed Central

    Madico, Guillermo; Quinn, Thomas C.; Boman, Jens; Gaydos, Charlotte A.

    2000-01-01

    Three touchdown enzyme time release (TETR)-PCR assays were used to amplify different DNA sequences in the variable regions of the 16S and 16S-23S spacer rRNA genes specific for Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci as improved tests for sensitive diagnosis and rapid species differentiation. The TETR-PCR protocol used 60 cycles of amplification, which provided improved analytical sensitivity (0.004 to 0.063 inclusion-forming unit of Chlamydia species per PCR). The sensitivity of TETR-PCR with primer set CTR 70-CTR 71 was 96.7%, and the specificity was 99.6%, compared to those of the AMPLICOR PCR for the detection of C. trachomatis in vaginal swab samples. TETR-PCR for C. pneumoniae with primer set CPN 90-CPN 91 was 90% sensitive and 93.3% specific compared with a nested PCR with primer set CP1/2-CPC/D for clinical respiratory samples. TETR-PCR for C. psittaci with primer set CPS 100-CPS 101 showed substantial agreement with cell culturing (κ, 0.78) for animal tissue samples. Primer sets were then combined into a single multiplex TETR-PCR test. The respective 315-, 195-, and 111-bp DNA target products were precisely amplified when DNA from each of the respective Chlamydia species or combinations of them was used. Multiplex chlamydia TETR-PCR correctly identified one strain of each of the 15 serovars of C. trachomatis, 22 isolates of C. pneumoniae, and 20 isolates of C. psittaci. The primer sets were specific for each species. No target products were amplified when DNA from C. pecorum or a variety of other microorganisms was tested for specificity. TETR-PCR with primers selected for specific sequences in the 16S and 16S-23S spacer rRNA genes is a valuable test that could be used either with individual primers or in a multiplex assay for the identification and differentiation of Chlamydia species from culture isolates or for the detection of chlamydiae in clinical samples. PMID:10699002

  14. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  15. Sensitive detection and serovar differentiation of typhoidal and nontyphoidal Salmonella enterica species using 16S rRNA Gene PCR coupled with high-resolution melt analysis.

    PubMed

    Masek, Billie J; Hardick, Justin; Won, Helen; Yang, Samuel; Hsieh, Yu-Hsiang; Rothman, Richard E; Gaydos, Charlotte A

    2014-03-01

    Salmonella enterica species infections are a significant public health problem causing high morbidity rates worldwide and high mortality rates in the developing world. These infections are not always rapidly diagnosed as a cause of bloodstream infections because of the limitations of blood culture, which greatly affects clinical care as a result of treatment delays. A molecular diagnostic assay that could rapidly detect and identify S. enterica species infections as a cause of sepsis is needed. Nine typhoidal and nontyphoidal S. enterica serovars were used to establish the limit of detection (LOD) of a previously published 16S rRNA gene PCR (16S PCR) in mock whole blood specimens. In addition, 16 typhoidal and nontyphoidal S. enterica serovars were used to evaluate the serovar differentiation capability of 16S PCR coupled with high-resolution melt analysis. The overall LOD of 16S PCR for the nine typhoidal and nontyphoidal S. enterica serovars analyzed was <10 colony-forming units per milliliter (CFU/mL) in mock whole blood specimens, with the lowest and highest LOD at <1 CFU/mL and 9 CFU/mL, respectively. By high-resolution melt analysis, the typhoidal and nontyphoidal S. enterica serovar groups analyzed each generated a unique grouping code, allowing for serovar-level identification. 16S PCR coupled with high-resolution melt analysis could be a useful molecular diagnostic that could enhance the current diagnostic, treatment, and surveillance methods of S. enterica bloodstream infections.

  16. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    PubMed

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-03-31

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments.

  17. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  18. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes.

    PubMed

    Moreira, David; Rodríguez-Valera, Francisco; López-García, Purificación

    2004-09-01

    We have sequenced and analysed a 39.5 kbp genome fragment of a marine Group II euryarchaeote identified in a metagenomic library of 500 m deep plankton at the Antarctic Polar Front. The clone contains a 16S rRNA gene that is separated from the 23S rRNA gene in the genome. This appears to be a trait shared by Thermoplasmatales and Group II euryarchaeota. This genome fragment exhibits a compact organization, including a few overlapping genes in the canonical spectinomycin-like (spc) operon for ribosomal proteins that is immediately upstream the 16S rDNA. Most open reading frames (ORFs) encoded proteins involved in housekeeping processes and, as expected, exhibited a phylogenetic distribution congruent with that of the 16S rRNA. A considerable number of proteins with predicted transmembrane helices was identified. Among those, two proteins encoded by genes likely forming an operon appear to be part of a membrane terminal electron transport chain. One of these proteins has an unusual domain arrangement including ferredoxin, flavodoxin and one succinate dehydrogenase/fumarate reductase subunit. These proteins probably constitute a new succinate dehydrogenase-like oxidoreductase involved in what could be a novel pathway for energy metabolism in Group II euryarchaeota.

  19. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR

    PubMed Central

    Tatti, Enrico; McKew, Boyd A.; Whitby, Corrine; Smith, Cindy J.

    2016-01-01

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included. PMID:27341629

  20. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    PubMed

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-06-11

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.

  1. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences.

    PubMed

    Mergaert, J; Verhelst, A; Cnockaert, M C; Tan, T L; Swings, J

    2001-04-01

    One hundred and seventy three bacterial strains, isolated previously after enrichment under oligotrophic, psychrophylic conditions from Arctic (98 strains) and Antarctic seawater (75 strains), were characterized by gas-liquid chromatographic analysis of their fatty acid compositions. By numerical analysis, 8 clusters, containing 2 to 59 strains, could be delineated, and 8 strains formed separate branches. Five clusters contained strains from both poles, two minor clusters were confined to Arctic isolates, and one cluster consisted of Antarctic isolates only. The 16S rRNA genes from 23 strains, representing the different fatty acid profile clusters and including the unclustered strains, were sequenced. The sequences grouped with the alpha and gamma Proteobacteria, the high percent G+C gram positives, and the Cytophaga-Flavobacterium-Bacteroides branch. The sequences of strains from 4 clusters and of 7 unclustered strains were closely related (sequence similarities above 97%) to reference sequences of Sulfitobacter mediterraneus, Halomonas variabilis, Alteromonas macleodii, Pseudoalteromonas species, Shewanella frigidimarina, and Rhodococcus fascians. Strains from the other four clusters and an unclustered strain showed sequence similarities below 97% with nearest named neighbours, including Rhizobium, Glaciecola, Pseudomonas, Alteromonas macleodii and Cytophaga marinoflava, indicating that the clusters which they represent form as yet unnamed taxa.

  2. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth

    PubMed Central

    Oikonomou, Georgios; Teixeira, Andre Gustavo Vieira; Foditsch, Carla; Bicalho, Marcela Lucas; Machado, Vinicius Silva; Bicalho, Rodrigo Carvalho

    2013-01-01

    In this study, we use barcoded pyrosequencing of the 16S rRNA gene to characterize the fecal microbiota of neonatal calves and identify possible relationships of certain microbiota profiles with health and weight gain. Fecal samples were obtained weekly from 61 calves from birth until weaning (seventh week of the calves' life). Firmicutes was the most prevalent phylum, with a prevalence ranging from 63.84% to 81.90%, followed by Bacteroidetes (8.36% to 23.93%), Proteobacteria (3.72% to 9.75%), Fusobacteria (0.76% to 5.67%), and Actinobacteria (1.02% to 2.35%). Chao1 index gradually increased from the first to the seventh postnatal week. Chao1 index was lower during the third, fourth, and fifth week of life in calves that suffered from pneumonia and were treated with antibiotics. Diarrhea incidence during the first four weeks of the calves' life was also associated with a reduction of microbial diversity during the third week of life. Increased fecal microbial diversity after the second week of life was associated with higher weight gain. Using discriminant analysis we were able to show differences in the microbiota profiles between different weeks of life, between high and low weight gain groups of calves, and between calves affected and not affected with diarrhea during the first four weeks life. The prevalence of Faecalibacterium spp. in the first week of life was associated with weight gain and the incidence of diarrhea, with higher prevalence being associated with higher weight gain and less diarrhea. Representative sequences from Faecalibacterium spp. were closely affiliated to Faecalibacterium prausnitzii. Results presented here provide new information regarding the intestinal microbiota of neonatal calves and its association with health and growth. Fecal microbial diversity was associated with calf age, disease status and growth rates. Results suggesting a possible beneficial effect of Faecalibacterium spp. on health and growth are promising. PMID:23646192

  3. Broad-range 16S rRNA PCR with cerebrospinal fluid may be unreliable for management of postoperative aseptic meningitis.

    PubMed

    Zarrouk, Virginie; Leflon-Guibout, Véronique; Robineaux, Sébastien; Kalamarides, Michel; Nicolas-Chanoine, Marie-Hélène; Sterkers, Olivier; Fantin, Bruno

    2010-09-01

    We previously demonstrated that discontinuing presumptive antibiotic treatment in cases of negative conventional cultures is safe and effective for patients with postoperative aseptic meningitis (PAM). Here, we prospectively investigated 32 patients with postoperative meningitis. All 26 patients with PAM diagnosed on the basis of conventional cultures demonstrated negative 16S rRNA PCR results. Our results suggest that the PCR technique does not change PAM management.

  4. Application of a 16S rRNA PCR-high-resolution melt analysis assay for rapid detection of Salmonella Bacteremia.

    PubMed

    Jeng, Kevin; Yang, Samuel; Won, Helen; Gaydos, Charlotte A; Hsieh, Yu-Hsiang; Kecojevic, Alex; Carroll, Karen C; Hardick, Justin; Rothman, Richard E

    2012-03-01

    Current culture and phenotypic protocols for diagnosing Salmonella infections can be time-consuming. Here, we describe the application of a 16S rRNA PCR coupled to high-resolution melt analysis (HRMA) for species and serotype identification within 6 h of blood sample collection from a patient with Salmonella enterica serotype Enteritidis bacteremia.

  5. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes.

    PubMed

    Njiru, Z K; Constantine, C C; Guya, S; Crowther, J; Kiragu, J M; Thompson, R C A; Dávila, A M R

    2005-02-01

    There are 11 different pathogenic trypanosomes in trypanosomiasis endemic regions of Africa. Their detection and characterisation by molecular methods relies on species-specific primers; consequently several PCR tests have to be made on each sample. Primers ITS1 CF and ITS1 BR, previously designed to amplify the internal transcribed spacer (ITS1) of rDNA, have been evaluated for use in a universal diagnostic test for all pathogenic trypanosomes. Blood was collected from 373 cattle and 185 camels. The primers gave constant PCR products with the stocks of each taxon tested. Members of subgenus Trypanozoon (T. brucei brucei, T. evansi, T. b. rhodesiense and T. b. gambiense) gave a constant product of approximately 480 bp; T. congolense, savannah 700 bp, T. congolense kilifi 620 bp and T. congolense forest 710 bp: T. simiae 400 bp, T. simiae tsavo 370 bp, T. godfreyi 300 bp and T. vivax 250 bp. The sensitivity of the test ranged from 10 pg for Trypanozoon, T. congolense clade and T. vivax to 100 pg for T. simiae and T. godfreyi. The primers detected cases of multi-taxa samples, although the sensitivity was reduced with an increase in the combinations. A better detection rate of trypanosome DNA was recorded with buffy coats than from direct blood. With the field samples, the diagnostic sensitivity was close to the sensitivity obtained using single reactions with species-specific primers for Trypanozoon 38/40 (95%) and T. congolense savannah 30/33 (90.9%) but was lower with T. vivax 25/31 (77.4%). The primers offer promise as a routine diagnostic tool through the use of a single PCR; however, further evaluation is recommended.

  6. Use of Universal 16S rRNA Gene PCR as a Diagnostic Tool for Venous Access Port-Related Bloodstream Infections

    PubMed Central

    Marín, M.; Martín-Rabadán, P.; Echenagusia, A.; Camúñez, F.; Rodríguez-Rosales, G.; Simó, G.; Echenagusia, M.; Bouza, E.

    2013-01-01

    Amplification of the universal 16S rRNA gene using PCR has improved the diagnostic yield of microbiological samples. However, no data have been reported on the reliability of this technique with venous access ports (VAPs). We assessed the utility of 16S rRNA PCR for the prediction of VAP-related bloodstream infection (VAP-RBSI). During a 2-year period, we prospectively received all VAPs removed by interventional radiologists. PCR and conventional cultures were performed using samples from the different VAP sites. We compared the results of PCR with those of conventional culture for patients with confirmed VAP-RBSI. We collected 219 VAPs from 219 patients. Conventional VAP culture revealed 15 episodes of VAP-RBSI. PCR revealed a further 4 episodes in patients undergoing antibiotic therapy which would have gone undetected using conventional culture. Moreover, it had a negative predictive value of 97.8% for the prediction of VAP-RBSI when it was performed using biofilm from the internal surface of the port. In conclusion, universal 16S rRNA PCR performed with samples from the inside of VAPs proved to be a useful tool for the diagnosis of VAP-RBSI. It increased detection of VAP-RBSI episodes by 21.1% in patients undergoing antibiotic therapy whose episodes would have gone undetected using conventional culture. Therefore, we propose a new application of 16S rRNA PCR as a useful tool for the diagnosis of VAP-RBSI in patients receiving antibiotic therapy. PMID:23254136

  7. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli

    PubMed Central

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the “central pseudoknot” and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A–916U and betaproteobacterial 19C–916G) and the non-native 19A–916G pair retained function, whereas the non-native 19C–916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A–916U or 19C–916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts. PMID:28293553

  8. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli.

    PubMed

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the "central pseudoknot" and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A-916U and betaproteobacterial 19C-916G) and the non-native 19A-916G pair retained function, whereas the non-native 19C-916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A-916U or 19C-916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts.

  9. Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis.

    PubMed

    Morales, Sergio E; Holben, William E

    2009-05-01

    Phylogenetic and "fingerprinting" analyses of the 16S rRNA genes of prokaryotes have been a mainstay of microbial ecology during the last two decades. However, many methods and results from studies that rely on the 16S rRNA gene for detection and quantification of specific microbial taxa have seemingly received only cursory or even no validation. To directly examine the efficacy and specificity of 16S rRNA gene-based primers for phylum-, class-, and operational taxonomic unit-specific target amplification in quantitative PCR, we created a collection of primers based solely on an extensive soil bacterial 16S rRNA gene clone library containing approximately 5,000 sequences from a single soil sample (i.e., a closed site-specific library was used to create PCR primers for use at this site). These primers were initially tested in silico prior to empirical testing by PCR amplification of known target sequences and of controls based on disparate phylogenetic groups. Although all primers were highly specific according to the in silico analysis, the empirical analyses clearly exhibited a high degree of nonspecificity for many of the phyla or classes, while other primers proved to be highly specific. These findings suggest that significant care must be taken when interpreting studies whose results were obtained with target specific primers that were not adequately validated, especially where population densities or dynamics have been inferred from the data. Further, we suggest that the reliability of quantification of specific target abundance using 16S rRNA-based quantitative PCR is case specific and must be determined through rigorous empirical testing rather than solely in silico.

  10. 16S rRNA Gene Sequence Analysis of Photobacterium damselae and Nested PCR Method for Rapid Detection of the Causative Agent of Fish Pasteurellosis

    PubMed Central

    Osorio, Carlos R.; Collins, Matthew D.; Toranzo, Alicia E.; Barja, Juan L.; Romalde, Jesús L.

    1999-01-01

    The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis. PMID:10388687

  11. Septic arthritis and osteomyelitis in a 10-year-old boy, caused by Fusobacterium nucleatum, diagnosed with PCR/16S ribosomal bacterial DNA amplification

    PubMed Central

    Kroon, Elke; Arents, Niek A; Halbertsma, Feico Jan

    2012-01-01

    A 10-year-old boy presented with an atypical non-febrile septic arthritis/osteomyelitis. He was unresponsive to routine antibiotic treatment with flucloxacillin/gentamicin as the pain and fluid collection increased. Synovial fluid cultures are negative and gram stain remained negative. Only after PCR/16S ribosomal bacterial DNA amplification a Fusobacterium nucleatum could be detected, and antibiotic therapy switched to clindamycin with rapid response. Septic osteomyelitis and arthritis are relatively rare but important infections in children needing prompt treatment, and should be considered when a child complaints about joint or bone pain without prior recent trauma. Skin bacteria are the most prevalent causative organisms, whereas Fusobacteria or other anaerobic, Gram-negative microorganisms are very seldom encountered. If cultures remain negative and the patients responds insufficiently to empiric treatment, PCR/16S ribosomal bacterial DNA amplification can be useful to detect the causative microorganisms. PMID:22605875

  12. [A case of culture-negative brain abscess caused by Streptococcus intermedius infection diagnosed by broad-range PCR of 16S ribosomal RNA].

    PubMed

    Ohara, Nobuyuki; Asai, Katsunori; Ohkusu, Kiyofumi; Wakayama, Akatsuki

    2013-10-01

    A 50-year-old man presented with altered mental status during hospitalization for pneumonia. MRI showed multifocal ring-enhanced lesions, which consisted of multiple cerebral abscesses. We started empirical antibiotic therapy, but the following morning, his condition rapidly deteriorated and a CT scan revealed acute hydrocephalus, which required ventricular drainage. Gram staining of cerebro-spinal fluid from the ventricular drainage showed gram-positive cocci in chains, but culture results were negative. 16S ribosomal RNA sequencing with broad-range PCR of the cerebro-spinal fluid identified Streptococcus intermedius. On the basis of this identification, the antibiotic regimen was changed to ampicillin monotherapy. After 1 year of antibiotic therapy, all the abscesses had disappeared and the patient was discharged without any sequelae. Bacterial 16S rRNA gene analysis with broad-range PCR is a very useful method for facilitating the etiological diagnosis and selection of appropriate treatment for culture-negative infections.

  13. Identification of Group B Streptococci Using 16S rRNA, cfb, scpB, and atr Genes in Pregnant Women by PCR.

    PubMed

    Mousavi, Seyed Masoud; Hosseini, Seyed Mostafa; Mashouf, Rasoul Yousefi; Arabestani, Mohammad Reza

    2016-12-01

    Streptococcus agalactiae is acommensalorganism, but it may cause infection in susceptible hosts. The aim of this study was to evaluate PCR assay compared with conventional culture method for direct detection of Streptococcus agalactiae. Total of 203 paired low vaginal swabs were collected from women at 35-37 weeks of pregnancy from June 2013 through February 2014 for detection of Streptococcus agalactiae using PCR assay targeting 16S rRNA, cfb, scpB, and atr genes and culture method following broth enrichment. The results were recorded and evaluated for determining of sensitivity, specificity, positive and negative predictive values of PCR assaycompared with culture method. Prevalence of Streptococcus agalactiae was determined as 7.39% (n=15) using culture method; 19.70% (n=40) by PCR targeting 16S rRNA gene; 18.23% (n=37) by targeting atr gene; 17.24% (n=35) by cfb gene; and 8.87% (n=18) by scpB gene. Generally, a total of 49 specimens were considered true positive (27 samples by PCR assay using the four genes in sum, 4 samples only by atr gene PCR, 3 samples only by cfb gene PCR, 2 samples only by culture method, and 13 samples by PCR assay and culture method in common) and prevalence of Streptococcus agalactiae determined 24.14% in Hamadan. The current data demonstrated that performing only culture method for detecting GBS from pregnant women leads to missed false negative carrier individuals. Thus, it is recommended that both the PCR assay and conventional culture method to be performed in order to detect Streptococcus agalactiae.

  14. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers.

    PubMed

    Vobis, M; D'Haese, J; Mehlhorn, H; Mencke, N; Blagburn, B L; Bond, R; Denholm, I; Dryden, M W; Payne, P; Rust, M K; Schroeder, I; Vaughn, M B; Bledsoe, D

    2004-10-01

    The phylogenetic relationships among 31 different flea isolates representing seven different species were studied by nucleotide sequence comparison of the internal transcribed spacer 1 (ITS1), internal transcribed spacer 2 (ITS2) and/or mitochondrial 16S ribosomal RNA gene (mt16S-rDNA) to examine the patterns of variation. Results show that all regions are useful in discriminating among flea species. In Ctenocephalides felis and Tunga penetrans, some differences in these gene regions occurred among different isolates within the same species. In the latter case, the differences are in the mt16S-rDNA region, with one isolate showing 48% divergence in nucleotide sequence. The taxonomic implications of this result are unclear at present. The gene regions revealed differences between C. felis isolates only after DNA sequencing the PCR products. Further differentiation among C. felis isolates was obtained using four different random binding primers (decamers) and primers for mammalian aldolase to amplify narrow differences in the genome. Using these primers we were able to discriminate between different C. felis isolates and determine that some of the genetic variation coincided with minor differences in response to the control agent imidacloprid. However, overall findings do not support the existence of subspecies of C. felis.

  15. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  16. Evaluation of 16S rRNA Gene PCR Sensitivity and Specificity for Diagnosis of Prosthetic Joint Infection: a Prospective Multicenter Cross-Sectional Study

    PubMed Central

    Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-01-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥1 positive sample for strict pathogens and ≥2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis. PMID:25056331

  17. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study.

    PubMed

    Bémer, Pascale; Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-10-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis.

  18. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes.

    PubMed

    Sessitsch, Angela; Reiter, Birgit; Pfeifer, Ulrike; Wilhelm, Eva

    2002-01-01

    Abstract Endophytic bacteria are ubiquitous in most plants and colonise plants without exhibiting pathogenicity. Studies on the diversity of bacterial endophytes have been mainly approached by characterisation of isolates obtained from internal tissues. Despite the broad application of culture-independent techniques for the analysis of microbial communities in a wide range of natural habitats, little information is available on the species diversity of endophytes. In this study, microbial communities inhabiting stems, roots and tubers of three potato varieties were analysed by 16S rRNA-based techniques such as terminal restriction fragment length polymorphism analysis, denaturing gradient gel electrophoresis as well as 16S rDNA cloning and sequencing. Two individual plant experiments were conducted. In the first experiment plants suffered from light deficiency, whereas healthy and robust plants were obtained in the second experiment. Plants obtained from both experiments showed comparable endophytic populations, but healthy potato plants possessed a significantly higher diversity of endophytes than stressed plants. In addition, plant tissue and variety specific endophytes were detected. Sequence analysis of 16S rRNA genes indicated that a broad phylogenetic spectrum of bacteria is able to colonise plants internally including alpha-, beta-, and gamma-Proteobacteria, high-GC Gram-positives, microbes belonging to the Flexibacter/Cytophaga/Bacteroides group and Planctomycetales. Group-specific analysis of Actinomycetes indicated a higher abundance and diversity of Streptomyces scabiei-related species in the variety Mehlige Mühlviertler, which is known for its resistance against potato common scab caused by S. scabiei.

  19. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  20. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    PubMed Central

    Esfandiari, Leyla; Wang, Siqing; Wang, Siqi; Banda, Anisha; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G.; Schmidt, Jacob J.

    2016-01-01

    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids. PMID:27455337

  1. Evaluation of Borrelia real time PCR DNA targeting OspA, FlaB and 5S-23S IGS and Borrelia 16S rRNA RT-qPCR.

    PubMed

    de Leeuw, Bertie H C G M; Maraha, Boulos; Hollemans, Leonie; Sprong, Hein; Brandenburg, Afke H; Westenend, Pieter J; Kusters, Johannes G

    2014-12-01

    Borrelia burgdorferi non-sensu lato (s.l.) strains occurred in the Netherlands. A multiplex OspA, FlaB, IGS real time PCR was compared to 16S rRNA/rDNA RT-qPCR with lower average Cycle threshold (Ct) and LOD on strain dilutions. Multiplexing increased sensitivity on CSF samples (n=74), distinguishing B. burgdorferi s.l. from non-s.l. strains.

  2. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR.

    PubMed

    Aparecida de Oliveira, Maria; Abeid Ribeiro, Eliana Guimarães; Morato Bergamini, Alzira Maria; Pereira De Martinis, Elaine Cristina

    2010-02-01

    Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirão Preto, São Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L. monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTE QPCR SYBR Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fast and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method.

  3. Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes.

    PubMed Central

    Rijpens, N P; Jannes, G; Van Asbroeck, M; Rossau, R; Herman, L M

    1996-01-01

    The 16S-23S rRNA spacer regions of Brucella abortus, B. melitensis, and B. suis were cloned and subcloned after PCR amplification. Sequence analysis of the inserts revealed a spacer of about 800 bp with very high ( > 99%) homology among the three species examined. Two genus-specific primer pairs, BRU-P5-BRU-P8 and BRU-P6-BRU-P7, that could be used in a nested PCR format and three genus-specific DNA probes, BRU-ICG2, BRU-ICG3, and BRU-ICG4, were deduced from this spacer. The specificity and sensitivity of both primer sets and probes were examined by testing them against a collection of 18 Brucella strains and 56 strains from other relevant taxa by using PCR and the Line Probe Assay (LiPA), respectively. A method for direct detection of Brucella spp. in 1 ml of raw milk was developed on the basis of enzymatic treatment of the milk components and subsequent PCR and LiPA hybridization. After a single PCR, sensitivities of 2.8 x 10(5) and 2.8 x 10(4) CFU/ml were obtained for detection by agarose gel electrophoresis and LiPA, respectively. Nested PCR yielded a sensitivity of 2.8 x 10(2) CFU/ml for both methods. PMID:8633866

  4. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs.

    PubMed

    Skillman, Lucy C; Evans, Paul N; Naylor, Graham E; Morvan, Brieuc; Jarvis, Graeme N; Joblin, Keith N

    2004-10-01

    The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.

  5. A report of cat scratch disease in Korea confirmed by PCR amplification of the 16S-23S rRNA intergenic region of Bartonella henselae.

    PubMed

    Suh, Borum; Chun, Jin-Kyoung; Yong, Dongeun; Lee, Yang Soon; Jeong, Seok Hoon; Yang, Woo Ick; Kim, Dong Soo

    2010-02-01

    We report a case of cat scratch disease in an 8-yr-old girl who presented with fever and enlargement of both axillary lymph nodes. Both aerobic and anaerobic cultures of the lymph node aspirate were negative for microbial growth. Gram staining and Warthin-Starry silver staining did not reveal any organism. Purified DNA from the PCR-amplicon of the 16S-23S rRNA intergenic region was sequenced and showed 99.7% identity with the corresponding sequence of Bartonella henselae strain Houston-1. Our findings suggest that the internal transcribed spacer is a reliable region for PCR identification of Bartonella species. In patients with lymphadenitis, a history of contact with cats or dogs necessitates the use of diagnostic approaches that employ not only the conventional staining and culture but also molecular methods to detect B. henselae.

  6. Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction-capillary electrophoresis assay.

    PubMed

    Pingle, Maneesh R; Granger, Kathleen; Feinberg, Philip; Shatsky, Rebecca; Sterling, Bram; Rundell, Mark; Spitzer, Eric; Larone, Davise; Golightly, Linnie; Barany, Francis

    2007-06-01

    We have developed a novel high-throughput PCR-ligase detection reaction-capillary electrophoresis (PCR-LDR-CE) assay for the multiplexed identification of 20 blood-borne pathogens (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Acinetobacter baumannii, Neisseria meningitidis, Bacteroides fragilis, Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella abortus), the last four of which are biothreat agents. The method relies on the amplification of two regions within the bacterial 16S rRNA gene, using universal PCR primers and querying the identity of specific single-nucleotide polymorphisms within the amplified regions in a subsequent LDR. The ligation products vary in color and size and are separated by CE. Each organism generates a specific pattern of ligation products, which can be used to distinguish the pathogens using an automated software program we developed for that purpose. The assay has been verified on 315 clinical isolates and demonstrated a detection sensitivity of 98%. Additionally, 484 seeded blood cultures were tested, with a detection sensitivity of 97.7%. The ability to identify geographically variant strains of the organisms was determined by testing 132 isolates obtained from across the United States. In summary, the PCR-LDR-CE assay can successfully identify, in a multiplexed fashion, a panel of 20 blood-borne pathogens with high sensitivity and specificity.

  7. Identification of bacterial pathogens in ascitic fluids from patients with suspected spontaneous bacterial peritonitis by use of broad-range PCR (16S PCR) coupled with high-resolution melt analysis.

    PubMed

    Hardick, Justin; Won, Helen; Jeng, Kevin; Hsieh, Yu-Hsiang; Gaydos, Charlotte A; Rothman, Richard E; Yang, Samuel

    2012-07-01

    Spontaneous bacterial peritonitis (SBP) can be a severe complication occurring in patients with cirrhosis and ascites, with associated mortality often as high as 40%. Traditional diagnostics for SBP rely on culture techniques for proper diagnosis, although recent reports suggest that the presence of bacterial DNA in peritoneal fluid in patients with cirrhosis and ascites is an indicator of SBP. A previously published broad-range PCR (16S PCR) coupled with high-resolution melt analysis (HRMA) was compared with standard culture techniques for diagnosis of SBP in 106 peritoneal fluid samples from patients with suspected SBP. The sensitivity and specificity for 16S PCR for detecting eubacterial DNA compared with those of standard culture techniques were 100% (17/17) and 91.5% (85/89), respectively. Overall, HRMA concordance with species identification was 70.6% (12/17), although the 5 samples that were discordant at the species level were SBP resulting from a polymicrobial infection, and species-level identification for polymicrobial infections is outside the capability of HRMA. Both the broad-range 16S PCR and HRMA analysis provide useful diagnostic adjunctive assays for clinicians in detecting and identifying pathogens responsible for SBP.

  8. Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of enterococcus species in environmental samples.

    PubMed

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan; Santo Domingo, Jorge W

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.

  9. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA)

    PubMed Central

    2012-01-01

    Background La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest

  10. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces.

    PubMed

    Yang, Yun-Wen; Chen, Mang-Kun; Yang, Bing-Ya; Huang, Xian-Jie; Zhang, Xue-Rui; He, Liang-Qiang; Zhang, Jing; Hua, Zi-Chun

    2015-10-01

    Mouse models are widely used for studying gastrointestinal (GI) tract-related diseases. It is necessary and important to develop a new set of primers to monitor the mouse gut microbiota. In this study, 16S rRNA gene-targeted group-specific primers for Firmicutes, Actinobacteria, Bacteroidetes, Deferribacteres, "Candidatus Saccharibacteria," Verrucomicrobia, Tenericutes, and Proteobacteria were designed and validated for quantification of the predominant bacterial species in mouse feces by real-time PCR. After confirmation of their accuracy and specificity by high-throughput sequencing technologies, these primers were applied to quantify the changes in the fecal samples from a trinitrobenzene sulfonic acid-induced colitis mouse model. Our results showed that this approach efficiently predicted the occurrence of colitis, such as spontaneous chronic inflammatory bowel disease in transgenic mice. The set of primers developed in this study provides a simple and affordable method to monitor changes in the intestinal microbiota at the phylum level.

  11. Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting.

    PubMed

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.

  12. Microdiversity of Deep-Sea Bacillales Isolated from Tyrrhenian Sea Sediments as Revealed by ARISA, 16S rRNA Gene Sequencing and BOX-PCR Fingerprinting

    PubMed Central

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments. PMID:24005887

  13. Rapid Identification and Differentiation of the Soft Rot Erwinias by 16S-23S Intergenic Transcribed Spacer-PCR and Restriction Fragment Length Polymorphism Analyses

    PubMed Central

    Toth, I. K.; Avrova, A. O.; Hyman, L. J.

    2001-01-01

    Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the α-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten “atypical” E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two “atypical” E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica. PMID:11526007

  14. Use of quantitative 16S rRNA PCR to determine bacterial load does not augment conventional cerebrospinal fluid (CSF) cultures among children undergoing treatment for CSF shunt infection☆,☆☆

    PubMed Central

    Simon, Tamara D.; Van Yserloo, Brian; Nelson, Kevin; Gillespie, David; Jensen, Randy; McAllister, James P.; Riva-Cambrin, Jay; Stockmann, Chris; Daly, Judy A.; Blaschke, Anne J.

    2013-01-01

    The aim of this study was to develop a quantitative 16S rRNA assay for determination of bacterial nucleic acid load in cerebrospinal fluid (CSF) shunt infection and to compare quantitative 16S rRNA polymerase chain reaction (PCR) findings to those of conventional bacterial culture in patients treated for CSF shunt infection. We developed a quantitative 16S rRNA PCR assay that detected bacterial load across a range of 2.5 × 109 down to 2.5 × 104 16S copies/mL CSF under experimental conditions for numerous Gram-positive and Gram-negative organisms. However, when applied to archived CSF samples from 25 shunt infection episodes, correlations between positive bacterial culture and 16S rRNA levels were seen in only half of infections, and 16S rRNA levels dropped precipitously after an initial peak on the first day of sample collection. Bacterial load measured using 16S rRNA PCR does not provide sufficient information beyond bacterial culture to inform CSF shunt infection treatment. PMID:23953744

  15. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Hong, Jin-Kyung; Kim, Hye-Jin; Cho, Jae-Chang

    2014-01-01

    Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer's specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and

  16. Novel PCR Primers for the Archaeal Phylum Thaumarchaeota Designed Based on the Comparative Analysis of 16S rRNA Gene Sequences

    PubMed Central

    Hong, Jin-Kyung; Kim, Hye-Jin; Cho, Jae-Chang

    2014-01-01

    Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer’s specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and

  17. Analyses of methanogenic archaea populations in swine feces and stored swine manure using 16S rDNA and mcrA PCR and pure culture isolation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Storage of swine manure is associated with the microbial production of odorous compounds and gaseous emissions which result from anaerobic microbial digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to...

  18. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  19. Group-specific PCR primers for the phylum Acidobacteria designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Lee, Sang-Hoon; Cho, Jae-Chang

    2011-08-01

    We performed a comprehensive phylogenetic analysis of the phylum Acidobacteria and developed novel, group-specific PCR primers for Acidobacteria and its class-level subgroups. Acidobacterial 16S rRNA gene sequences deposited in the RDP database were used to construct a local database then subsequently analyzed. A total of 556 phylotypes were observed and the majority of the phylotypes belonged to five major subgroups (subgroups 1, 2, 3, 4, and 6), which comprised >80% of the acidobacterial sequences in the RDP database. Phylum-specific and subgroup-specific primers were designed from the consensus sequences of the phylotype sequences, and the specificities of the designed primers were evaluated both in silico and empirically for coverage and tolerance. The phylum-specific primer ACIDO, which was designed in this study, showed increased coverage for Acidobacteria, as compared to the previous phylum-specific primer 31F. However, the tolerance of the primer ACIDO for non-target sequences was slightly higher than that of the primer 31F. We also developed subgroup-specific PCR primers for the major subgroups of Acidobacteria, except for subgroup 4. Subgroup-specific primers S1, S2, and S3, which targeted subgroups 1, 2, and 3, respectively, showed high coverage for their target subgroups and low tolerance for non-target sequences. However, the primer S6 targeting subgroup 6 showed a lower specificity in its empirical evaluation than expected from the in silico results. The subgroup-specific primers, as well as the phylum-specific primer designed in this study, will be valuable tools in understanding the phylogenetic diversity and ecological niche of the phylum Acidobacteria and its subgroups.

  20. Frequent detection of Streptococcus tigurinus in the human oral microbial flora by a specific 16S rRNA gene real-time TaqMan PCR

    PubMed Central

    2014-01-01

    Background Many bacteria causing systemic invasive infections originate from the oral cavity by entering the bloodstream. Recently, a novel pathogenic bacterium, Streptococcus tigurinus, was identified as causative agent of infective endocarditis, spondylodiscitis and meningitis. In this study, we sought to determine the prevalence of S. tigurinus in the human oral microbial flora and analyzed its association with periodontal disease or health. Results We developed a diagnostic highly sensitive and specific real-time TaqMan PCR assay for detection of S. tigurinus in clinical samples, based on the 16S rRNA gene. We analyzed saliva samples and subgingival plaque samples of a periodontally healthy control group (n = 26) and a periodontitis group (n = 25). Overall, S. tigurinus was detected in 27 (53%) out of 51 patients. There is no significant difference of the frequency of S. tigurinus detection by RT-PCR in the saliva and dental plaque samples in the two groups: in the control group, 14 (54%) out of 26 individuals had S. tigurinus either in the saliva samples and/or in the plaque samples; and in the periodontitis group, 13 (52%) out of 25 patients had S. tigurinus in the mouth samples, respectively (P = 0.895). The consumption of nicotine was no determining factor. Conclusion Although S. tigurinus was a frequently detected species of the human oral microbial flora, it was not associated with periodontal disease. Further investigations are required to determine whether S. tigurinus is a commensal or an opportunistic oral pathogen with a potential for development of invasive infections. PMID:25170686

  1. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  2. PCR amplification and sequencing of ITS1 rDNA of Culicoides arakawae.

    PubMed

    Li, G Q; Hu, Y L; Kanu, S; Zhu, X Q

    2003-02-28

    The first internal transcribed spacer (ITS1) of nuclear ribosomal DNA from Culicoides arakawae was amplified by PCR, cloned and sequenced. The wDNAsis software was used to analyze the ITS1 sequences of C. arakawae and other nine species of Culicoides, which were obtained from GenBank and EMBL databases. For all species, the lengths of the ITS1 were 316-469 bp, and the G+C contents were 26.79-34.53%. Based on the lengths of the ITS1 sequences, the 10 Culicoides species could be divided into two groups. The first group consisted of C. arakawae, C. albicans, C. cubitalis, C. pulicaris and C. punctatus, and the second group comprised C. impunctatus, C. nubeculosus, C. variipennis, C. grisescens and C. imicola. The lengths for the first group were 316-347 bp and the second group were 457-469 bp. C. arakawae belonged to the first group by its ITS1 sequence length. Sequence analysis revealed that C. arakawae was genetically more similar to the first group than it was to the second group, consistent with results based on sequence length. The alignment of ITS1 (the alignment length was 500 bp including the gaps) sequences showed that there was a highly conserved region, which was between 288 and 388 bp, except for a few insertions and substitutions. These findings have important implications for the molecular identification of C. arakawae, for studying its molecular genetics and epidemiology, and for studying the molecular systematics of Culicoides.

  3. Combined assay for two-hour identification of Streptococcus pneumoniae and Neisseria meningitidis and concomitant detection of 16S ribosomal DNA in cerebrospinal fluid by real-time PCR.

    PubMed

    Deutch, Susanna; Møller, Jens K; Ostergaard, Lars

    2008-01-01

    The main object was to examine the diagnostic performance of a novel combination of a specific real-time PCR (combined real-time PCR) for immediate and simultaneous detection of Streptococcus pneumoniae and Neisseria meningitidis and of a real-time PCR of the 16S rRNA gene (16S DNA). During 12 months, 1015 routine CSF samples were consecutively collected from patients in the County of Aarhus, Denmark. The samples were cultured, examined by microscopy, and, in parallel, CSF DNA was automatically purified and subjected to real-time PCR. Melting curve analysis discriminated between the 2 specific pathogens and 16S DNA positive samples were sequenced. Clinical data were extracted from patients having positive samples. Clinically, 35 of 46 (76%) patients with positive samples had bacterial meningitis. 18 of these 35 patients had a concomitant culture and real-time PCR-positive sample. The remaining 17 patients were either culture positive (n =7) or real-time PCR-positive (n = 10). The aetiology of bacterial meningitis was revealed by microscopy in 18/35 (51.4%), culture in 24/35 (68.6%) and combined real-time PCR in 27/35 (77.1%) patients, respectively. In conclusion, the combined real-time PCR strategy is superior to microscopy and a valuable supplement to routine culture to establish the aetiology of bacterial meningitis.

  4. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days

  5. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  6. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection

    PubMed Central

    Moore, M. S.; McCarroll, M. G.; McCann, C. D.; May, L.; Younes, N.

    2015-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  7. C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.

    PubMed

    Ghosh, Tarini Shankar; Gajjalla, Purnachander; Mohammed, Monzoorul Haque; Mande, Sharmila S

    2012-04-01

    Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.

  8. 16S rRNA-based PCR-DGGE analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang, China.

    PubMed

    Zhang, Wei; Long, XuanQi; Huo, XiangDong; Chen, YiFeng; Lou, Kai

    2013-08-01

    The purpose of this study was to examine the variations in the microbial community structure of soil actinomycetes in fields with continuous cropping of cotton in Xinjiang Autonomous Region, China. Soil samples were collected from four depths in fields with 7-year continuous cotton cropping. The community structure of soil actinomycetes was examined using the 16S rRNA-based polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) techniques. The microbial diversity indices of the soil samples from different depths generally decreased along with the period of continuous cotton cropping. When the period of continuous cropping of cotton reached 5 years, the diversity indices rose again and gradually stabilized at a level slightly lower than that of soils with original ecology (i.e., 0-year cotton cropping). Cluster analysis showed that at the 1-20-cm depth, the actinomycete community structure of the soil subjected to 1-year cotton cropping was similar to that of soil subjected to 0-year cotton cropping, whereas that of soils after 3-year continuous cotton cropping showed high similarity. At the 21-40-cm depth, the actinomycete community structure showed various changes but generally recovered to its original pattern after repeated fluctuations. Principal component analysis showed that at the 1-30-cm depth, the actinomycete community structure varied similarly regardless of the period of continuous cotton cropping. In contrast, there were no clear actinomycete community structure variation trends at the 31-40-cm soil depth. Homology comparison of sequences recovered from the DGGE bands showed that the obtained sequences shared similarities >88 %. Alignment with the known homologous sequences indicated a lack of microorganisms related to soil-borne cotton diseases. Continuous cotton cropping exerted significant influences on the community structure of soil actinomycetes in Xinjiang Autonomous Region, which were largely determined by the soil depth and

  9. Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes

    PubMed Central

    Dick, Linda K.; Field, Katharine G.

    2004-01-01

    Assessment of health risk associated with fecal pollution requires a reliable fecal indicator and a rapid quantification method. We report the development of a Taq nuclease assay for enumeration of 16S rRNA genes of Bacteroidetes. Sensitivity and correlation with standard fecal indicators provide experimental evidence for application of the assay in monitoring fecal pollution. PMID:15345463

  10. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates.

    PubMed

    Lee, Min Jung; Jang, Sook Jin; Li, Xue Min; Park, Geon; Kook, Joong-Ki; Kim, Min Jung; Chang, Young-Hyo; Shin, Jong Hee; Kim, Soo Hyun; Kim, Dong-Min; Kang, Seong-Ho; Moon, Dae-Soo

    2014-01-01

    Since accurate identification of species is necessary for proper treatment of Acinetobacter infections, we compared the performances of 4 bacterial identification methods using 167 Acinetobacter clinical isolates to identify the best identification method. To secure more non-baumannii Acinetobacter (NBA) strains as target strains, we first identified Acinetobacter baumannii in a total of 495 Acinetobacter clinical isolates identified using the VITEK 2 system. Because 371 of 495 strains were identified as A. baumannii using gyrB multiplex 1 PCR and blaOXA51-like PCR, we performed rpoB gene sequencing and 16S rRNA gene sequencing on remaining 124 strains belonging to NBA and 52 strains of A. baumannii. For identification of Acinetobacter at the species level, the accuracy rates of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK 2 were 98.2%, 93.4%, 77.2%, and 35.9%, respectively. The gyrB multiplex PCR seems to be very useful for the detection of ACB complex because its concordance rates to the final identification of strains of ACB complex were 100%. Both the rpoB gene sequencing and the 16S rRNA gene sequencing may be useful in identifying Acinetobacter.

  11. Identification of Dietzia spp. from Cardiac Tissue by 16S rRNA PCR in a Patient with Culture-Negative Device-Associated Endocarditis: A Case Report and Review of the Literature

    PubMed Central

    Wang, Guiqing; Nadelman, Robert B.

    2016-01-01

    The genus Dietzia was recently distinguished from other actinomycetes such as Rhodococcus. While these organisms are known to be distributed widely in the environment, over the past decade several novel species have been described and isolated from human clinical specimens. Here we describe the identification of Dietzia natronolimnaea/D. cercidiphylli by PCR amplification and sequencing of the 16S rRNA encoding gene from cardiac tissue in a patient with culture-negative device-associated endocarditis. PMID:28101387

  12. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  13. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.

    PubMed

    Fracchia, Letizia; Dohrmann, Anja B; Martinotti, Maria Giovanna; Tebbe, Christoph C

    2006-08-01

    Bacterial communities are important catalysts in the production of composts. Here, it was analysed whether the diversity of bacteria in finished composts is stable and specific for the production process. Single-strand conformation polymorphism (SSCP) based on polymerase chain reaction amplified partial 16S rRNA genes was used to profile and analyse bacterial communities found in total DNA extracted from finished composts. Different batches of compost samples stored over a period of 12 years and a 1-year-old vermicompost were compared to each other. According to digital image analysis, clear differences could be detected between the profiles from compost and vermicompost. Differences between three different periods of compost storage and between replicate vermicompost windrows were only minor. A total of 41 different 16S rRNA genes were identified from the SSCP profiles by DNA sequencing, with the vast majority related to yet-uncultivated bacteria. Sequences retrieved from compost mainly belonged to the phyla Actinobacteria and Firmicutes. In contrast, vermicompost was dominated by bacteria related to uncultured Chloroflexi, Acidobacteria, Bacteroidetes and Gemmatimonadetes. The differences were underscored with specific gene probes and Southern blot hybridizations. The results confirmed that different substrates and composting processes selected for specific bacterial communities in the finished products. The specificity and consistency of the bacterial communities inhabiting the compost materials suggest that cultivation-independent bacterial community analysis is a potentially useful indicator to characterize the quality of finished composts in regard to production processes and effects of storage conditions.

  14. Development of real-time PCR assays for detection of the Streptococcus milleri group from cystic fibrosis clinical specimens by targeting the cpn60 and 16S rRNA genes.

    PubMed

    Olson, A B; Sibley, C D; Schmidt, L; Wilcox, M A; Surette, M G; Corbett, C R

    2010-04-01

    Cystic fibrosis (CF) is a multiorgan disease, with the majority of mortalities resulting from pulmonary failure due to repeated pulmonary exacerbations. Recently, members of the Streptococcus anginosus group (S. anginosus, S. constellatus, and S. intermedius), herein referred to as the "Streptococcus milleri group" (SMG) have been implicated as important etiological pathogens contributing to pulmonary exacerbations in CF patients. This is partly due to better microbiological detection of the SMG species through the development of a novel specific medium termed "McKay agar." McKay agar demonstrated that SMG has been an underreported respiratory pathogen contributing to lung exacerbations. Our aim was to develop a real-time PCR assay to expedite the detection of SMG within diagnostic samples. The cpn60 gene was chosen as a target, with all three members amplified using a single hybridization probe set. SMG strain analysis showed that speciation based on melting curve analysis allowed for the majority of the S. constellatus (96%), S. intermedius (94%), and S. anginosus (60%) strains to be correctly identified. To increase specificity for S. anginosus, two 16S rRNA real-time PCR assays were developed targeting the 16S rRNA gene. The 16s_SA assay is specific for S. anginosus (100%), while the 16s_SCI assay is specific for S. constellatus and S. intermedius (100%). These assays can detect <10 genome equivalents in pure culture and >10(4) genome equivalents in sputum samples, making this a great tool for assessment of the presence of SMG in complex polymicrobial samples. Novel molecular methods were developed providing detection ability for SMG, an emerging opportunistic pathogen.

  15. Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques.

    PubMed

    Murayama, Mayumi; Kakinuma, Yuki; Maeda, Yasunori; Rao, Juluri R; Matsuda, Motoo; Xu, Jiru; Moore, Peter J A; Millar, B Cherie; Rooney, Paul J; Goldsmith, Colin E; Loughrey, Anne; McMahon, M Ann S; McDowell, David A; Moore, John E

    2010-03-01

    Polymerase chain reaction amplification of the universal 16S ribosomal RNA (rRNA) gene was performed on a collection of 38 bacterial isolates, originating from air sampled immediately adjacent to the agricultural spreading of bovine slurry. A total of 16 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 34/38 (89.5%) of total bacterial numbers consisting of 12 genera and included Staphylococcus (most common genus isolated), Arthrobacter (2nd most common genus isolated), Brachybacterium, Exiguobacterium, Lactococcus, Microbacterium and Sporosarcina (next most common genera isolated) and finally, Bacillus, Brevibacterium, Frigoribacterium, Mycoplana and Pseudoclavibacter. Gram-negative organisms accounted for only 4/38 (10.5%) bacterial isolates and included the following genera, Brevundimonas, Lysobacter, Psychrobacter and Rhizobium. No gastrointestinal pathogens were detected. Although this study demonstrated a high diversity of the microorganisms present, only a few have been shown to be opportunistically pathogenic to humans and none of these organisms described have been described previously as having an inhalational route of infection and therefore we do not believe that the species of organisms identified pose a significant health and safety threat for immunocompetant individuals.

  16. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  17. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  18. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  19. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    PubMed

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.

  20. [Tracing the Fecal Contamination Sources Based on Bacteroides 16S rRNA PCR- DGGE in Karst Groundwater: Taking Laolongdong Underground River System, Nanshan, Chongqing as an Example].

    PubMed

    Zhang, Hong; Jiang, Yong-jun; Zhang, Yuan-zhu; Duan, Yi-fan; Lü, Xian-fu; He, Qiu-fang

    2016-05-15

    Microbial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS). Bacteriodes was used as an indicator and PCR-DGGE analysis was used to trace fecal contamination sources in karst groundwater. The results suggested that groundwater in this area was seriously polluted by microbes from feces. The concentrations of microbial parameters exceeded limited levels greatly and the total bacterial amounts ranged 10-2.9 x 10⁷ CFU · mL⁻¹, the concentrations of E. coli were between 4.3-4.0 x 10⁵ CFU · mL⁻¹, the max concentration of FC was 1.1 x 10⁶ CFU · (100 mL)⁻¹ and the max concentration of FS was 1.1 x 10⁵ CFU · (100 mL)⁻¹. The FC/FS ratios were mostly over 2 which suggested that the main fecal source in groundwater was human feces. In addition, PCR-DGGE contrastive analysis of Bacteroides communities showed that the similarities between groundwater samples and human feces were in range of 7. 1% -69. 1% , and the similarity of the groundwater sample from Laolongdong underground river outlet was 69.1% . Bacteroides community similarities between groundwater samples and swine feces were in range of 1.1%-53.4%, and the similarity of Laolongdong underground river outlet was merely 1.5%. The similarity data implied that groundwater contamination resulted mainly from human feces, swine feces contamination composed part of animals' fecal contamination, and other animals' feces participated too. Furthermore, sequencing results of PCR-DGGE products revealed that most Bacteroides in groundwater originated from human intestinal tract and human feces.

  1. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    PubMed

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  2. Characterization of rDNA sequences from Syphacia obvelata, Syphacia muris, and Aspiculuris tetraptera and development of a PCR-based method for identification.

    PubMed

    Parel, Joan Dee C; Galula, Jedhan U; Ooi, Hong-Kean

    2008-05-31

    To differentiate the morphologically similar pinworms of the common laboratory rodents, such as Syphacia obvelata and Syphacia muris, we amplified and sequenced the region spanning the internal transcribed spacer 1 (ITS-1), 5.8S gene, and ITS-2 of the ribosomal DNA followed by designing of species-specific primers for future use in the identification of the worms. It was observed that S. obvelata, S. muris and Aspiculuris tetraptera can be differentiated from each other based on their rDNA sequences. This is the first report of the ITS-1, 5.8S, and ITS-2 of the rDNA of the three aforementioned rodent pinworm species. The use of restriction endonucleases, AluI or RsaI, further allowed the delineation of the three species. Moreover, we also constructed species-specific primers that were designed for unique regions of the ITS-2 of the three species. This approach allowed their specific identification with no amplicons being amplified from heterogenous DNA samples, and sequencing confirmed the identity of the sequences amplified. Thus, the use of these specific primers along with PCR-RFLP can serve as useful tools for the identification of pinworms in rats, mice, and wild rodents.

  3. Determination of fruit origin by using 26S rDNA fingerprinting of yeast communities by PCR-DGGE: preliminary application to Physalis fruits from Egypt.

    PubMed

    El Sheikha, Aly Farag; Condur, Ana; Métayer, Isabelle; Nguyen, Doan Duy Le; Loiseau, Gérard; Montet, Didier

    2009-10-01

    The determination of geographical origin is a demand of the traceability system of import-export food products. One hypothesis for tracing the source of a product is by global analysis of the microbial communities of the food and statistical linkage of this analysis to the geographical origin of the food. For this purpose, a molecular technique employing 26S rDNA profiles generated by PCR-DGGE was used to detect the variation in yeast community structures of three species of Physalis fruit (Physalis ixocarpa Brat, Physalis pubescens L, Physalis pruinosa L) from four Egyptian regions (Qalyoubia, Minufiya, Beheira and Alexandria Governments). When the 26S rDNA profiles were analysed by multivariate analysis, distinct microbial communities were detected. The band profiles of Physalis yeasts from different Governments were specific for each location and could be used as a bar code to discriminate the origin of the fruits. This method is a new traceability tool which provides fruit products with a unique biological bar code and makes it possible to trace back the fruits to their original location.

  4. PCR-RFLP of ITS rDNA for the rapid identification of Penicillium subgenus Biverticillium species.

    PubMed

    Dupont, Jöelle; Dennetière, Bruno; Jacquet, Claire; Dupont, Marie France

    2006-09-01

    RFLP of ITS rDNA is proposed as a useful tool for molecular identification of the most common species of biverticillate penicillia. 60 isolates were analysed representing 13 species and 21 unique sequences were produced. The combination of five restriction enzymes was successful in separating 12 species. However, the variety Penicillium purpurogenum var. rubrisclerotium remained indistinguishable from Penicillium funiculosum. P. funiculosum appeared as the most confused species, being mis-identified with Penicillium miniolutum and Penicillium pinophilum, which were originally part of the species, and with P. purpurogenum perhaps because of the common production of red pigment. Penicillium variabile was difficult to investigate as introns were found on half of the isolates. Penicillium piceum, Penicillium rugulosum, Penicillium loliense, Penicillium erythromellis and P. purpurogenum were homogeneous from molecular and morphological positions and corresponded to a well circumscribed taxon. Furthermore, intraspecific variability was evidenced within P. pinophilum and P. funiculosum. The ex-type isolate of P. funiculosum produced a unique pattern. The method is sensitive, rapid and inexpensive and can be used for isolate identification of the biverticillate species. It is recommended particularly when many isolates have to be authentificated prior to analysis for phylogenetic assessment or population genetics.

  5. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media

    PubMed Central

    Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    ABSTRACT The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations

  6. Genetic Diversity of the Biofilm Covering Montacuta ferruginosa (Mollusca, Bivalvia) as Evaluated by Denaturing Gradient Gel Electrophoresis Analysis and Cloning of PCR-Amplified Gene Fragments Coding for 16S rRNA†

    PubMed Central

    Gillan, David C.; Speksnijder, Arjen G. C. L.; Zwart, Gabriel; De Ridder, Chantal

    1998-01-01

    The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas, Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of the Cytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes. PMID:9726898

  7. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water

    PubMed Central

    Layton, Alice; McKay, Larry; Williams, Dan; Garrett, Victoria; Gentry, Randall; Sayler, Gary

    2006-01-01

    Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds. PMID:16751534

  8. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria

    PubMed Central

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J.; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC. PMID:27749897

  9. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria.

    PubMed

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I-V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.

  10. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Oh, Byung Ho; Choe, Yong Beom; Ahn, Kyu Joong

    2010-01-01

    Background This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. Objective The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. Methods 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. Results The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. Conclusion According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups. PMID:20548904

  11. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR.

    PubMed

    Segawa, Takahiro; Miyamoto, Koji; Ushida, Kazunari; Agata, Kiyokazu; Okada, Norihiro; Kohshima, Shiro

    2005-01-01

    The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4 degrees C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 x 10(5)-fold, 1.5 x 10(5)-fold, and 1.0 x 10(4)-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world.

  12. Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes.

    PubMed

    LaMontagne, M G; Schimel, J P; Holden, P A

    2003-08-01

    The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.

  13. Two different 16S rRNA genes in a mycobacterial strain.

    PubMed Central

    Ninet, B; Monod, M; Emler, S; Pawlowski, J; Metral, C; Rohner, P; Auckenthaler, R; Hirschel, B

    1996-01-01

    Sequencing of the gene coding for 16S rRNA (16S rDNA) is a well-established method used to identify bacteria, particularly mycobacteria. Unique sequences allow identification of a particular genus and species. If more than one 16S rDNA is present on one mycobacterial genome, their sequences are assumed to be strictly or almost identical. We have isolated a slowly growing Mycobacterium strain, "X", identified by conventional biochemical tests as Mycobacterium terrae. Identification by amplification and direct sequencing of 16S rDNA yielded ambiguous results in two variable regions, suggesting the presence of different copies of the sequenced gene. Total DNA was digested by restriction enzymes and hybridized after Southern blotting to a probe representing about two-thirds of the 16S rDNA. Two copies of 16S rDNA were identified and cloned. By sequencing, the clones were of two different types, A and B, differing in 18 positions. Oligonucleotides specific to each copy of the 16S rDNA were used to distinguish the positions of the two genes observed in the Southern blot. We conclude that Mycobacterium strain "X" has two different copies of 16S rDNA. Variations in the sequence between two copies of 16S rDNA gene have been described in archaeobacteria, but not in mycobacteria. When placed in a phylogenetic tree together with other slowly growing mycobacteria gene A shows a common root with M. terrae, whereas gene B is placed separately. PMID:8880515

  14. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    PubMed

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert bacterial disease outbreaks, rather than relying on the absence of specific pathogens in the immediate farm environment.

  15. USE OF BACTEROIDES PCR-BASED METHODS TO EXAMINE FECAL CONTAMINATION SOURCES IN TROPICAL COASTAL WATERS

    EPA Science Inventory

    Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...

  16. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  17. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  18. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    NASA Astrophysics Data System (ADS)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  19. Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.

    PubMed

    Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav

    2013-01-01

    The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.

  20. Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods.

    PubMed

    Herzberg, Michael; Fischer, Reinhard; Titze, Andreas

    2002-07-01

    Sixty-six yeast strains isolated from the nectar of various plant species in Central Europe were characterized by randomly amplified polymorphic DNA PCR (RAPD-PCR) and by sequencing of the variable D1/D2 domain of large-subunit (26S) rDNA. The usefulness of both methods for the determination and comparison of unknown ascomycetous and basidiomycetous yeast strains was compared and evaluated. The reproducibility of RAPD-PCR was shown to be low and the information obtained by this method was clearly not as precise as that obtained from sequence analysis. Numerous imponderables make RAPD-PCR analysis unreliable, at least as a means of identifying yeasts in ecological studies. The lack of standard protocols for RAPD-PCR analysis and the absence of a general database of banding patterns made it impossible to identify unknown yeast strains or to recognize new species. In contrast to RAPD-PCR, sequence analysis of the D1/D2 domain was found to be a fast and reliable method for the rapid identification of yeast species and was also shown to be an invaluable tool for the discovery of new species.

  1. [ITS1, 5.8S and A-type ITS2 rDNA sequences from Plasmoidum vivax and development of a method for retrospective PCR diagnosis of malaria by stained thick blood smears].

    PubMed

    Ivanova, N V; Morozov, E H; Kukina, I V; Maksakovskaia, E V; Rabinovich, S A; Poltaraus, A B

    2001-01-01

    Stages life cycle of the malaria parasite differ in the rate of replication and the structural properties of functionally active A-, S-, and O-type ribosomes. Regions of A-type rDNA including ITS1, 5.8S, and ITS2 from two strains of Plasmodium vivax with different incubation periods were amplified and sequenced. No substantial differences in the sequences of two strains were revealed. Phylogenetic analysis of the obtained and homologous sequences of ITS1 rDNA of A, S, and O types of P. vivax; A and S types of P. falciparum; and Cryptosporidium parvum, Eimeria maxima, Toxoplasma gondii as outgroup, by the maximum parsimony method using PAUP 4.0 revealed that divergence of ITS1 might have occurred after speciation and at different rates in individual lineages of the Plasmodium genus. Basing on the results of the analysis of orthologous sequences of P. vivax and P. falciparum, we developed genus- and species-specific primers for PCR diagnostics of malaria, as well as a one-step effective method of DNA isolation from Giemsa-Romanovsky-stained thick blood smears. It was demonstrated that stained preparations could be a reliable source of plasmodial DNA, and the quality of preparations and storage time (10-20 years) did not interfere with the results of PCR analysis.

  2. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  3. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  4. 16S rDNA-based probes for two polycyclic aromatic hydrocarbon (PAH)-degrading soil Mycobacteria

    SciTech Connect

    Govindaswami, M.; Feldhake, D.J.; Loper, J.C.

    1994-12-31

    PAHs are a class of widespread pollutants, some of which have been shown to be genotoxic, hence the fate of these compounds in the environment is of considerable interest. Research on the biodegradation of 4 and 5 ring PAHs has been limited by the general lack of microbial isolates or consortia which can completely degrade these toxicants. Heitkamp and Cerniglia have described an oxidative soil Mycobacterium-strain PYR-1 that metabolizes pyrene and fluoranthene more rapidly than the 2 and 3 ring naphthalene and phenanthrene; although some metabolites of benzo-(a)-pyrene (BaP) were detected, no mineralization of BaP was observed. In 1991 Grosser et al. reported the isolation of a Mycobacterium sp. which mineralizes pyrene and also causing some mineralization of BaP. Their study describes a comparative analysis of these two strains, which show very similar colony morphology, growth rate and yellow-orange pigmentation. Genetic differences were shown by DNA amplification fingerprinting (DAF) using two arbitrary GC-rich octanucleotide primers, and by sequence comparison of PCR amplified 16S rDNA, although both strains show similarity closest to that of the genus Mycobacteria. These 16S rDNA sequences are in use for the construction of strain-specific DNA probes to monitor the presence, survival and growth of these isolates in PAH-contaminated soils in studies of biodegradation.

  5. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  6. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  7. Worldwide Distribution of Nitrosococcus oceani, a Marine Ammonia-Oxidizing γ-Proteobacterium, Detected by PCR and Sequencing of 16S rRNA and amoA Genes

    PubMed Central

    Ward, Bess B.; O'Mullan, Gregory D.

    2002-01-01

    Diversity of cultured ammonia-oxidizing bacteria in the γ-subdivision of the Proteobacteria was investigated by using strains isolated from various parts of the world ocean. All the strains were very similar to each other on the basis of the sequences of both the 16S rRNA and ammonia monooxygenase genes and could be characterized as a single species. Sequences were also cloned directly from environmental DNA from coastal Pacific and Atlantic sites, and these sequences represented the first Nitrosococcus oceani-like sequences obtained directly from the ocean. Most of the environmental sequences clustered tightly with those of the cultivated strains, but some sequences could represent new species of Nitrosococcus. These findings imply that organisms similar to the cultivated N. oceani strains have a worldwide distribution. PMID:12147525

  8. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting

    PubMed Central

    Maneg, Daniela; Sponsel, Janina; Müller, Iris; Lohr, Benedikt; Penders, John; Madlener, Katharina; Hunfeld, Klaus-Peter

    2016-01-01

    Infective endocarditis (IE) is a life-threatening disease that is associated with high morbidity and mortality. Its long-term prognosis strongly depends on a timely and optimized antibiotic treatment. Therefore, identification of the causative pathogen is crucial and currently based on blood cultures followed by characterization and susceptibility testing of the isolate. However, antibiotic treatment starting prior to blood sampling or IE caused by fastidious or intracellular microorganisms may cause negative culture results. Here we investigate the additional diagnostic value of broad-range PCR in combination with direct sequencing on resected heart tissue or swabs in patients with tissue or swab culture-negative IE in a routine clinical setting. Sensitivity, specificity, and positive and negative predictive values of broad-range PCR from diagnostic material in our patients were 33.3%, 76.9%, 90.9%, and 14.3%, respectively. We identified a total of 20 patients (21.5%) with tissue or culture-negative IE who profited by the additional application of broad-range PCR. We conclude that broad-range PCR on resected heart tissue or swabs is an important complementary diagnostic approach. It should be seen as an indispensable new tool for both the therapeutic and diagnostic management of culture-negative IE and we thus propose its possible inclusion in Duke's diagnostic classification scheme. PMID:27110570

  9. Development of a 16S rRNA Gene Primer and PCR-Restriction Fragment Length Polymorphism Method for Rapid Detection of Members of the Genus Megasphaera and Species-Level Identification ▿ †

    PubMed Central

    Ohnishi, Akihiro; Abe, Shinko; Nashirozawa, Shiho; Shimada, Sayaka; Fujimoto, Naoshi; Suzuki, Masaharu

    2011-01-01

    The genus Megasphaera is relevant to the environment, human health and food, and renewable energy for the future. In this study, a primer set was designed for PCR-restriction fragment length polymorphism (RFLP) analyses to detect and identify the members of Megasphaera. Direct detection and identification were achieved for environmental samples and isolates. PMID:21705538

  10. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  11. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase

    SciTech Connect

    Henckel, T.; Friedrich, M.; Conrad, R.

    1999-05-01

    Rice field soil with a nonsaturated water content induced CH{sub 4} consumption activity when it was supplemented with 5% CH{sub 4}. After a lag phase of 3 days, CH{sub 4} was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH{sub 4} mixing ratios. The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type 1 methylotrophs and type 2 methylotrophs were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH{sub 4} was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH{sub 4}.

  12. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens.

  13. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    PubMed

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia.

  14. The specific isolation of complete 5S rDNA units from chromosome 1A of hexaploid, tetraploid, and diploid wheat species using PCR with head-to-head oriented primers.

    PubMed

    Van Campenhout, S; Stappen, J V; Volckaert, G

    2001-08-01

    The presence of 5S rDNA units on chromosome 1A of Triticum aestivum was shown by the development of a specific PCR test, using head-to-head oriented primers. This primer set allowed the amplification of complete 5S DNA units and was used to isolate SS-Rrna-A1 sequences from polyploid and diploid wheat species. Multiple-alignment and parsimony analyses of the 132 sequences divided the sequences into four types. The isolates from T. aestivum and the tetraploid species (T. dicoccoides, T. dicoccum, T durum, T. araraticum, and T timopheevi) were all of one type, which was shown to be closely related to the type mainly characteristic for T. urartu. The other two types were isolated exclusively from the diploid species T. monococcum, T aegilopoides, T. thaoudar, and T. sinskajae and the hexaploid species T. zhukovski. Triticum monococcum was the only species for which representatives of each of the four sequence types were found to be present. Further, we discuss the possible multicluster arrangement of the 5S-Rrna-A1 array.

  15. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

    PubMed Central

    Drancourt, Michel; Bollet, Claude; Carlioz, Antoine; Martelin, Rolland; Gayral, Jean-Pierre; Raoult, Didier

    2000-01-01

    Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter and Pantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides

  16. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis.

    PubMed

    Coelho, Marcia Reed Rodrigues; von der Weid, Irene; Zahner, Viviane; Seldin, Lucy

    2003-05-28

    Forty-two strains representing the eight recognized nitrogen-fixing Paenibacillus species and 12 non-identified strains were examined by restriction fragment length polymorphism (RFLP) analysis of part of 16S and 23S rRNA genes amplified by polymerase chain reaction (PCR). Eleven different 16S rDNA genotypes were obtained from the combined data of RFLP analysis with four endonucleases and they were in agreement with the established taxonomic classification. Only one group of unclassified strains (Group I) was assigned in a separate genotype, suggesting they belong to a new species. Using the 23S PCR-RFLP method only six genotypes were detected, showing that this method is less discriminative than the 16S PCR-RFLP. Using the multilocus enzyme electrophoresis (MLEE) assay, the 48 strains tested could be classified into 35 zymovars. The seven enzymatic loci tested were polymorphic and the different profiles obtained among strains allowed the grouping of strains into 10 clusters. The PCR-RFLP methods together with the MLEE assay provide a rapid tool for the characterization and the establishment of the taxonomic position of isolates belonging to this nitrogen-fixing group, which shows a great potentiality in promoting plant growth.

  17. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    PubMed

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries.

  18. PHYLOGENETIC AFFILIATION OF WATER DISTRIBUTION SYSTEM BACTERIAL ISOLATES USING 16S RDNA SEQUENCE ANALYSIS

    EPA Science Inventory

    In a previously described study, only 15% of the bacterial strains isolated from a water distribution system (WDS) grown on R2A agar were identifiable using fatty acid methyl esthers (FAME) profiling. The lack of success was attributed to the use of fatty acid databases of bacter...

  19. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  20. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.

    PubMed

    Tyx, Robert E; Stanfill, Stephen B; Keong, Lisa M; Rivera, Angel J; Satten, Glen A; Watson, Clifford H

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.

  1. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  2. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fe...

  3. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    PubMed Central

    Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-01-01

    Background Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. PMID:26927306

  4. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-07-01

    Tito Bustillo cave (Ribadesella, Spain) contains valuable Palaeolithic paintings, which date back 15 000-20 000 years. Since 1969, the cave has been open to the public. Rock wall surfaces, spelaeothems and soils are covered by apparent biofilms of phototrophic microorganisms, which develop under artificial lighting. In addition, rock surfaces present conspicuous bacterial growth in the form of round colonies of different colours and about 1-2 mm in diameter. Even the famous Paintings Panel shows some evident microbial growth. In the present study, bacterial communities on the paintings and on the rock surfaces near the paintings were analysed by culture-independent techniques, including polymerase chain reaction (PCR) amplification of bacterial 16S rRNA genes (16S rDNA), phylogenetic sequence analyses and genetic community fingerprinting by denaturing gradient gel electrophoresis (DGGE). DGGE fingerprints showed complex bacterial community patterns. Forty-one clones matching DGGE bands of the community fingerprints were sequenced, representing about 39% of DNA fragments in the DGGE patterns. Phylogenetic sequence analyses revealed a high number of phylogenetically novel 16S rDNA sequence types and a high diversity of putatively chemotrophic and heterotrophic bacteria. Sequences were phylogenetically most closely related to the Proteobacteria (20 clones), green non-sulphur bacteria (three clones), Planctomycetales order (one clone), Cytophaga-Flexibacter- Bacteroides division (one clone) and the Actinobacteria (four clones). Furthermore, we report the presence of members of the Acidobacterium division (12 clones) in a karstic hypogean environment. Members of this phylum have not so far been detected in these particular environments.

  5. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns.

    PubMed

    Cook, Andrew E; Meyers, Paul R

    2003-11-01

    A rapid method for identifying filamentous actinomycete genera was developed based on 16S rRNA gene restriction fragment patterns. The patterns were generated by using specific restriction endonucleases to perform in silico digestions on the 16S rRNA gene sequences of all validly published filamentous actinomycete species. The method was applied to identifying actinomycete isolates from soil. Amplified 16S rDNA of soil actinomycetes was restricted with selected endonucleases and electrophoresed on agarose gels. The restriction fragment patterns of the unknown isolates were easily compared to the established patterns. Significantly, the genus Streptomyces could be differentiated from all other actinomycete genera by using only four restriction endonucleases, Sau3AI, AsnI, KpnI and SphI. This could be achieved in a time period of as little as a week, following PCR-template DNA isolation by a simple method. The identification method allowed unknown, non-Streptomyces soil isolates to be identified to a genus or small subgroup of genera. The genera in these subgroups could, in some cases, be distinguished by virtue of colony-morphology differences.

  6. [Phylogenetic characterization of endosymbionts of the hydrothermal vent mussel Bathymodiolus azoricus by analysis of the 16S rRNA, pmoL, and cbbA genes].

    PubMed

    Spiridonova, E M; Kuznetsov, B B; Pimenov, N V; Turova, T P

    2006-01-01

    In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine shellfish Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of Mytilidae thiotrophic symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.

  7. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases

    PubMed Central

    Roth, Andreas; Reischl, Udo; Streubel, Anna; Naumann, Ludmila; Kroppenstedt, Reiner M.; Habicht, Marion; Fischer, Marga; Mauch, Harald

    2000-01-01

    A novel genus-specific PCR for mycobacteria with simple identification to the species level by restriction fragment length polymorphism (RFLP) was established using the 16S-23S ribosomal RNA gene (rDNA) spacer as a target. Panspecificity of primers was demonstrated on the genus level by testing 811 bacterial strains (122 species in 37 genera from 286 reference strains and 525 clinical isolates). All mycobacterial isolates (678 strains among 48 defined species and 5 indeterminate taxons) were amplified by the new primers. Among nonmycobacterial isolates, only Gordonia terrae was amplified. The RFLP scheme devised involves estimation of variable PCR product sizes together with HaeIII and CfoI restriction analysis. It yielded 58 HaeIII patterns, of which 49 (84%) were unique on the species level. Hence, HaeIII digestion together with CfoI results was sufficient for correct identification of 39 of 54 mycobacterial taxons and one of three or four of seven RFLP genotypes found in Mycobacterium intracellulare and Mycobacterium kansasii, respectively. Following a clearly laid out diagnostic algorithm, the remaining unidentified organisms fell into five clusters of closely related species (i.e., the Mycobacterium avium complex or Mycobacterium chelonae-Mycobacterium abscessus) that were successfully separated using additional enzymes (TaqI, MspI, DdeI, or AvaII). Thus, next to slowly growing mycobacteria, all rapidly growing species studied, including M. abscessus, M. chelonae, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium peregrinum, and Mycobacterium senegalense (with a very high 16S rDNA sequence similarity) were correctly identified. A high intraspecies sequence stability and the good discriminative power of patterns indicate that this method is very suitable for rapid and cost-effective identification of a wide variety of mycobacterial species without the need for sequencing. Phylogenetically, spacer sequence data stand in good agreement with 16S rDNA

  8. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  9. Nested-quantitative PCR approach with improved sensitivity for the detection of low titer levels of Candidatus Liberibacter asiaticus in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    Coy, M R; Hoffmann, M; Kingdom Gibbard, H N; Kuhns, E H; Pelz-Stelinski, K S; Stelinski, L L

    2014-07-01

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri, and the presumptive causal agent of citrus greening disease. The current method of detection for CLas within plant and insect samples is by a presence/absence qPCR assay using the CLas 16S rDNA gene target. Although qPCR is highly sensitive, low bacterial titers or suboptimal qPCR conditions can result in false-negatives. Using a nested qPCR assay, we determined the false-negative rate of the 16S presence/absence qPCR assay was greater than 50%. Studies to determine the performance parameters of the qPCR assays for CLas 16S and Wingless (Wg), the D. citri endogenous gene, using plasmid and psyllid DNA, revealed suboptimal and variable performance of the 16S assay in psyllid samples. Average efficiencies and sensitivity limits of the plasmid assays were 99.0% and 2.7 copies of template for Wg, respectively, and 98.5% and 2.2-22.1 copies for 16S, respectively. Variability in efficiency was significantly greater in psyllid samples for both gene targets compared to the corresponding plasmid assays, and efficiencies as low as 76% were obtained for 16S. A secondary structure analysis revealed the formation of two stem-loop structures that block the forward and probe binding sites in the 16S template, which could hinder amplification. In summary, our results suggest that suboptimal qPCR efficiency is not uncommon for the 16S presence/absence qPCR assay, which combined with lowCLas titers in some samples, could contribute significantly to the under-reporting of CLas infection in psyllid and plant samples.

  10. Review of 16S and ITS Direct Sequencing Results for Clinical Specimens Submitted to a Reference Laboratory

    PubMed Central

    Payne, Michael; Azana, Robert; Hoang, Linda M. N.

    2016-01-01

    We evaluated the performance of 16S and internal transcribed spacer (ITS) region amplification and sequencing of rDNA from clinical specimens, for the respective detection and identification of bacterial and fungal pathogens. Direct rDNA amplification of 16S and ITS targets from clinical samples was performed over a 4-year period and reviewed. All specimens were from sterile sites and submitted to a reference laboratory for evaluation. Results of 16S and ITS were compared to histopathology, Gram and/or calcofluor stain microscopy results. A total of 277 16S tests were performed, with 64 (23%) positive for the presence of bacterial DNA. Identification of an organism was more likely in microscopy positive 16S samples 14/21 (67%), compared to 35/175 (20%) of microscopy negative samples. A total of 110 ITS tests were performed, with 14 (13%) positive. The yield of microscopy positive ITS samples, 9/44 (21%), was higher than microscopy negative samples 3/50 (6%). Given these findings, 16S and ITS are valuable options for culture negative specimens from sterile sites, particularly in the setting of positive microscopy findings. Where microscopy results are negative, the limited sensitivity of 16S and ITS in detecting and identifying an infectious agent needs to be considered. PMID:27366168

  11. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp ( Marsupenaeus japonicus)

    NASA Astrophysics Data System (ADS)

    Liu, Huaide; Liu, Mei; Wang, Baojie; Jiang, Keyong; Jiang, Shan); Sun, Shujuan; Wang, Lei

    2010-07-01

    In this study, the intestinal microbiota of kuruma shrimp ( Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

  12. Development of a real-time PCR assay (SYBR Green I) for rapid identification and quantification of scyphomedusae Aurelia sp.1 planulae

    NASA Astrophysics Data System (ADS)

    Wang, Jianyan; Zhen, Yu; Mi, Tiezhu; Yu, Zhigang; Wang, Guoshan

    2015-07-01

    The complicated life cycle of Aurelia spp., comprising benthic asexually-reproducing polyps and sexually-reproducing medusae, makes it hard for researchers to identify and track them, especially for early stage individuals, such as planulae. To solve this problem, we developed a real-time PCR assay (SYBR Green I) to identify planulae in both cultured and natural seawater samples. Species-specific primers targeting Aurelia sp.1 mitochondrial 16S rDNA (mt 16S rDNA) regions were designed. Using a calibration curve constructed with plasmids containing the Aurelia sp.1 mt 16S rDNA fragment and a standard curve for planulae, the absolute number of mt 16S rDNA copies per planula was determined and from that the total number of planulae per sample was estimated. For the field samples, a 100-fold dilution of the sample DNA combined with a final concentration of 0.2 μg/μL BSA in the PCR reaction mixture was used to remove real-time PCR inhibitors. Samples collected in Jiaozhou Bay from July to September 2012 were subsequently analyzed using this assay. Peak Aurelia sp.1 planula abundance occurred in July 2012 at stations near Hongdao Island and Qingdao offshore; abundances were very low in August and September. The real-time PCR assay (SYBR Green I) developed here negates the need for traditional microscopic identification, which is laborious and time-consuming, and can detect and quantify jellyfish planulae in field plankton samples rapidly and specifically.

  13. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms.

    PubMed Central

    Czajka, J; Bsat, N; Piani, M; Russ, W; Sultana, K; Wiedmann, M; Whitaker, R; Batt, C A

    1993-01-01

    Differences in the 16S rRNA genes (16S rDNA) which can be used to discriminate Listeria monocytogenes from Listeria innocua have been detected. The 16S rDNA were amplified by polymerase chain reaction with a set of oligonucleotide primers which flank a 1.5-kb fragment. Sequence differences were observed in the V2 region of the 16S rDNA both between L. monocytogenes Scott A and L. innocua and between different L. monocytogenes serotypes. Although L. monocytogenes SLCC2371 had the same V2 region sequence as L. innocua, the two species were different within the V9 region at nucleotides 1259 and 1292, in agreement with previous studies (R.-F. Wang, W.-W. Cao, and M.G. Johnson, Appl. Environ. Microbiol. 57:3666-3670, 1991). Intraspecies discrimination of L. monocytogenes strains was achieved by using the patterns generated by random amplified polymorphic DNA primers. Although some distinction can be made within the L. monocytogenes species by their 16S rDNA sequence, a far greater discrimination within species could be made by generating random amplified polymorphic DNA patterns from chromosomal DNA. By using a number of 10-bp primers, unique patterns for each isolate which in all cases examined differentiate between various L. monocytogenes serotypes, even though they may have the same 16S rRNA sequences, could be generated. Images PMID:8439157

  14. Characterization of fecal microbiota from a Salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes.

    PubMed

    Patton, Toni G; Scupham, Alexandra J; Bearson, Shawn M D; Carlson, Steve A

    2009-05-12

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. The objective of the current work was to examine inter-individual diversity of cattle fecal microbiota and determine whether Salmonella shedding status correlated with community richness or evenness parameters. Using a ribosomal gene array-based approach, oligonucleotide fingerprinting of ribosomal genes (OFRG), we analyzed 1440 16S genes from 19 fecal samples obtained from a cattle herd with a history of salmonellosis. Identified bacteria belonged to the phyla Firmicutes (53%), Bacteroidetes (17%), and Proteobacteria (17%). Sequence analysis of 16S rDNA gene clones revealed that Spirochaetes and Verrucomicrobia were also present in the feces. The majority of Firmicutes present in the feces belonged to the order Clostridiales, which was verified via dot blot analysis. beta-Proteobacteria represented 1.5% of the bacterial community as determined by real-time PCR. Statistical analysis of the 16S libraries from the 19 animals indicated very high levels of species richness and evenness, such that individual libraries represented unique populations. Finally, this study did not identify species that prevented Salmonella colonization or resulted from Salmonella colonization.

  15. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis.

    PubMed

    Endo, Akihito; Okada, Sanae

    2005-03-01

    The presence of lactic acid bacteria (LAB) during shochu fermentation was monitored by PCR-denaturing gradient gel electrophoresis (DGGE) and by bacteriological culturing. No LAB were detected from fermented mashes by PCR-DGGE using a universal bacterial PCR primer set. However, PCR-DGGE using a new primer specific for the 16S rDNA of Lactococcus, Streptococcus, Tetragenococcus, Enterococcus, and Vagococcus and two primers specific for the 16S rDNA of Lactobacillus, Pediococcus, Leuconostoc, and Weissella revealed that Enterococcus faecium, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus nagelii, Lactobacillus plantarum, Lactococcus lactis, Leuconostoc citreum, Leuconostoc mesenteroides, and Weissella cibaria inhabited in shochu mashes. It was also found that the LAB community composition during shochu fermentation changed after the main ingredient and water were added during the fermentation process. Therefore, we confirmed that PCR-DGGE using all three primers specific for groups of LAB together was well suited to the study of the LAB diversity in shochu mashes. The results of DGGE profiles were similar to the results of bacteriological culturing. In conclusion, LAB are present during shochu fermentation but not dominant.

  16. [16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory].

    PubMed

    Matsumoto, Takehisa; Sugano, Mitsutoshi

    2013-12-01

    The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. For many years, sequencing of the 16S ribosomal RNA (rRNA) gene has served as an important tool for determining phylogenetic relationships between bacteria. The features of this molecular target that make it a useful phylogenetic tool also make it useful for bacterial detection and identification in the clinical laboratory. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, and can lead to the recognition of novel pathogens and noncultured bacteria. In clinical microbiology, molecular identification based on 16S rDNA sequencing is applied fundamentally to bacteria whose identification by means of other types of techniques is impossible or difficult. However, there are some cases in which 16S rRNA gene sequence analysis can not differentiate closely related bacteria such as Shigella spp. and Escherichia coli at the species level. Thus, it is important to understand the advantages and disadvantages of 16S rRNA gene sequence analysis.

  17. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

    PubMed

    Ward, B B; Martino, D P; Diaz, M C; Joye, S B

    2000-07-01

    Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.

  18. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  19. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  20. Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Yang, Guanpin; Wang, Hualei; Chen, Jixiang; Shi, Xianming; Zou, Guiwei; Wei, Qiwei; Sun, Xiuqin

    2006-04-01

    The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

  1. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  2. Detection of Ehrlichia canis and Anaplasma platys DNA using multiplex PCR.

    PubMed

    Rufino, Claudia Pinheiro; Moraes, Pablo Henrique Gonçalves; Reis, Thais; Campos, Ruan; Aguiar, Délia Cristina Figueira; McCulloch, John Anthony; Meneses, Andre Marcelo Conceição; Gonçalves, Evonnildo Costa

    2013-12-01

    We hereby propose a novel sensitive, specific, and cost-efficient method to detect Ehrlichia canis and Anaplasma platys DNA from canine whole blood samples by multiplex PCR. Blood samples from hemoparasited dogs attending the Veterinary Hospital at the Universidade Federal Rural da Amazônia-UFRA, Belém, Brazil, were collected in tubes containing EDTA. Amplification of E. canis and A. platys 16S rDNA by nested (n) PCR was successfully achieved by using primers specific to the Anaplasmataceae in the first round of PCR, followed by a second round of PCR using E. canis-specific primers in conjunction with A. platys-specific primers. The amplicons obtained were cloned and sequenced, yielding sequences of 478 and 473 bp (including primers) pertaining to regions of the 16S rDNA of E. canis and A. platys, respectively. The protocol we here propose may help to measure the prevalence of canine monocytic ehrlichiosis (CME) and canine cyclic thrompocytopenia, not only in northern Brazil, where there is no data available, but also elsewhere.

  3. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis.

    PubMed

    Schuppler, M; Mertens, F; Schön, G; Göbel, U B

    1995-02-01

    The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

  4. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis.

    PubMed

    Jiang, Xiran; Shao, Ning; Jing, Wenwen; Tao, Shengce; Liu, Sixiu; Sui, Guodong

    2014-05-01

    Rapid identification of clinical pathogens is the initial and essential step for antimicrobial therapy. Herein, we successfully developed a microfluidic device which combines high-throughput continuous-flow PCR and DNA hybridization for the detection of various bacterial pathogens. Universal primers were designed based on the conserved regions of bacterial 16S ribosomal DNA (16S rDNA), and specific probes were designed from a variable region of 16S rDNA within the amplicon sequences. In the chip operation, after the continuous flow PCR was achieved in the first microfluidic chip, the product was directly introduced into a hybridization chip integrated with microarray containing the immobilized DNA probes. The target-probe hybridization was completed within 1h at 55 °C, and fluorescence signals were obtained as the readout. The presented device is simple, versatile and with less sample consumption compared with traditional instruments. It can perform high-throughput bacteria detections continuously in a single assay, which makes it a promising platform for clinical bacteria identifications.

  5. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  6. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  7. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

    PubMed

    Seligmann, Hervé

    2014-11-01

    Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.

  8. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

    PubMed Central

    Vernon, Suzanne D; Shukla, Sanjay K; Conradt, Jennifer; Unger, Elizabeth R; Reeves, William C

    2002-01-01

    Background The association of an infectious agent with chronic fatigue syndrome (CFS) has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA) sequences. Results DNA was isolated from 81 (91%) of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng) and more CFS subjects (6/34, 18%) had no detectable plasma DNA than non-fatigued subjects (2/55, 4%), but these differences were not significant. Bacterial sequences were detected in 23 (26%) of 89. Only 4 (14%) CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32%) of the non-fatigued (P = 0.03). All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present. Conclusions CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects. PMID:12498618

  9. Rapid identification of bacteria from positive blood cultures by terminal restriction fragment length polymorphism profile analysis of the 16S rRNA gene.

    PubMed

    Christensen, Jeffrey E; Stencil, Jennifer A; Reed, Kurt D

    2003-08-01

    Bacteremia results in significant morbidity and mortality, especially among patient populations that are immunocompromised. Broad-spectrum antibiotics are administered to patients suspected to have bloodstream infections that are awaiting diagnosis that depends on blood culture analysis. Significant delays in identification of pathogens can result, primarily due to the dependence on growth-based identification systems. To address these limitations, we took advantage of terminal restriction fragment (TRF) length polymorphisms (T-RFLP) due to 16S ribosomal DNA (rDNA) sequence diversity to rapidly identify bacterial pathogens directly from positive blood culture. TRF profiles for each organism were determined by sizing fragments from restriction digests of PCR products derived from two sets of 16S rDNA-specific fluorescent dye-labeled primers. In addition, we created a TRF profile database (TRFPD) with 5899 predicted TRF profiles from sequence information representing 2860 different bacterial species. TRF profiles were experimentally determined for 69 reference organisms and 32 clinical isolates and then compared against the predicted profiles in the TRFPD. The predictive value of the profiles was found to be accurate to the species level with most organisms tested. In addition, identification of 10 different genera was possible with profiles comprising two or three TRFs. Although it was possible to identify Enterobacteriaceae by using a profile of three TRFs, the similarity of the TRF profiles of these organisms makes differentiation of species less reliable with the current method. The ability to rapidly (i.e., within approximately 8 h) identify bacteria from blood cultures has potential for reducing unnecessary use of broad-spectrum antibiotics and promoting more timely prescription of appropriate antibiotics.

  10. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    PubMed

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  11. TaqMan qPCR for detection and quantification of mitochondrial DNA from toxic pufferfish species.

    PubMed

    Luekasemsuk, Tassanee; Panvisavas, Nathinee; Chaturongakul, Soraya

    2015-08-01

    Outbreaks of pufferfish food poisoning have been reported worldwide, most were from unsuitable food preparation and adulteration. In order to rapidly detect pufferfish adulterant in processed foods, we developed and proposed the use of a TaqMan probe-based quantitative PCR. The designed detection oligos targeted a unique region in 16S rDNA of toxic marine pufferfish in Tetraodontidae Family and gave a positive signal at ≥1.75 pg of genomic DNA. Non-target DNA samples from other fish, chicken, and beef were negative.

  12. MICROBIAL COMMUNITY DYNAMICS BASED ON 16S RDNA PROFILES IN A PACIFIC NORTHWEST ESTUARY AND ITS TRIBUTARIES. (R827639)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Phylogenetic analysis of the kenaf fiber microbial retting community by semiconductor sequencing of 16S rDNA amplicons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kenaf, hemp, and jute have been used for cordage and fiber production since prehistory. To obtain the fibers, harvested plants are soaked in ponds where indigenous microflora digests pectins and other heteropolysaccharides, releasing fibers in a process called retting. Renewed interest in “green” ...

  14. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    PubMed

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).

  15. Ribosomal DNA (rDNA) identification of the culturable bacterial flora on monetary coinage from 17 currencies.

    PubMed

    Xu, Jiru; Moore, John E; Millar, B Cherie

    2005-03-01

    The aim of the investigation reported in this paper was to identify the bacterial microflora on monetary coinage from 17 countries by employment of polymerase chain reaction (PCR) sequenced-based molecular identification of rDNA from bacterial cultures. Silver, bronze, and other alloy coins (approximately 300 g) from 17 currencies were enriched individually by aerobic culturing in tryptone soya broth for 72 hours at 30 degrees C. Next, 20 microL of broth was inoculated onto Columbia blood agar supplemented with 5 percent volume-pervolume (v/v) defibrinated horse blood for 72 hours at 30 degrees C, and resulting colonies were purified by further subculture, as detailed above, for a further 72 hours. All colonies were identified by initial PCR amplification of a partial region of the 16S rDNA gene locus, which was then sequenced, and the sequence was aligned according to the BLASTn algorithm. Twenty-five isolates were obtained from the coinage; of these, 25 (100 percent) were Gram positive, and the most prevalent genus observed was Bacillus (B. megaterium, B. lentus, B. litoralis, B. subtilis, B. circulans and other Bacillus spp.), which accounted for 10 of 25 isolates (40 percent) and was isolated from 10 of 17 countries (58.8 percent). It was followed in prevalence by Staphylococcus spp. (Staph. aureus, Staph. epidermidis, Staph. hominis, Staph. schleiferi), which accounted for 7 of 25 isolates (28 percent) and were isolated from 7 of 17 countries (41.2 percent). Given the organisms identified in this study, it is not believed that monetary coinage presents any particular risk to public health. The authors support the principles of basic hygiene, however, in terms of proper handwashing and the avoidance of handling money when working with food or dressing wounds and skin lesions, In conclusion, the study demonstrated that money from 17 countries was contaminated by environmental Gram-positive flora, in particular Bacillus spp., and that the universal 16S rDNA-PCR

  16. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species.

  17. Direct Detection of 16S rRNA in Soil Extracts by Using Oligonucleotide Microarrays

    PubMed Central

    Small, Jack; Call, Douglas R.; Brockman, Fred J.; Straub, Timothy M.; Chandler, Darrell P.

    2001-01-01

    We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 μg of total RNA, representing approximately 7.5 × 106 Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR. PMID:11571176

  18. Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences.

    PubMed

    Takeuchi, M; Yokota, A

    1994-11-15

    16S rRNA gene (rDNA) studies of the six species of the genus Microbacterium, M. lacticum, M. laevaniformans, M. dextranolyticum, M. imperiale, M. arborescens and M. aurum, were performed and the primary structures were compared with those of 29 representative actinobacteria and related organisms. Phylogenetic analysis indicated that six species of the genus Microbacterium and representative four species of the genus Aureobacterium appear to be phylogenetically coherent as was suggested by Rainey et al., although the peptidoglycan types of these two genera are different (peptidoglycan type B1 or B2). Thus, the phylogenetical analyses revealed that members of actinobacteria with group B-peptidoglycan do not cluster according to their peptidoglycan types, but form compact cluster different from actinobacteria or actinomycetes with group A-peptidoglycan.

  19. Development of an improved PCR-ICT hybrid assay for direct detection of Legionellae and Legionella pneumophila from cooling tower water specimens.

    PubMed

    Horng, Yu-Tze; Soo, Po-Chi; Shen, Bin-Jon; Hung, Yu-Li; Lo, Kai-Yin; Su, Hsun-Pi; Wei, Jun-Rong; Hsieh, Shang-Chen; Hsueh, Po-Ren; Lai, Hsin-Chih

    2006-06-01

    A novelly improved polymerase chian reaction and immunochromatography test (PCR-ICT) hybrid assay comprising traditional multiplex-nested PCR and ICT, (a lateral-flow device) was developed for direct detection of Legionella bacteria from environmental cooling tower samples. The partial 16S rDNA (specific for Legionella spp.) and dnaJ (specific for Legionella pneumophila) genes from Legionella chromosome were first specifically amplified by multiplex-nested PCR, respectively, followed by detection using ICT strip. Reading of results was based on presence or absence of the two test lines on the strips. Presence of test line 1 indicated existence of Legionella spp. specific 16S rDNA and identified Legionella spp. Presence of test line 2 further indicated existence of dnaJ and thus specifically identified L. pneumophila. In contrast, for non-Legionellae bacteria no test line formation was observed. Results of direct detection of Legionella bacteria and L. pneumophila from water tower specimens by this assay showed 100% sensitivity, and 96.6% and 100% specificity, respectively compared with traditional culture, biochemical and serological identification methods. The PCR-ICT hybrid assay does not require sophisticated equipment and was proved to be practically useful in rapid and direct Legionellae detection from environmental water samples.

  20. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis

    PubMed Central

    El Gawhary, Somaia; El-Anany, Mervat; Ali, Doaa; El Gameel, El Qassem

    2016-01-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen. PMID:26494728

  1. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis.

    PubMed

    El Gawhary, Somaia; El-Anany, Mervat; Hassan, Reem; Ali, Doaa; El Gameel, El Qassem

    2016-02-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen.

  2. Flow Cytometric and 16S Sequencing Methodologies for Monitoring the Physiological Status of the Microbiome in Powdered Infant Formula Production

    PubMed Central

    Anvarian, Amir H. P.; Cao, Yu; Srikumar, Shabarinath; Fanning, Séamus; Jordan, Kieran

    2016-01-01

    The aim of this study was to develop appropriate protocols for flow cytometric (FCM) and 16S rDNA sequencing investigation of the microbiome in a powdered infant formula (PIF) production facility. Twenty swabs were collected from each of the three care zones of a PIF production facility and used for preparing composite samples. For FCM studies, the swabs were washed in 200 mL phosphate buffer saline (PBS). The cells were harvested by three-step centrifugation followed by a single stage filtration. Cells were dispersed in fresh PBS and analyzed with a flow cytometer for membrane integrity, metabolic activity, respiratory activity and Gram characteristics of the microbiome using various fluorophores. The samples were also plated on agar plates to determine the number of culturable cells. For 16S rDNA sequencing studies, the cells were harvested by centrifugation only. Genomic DNA was extracted using a chloroform-based method and used for 16S rDNA sequencing studies. Compared to the dry low and high care zones, the wet medium care zone contained a greater number of viable, culturable, and metabolically active cells. Viable but non-culturable cells were also detected in dry-care zones. In total, 243 genera were detected in the facility of which 42 were found in all three care zones. The greatest diversity in the microbiome was observed in low care. The genera present in low, medium and high care were mostly associated with soil, water, and humans, respectively. The most prevalent genera in low, medium and high care were Pseudomonas, Acinetobacter, and Streptococcus, respectively. The integration of FCM and metagenomic data provided further information on the density of different species in the facility. PMID:27446009

  3. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  4. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  5. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  6. Kanamycin-resistant alfalfa has a point mutation in the 16S plastid rRNA.

    PubMed

    Rosellini, D; LaFayette, P R; Barone, P; Veronesi, F; Parrott, W A

    2004-05-01

    Genes conferring resistance to kanamycin are frequently used to obtain transgenic plants as spontaneous resistance to kanamycin is not known to exist in higher plants. Nevertheless, mutations conferring kanamycin resistance have been identified in Chlamydomonas reinhardtii, raising the question as to why kanamycin-resistant mutants have not been found in higher plants. While attempting plastid transformation of alfalfa, we obtained non-transgenic but kanamycin-resistant somatic embryos following 2 months of culture in the presence of 50 mg l(-1) kanamycin. Sequencing of the plastid DNA region corresponding to the decoding site of the 16S rRNA in ten independent resistant events revealed an A to C transversion at position 1357 of the 16S plastid rDNA, the same site at which an A to G conversion confers kanamycin resistance to C. reinhardtii by reducing the ability of the antibiotic to bind to its target site. All plants derived from the resistant embryos through additional cycles of somatic embryogenesis in the absence of kanamycin retained the mutant phenotype, suggesting that the mutation was homoplastomic. Resistant plants produced 85% less biomass than controls; their leaves were chlorotic during early development and over time slowly turned green. The absence of kanamycin- resistant mutants in higher plants might be explained by the requirement for a regeneration system capable of resulting in homoplastomic individuals, or it may be the result of the detrimental effect of the mutation on the phenotype.

  7. Potassium hydroxide-ethylene diamine tetraacetic acid method for the rapid preparation of small-scale PCR template DNA from actinobacteria.

    PubMed

    Sun, Zhibin; Huang, Yan; Wang, Yanzhuo; Zhao, Yuguo; Cui, Zhongli

    2014-01-01

    Genomic DNA extraction from Gram-positive bacteria is a laborious and time-consuming process. A rapid and convenient method was established to extract genomic DNA from a single colony as a PCR template. KOH-EDTA is used as a lysis buffer to disrupt the cell envelope, releasing genomic DNA, and Tris-HCl (pH = 4) is then added to neutralize the lysate. The lysate can be used directly as a template for PCR amplification. 16S rDNA was successfully amplified from Gram-positive bacteria from the genera of Bacillus, Streptomyces, Micromonospora, Nonomuraea, Microbispora, and Staphylococcus. Amplification of the trpB gene indicated that this method could also be applied to the amplification of functional genes. Compared to colony PCR methods without KOH-EDTA, this method is extremely fast and efficient, and it is applicable to high-throughput PCR amplifications.

  8. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction.

    PubMed

    Sagar, Kalpana; Singh, Salam Pradeep; Goutam, Kapil Kumar; Konwar, Bolin Kumar

    2014-02-01

    Extraction of DNA from soil samples using standard methods often results in low yield and poor quality making them unsuitable for community analysis through polymerase chain reaction (PCR) due to the formation of chimeric products with smaller template DNAs and the presence of humic substances. The present study focused on the assessment of five different methods for metagenomic DNA isolation from soil samples on the basis of processing time, purity, DNA yield, suitability for PCR, restriction digestion and mDNA library construction. A simple and rapid alkali lysis based on indirect DNA extraction from soil was developed which could remove 90% of humic substances without shearing the DNA and permits the rapid and efficient isolation of high quality DNA without the requirement of hexadecyltrimethylammonium bromide and phenol cleanup. The size of DNA fragment in the crude extracts was >23 kb and yield 0.5-5 μg/g of soil. mDNA purification using Sephadex G-50 resin yielded high concentration of DNA from soil samples, which has been successfully used for 16S rDNA based amplification of a 1500 bp DNA fragment with 27F and 1492R universal primers followed by restriction digestion and mDNA library construction.

  9. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids.

    PubMed

    Coolen, Marco J L; Abbas, Ben; van Bleijswijk, Judith; Hopmans, Ellen C; Kuypers, Marcel M M; Wakeham, Stuart G; Sinninghe Damsté, Jaap S

    2007-04-01

    Within the upper 400 m at western, central and eastern stations in the world's largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alpha-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 microM including layers where previously anammox bacteria were described. Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared with the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 microM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared with the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.

  10. Expression of I-CreI Endonuclease Generates Deletions Within the rDNA of Drosophila

    PubMed Central

    Paredes, Silvana; Maggert, Keith A.

    2009-01-01

    The rDNA arrays in Drosophila contain the cis-acting nucleolus organizer regions responsible for forming the nucleolus and the genes for the 28S, 18S, and 5.8S/2S RNA components of the ribosomes and so serve a central role in protein synthesis. Mutations or alterations that affect the nucleolus organizer region have pleiotropic effects on genome regulation and development and may play a role in genomewide phenomena such as aging and cancer. We demonstrate a method to create an allelic series of graded deletions in the Drosophila Y-linked rDNA of otherwise isogenic chromosomes, quantify the size of the deletions using real-time PCR, and monitor magnification of the rDNA arrays as their functions are restored. We use this series to define the thresholds of Y-linked rDNA required for sufficient protein translation, as well as establish the rate of Y-linked rDNA magnification in Drosophila. Finally, we show that I-CreI expression can revert rDNA deletion phenotypes, suggesting that double-strand breaks are sufficient to induce rDNA magnification. PMID:19171942

  11. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    USGS Publications Warehouse

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  12. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  13. Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods.

    PubMed

    González-Arenzana, Lucía; López, Rosa; Santamaría, Pilar; López-Alfaro, Isabel

    2013-08-01

    Lactic acid bacteria populations of red wine samples from industrial fermentations, including two different vinification methods were studied. For this investigation, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis was employed to supplement previous results that were obtained by culture-dependent methods. PCR-DGGE was aimed to study two targeted genes, 16S ribosomal DNA (rDNA) and rpoB, and the results were useful to evaluate the microbial populations in wine samples. Moreover, an improvement of a detection limit determined so far for DGGE analysis was obtained with the method described in this study, what made possible to identify lactic acid bacteria populations below 10(1) colony-forming unit/mL. The species Oenococcus oeni was the most frequently detected bacterium, but identifications close to species Oenococcus kitaharae and Lactococcus lactis that are not often found in wine were firstly identified in samples of this research. PCR-DGGE allowed to detect 9 out of 11 lactic acid bacteria species identified in this study (nine by PCR-16S rDNA/DGGE and four by PCR-rpoB/DGGE), while five species were detected using the modified de Man, Rogosa and Sharpe agar. Therefore, the two methods were demonstrated to be complementary. This finding suggests that analysis of the lactic acid bacteria population structure in wine should be carried out using both culture-dependent and culture-independent techniques with more than one primer pair.

  14. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  15. Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR

    PubMed Central

    Dionisi, Hebe M.; Layton, Alice C.; Harms, Gerda; Gregory, Igrid R.; Robinson, Kevin G.; Sayler, Gary S.

    2002-01-01

    Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs. PMID:11772633

  16. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6

    SciTech Connect

    Allison E. Ray; Stephanie A. Connon; Peter P. Sheridan; Jeremy Gilbreath; Malcolm S. Shields; Deborah T. Newby; Yoshiko Fujita; Timothy S. Magnuson

    2010-06-01

    The determination of variation in 16S rRNA gene sequences is perhaps the most common method for assessing microbial community diversity. However, the occurrence of multiple copies of 16S rRNA genes within some organisms can bias estimates of microbial diversity. During phylogenetic characterization of a metal-transforming, fermentative bacterium (strain UFO1) isolated from the Field Research Center (FRC) in Oak Ridge, TN, we detected an apparent 16S rRNA pseudogene. The putative 16S rRNA pseudogene was first detected in clone libraries constructed with 16S rRNA genes amplified from UFO1 genomic DNA. Sequencing revealed two distinct 16S rRNA genes, with one differing from the other by a 100 bp insert near the 5’ end. Ribosomal RNA was extracted from strain UFO1 and analyzed by RT-qPCR with insert and non-insert specific primers; however, only the non-insert 16S rRNA sequence was expressed. Reverse-transcribed rRNA from strain UFO1 was also used to construct a cDNA library. Of 190 clones screened by PCR, none contained the 16S rRNA gene with the 100 bp insert. Examination of GenBank 16S rRNA gene sequences revealed that the same insert sequence was present in other clones, including those from an environmental library constructed from FRC enrichments. These findings demonstrate the existence of widely disparate copies of the 16S rRNA gene in the same species and a putative 16S rRNA pseudogene, which may confound 16S rRNA-based methods for assessments of microbial diversity in environmental samples.

  17. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor

    PubMed Central

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-01-01

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3–V4 and the other targeting the V4–V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results. PMID:28260999

  18. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor.

    PubMed

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-02-28

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3-V4 and the other targeting the V4-V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results.

  19. Real-time PCR detection of Campylobacter spp.: A comparison to classic culturing and enrichment.

    PubMed

    de Boer, P; Rahaoui, H; Leer, R J; Montijn, R C; van der Vossen, J M B M

    2015-10-01

    The major disadvantage of the current gold standard for detection of the food pathogen Campylobacter, i.e. culturing, is the lengthy procedure. In this study we assessed the use of real-time PCR for detection of Campylobacter. To this end, 926 poultry samples, taken from transport containers and broiler caeca in The Netherlands in 2007, were subjected to three different real-time PCR detection methods: one targeting the Campylobacter jejuni hipO gene, one targeting the Campylobacter coli glyA gene, and one generically targeting Campylobacter spp. 16S rDNA sequence. The PCR results from the three different PCR protocols were compared to the work of Nauta et al. (2009) who analyzed the same set of samples collected from 62 broiler flocks by means of enrichment culturing. The results indicate that the generic 16S campylobacter PCR detection is equally reliable but much faster (4 h instead of ≥2 days) than detection by means of culturing. Moreover, PCR detection targeting the hipO and the glyA gene provide the possibility of C. jejuni and C. coli species discrimination. The generic Campylobacter spp. PCR analysis also confirmed the high incidence of Campylobacter spp. in poultry samples (∼90%) and the species specific PCR showed the simultaneous presence of C. jejuni and C. coli in ∼24% of the samples. Furthermore, the results from the three PCR analyses suggested the occurrence of alternative Campylobacter species in almost 10% of the samples. The campylobacter PCR detection methods reported here can replace traditional culturing because of being quicker and more reliable.

  20. EvaGreen real-time PCR protocol for specific 'Candidatus Phytoplasma mali' detection and quantification in insects.

    PubMed

    Monti, Monia; Martini, Marta; Tedeschi, Rosemarie

    2013-01-01

    In this paper the validation and implementation of a Real-time PCR protocol based on ribosomal protein genes has been carried out for sensitive and specific quantification of 'Candidatus (Ca.) Phytoplasma mali' (apple proliferation phytoplasma, APP) in insects. The method combines the use of EvaGreen(®) dye as chemistry detection system and the specific primer pair rpAP15f-mod/rpAP15r3, which amplifies a fragment of 238 bp of the ribosomal protein rplV (rpl22) gene of APP. Primers specificity was demonstrated by running in the same Real-time PCR 'Ca. Phytoplasma mali' samples with phytoplasmas belonging to the same group (16SrX) as 'Ca. Phytoplasma pyri' and 'Ca. Phytoplasma prunorum', and also phytoplasmas from different groups, as 'Ca. Phytoplasma phoenicium' (16SrIX) and Flavescence dorée phytoplasma (16SrV). 'Ca. Phytoplasma mali' titre in insects was quantified using a specific approach, which relates the concentration of the phytoplasma to insect 18S rDNA. Absolute quantification of APP and insect 18S rDNA were calculated using standard curves prepared from serial dilutions of plasmids containing rplV-rpsC and a portion of 18S rDNA genes, respectively. APP titre in insects was expressed as genome units (GU) of phytoplasma per picogram (pg) of individual insect 18S rDNA. 'Ca. Phytoplasma mali' concentration in examined samples (Cacopsylla melanoneura overwintered adults) ranged from 5.94 × 10(2) to 2.51 × 10(4) GU/pg of insect 18S rDNA. Repeatability and reproducibility of the method were also evaluated by calculation of the coefficient of variation (CV%) of GU of phytoplasma and pg of 18S rDNA fragment for both assays. CV less than 14% and 9% (for reproducibility test) and less than 10 and 11% (for repeatability test) were obtained for phytoplasma and insect qPCR assays, respectively. Sensitivity of the method was also evaluated, in comparison with conventional 16S rDNA-based nested-PCR procedure. The method described has been demonstrated reliable

  1. Prevalence of the Rhizobium etli-Like Allele in Genes Coding for 16S rRNA among the Indigenous Rhizobial Populations Found Associated with Wild Beans from the Southern Andes in Argentina

    PubMed Central

    Aguilar, O. Mario; López, María Verónica; Riccillo, Pablo M.; González, Ramón A.; Pagano, Marcela; Grasso, Daniel H.; Pühler, Alfred; Favelukes, Gabriel

    1998-01-01

    A collection of rhizobial isolates from nodules of wild beans, Phaseolus vulgaris var. aborigineus, found growing in virgin lands in 17 geographically separate sites in northwest Argentina was characterized on the basis of host range, growth, hybridization to a nifH probe, analysis of genes coding for 16S rRNA (16S rDNA), DNA fingerprinting, and plasmid profiles. Nodules in field-collected wild bean plants were largely dominated by rhizobia carrying the 16S rDNA allele of Rhizobium etli. A similar prevalence of the R. etli allele was observed among rhizobia trapped from nearby soil. Intragroup diversity of wild bean isolates with either R. etli-like or Rhizobium leguminosarum bv. phaseoli-like alleles was generally found across northwest Argentina. The predominance of the R. etli allele suggests that in this center of origin of P. vulgaris the coevolution of Rhizobium spp. and primitive beans has resulted in this preferential symbiotic association. PMID:9726909

  2. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  3. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid.

    PubMed

    Akutsu, Tomoko; Motani, Hisako; Watanabe, Ken; Iwase, Hirotaro; Sakurada, Koichi

    2012-05-01

    To preliminarily evaluate the applicability of bacterial DNA as a marker for the forensic identification of vaginal fluid, we developed and performed PCR-based detection of 16S ribosomal RNA genes of Lactobacillus spp. dominating the vagina and of bacterial vaginosis-related bacteria from DNA extracted from body fluids and stains. As a result, 16S ribosomal RNA genes of Lactobacillus crispatus, Lactobacillus jensenii and Atopobium vaginae were specifically detected in vaginal fluid and female urine samples. Bacterial genes detected in female urine might have originated from contaminated vaginal fluid. In addition, those of Lactobacillus iners, Lactobacillus gasseri and Gardnerella vaginalis were also detected in non-vaginal body fluids such as semen. Because bacterial genes were successfully amplified in DNA samples extracted by using the general procedure for animal tissues without any optional treatments, DNA samples prepared for the identification of vaginal fluid can also be used for personal identification. In conclusion, 16S ribosomal RNA genes of L. crispatus, L. jensenii and A. vaginae could be effective markers for forensic identification of vaginal fluid.

  4. Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP.

    PubMed

    Liu, HuiJie; Yang, CaiYun; Tian, Yun; Lin, GuangHui; Zheng, TianLing

    2010-11-01

    There are abundant PAH-degrading bacteria in mangrove sediments, and it is very important to screen the high efficiency degraders in order to perform bioremediation of PAH polluted environments. In order to obtain the more highly efficient PAH-degrading bacteria from a mangrove swamp, we first obtained 62 strains of PAH-degrading bacteria using traditional culture methods and based on their morphological characteristics. We then used the modern molecular biological technology of PCR-RFLP, in which the 16S rDNA of these strains were digested by different enzymes. Based on differences in the PCR-RFLP profiles, we obtained five strains of phenanthrene-degrading bacteria, five strains of pyrene-degrading bacteria, four strains of fluoranthene-degrading bacteria, five strains of benzo[a]pyrene-degrading bacteria and two strains of mixed PAH-degrading bacteria (including phenanthrene, pyrene, fluoranthene and benzo[a]pyrene). Finally, a total of 14 different PAH-degrading bacteria were obtained. The 16S rDNA sequences of these strains were aligned with the BLAST program on the NCBI website and it was found that they belonged to the α-proteobacteria and γ-proteobacteria, including four strains, where the similarities were no more than 97% and which were suspected therefore to be new species. This study indicated that PCR-RFLP was a very important method to screen degrading-bacteria, and also a significant molecular biological tool for the rapid classification and accurate identification of many different strains. On the other hand, it also showed that rich bacterial resources existed in mangrove areas, and that exploring and developing the functional microorganism from these mangrove areas would have wide use in the study of bioremediation of contaminated environments in the future.

  5. Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR.

    PubMed

    Priha, Outi; Hallamaa, Katri; Saarela, Maria; Raaska, Laura

    2004-05-01

    The aim of this study was to develop a PCR-based rapid method to detect Bacillus cereus group cells from paper and cardboard. Primers targeting the 16S rDNA and real-time PCR with SYBR green I detection were used in order to be able to also quantify the target. Both autoclaved cardboard samples spiked with B. cereus vegetative cells or spores and naturally contaminated paper and cardboard samples were studied. Results were compared with culturing verified by commercial (API) tests. Several different methods were tested for DNA isolation from the paper and cardboard samples. Two commercial kits intended for soils, the UltraClean soil DNA kit and the FastDNA spin kit for soil, gave the most reproducible results. In spiked samples, the average yield was 50% of added vegetative cells, but spore yield was only about 10%. PCR results from adding vegetative cells correlated with added colony-forming unit (cfu) values ( r=0.93, P <0.001) in the range 100-10,000 cfu g(-1). Three out of nine studied paper and cardboard samples contained B. cereus group bacteria, based both on culturing and real-time PCR. The numbers were 10(2)-10(3) bacteria g(-1); and PCR gave somewhat higher results than culturing. Thus, real-time PCR can be used as a rapid semi-quantitative method to screen paper and cardboard samples for contamination with B. cereus group bacteria.

  6. Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue.

    PubMed

    Kimura, Hiroyuki; Sato, Makoto; Sasayama, Yuichi; Naganuma, Takeshi

    2003-01-01

    Gutless pogonophorans are generally thought to live in symbiosis with methane-oxidizing bacteria (methanotrophs). We identified a 16S ribosomal RNA gene (rDNA) and a ribulose-1,5-bisphosphate carboxlase/oxygenase (RuBisCO, E.C.4.1.1.39) gene that encode the form I large subunit ( cbbL) from symbiont-bearing tissue of the pogonophoran Oligobrachia mashikoi. Phylogenetic analysis of the 16S rDNA sequence suggested that the pogonophoran endosymbiont belonged to the gamma-subdivision of Proteobacteria. The endosymbiont was most closely related to an uncultured bacterium from a hydrocarbon seep, forming a unique clade adjacent to the known methanotrophic 16S rDNA cluster. The RuBisCO gene from the pogonophoran tissue was closely related to those of the chemoautotrophic genera Thiobacillus and Hydrogenovibrio. Presence of the RuBisCO gene suggested a methanotrophic symbiosis because some methanotrophic bacteria are known to be capable of autotrophy via the Calvin cycle. In contrast, particulate and soluble methane monooxygenase genes ( pmoA and mmoX) and the methanol dehydrogenase gene ( mxaF), which are indicators for methanotrophs or methylotrophs, were not detected by repeated trial of polymerase chain reaction. For 16S rRNA and RuBisCO genes, endosymbiotic localizations were confirmed by in situ hybridization. These results support the possibilities that the pogonophoran host has a novel endosymbiont which belongs to the gamma-subdivision of Proteobacteria, and that the endosymbiont has the gene of the autotrophic enzyme RuBisCO.

  7. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    EPA Science Inventory

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  8. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  9. Highly specific and efficient primers for in-house multiplex PCR detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum

    PubMed Central

    2014-01-01

    Background Although sophisticated methodologies are available, the use of endpoint polymerase chain reaction (PCR) to detect 16S rDNA genes remains a good approach for estimating the incidence and prevalence of specific infections and for monitoring infections. Considering the importance of the early diagnosis of sexually transmitted infections (STIs), the development of a sensitive and affordable method for identifying pathogens in clinical samples is needed. Highly specific and efficient primers for a multiplex polymerase chain reaction (m-PCR) system were designed in silico to detect the 16S rDNA genes of four bacteria that cause genital infections, and the PCR method was developed. Methods The Genosensor Probe Designer (GPD) (version 1.0a) software was initially used to design highly specific and efficient primers for in-house m-PCR. Single-locus PCR reactions were performed and standardised, and then primers for each locus in turn were added individually in subsequent amplifications until m-PCR was achieved. Amplicons of the expected size were obtained from each of the four bacterial gene fragments. Finally, the analytical specificity and limits of detection were tested. Results Because they did not amplify any product from non-STI tested species, the primers were specific. The detection limits for the Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum primer sets were 5.12 × 105, 3.9 × 103, 61.19 × 106 and 6.37 × 105 copies of a DNA template, respectively. Conclusions The methodology designed and standardised here could be applied satisfactorily for the simultaneous or individual detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum. This method is at least as efficient as other previously described methods; however, this method is more affordable for low-income countries. PMID:24997675

  10. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    NASA Technical Reports Server (NTRS)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  11. Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt.

    PubMed

    Radax, C; Gruber, C; Stan-Lotter, H

    2001-08-01

    Prokaryotic diversity in Alpine salt sediments was investigated by polymerase chain reaction (PCR) amplification of 16S rRNA genes, sequencing of cloned products, and comparisons with culturable strains. DNA was extracted from the residue following filtration of dissolved Permo-Triassic rock salt. Fifty-four haloarchaeal sequences were obtained, which could be grouped into at least five distinct clusters. Similarity values of three clusters to known 16S rRNA genes were less than 90%-95%, suggesting the presence of uncultured novel taxa; two clusters were 98% and 99% similar to isolates from Permo-Triassic or Miocene salt from England and Poland, and to Halobacterium salinarum, respectively. Some rock salt samples, including drilling cores, yielded no amplifiable DNA and no cells or only a few culturable cells. This result suggested a variable distribution of haloarchaea within different strata, probably consistent with the known geologic heterogeneity of Alpine salt deposits. We recently reported identical culturable Halococcus salifodinae strains in Permo-Triassic salt sediments from England, Germany, and Austria; together with the data presented here, those results suggest one plausible scenario to be an ancient continuous hypersaline ocean (Zechstein sea) populated by haloarchaea, whose descendants are found today in the salt sediments. The novelty of the sequences also suggested avoidance of haloarchaeal contaminants during our isolation of strains, preparation of DNA, and PCR reactions.

  12. Rapid identification of robinsoniella peoriensis using specific 16S rRNA gene PCR primers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robinsoniella peoriensis is a Gram-positive, spore-forming anaerobic bacterium initially isolated and characterized from swine manure and feces. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal tracts. More recently strains of this specie...

  13. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  14. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities

    PubMed Central

    Hanshew, Alissa S.; Mason, Charles J.; Raffa, Kenneth F.; Currie, Cameron R.

    2014-01-01

    Chloroplast sequence contamination in 16S ribosomal RNA gene (16S) analyses can be particularly problematic when sampling microbial communities in plants and folivorous arthropods. We previously encountered high levels of plastid contamination in herbivorous insect samples when we used the predominant 454 pyrosequencing 16S methodologies described in the literature. 799F, a primer previously found to exclude chloroplast sequences, was modified to enhance its efficacy, and we describe, in detail, our methodology throughout amplicon pyrosequencing. Thirteen versions of 799F were assessed for the exclusion of chloroplast sequences from our samples. We found that a shift in the mismatch between 799F and chloroplast 16S resulted in significant reduction of chloroplast reads. Our results also indicate that amplifying sequences from environmental samples in a two-step PCR process, with the addition of the multiplex identifiers and 454 adapters in a second round of PCR, further improved primer specificity. Primers that included 3′ phosphorothioate bonds, which were designed to block primer degradation, did not amplify consistently across samples. The different forward primers do not appear to bias the bacterial communities detected. We provide a methodological framework for reducing chloroplast reads in high-throughput sequencing data sets that can be applied to a number of environmental samples and sequencing techniques. PMID:23968645

  15. Screening, Isolation and Identification of Probiotic Producing Lactobacillus acidophilus Strains EMBS081 & EMBS082 by 16S rRNA Gene Sequencing.

    PubMed

    Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj

    2015-09-01

    16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

  16. Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene.

    PubMed

    Xu, Jia; Zhao, Wei; Zhu, Mengru; Wen, Yuanju; Xie, Tao; He, Xiaoqian; Zhang, Yongfeng; Cao, Suizhong; Niu, Lili; Zhang, Hongping; Zhong, Tao

    2016-01-01

    The aim of this study is to set up a protocol for identification of the adulteration in mutton based on mitochondrial 16S rRNA gene. The multiplex polymerase chain reaction (multi-PCR) assay was carried out to trace the impure DNA in mutton. A universal primer pair yielded an approximate 610 bp fragment in mutton, pork, duck, chicken, horse and cat meats. The amplicons of multi-PCR assay represented the species-specific products, which could be discriminated by the size ranging from 106 bp to 532 bp. Subsequently, the authentication of each fragment was also confirmed by sequencing. Random analyses of adulterants with various meats yielded the identical results to their components, showing the suitability of the multi-PCR assay for tracing of adulterant meats with high-accuracy and precision. This assay was sensitive to detect the species-specific DNA in different proportional mixtures of mutton and duck/pork (9.1%-90.9%). In conclusion, this multi-PCR assay successfully discriminated the double-, triple-, quadruple-, and quintuple-mixtures containing variant counterparts. This method will be particularly useful in the detection of mutton adulteration in processed foods further.

  17. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.

  18. PCR-based assessment of shellfish traceability and sustainability in international Mediterranean seafood markets.

    PubMed

    Galal-Khallaf, Asmaa; Ardura, Alba; Borrell, Yaisel J; Garcia-Vazquez, Eva

    2016-07-01

    Two mitochondrial markers (cytochrome oxidase COI and 16S rDNA) were employed for species identification of commercial shellfish from two Mediterranean countries. New COI Barcodes were generated for six species: Pleoticus robustus, Metapenaeopsis barbata, Parapenaeus fissuroides, Hymenopenaeus debilis, Metapenaeus affinis and Sepia aculeata. Biodiversity of the seafood species analyzed was greater in Egypt, with nine crustacean and two cephalopod species found compared with only three crustaceans and three cephalopods in Spain. In total, 17.2% and 15.2% products were mislabeled in Egypt and Spain, respectively. Population decline is a problem for some of the substitute species. Others were exotic and/or invasive in exporters' regions. This study offers the first comparable study of shellfish traceability in these Mediterranean markets. The PCR-based method used in this study proved to be reliable, effective and, therefore, could be employed for routine seafood analysis.

  19. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A.

    PubMed

    Peng, Xingxing; Zhang, Zaili; Zhao, Ziling; Jia, Xiaoshan

    2012-05-01

    Microorganisms able to rapidly degrade tetrabromobisphenol A (TBBPA) were domesticated in an anaerobic reactor and added to gradually increased concentrations of TBBPA. After 240 days of domestication, the degradation rate reached 96.0% in cultivated batch experiments lasting 20 days. The optimum cultivating temperature and pH were 30°C and 7.0. The bacterial community's composition and diversity in the reactor was studied by comparative analysis with 16S ribosomal DNA clone libraries. Amplified rDNA restriction analysis of 200 clones from the library indicate that the rDNA richness was high (Coverage C 99.5%) and that evenness was not high (Shannon-Weaver index 2.42). Phylogenetic analysis of 63 bacterial sequences from the reactor libraries demonstrated the presence of Betaproteobacteria (33.1%), Gammaproteobacteria (18.7%), Bacteroidetes (13.9%), Firmicutes (11.4%), Chloroflexi (3.6%), Actinobacteria (0.6%), the candidate division TM7 (4.2%) and other unknown, uncultured bacterial groups (14.5%). Comamonas, Achromobacter, Pseudomonas and Flavobacterium were the dominant types.

  20. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    PubMed

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

  1. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Köhrer, Karl; Gougoula, Christina; Sager, Martin

    2014-10-01

    Correct identification of bacteria is crucial for the management of rodent colonies. Some bacteria are difficult to identify phenotypically outside reference laboratories. In this study, we evaluated the utility of 16S ribosomal DNA (rDNA) sequencing as a means of identifying a collection of 30 isolates of rodent origin which are conventionally difficult to identify. Sequence analysis of the first approximate 720 to 880 bp of the 5'- end of 16S rDNA identified 25 isolates (83.33%) with ≥ 99% similarity to a sequence of a type strain, whereas three isolates (10%) displayed a sequence similarity ≥ 97% but <99% to the type strain sequences. These similarity scores were used to define identification to species and genus levels, respectively. Two of the 30 isolates (6.67%) displayed a sequence similarity of ≥ 95 but <97% to the reference strains and were thus allocated to a family. This technique allowed us to document the association of mice with bacteria relevant for the colonies management such as Pasteurellaceae, Bordetella hinzii or Streptococcus danieliae. In addition, human potential pathogens such as Acinetobacter spp., Ochrobactrum anthropi and Paracoccus yeei or others not yet reported in mouse bacterial species such as Leucobacter chironomi, Neisseria perflava and Pantoea dispersa were observed. In conclusion, the sequence analysis of 16S rDNA proved to be a useful diagnostic tool, with higher performance characteristics than the classical phenotypic methods, for identification of laboratory animal bacteria. For the first time this method allowed us to document the association of certain bacterial species with the laboratory mouse.

  2. Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment

    PubMed Central

    2013-01-01

    Background Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results. The slightly higher variability of the hsp60 gene sequences with respect to the 16S rRNA sequences offers better opportunities to design or develop molecular assays, allowing identification and differentiation of closely related species. hsp60 can be considered an excellent additional marker for inferring the taxonomy of the members of Bifidobacterium genus. Results This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. Conclusions The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis. PMID:23815602

  3. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library.

    PubMed

    Rastogi, Gurdeep; Osman, Shariff; Vaishampayan, Parag A; Andersen, Gary L; Stetler, Larry D; Sani, Rajesh K

    2010-01-01

    Microbial diversity was characterized in mining-impacted soils collected from two abandoned uranium mine sites, the Edgemont and the North Cave Hills, South Dakota, using a high-density 16S microarray (PhyloChip) and clone libraries. Characterization of the elemental compositions of soils by X-ray fluorescence spectroscopy revealed higher metal contamination including uranium at the Edgemont than at the North Cave Hills mine site. Microarray data demonstrated extensive phylogenetic diversity in soils and confirmed nearly all clone-detected taxonomic levels. Additionally, the microarray exhibited greater diversity than clone libraries at each taxonomic level at both the mine sites. Interestingly, the PhyloChip detected the largest number of taxa in Proteobacteria phylum for both the mine sites. However, clone libraries detected Acidobacteria and Bacteroidetes as the most numerically abundant phyla in the Edgemont and North Cave Hills mine sites, respectively. Several 16S rDNA signatures found in both the microarrays and clone libraries displayed sequence similarities with yet-uncultured bacteria representing a hitherto unidentified diversity. Results from this study demonstrated that highly diverse microbial populations were present in these uranium mine sites. Diversity indices indicated that microbial communities at the North Cave Hills mine site were much more diverse than those at the Edgemont mine site.

  4. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  5. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    USGS Publications Warehouse

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  6. In planta distribution of 'Candidatus Liberibacter asiaticus' as revealed by polymerase chain reaction (PCR) and real-time PCR.

    PubMed

    Tatineni, Satyanarayana; Sagaram, Uma Shankar; Gowda, Siddarame; Robertson, Cecile J; Dawson, William O; Iwanami, Toru; Wang, Nian

    2008-05-01

    Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic alpha-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of 'Candidatus Liberibacter asiaticus,' respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that 'Ca. Liberibacter asiaticus' was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/mug of total DNA in different tissues. A relatively high concentration of 'Ca. Liberibacter asiaticus' was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that 'Ca. Liberibacter asiaticus' was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.

  7. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences.

    PubMed

    Allsopp, M; Visser, E S; du Plessis, J L; Vogel, S W; Allsopp, B A

    1997-08-01

    Cowdria ruminantium is a rickettsial parasite which causes heartwater, a economically important disease of domestic and wild ruminants in tropical and subtropical Africa and parts of the Caribbean. Because existing diagnostic methods are unreliable, we investigated the small-subunit ribosomal RNA (srRNA) gene from heartwater-infected material to characterise the organisms present and to develop specific oligonucleotide probes for polymerase chain reaction (PCR) based diagnosis. DNA was obtained from ticks and ruminants from heartwater-free and heartwater-endemic areas from Cowdria in tissue culture. PCR was carried out using primers designed to amplify only rickettsial srRNA genes, the target region being the highly variable V1 loop. Amplicons were cloned and sequenced; 51% were C. ruminantium sequences corresponding to four genotypes, two of which were identical to previously reported C. ruminantium sequences while the other two were new. The four different Cowdria genotypes can be correlated with different phenotypes. Tissue-culture samples yielded only Cowdria genotype sequences, but an extraordinary heterogeneity of 16S sequences was obtained from field samples. In addition to Cowdria genotypes we found sequences from previously unknown Ehrlichia spp., sequences showing homology to other Rickettsiales and a variety of Pseudomonadaceae. One Ehrlichia sequence was phylogenetically closely related to Ehrlichia platys (Group II Ehrlichia) and one to Ehrlichia canis (Group III Ehrlichia). This latter sequence was from an isolate (Germishuys) made from a naturally infected sheep which, from brain smear examination and pathology, appeared to be suffering from heartwater; nevertheless no Cowdria genotype sequences were found in this isolate. In addition no Cowdria sequences were obtained from uninfected ticks. Complete 16S rRNA gene sequences were determined for two C. ruminantium genotypes and for two previously uncharacterised heartwater-associated Ehrlichia spp

  8. FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS

    EPA Science Inventory

    Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...

  9. Development of a PCR technique specific for Demodex injai in biological specimens.

    PubMed

    Sastre, N; Ravera, I; Ferreira, D; Altet, L; Sánchez, A; Bardagí, M; Francino, O; Ferrer, L

    2013-09-01

    The identification of Demodex injai as a second Demodex species of dog opened new questions and challenges in the understanding on the Demodex-host relationships. In this paper, we describe the development of a conventional PCR technique based on published genome sequences of D. injai from GenBank that specifically detects DNA from D. injai. This technique amplifies a 238-bp fragment corresponding to a region of the mitochondrial 16S rDNA of D. injai. The PCR was positive in DNA samples obtained from mites identified morphologically as D. injai, which served as positive controls, as well as in samples from three cases of demodicosis associated with proliferation of mites identified as D. injai. Furthermore, the PCR was positive in 2 out of 19 healthy dogs. Samples of Demodex canis and Demodex folliculorum were consistently negative. Skin samples from seven dogs with generalized demodicosis caused by D. canis were all negative in the D. injai-specific PCR, demonstrating that in generalized canine demodicosis, mite proliferation is species-specific. This technique can be a useful tool in the diagnosis and in epidemiologic and pathogenic studies.

  10. Analysis of the bacterial diversity existing on animal hide and wool: development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates.

    PubMed

    Chen, Yu; Gao, Hongwei; Zhang, Yanming; Deng, Mingjun; Wu, Zhenxing; Zhu, Laihua; Duan, Qing; Xu, Biao; Liang, Chengzhu; Yue, Zhiqin; Xiao, Xizhi

    2012-01-01

    Twenty-one bacterial strains were isolated from imported cattle hide and rabbit wool using two types of media, nutrient broth, and nutrient broth with serum. The bacteria identified were Brevibacillus laterosporus, Leclercia adecarboxylata, Peptococcus niger, Bacillus circulans, Raoultella ornithinolytica, Bacillus subtilis, Bacillus cereus, Bacillus thermobacillus, Bacillus choshinensis, Bacillus sphaericus, Acinetobacter haemolyticus, Sphingomonas paucimobilis, Bacillus thuringiensis, Staphylococcus intermedius, Mycobacteria, Moraxella, Klebsiella pneumoniae, Ralstonia pickettii, Staphylococcus chromogenes, Comamonas testosteroni, and Cupriavidus pauculus. The 16s rDNA gene of each bacterium was amplified using the universal primers 27f and 1492r. The amplicons were digested with AvaI, BamHI, BgII, DraI, EcoRI, EcoRV, HindIII, HinfI, HpaI, PstI, SmaI, TaqII, XbaI, XmaI, AluI, XhoI, and PvuI individually. A specific fingerprint from the PCR-restriction fragment length polymorphism method based on 16s rDNA was obtained for each bacterium. The results showed that the method developed was useful not only for bacterial identification but also for the etiological investigation of pathogens in imported animal hair and wool.

  11. Differentiation of Micromonospora Isolates from a Coastal Sediment in Wales on the Basis of Fourier Transform Infrared Spectroscopy, 16S rRNA Sequence Analysis, and the Amplified Fragment Length Polymorphism Technique

    PubMed Central

    Zhao, Hongjuan; Kassama, Yankuba; Young, Michael; Kell, Douglas B.; Goodacre, Royston

    2004-01-01

    A number of actinomycetes isolates were recovered from coastal sediments in Aberystwyth (Wales, United Kingdom) with standard isolation techniques. Most of them were putatively assigned to the genera Streptomyces and Micromonospora on the basis of their morphological characteristics, and there appeared to be no difference whether the isolation media contained distilled water or seawater. A group of 20 Micromonospora isolates was selected to undergo further polyphasic taxonomic investigation. Three approaches were used to analyze the diversity of these isolates, 16S rDNA sequencing, fluorescent amplified fragment length polymorphism (AFLP), and Fourier transform infrared spectroscopy (FT-IR). The 16S rDNA sequence analysis confirmed that all of these isolates should be classified to the genus Micromonospora, and they were analyzed with a group of other Micromonospora 16S rDNA sequences available from the Ribosomal Database Project. The relationships of the 20 isolates were observed after hierarchical clustering, and almost identical clusters were obtained with these three techniques. This has obvious implications for high-throughput screening for novel actinomycetes because FT-IR spectroscopy, which is a rapid and reliable whole-organism fingerprinting method, can be applied as a very useful dereplication tool to indicate which environmental isolates have been cultured previously. PMID:15528526

  12. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  13. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans.

    PubMed Central

    Pérez-González, C E; Eickbush, T H

    2001-01-01

    The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation variants that are generated during the target-primed reverse transcription mechanism used by these non-LTR retrotransposons for their integration. A simple PCR assay was designed to reveal the pattern of the 5' variants present in the rDNA loci of individual X chromosomes in a population of Drosophila simulans. Each rDNA locus in this population was found to have a large, unique collection of 5' variants. Each variant was present at low copy number, usually one copy per chromosome, and was seldom distributed to other chromosomes in the population. The failure of these variants to spread to other units in the same rDNA locus suggests a strong recombinational bias against R1 and R2 that results in the individual copies of these elements being rapidly lost from the rDNA locus. This bias suggests a significantly higher frequency of R1 and R2 retrotransposition than we have previously suggested. PMID:11514447

  14. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation

    PubMed Central

    Zhou, Hong; Wang, Yapei; Lv, Qiongying; Zhang, Juan; Wang, Qing; Gao, Fei; Hou, Haoli; Zhang, Hao; Zhang, Wei; Li, Lijia

    2016-01-01

    The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer. PMID:27695092

  15. Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda).

    PubMed

    Orosová, Martina; Ivica, Králová-Hromadová; Eva, Bazsalovicsová; Marta, Spakulová

    2010-09-01

    Karyotype and chromosomal characteristics, i.e. number and location of ribosomal DNA (rDNA) clusters, and sequence variation of the ribosomal internal transcribed spacer 2 (ITS2) were studied in a monozoic (unsegmented) tapeworm, Caryophyllaeides fennica (Caryophyllidea), using conventional and Ag-staining, fluorescent in situ hybridization (FISH) with 18S rDNA probe, and PCR amplification, cloning and sequencing of the complete ribosomal ITS2 spacer. The karyotype of this species was composed of ten pairs of metacentric (m) chromosomes (2n=20). All chromosomes except the pair No. 2 displayed DAPI-positive heterochromatin in centromeric regions. In addition, two distinct interstitial DAPI-positive bands were identified on chromosome pair No. 7. FISH with 18S rDNA probe revealed four clusters of major ribosomal genes situated in the pericentromeric region of the short arms in two pairs of metacentric chromosomes Nos. 8 and 9. Hybridization signals were stronger in the pair No. 8, indicating a higher amount of rDNA repeats at this nucleolar organizer region (NOR). Analysis of 15 ITS2 rDNA sequences (five recombinant clones from each of three individuals) showed 13 structurally different ribotypes, distinguished by 26 nucleotide substitutions and variable numbers and combinations of short repetitive motifs that allowed sorting the sequences into four ITS2 variants. These results contribute to recently published evidence for the intraindividual ribosomal ITS sequence variability in basal tapeworms with multiple rDNA loci and imply that both phenomena may be mutually linked.

  16. Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis

    NASA Astrophysics Data System (ADS)

    Wu, Madeline; Song, Liansheng; Ren, Jianping; Kan, Jianjun; Qian, Pei-Yuan

    2004-10-01

    We have evaluated the feasibility of using the terminal restriction fragment length polymorphism (T-RFLP) pattern of polymerase chain reaction (PCR) amplified 16S rRNA sequences to track the changes of the free-living bacterial community for the Pearl River Estuary surface waters. The suitability of specific PCR primers, PCR bias induced by thermal cycles, and field-sampling volumes were critically evaluated in laboratory tests. We established a workable protocol and obtained TRF patterns that reflected the changes in the bacterial population. The temporal dynamics over a 24 h period were examined at one anchored station, as well as the spatial distribution pattern of the bacterial community at several stations, covering the transects along the river discharge direction and across the river plume. The TRF pattern revealed 9 dominant bacterial groups. Changes in their relative abundance reflecting the changes in the bacterial community composition were documented. Many culturable species were isolated from each field sample and a portion of the 16S rRNA gene for each species was sequenced. The species was identified based on sequence data comparison. In this region, the dominant species belong to the γ-subdivision of proteobacteria and the Bacillus/Clostridium group of Firmicutes. We also detected the wide spread distribution of Acinetobacter spp.; many of these species are known nosocomial pathogen for humans.

  17. High-density universal 16S rRNA microarray analysis revealsbroader diversity than typical clone library when sampling theenvironment

    SciTech Connect

    DeSantis, Todd Z.; Brodie, Eoin L.; Moberg, Jordan P.; Zubieta,Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2006-06-15

    Molecular approaches aimed at detection of a broad-range ofprokaryotes in the environment routinely rely upon classifyingheterogeneous 16S rRNA genes amplified by PCR using primers with broadspecificity. The general method of sampling and categorizing DNA has beento clone then sequence the PCR products. However, the number of clonesrequired to adequately catalogue the majority of taxa in a sample isunwieldy. Alternatively, hybridizing target sequences to a universal 16SrRNA gene microarray may provide a more rapid and comprehensive view ofprokaryotic community composition. This study investigated the breadthand accuracy of a microarray in detecting diverse 16S rRNA gene sequencetypes compared to clone-and-sequencing using three environmental samples:urban aerosol, subsurface soil and subsurface water. PCR productsgenerated from universal 16S rRNA gene-targeted primers were classifiedusing either the clone-and-sequence method or by hybridization to a novelhigh-density microarray of 297,851 probes complementary to 842prokaryotic sub-families. The three clone libraries comprised 1,391high-quality sequences. Approximately 8 percent of the clones could notbe placed into a known sub-family and were considered novel. Themicroarray results confirmed the majority of clone-detected sub-familiesand additionally demonstrated greater amplicon diversity extending intophyla not observed by the cloning method. Sequences matching OTUs withinthe phyla Nitrospira, Planctomycetes, and TM7, which were uniquelydetected by the array, were verified with specific primers and subsequentamplicon sequencing. Sub-family richness detected by the arraycorresponded well with non-parametric richness predictions extrapolatedfrom clone libraries except in the water community where clone-basedrichness predictions were greatly exceeded. It was concluded thatalthough the microarray is unreliable inidentifying novel prokaryotictaxa, it reveals greater diversity in environmental samples thansequencing a

  18. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing.

    PubMed

    Fang, Ruo-si; Dong, Ya-chen; Chen, Feng; Chen, Qi-he

    2015-10-01

    Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry.

  19. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing.

    PubMed

    Zheng, Longyu; Crippen, Tawni L; Singh, Baneshwar; Tarone, Aaron M; Dowd, Scot; Yu, Ziniu; Wood, Thomas K; Tomberlin, Jeffery K

    2013-05-01

    Sustainable methods for managing waste associated with people and animals have been proposed in the past. Black soldier fly, Hermetia illucens (L.), larvae represent one of the more promising methods. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. Prepupae can be used as feedstuff for livestock. However, it is not known if such a method results in the proliferation of potential pathogens. Although some bacterial species have been cultured and identified from black soldier fly, a true appreciation of fly associated bacterial diversity is not known. Such information is needed to understand pathogen colonization on decomposing animal and plant waste in the presence of black soldier fly larvae as well as develop research strategies for maximizing the use of this fly to reduce waste without risking environmental harm. Using 454 sequencing, we surveyed bacterial diversity associated with successive life stages of the black soldier fly reared on plant material. Bacteria diversity classified (99.8%) across all life stages spanned six bacterial phyla with > or = 80% bootstrap support. Bacteroidetes and Proteobacteria were the most dominant phyla associated with the black soldier fly accounting for two-thirds of the fauna identified. Many of these bacteria would go undetected because of their inability to be cultured.

  20. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black soldier fly (BSF), Hermetia illucens (L.), larvae represent a sustainable method for reducing animal and plant wastes. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. The prepupae can be self-harvested and used as feedstuff for livestock and poultry. While som...

  1. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  2. Analysis of 16S rDNA and Metagenomic Sequences Revealed Microbial Community and Host-Specific Sequences of Canadian Geese Feces

    EPA Science Inventory

    There is an increasing concern regarding the public health risks associated with waterfowl fecal pollution as a result of the increase in geese populations (Branta canadensis) in or near U.S. and Canadian recreational waters. Currently, there are no methods that can be used to de...

  3. Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR.

    PubMed Central

    Tas, E; Leinonen, P; Saano, A; Räsänen, L A; Kaijalainen, S; Piippola, S; Hakola, S; Lindström, K

    1996-01-01

    Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria. PMID:8593053

  4. Contraception for the under 16s: better safe than sorry.

    PubMed

    Cook, A

    1981-09-16

    acceptible if the couple was engaged, and 5.4% were totally against it, 9) 62% felt abortion was the right of every woman and 31.1% felt it was acceptible if the physical or mental well being of the mother was at risk, 10) 40.9% agreed with the British Medical Association policy on teenage contraception which advises doctors to encourage under 16's to tell their parents, but if they refuse, the doctor can still prescribe the pill, 11) 22.7% wanted contraception unconditionally available, 18.2% felt it should be dependent on parental knowledge, and 17% said it should not be available, 12) there was a trend for opinions to become less liberal as age increased, and 13) young girls appear to be less conscientious in using contraception than older women.

  5. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats

    PubMed Central

    Nübel, Ulrich; Garcia-Pichel, Ferran; Kühl, Michael; Muyzer, Gerard

    1999-01-01

    We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied. PMID:9925563

  6. 16S rRNA Gene Sequence-Based Identification of Bacteria in Automatically Incubated Blood Culture Materials from Tropical Sub-Saharan Africa

    PubMed Central

    Schwarz, Norbert Georg; Hahn, Andreas; Boahen, Kennedy; Sarpong, Nimako; Adu-Sarkodie, Yaw; Halbgewachs, Eva; Marks, Florian; von Kalckreuth, Vera; Poppert, Sven; Loderstaedt, Ulrike; May, Jürgen; Hagen, Ralf Matthias

    2015-01-01

    Background The quality of microbiological diagnostic procedures depends on pre-analytic conditions. We compared the results of 16S rRNA gene PCR and sequencing from automatically incubated blood culture materials from tropical Ghana with the results of cultural growth after automated incubation. Methods Real-time 16S rRNA gene PCR and subsequent sequencing were applied to 1500 retained blood culture samples of Ghanaian patients admitted to a hospital with an unknown febrile illness after enrichment by automated culture. Results Out of all 1500 samples, 191 were culture-positive and 98 isolates were considered etiologically relevant. Out of the 191 culture-positive samples, 16S rRNA gene PCR and sequencing led to concordant results in 65 cases at species level and an additional 62 cases at genus level. PCR was positive in further 360 out of 1309 culture-negative samples, sequencing results of which suggested etiologically relevant pathogen detections in 62 instances, detections of uncertain relevance in 50 instances, and DNA contamination due to sample preparation in 248 instances. In two instances, PCR failed to detect contaminants from the skin flora that were culturally detectable. Pre-analytical errors caused many Enterobacteriaceae to be missed by culture. Conclusions Potentially correctable pre-analytical conditions and not the fastidious nature of the bacteria caused most of the discrepancies. Although 16S rRNA gene PCR and sequencing in addition to culture led to an increase in detections of presumably etiologically relevant blood culture pathogens, the application of this procedure to samples from the tropics was hampered by a high contamination rate. Careful interpretation of diagnostic results is required. PMID:26270631

  7. Identification of actinomycete communities in Antarctic soil from Barrientos Island using PCR-denaturing gradient gel electrophoresis.

    PubMed

    Learn-Han, L; Yoke-Kqueen, C; Shiran, M S; Vui-Ling, C M W; Nurul-Syakima, A M; Son, R; Andrade, H M

    2012-02-08

    The diversity of specific bacteria taxa, such as the actinomycetes, has not been reported from the Antarctic island of Barrientos. The diversity of actinomycetes was estimated with two different strategies that use PCR-denaturing gradient gel electrophoresis. First, a PCR was applied, using a group-specific primer that allows selective amplification of actinomycete sequences. Second, a nested-PCR approach was used that allows the estimation of the relative abundance of actinomycetes within the bacterial community. Molecular identification, which was based on 16S rDNA sequence analysis, revealed eight genera of actinomycetes, Actinobacterium, Actinomyces, an uncultured Actinomycete, Streptomyces, Leifsonia, Frankineae, Rhodococcus, and Mycobacterium. The uncultured Actinomyces sp and Rhodococcus sp appear to be the prominent genera of actinomycetes in Barrientos Island soil. PCR-denaturing gradient gel electrophoresis patterns were used to look for correlations between actinomycete abundance and environmental characteristics, such as type of rookery and vegetation. There was a significant positive correlation between type of rookery and abundance of actinomycetes; soil samples collected from active chinstrap penguin rookeries had the highest actinomycete abundance. Vegetation type, such as moss, which could provide a microhabitat for bacteria, did not correlate significantly with actinomycete abundance.

  8. Flow Cytometry-assisted Cloning of Specific Sequence Motifs fromComplex 16S ribosomal RNA Gene Libraries.

    SciTech Connect

    Nielsen, J.L.; Schramm, A.; Bernhard, A.E.; van den Engh, G.J.; Stahl, D.A.

    2004-07-21

    A flow cytometry method was developed for rapid screeningand recovery of cloned DNA containing common sequence motifs. Thisapproach, termed fluorescence-activated cell sorting-assisted cloning,was used to recover sequences affiliated with a unique lineage within theBacteroidetes not abundant in a clone library of environmental 16S rRNAgenes. Retrieval and sequence analysis of phylogenetically informativegenes has become a standard cultivation-independent technique toinvestigate microbial diversity in nature (7, 18). Genes encoding the 16SrRNA, because of the relative ease of their selective amplification, havebeen most frequently employed for general diversity surveys (16).Environmental studies have also focused on specific subpopulationsaffiliated with a phylogenetic group or identified by genes encodingspecific metabolic functions (e.g., ammonia oxidation, sulfaterespiration, and nitrate reduction) (8,15,20). However, specificpopulations may be of low abundance (1,23), or the genes encodingspecific metabolic functions may be insufficiently conserved to providepriming sites for general PCR amplification. Three general approacheshave been used to obtain 16S rRNA sequence information from low-abundancepopulations: screening hundreds to thousands of clones in a general 16SrRNA gene library (21), flow cytometric sorting of a subpopulation ofenvironmentally derived cells labeled by fluorescent in situhybridization (FISH) (27), or selective PCR amplification using primersspecific for the subpopulation (2,23). While the first approach is simplytime-consuming and tedious, the second has been restricted to fairlylarge and strongly fluorescent cells from aquatic samples (5, 27). Thethird approach often generates fragments of only a few hundred bases dueto the limited number of specific priming sites. Partial sequenceinformation often degrades analysis, obscuring or distorting thephylogenetic placement of the new sequences (11, 20). A more robustcharacterization of environ

  9. Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia and Prevotella nigrescens in endodontic lesions detected by culture and by PCR.

    PubMed

    Gomes, B P F A; Jacinto, R C; Pinheiro, E T; Sousa, E L R; Zaia, A A; Ferraz, C C R; Souza-Filho, F J

    2005-08-01

    he aim of this study was to investigate the presence of four black-pigmented bacteria, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia and Prevotella nigrescens, in endodontic infections by culture and polymerase chain reaction (PCR) analyses. Microbial samples were obtained from 50 teeth with untreated necrotic pulps (primary infection) and from 50 teeth with failing endodontic treatment (secondary infection). Microbiological strict anaerobic techniques were used for serial dilution, plating, incubation, and identification. For PCR detection, the samples were analyzed using species-specific primers of 16S rDNA and the downstream intergenic spacer region. Culture and PCR detected the test species in 13/100 and 50/100 of the study teeth, respectively. The organisms were cultured from 11/50 (22%) of primarily infected root canal samples and from 2/50 (4%) of secondary root canal samples. PCR detection identified the target species in 32/50 (64%) and 18/50 (36%) of primary and secondary infections, respectively. P. gingivalis was rarely isolated by culture methods (1%), but was the most frequently identified test species by PCR (38%). Similarly, P. endodontalis was not recovered by culture from any tooth studied, but was detected by PCR in 25% of the sampled teeth. PCR-based identification also showed higher detection rates of P. intermedia (33%) and P. nigrescens (22%) than culture (13%). In conclusion, P. gingivalis, P. endodontalis, P. intermedia, and P. nigrescens were identified more frequently in teeth with necrotic pulp than in teeth with failing endodontic treatment. Also, a higher frequency of black-pigmented species was detected by PCR than by culture.

  10. A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains.

    PubMed

    Smith, J K; Parry, J D; Day, J G; Smith, R J

    1998-10-01

    The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.

  11. Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination.

    PubMed

    Mohammadi, Tamimount; Savelkoul, Paul H M; Pietersz, Ruby N I; Reesink, Henk W

    2006-11-01

    Although there have been major improvements over the past few decades in detection methods for blood-borne infectious agents, platelet concentrates are still responsible for most cases of transfusion-transmitted bacterial infections. To date, real-time PCR is an indispensable tool in diagnostic laboratories to detect pathogens in a variety of biological samples. In this article, the applications of this powerful technique in the screening of platelet concentrates for bacterial contamination are discussed. Next to pathogen-specific (real-time) PCR assays, particular attention is directed to the recently developed 16S rDNA real-time PCR. This assay has been proven as a convenient way to detect bacterial contamination of platelet concentrates. The assay is sensitive and enables rapid detection of low initial numbers of bacteria in platelet concentrates. The short turnaround time of this assay allows high-throughput screening and reduction of the risk of transfusion of bacterially contaminated units. As with every method, real-time PCR has its advantages and disadvantages. These and especially limitations inherent to generation of false-positive or -negative results are emphasized. The universal nature of detection of the assay may be suitable for generalized bacterial screening of other blood components, such as red blood cells and plasma. Therefore, it is necessary to adapt and optimize detection in red blood cells and plasma with real-time PCR. Further sophistication, miniaturization and standardization of extraction and amplification methods should improve the total performance and robustness of the assay. Hence, real-time PCR is an attractive method in development as a more rapid screening test than currently used culture methods to detect bacterial contamination in blood components.

  12. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  13. Primer and platform effects on 16S rRNA tag sequencing

    DOE PAGES

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; ...

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  14. Primer and platform effects on 16S rRNA tag sequencing

    SciTech Connect

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.

  15. Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp.

    PubMed

    Fernández-No, I C; Böhme, K; Caamaño-Antelo, S; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    The main goal of this work was the identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp. that may be useful for typing purposes. These species include, among others, Bacillus cereus, an important pathogenic species involved in food poisoning, and Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus, which are causative agents of food spoilage described as responsible for foodborne disease outbreaks. With this purpose in mind, 52 Bacillus strains isolated from culture collections and fresh and processed food were considered. SNP type "Y" at sites 212 and 476 appeared in the majority of B. licheniformis studied strains. SNP type "R" at site 278 was detected in many strains of the B. subtilis/Bacillus amyloliquefaciens group, while polymorphism "Y" at site 173 was characteristic of the majority of strains of B. cereus/Bacillus thuringiensis group. The analysis of SNPs provided more intra-specific information than phylogenetic analysis in the cases of B. cereus and B. subtilis. Moreover, this study describes novel SNPs that should be considered when designing 16S rRNA-based primers and probes for multiplex-PCR, Real-Time PCR and microarray systems for foodborne Bacillus spp.

  16. Collagenase production and hemolytic activity related to 16S rRNA variability among Parvimonas micra oral isolates.

    PubMed

    Ota-Tsuzuki, Claudia; Alves Mayer, Marcia Pinto

    2010-02-01

    Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micra were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBMO583-like) while cluster C2 harbored two genotypes (ATCC33270-like and ICBMO36). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis.

  17. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay.

    PubMed

    Cai, Rui; Wang, Zhouli; Yuan, Yahong; Liu, Bin; Wang, Ling; Yue, Tianli

    2015-01-01

    An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice.

  18. A multiplex nested PCR assay for simultaneous detection of Corchorus golden mosaic virus and a phytoplasma in white jute (Corchorus capsularis L.).

    PubMed

    Biswas, C; Dey, P; Satpathy, S

    2013-05-01

    A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V-C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA-A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2 , Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low-cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V-C.

  19. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay

    PubMed Central

    Yuan, Yahong; Liu, Bin; Wang, Ling; Yue, Tianli

    2015-01-01

    An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice. PMID:26488469

  20. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  1. Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments.

    PubMed

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.

  2. Real-time PCR and PCR-tandem Mass Spectrometry for Biodetection

    DTIC Science & Technology

    2005-10-01

    Real - time PCR and PCR- tandem mass spectrometry for biodetection Alvin Fox, University of South Carolina, School of Medicine Report Documentation...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR and PCRtandem mass spectrometry for biodetection 5a. CONTRACT NUMBER 5b...interspace region Bacillus subtilis W23 standard Blank Barn dust House dust Cycle Real - time PCR (16s rRNA) - environmental samples Real - time

  3. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    SciTech Connect

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in host

  4. Description of an Unusual Neisseria meningitidis Isolate Containing and Expressing Neisseria gonorrhoeae-Specific 16S rRNA Gene Sequences

    PubMed Central

    Skvoretz, Rhonda; Montgomery-Fullerton, Megan; Jonas, Vivian; Brentano, Steve

    2013-01-01

    An apparently rare Neisseria meningitidis isolate containing one copy of a Neisseria gonorrhoeae 16S rRNA gene is described herein. This isolate was identified as N. meningitidis by biochemical identification methods but generated a positive signal with Gen-Probe Aptima assays for the detection of Neisseria gonorrhoeae. Direct 16S rRNA gene sequencing of the purified isolate revealed mixed bases in signature regions that allow for discrimination between N. meningitidis and N. gonorrhoeae. The mixed bases were resolved by sequencing individually PCR-amplified single copies of the genomic 16S rRNA gene. A total of 121 discrete sequences were obtained; 92 (76%) were N. meningitidis sequences, and 29 (24%) were N. gonorrhoeae sequences. Based on the ratio of species-specific sequences, the N. meningitidis strain seems to have replaced one of its four intrinsic 16S rRNA genes with the gonococcal gene. Fluorescence in situ hybridization (FISH) probes specific for meningococcal and gonococcal rRNA were used to demonstrate the expression of the rRNA genes. Interestingly, the clinical isolate described here expresses both N. meningitidis and N. gonorrhoeae 16S rRNA genes, as shown by positive FISH signals with both probes. This explains why the probes for N. gonorrhoeae in the Gen-Probe Aptima assays cross-react with this N. meningitidis isolate. The N. meningitidis isolate described must have obtained N. gonorrhoeae-specific DNA through interspecies recombination. PMID:23863567

  5. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  6. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes

    PubMed Central

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2017-01-01

    Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5’ end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and

  7. Sequencing of variable regions of the 16S rRNA gene for identification of lactic acid bacteria isolated from the intestinal microbiota of healthy salmonids.

    PubMed

    Balcázar, José Luis; de Blas, Ignacio; Ruiz-Zarzuela, Imanol; Vendrell, Daniel; Gironés, Olivia; Muzquiz, José Luis

    2007-03-01

    The aim of this study was to identify lactic acid bacteria (LAB) using polymerase chain reaction (PCR) amplification of variable regions of the 16S rRNA gene. Thirteen LAB strains were isolated from the intestinal microbiota of healthy salmonids. A approximately 500-bp region of the highly conserved 16S rRNA gene was PCR-amplified and following this, a portion of the amplicon (272-bp) including the V1 and V2 variable regions was sequenced. The sequence containing both the V1 and V2 region provided strong evidence for the identification of LAB. The LAB strains were identified as Carnobacterium maltaromaticum, Lactobacillus curvatus, Lactobacillus sakei, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, and Leuconostoc mesenteroides. The method described was found to be a very simple, rapid, specific, and low-cost tool for the identification of unknown strains of LAB.

  8. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    PubMed Central

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  9. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  10. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  11. Comparative 16S rRNA Analysis of Lake Bacterioplankton Reveals Globally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria

    PubMed Central

    Glöckner, Frank Oliver; Zaichikov, Evgeny; Belkova, Natalia; Denissova, Ludmilla; Pernthaler, Jakob; Pernthaler, Annelie; Amann, Rudolf

    2000-01-01

    In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the α, four were affiliated with the β, and one was affiliated with the γ subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 × 105 cells ml−1 in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems. PMID:11055963

  12. Phylogenetic Analysis of Geographically Diverse Radopholus similis via rDNA Sequence Reveals a Monomorphic Motif.

    PubMed

    Kaplan, D T; Thomas, W K; Frisse, L M; Sarah, J L; Stanton, J M; Speijer, P R; Marin, D H; Opperman, C H

    2000-06-01

    The nucleic acid sequences of rDNA ITS1 and the rDNA D2/D3 expansion segment were compared for 57 burrowing nematode isolates collected from Australia, Cameroon, Central America, Cuba, Dominican Republic, Florida, Guadeloupe, Hawaii, Nigeria, Honduras, Indonesia, Ivory Coast, Puerto Rico, South Africa, and Uganda. Of the 57 isolates, 55 were morphologically similar to Radopholus similis and seven were citrus-parasitic. The nucleic acid sequences for PCR-amplified ITS1 and for the D2/D3 expansion segment of the 28S rDNA gene were each identical for all putative R. similis. Sequence divergence for both the ITS1 and the D2/D3 was concordant with morphological differences that distinguish R. similis from other burrowing nematode species. This result substantiates previous observations that the R. similis genome is highly conserved across geographic regions. Autapomorphies that would delimit phylogenetic lineages of non-citrus-parasitic R. similis from those that parasitize citrus were not observed. The data presented herein support the concept that R. similis is comprised of two pathotypes-one that parasitizes citrus and one that does not.

  13. Detection of two Bartonella tamiae-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers.

    PubMed

    Billeter, Sarah A; Miller, Melissa K; Breitschwerdt, Edward B; Levy, Michael G

    2008-01-01

    Four hundred and sixty-six questing Amblyomma americanum (L.) (Acari: Ixodidae) from Carolina County, VA, and 98 questing A. americanum from Chatham County, NC, were screened by polymerase chain reaction (PCR) for the Bartonella 16S-23S intergenic spacer region. Two amplicons, approximately 270-280 bp, were detected in two ticks from Virginia. Based upon PCR and sequencing, an adult male and adult female tick harbored DNA sequences closely related to Bartonella tamiae (DQ395180). Bartonella DNA was not detected in A. americanum from North Carolina. Potential transmission of Bartonella spp. by A. americanum should be the focus of future experimental studies.

  14. Using DGGE and 16S rRNA Gene Sequence Analysis to Evaluate Changes in Oral Bacterial Composition

    PubMed Central

    CHEN, Zhou; TRIVEDI, Harsh M.; CHHUN, Nok; BARNES, Virginia M.; SAXENA, Deepak; XU, Tao; LI, Yihong

    2015-01-01

    Objective To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Methods Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan/2.0% PVM/MA copolymer/0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles of PCR-amplified and 16S rRNA gene segments sequence analysis. Results Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified six phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. Conclusion The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan/2.0% PVM/MA copolymer/0.243% sodium fluoride may promote a healthier composition within the oral bacterial community. PMID:22319750

  15. Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene.

    PubMed

    Sasaki, Yoshimasa; Kojima, Akemi; Aoki, Hiroshi; Ogikubo, Yasuaki; Takikawa, Noriyasu; Tamura, Yutaka

    2002-05-01

    The flagellin genes (fliC) of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum were analysed by PCR amplification and DNA sequencing. The five Clostridium species have at least two copies of the flagellin gene (fliC) arranged in tandem on the chromosome. The deduced N- and C-terminal aminoacid sequences of the flagellin proteins (FliCs) of these clostridia are well conserved but their central region aminoacid sequences are not. Phylogenic analysis based on the N-terminal aminoacid sequence of the FliC protein revealed that these clostridia, which belong to Clostridium 16S rDNA phylogenic cluster I (), are more closely related to Bacillus subtilis than to Clostridium difficile, which belongs to the cluster XI. Moreover, a multiplex polymerase reaction (PCR) system based on the fliC sequence was developed to rapidly identify C. chauvoei, C. haemolyticum, C. novyi types A and B, and C. septicum. PCR of each Clostridium amplified a species-specific band. The multiplex PCR system may be useful for rapid identification of pathogenic clostridia.

  16. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.

  17. Characterization of Mycobacterium leprae Genotypes in China—Identification of a New Polymorphism C251T in the 16S rRNA Gene

    PubMed Central

    You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China. PMID:26196543

  18. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance.

    PubMed

    Kembel, Steven W; Wu, Martin; Eisen, Jonathan A; Green, Jessica L

    2012-01-01

    The abundance of different SSU rRNA ("16S") gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly - from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data.

  19. 16S rRNA gene phylogenesis of culturable predominant bacteria from diseased Apostichopus japonicus (Holothuroidea, Echinodermata)

    NASA Astrophysics Data System (ADS)

    Ma, Haiyan; Jiang, Guoliang; Wu, Zhiqiang; Wang, Xin

    2009-06-01

    Cultured Apostichopus japonicus in China suffers from a kind of skin ulceration disease that has caused severe economic loss in recent years. The disease, pathogens of which are supposed to be bacteria by most researchers, is highly infectious and can often cause all individuals in the same culture pool to die in a very short time. The 16S rRNA gene phylogenesis of the culturable bacteria from the lesions of diseased individuals was conducted to study the biodiversity of the bacterial communities in the lesions and to identify probable pathogen(s) associated with this kind of disease. S. japonica samples were selected from a hatchery located in the eastern part of Qingdao, China. Bacterial universal primers GM5F and DS907R were used to amplify the 16S rRNA gene of bacteria colonies, and touchdown PCR was performed to amplify the target sequences. The results suggest that γ- proteobacteria (Alteromonadales and Vibrionales) of CFB group, many strains of which have been also determined as pathogens in other marine species, are the predominant bacterial genera of the diseased Apostichopus japonicus individuals.

  20. 16S rRNA gene probe quantitates residual host cell DNA in pharmaceutical-grade plasmid DNA.

    PubMed

    Wang, Kai-Yu; Guo, Ying-Jun; Sun, Shu-Han; Shi, Ke; Zhang, Shu; Wang, Kai-Hui; Yi-Zhang; Chen, Zu-Huan

    2006-03-24

    The development and widespread use of DNA-based vaccination against infectious pathogens have been a great triumph of medical science. Quality control of DNA vaccines as biopharmaceutical productions is a problem to solve. Residual genomic DNA of engineering bacteria has been identified as a potential risk factor, so whose level must be controlled under the regulatory standards. We report a dot-blot hybridization method to detect residual host cell DNA in purified DNA vaccines. The assay utilizes PCR amplified and digoxigenin-labeled Escherichia coli 16S rRNA gene as probe. The sensitivity of the dot-blot hybridization assay with E. coli 16S rRNA gene probe was evaluated in comparison with single copy UidR gene probe. The optimized dot-blot hybridization assay had both low background and a suitable sensitivity, detecting 10 pg of residual E. coli DNA. The method is suitable in the routine use of measuring the levels of residual E. coli DNA in the pharmaceutical-grade DNA vaccine.

  1. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  2. Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences.

    PubMed

    Kuhnert, P; Capaul, S E; Nicolet, J; Frey, J

    1996-10-01

    The sequences of the 16S rRNA genes (rrs genes) of Clostridium chauvoei, the causative agent of blackleg in cattle, and the phenotypically related organism Clostridium septicum were determined. After amplification of 1,507-bp PCR fragments from the corresponding rrs genes, the sequences were determined in a single round of sequencing by using conserved region primers. A sequence similarity analysis of the sequences revealed the close phylogenetic relationship of C. chauvoei and C. septicum in Clostridium cluster I (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994), which includes Clostridium carnis, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. We found that 99.3% of the nucleotides in the genes of C. chauvoei and C. septicum are identical.

  3. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  4. A HIGHLY SELECTIVE PCR PROTOCOL FOR DETECTING 16S RRNA GENES OF THE GENUS PSEUDOMONAS (SENSU STRICTO) IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Pseudomonas species are plant, animal, and human pathogens; exhibit plant pathogen-suppressing properties useful in biological control; or express metabolic versatilities valued in biotechnology and bioremediation. Specific detection of Pseudomonas species in the environment may ...

  5. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp

    EPA Science Inventory

    Chicken feces are vectors of human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a pre...

  6. Diversity of lactic acid bacteria from modified atmosphere packaged sliced cooked meat products at sell-by date assessed by PCR-denaturing gradient gel electrophoresis.

    PubMed

    Audenaert, Kris; D'Haene, Klaas; Messens, Kathy; Ruyssen, Tony; Vandamme, Peter; Huys, Geert

    2010-02-01

    The predominant lactic acid bacteria (LAB) microbiota associated with three types of modified atmosphere packaged (MAP) sliced cooked meat products (i.e. ham, turkey and chicken) was analyzed at sell-by date using a combination of culturing and molecular population fingerprinting. Likewise routine analyses during industrial MAP production, meat samples were plated on the general heterotrophic Plate Count Agar (PCA) and on the LAB-specific de Man, Rogosa, Sharpe (MRS) agar under different temperature and atmosphere conditions. Subsequently, community DNA extracts were prepared from culturable bacterial fractions harvested from both media and used for PCR targeting the V3 hyper-variable region of the 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) of PCR amplicons (PCR-DGGE). Irrespective of aerobic or anaerobic incubation conditions, V3-16S rDNA DGGE fingerprints of culturable fractions from PCA and MRS medium displayed a high level of similarity indicating that LAB constituted the most dominant group in the culturable bacterial community. Comparison of DGGE profiles of fractions grown at 20, 28 or 37 degrees C indicated that part of the culturable community consisted of psychrotrophs. Four DGGE bands were common among cooked ham, turkey and chicken products, suggesting that these represent the microbiota circulating in the plant where all three MAP product types were sliced and packaged. Based on band sequencing and band position analysis using LAB reference strains, these four bands could be assigned to Lactobacillus sakei and/or the closely related Lactobacillus fuchuensis, Lactobacillus curvatus, Carnobacterium divergens and Leuconostoc carnosum. In conclusion, the PCR-DGGE approach described in this study allows to discriminate, identify and monitor core and occasional LAB microbiota of MAP sliced cooked meat products and provides valuable complementary information to the current plating procedures routinely used in industrial plants.

  7. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women

    PubMed Central

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-01-01

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host–microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1–V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy. PMID:26846451

  8. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women.

    PubMed

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-02-05

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host-microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1-V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy.

  9. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife

    PubMed Central

    Razzauti, Maria; Galan, Maxime; Bernard, Maria; Maman, Sarah; Klopp, Christophe; Charbonnel, Nathalie; Vayssier-Taussat, Muriel; Eloit, Marc; Cosson, Jean-François

    2015-01-01

    Background Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. Methodology/Principal Findings We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. Conclusions/Significance We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each

  10. Use of 16S Ribosomal RNA Sequences to Infer Relationships among Archaebacteria.

    DTIC Science & Technology

    1987-04-16

    FIELD GROUP SUB-GROUP Archaebacteria; Eubacteria ; Eukaryotes; 16S Ribosomal RNA; 08 I Phylogeny; rRNA; RNA Sequencing; Molecular Clock; Urkingdoms; r...16S rRNA data were used to infer the relat onships among the archaebacteria, and of the archaebacteria to the eubacteria and eukaryotes. ur programs for...been published (1, 2, 16, 18). The analyses render untenable the suggestions of Lake and colleagues (Lake et al., 1985) that the eubacteria derive from

  11. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    PubMed

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-08-25

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research.

  12. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons

    PubMed Central

    Starke, Ingo C.; Vahjen, Wilfried; Pieper, Robert; Zentek, Jürgen

    2014-01-01

    In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns) and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r) were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2 × 105 sequences were used for analysis after processing for read length (150 bp), minimum sequence occurrence (5), and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis. PMID:25120931

  13. Targeting single-nucleotide polymorphisms in the 16S rRNA gene to detect and differentiate Legionella pneumophila and non-Legionella pneumophila species.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-08-01

    A PCR-based method targeting single-nucleotide polymorphisms (SNPs) in the 16S rRNA gene was developed for differential identification of Legionella pneumophila and non-Legionella pneumophila. Based on the bioinformatics analysis for 176 Legionella 16S rRNA gene fragments of 56 different Legionella species, a set of SNPs, A(628)C(629) was found to be highly specific to L. pneumophila strains. A multiplex assay was designed that was able to distinguish sites with limited sequence heterogeneity between L. pneumophila and non-L. pneumophila in the targeted 16S rRNA gene. The assay amplified a 261-bp amplicon for Legionella spp. and a set of 203- and 97-bp amplicons only specific to L. pneumophila species. Among 49 ATCC strains and 284 Legionella isolates from environmental water and clinical samples, 100 % of L. pneumophila and non-L. pneumophila strains were correctly identified and differentiated by this assay. The assay presents a more rapid, sensitive and alternative method to the currently available PCR-sequencing detection and differentiation method.

  14. First Experience of a Multicenter External Quality Assessment of Molecular 16S rRNA Gene Detection in Bone and Joint Infections

    PubMed Central

    Bémer, Pascale; Valentin, Anne Sophie; Héry-Arnaud, Geneviève; Tandé, Didier; Jolivet-Gougeon, Anne; Vincent, Pascal; Kempf, Marie; Lemarié, Carole; Guinard, Jérôme; Bret, Laurent; Cognée, Anne Sophie; Gibaud, Sophie; Burucoa, Christophe; Corvec, Stéphane

    2014-01-01

    The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI. PMID:25411177

  15. First experience of a multicenter external quality assessment of molecular 16S rRNA gene detection in bone and joint infections.

    PubMed

    Plouzeau, Chloé; Bémer, Pascale; Valentin, Anne Sophie; Héry-Arnaud, Geneviève; Tandé, Didier; Jolivet-Gougeon, Anne; Vincent, Pascal; Kempf, Marie; Lemarié, Carole; Guinard, Jérôme; Bret, Laurent; Cognée, Anne Sophie; Gibaud, Sophie; Burucoa, Christophe; Corvec, Stéphane

    2015-02-01

    The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI.

  16. Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix.

    PubMed

    Vanysacker, Louise; Denis, Carla; Roels, Joris; Verhaeghe, Kirke; Vankelecom, Ivo F J

    2014-02-01

    Candidatus Microtrhix parvicella is one of the most common filamentous bacteria reported to be involved in bulking and foaming problems in activated sludge plants worldwide. In order to detect and quantify both M. parvicella and Microthrix calida by quantitative PCR (qPCR), primers targeting 16S rDNA genes were designed. The qPCR reaction was optimized by using the TaqMan technology and an internal positive control was included to ensure the absence of PCR inhibitors. A total of 29 samples originating from different wastewater treatment plants were analyzed and the results were compared by using conventional microscopy, fluorescent in situ hybridization and an existing SYBR Green-based assay. Our assay showed a 100% specificity for both M. parvicella and M. calida, a sensitivity of 2.93×10(9) to 29 copy numbers/reaction, an amplification efficiency of 93% and no PCR inhibition. By performing a spiking experiment including different Microthrix concentrations, recovery rates ranging from 65 to 98% were obtained. A positive correlation with the SYBR Green assay (R(2)=0.85) was found and most of the samples were in accordance with the microscopical observation. In comparison with SYBR Green assay, the probe-based TaqMan assay had a much lower detection limit. Compared with microscopy, some samples had a lower or higher enumeration when using qPCR. In conclusion, a qPCR method is forwarded here that could be useful as an early warning tool for fast and reliable detection of Microthrix in for instance sludge bulking events.

  17. Use of PCR-DHPLC with fluorescence detection for the characterization of the bacterial diversity during cassava (Manihot esculenta Crantz) fermentation.

    PubMed

    Kodama, C S; Cuadros-Orellana, S; Bandeira, C H M M; Graças, D A; Santos, A S; Silva, A

    2014-02-28

    Denaturing high-performance liquid chromatography (DHPLC) has been described as a suitable method to study DNA polymorphisms. Here, cassava (Manihot esculenta Crantz) fermentation liquor was examined using DHPLC analysis to characterize the bacterial diversity during the fermentation process. GC-clamped amplicons corresponding to a variable region of the bacterial community 16S rDNA were synthesized using polymerase chain reaction (PCR) and then resolved on a base-composition basis using preparative DHPLC. Eluate fractions were collected at random and used as a source of whole community DNA that could be used to determine the bacterial diversity. As a first approach, GC-clamps were removed from the eluted DNA fragments using PCR to avoid the possible bias these clamps could cause during the construction of clone libraries. As a second approach, a clone library of each eluate sample was constructed, preserving the GC-clamps of the DNA fragments. The first approach generated 132 bacterial rDNA sequences with an average size of 200 bp, 45% of which had similarity to unculturable or non-classified bacteria. The second approach produced 194 sequences identified as Proteobacteria (48%), uncultured or non-classified environmental bacteria (40%) and Firmicutes (12%). We detected a remarkably greater bacterial diversity using the first approach than the second approach. The DHPLC-PCR method allowed for the fast and non-laborious detection of a vast bacterial diversity that was associated with cassava fermentation, and we conclude that it is a promising alternative for the characterization of the overall microbial diversity in complex samples.

  18. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  19. rDNA Loci Evolution in the Genus Glechoma (Lamiaceae)

    PubMed Central

    Jang, Tae-Soo; McCann, Jamie; Parker, John S.; Takayama, Koji; Hong, Suk-Pyo; Schneeweiss, Gerald M.

    2016-01-01

    Glechoma L. (Lamiaceae) is distributed in eastern Asia and Europe. Understanding chromosome evolution in Glechoma has been strongly hampered by its small chromosomes, constant karyotype and polyploidy. Here phylogenetic patterns and chromosomal variation in Glechoma species are considered, using genome sizes, chromosome mapping of 5S and 35S rDNAs by fluorescence in situ hybridisation (FISH), and phylogenetic analyses of internal transcribed spacers (nrITS) of 35S rDNA and 5S rDNA NTS sequences. Species and populations of Glechoma are tetraploid (2n = 36) with base chromosome number of x = 9. Four chromosomes carry pericentric 5S rDNA sites in their short arms in all the species. Two to four of these chromosomes also carry 35S rDNA in subterminal regions of the same arms. Two to four other chromosomes have 35S rDNA sites, all located subterminally within short arms; one individual possessed additional weak pericentric 35S rDNA signals on three other chromosomes. Five types of rDNA locus distribution have been defined on the basis of 35S rDNA variation, but none is species-specific, and most species have more than one type. Glechoma hederacea has four types. Genome size in Glechoma ranges from 0.80 to 0.94 pg (1C), with low levels of intrapopulational variation in all species. Phylogenetic analyses of ITS and NTS sequences distinguish three main clades coinciding with geographical distribution: European (G. hederacea–G. hirsuta), Chinese and Korean (G. longituba), and Japanese (G. grandis). The paper presents the first comparative cytogenetic analyses of Glechoma species including karyotype structure, rDNA location and number, and genome size interpreted in a phylogenetic context. The observed variation suggests that the genus is still in genomic flux. Genome size, but not rDNA loci number and distribution, provides a character for species delimitation which allows better inferences of interspecific relationships to be made, in the absence of well

  20. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  1. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys

    PubMed Central

    Thijs, Sofie; Op De Beeck, Michiel; Beckers, Bram; Truyens, Sascha; Stevens, Vincent; Van Hamme, Jonathan D.; Weyens, Nele; Vangronsveld, Jaco

    2017-01-01

    Bacterial taxonomic community analyses using PCR-amplification of the 16S rRNA gene and high-throughput sequencing has become a cornerstone in microbiology research. To reliably detect the members, or operational taxonomic units (OTUs), that make up bacterial communities, taxonomic surveys rely on the use of the most informative PCR primers to amplify the broad range of phylotypes present in up-to-date reference databases. However, primers specific for the domain Bacteria were often developed some time ago against database versions that are now out of date. Here we evaluated the performance of four bacterial primers for characterizing complex microbial communities in explosives contaminated and non-contaminated forest soil and by in silico evaluation against the current SILVA123 database. Primer pair 341f/785r produced the highest number of bacterial OTUs, phylogenetic richness, Shannon diversity, low non-specificity and most reproducible results, followed by 967f/1391r and 799f/1193r. Primer pair 68f/518r showed overall low coverage and a bias toward Alphaproteobacteria. In silico, primer pair 341f/785r showed the highest coverage of the domain Bacteria (96.1%) with no obvious bias toward the majority of bacterial species. This suggests the high utility of primer pair 341f/785r for soil and plant-associated bacterial microbiome studies.

  2. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

    PubMed Central

    Liu, Zongzhi; DeSantis, Todd Z.; Andersen, Gary L.; Knight, Rob

    2008-01-01

    The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517. PMID:18723574

  3. Extraction of DNA from orange juice, and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR.

    PubMed

    Bai, Jinhe; Baldwin, Elizabeth; Liao, Hui-Ling; Zhao, Wei; Kostenyuk, Igor; Burns, Jacqueline; Irey, Mike

    2013-10-02

    Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium. The current standard to confirm CLas for citrus trees is to take samples from midribs of leaves, which are rich in phloem tissues, and use a quantitative real-time polymerase chain reaction (qPCR) test to detect the 16S rDNA gene of CLas. It is extremely difficult to detect CLas in orange juice because of the low CLas population, high sugar and pectin concentration, low pH, and possible existence of an inhibitor to DNA amplification. The objective of this research was to improve extraction of DNA from orange juice and detection of CLas by qPCR. Homogenization using a sonicator increased DNA yield by 86% in comparison to mortar and pestle extraction. It is difficult to separate DNA from pectin; however, DNA was successfully extracted by treating the juice with pectinase. Application of an elution column successfully removed the unidentified inhibitor to DNA amplification. This work provided a protocol to extract DNA from whole orange juice and detect CLas in HLB-affected fruit.

  4. Hemi-Nested PCR and RFLP Methodologies for Identifying Blood Meals of the Chagas Disease Vector, Triatoma infestans

    PubMed Central

    Roellig, Dawn M.; Gomez-Puerta, Luis A.; Mead, Daniel G.; Pinto, Jesus; Ancca-Juarez, Jenny; Calderon, Maritza; Bern, Caryn; Gilman, Robert H.; Cama, Vitaliano A.

    2013-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted by hematophagous reduviid bugs within the subfamily Triatominae. These vectors take blood meals from a wide range of hosts, and their feeding behaviors have been used to investigate the ecology and epidemiology of T. cruzi. In this study we describe two PCR-based methodologies that amplify a fragment of the 16S mitochondrial rDNA, aimed to improve the identification of blood meal sources for Triatoma infestans: a.- Sequence analyses of two heminested PCRs that allow the identification of mammalian and avian species, and b.- restriction fragment length polymorphism (RFLP) analysis from the mammalian PCR to identify and differentiate multi-host blood meals. Findings from both methodologies indicate that host DNA could be detected and the host species identified in samples from laboratory reared and field collected triatomines. The implications of this study are two-fold. First, these methods can be used in areas where the fauna diversity and feeding behavior of the triatomines are unknown. Secondly, the RFLP method led to the identification of multi-host DNA from T. infestans gut contents, enhancing the information provided by this assay. These tools are important contributions for ecological and epidemiological studies of vector-borne diseases. PMID:24040328

  5. Hemi-nested PCR and RFLP methodologies for identifying blood meals of the Chagas disease vector, Triatoma infestans.

    PubMed

    Roellig, Dawn M; Gomez-Puerta, Luis A; Mead, Daniel G; Pinto, Jesus; Ancca-Juarez, Jenny; Calderon, Maritza; Bern, Caryn; Gilman, Robert H; Cama, Vitaliano A

    2013-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted by hematophagous reduviid bugs within the subfamily Triatominae. These vectors take blood meals from a wide range of hosts, and their feeding behaviors have been used to investigate the ecology and epidemiology of T. cruzi. In this study we describe two PCR-based methodologies that amplify a fragment of the 16S mitochondrial rDNA, aimed to improve the identification of blood meal sources for Triatoma infestans: a.--Sequence analyses of two heminested PCRs that allow the identification of mammalian and avian species, and b.--restriction fragment length polymorphism (RFLP) analysis from the mammalian PCR to identify and differentiate multi-host blood meals. Findings from both methodologies indicate that host DNA could be detected and the host species identified in samples from laboratory reared and field collected triatomines. The implications of this study are two-fold. First, these methods can be used in areas where the fauna diversity and feeding behavior of the triatomines are unknown. Secondly, the RFLP method led to the identification of multi-host DNA from T. infestans gut contents, enhancing the information provided by this assay. These tools are important contributions for ecological and epidemiological studies of vector-borne diseases.

  6. A PCR-based diagnostic assay for the detection of Roseovarius crassostreae in Crassostrea virginica affected by juvenile oyster disease (JOD)

    USGS Publications Warehouse

    Maloy, A.P.; Barber, B.J.; Boettcher, K.J.

    2005-01-01

    We have developed a PCR-assay for the diagnosis of juvenile oyster disease (JOD) based on the detection of Roseovarius crassostreae directly from affected oysters. Species-specific primers are used to amplify the 16S-23S rDNA internal transcribed spacer (ITS) of R. crassostreae, and confirmation of product identity is accomplished by restriction enzyme analysis. No false positives were obtained with either closely related bacterial species or from other DNAs present in oyster samples. The assay has the potential to detect as few as 10 cells of R. crassostreae per oyster when samples are taken from the inner valve surfaces of the animal. Inclusion of material from soft body surfaces is not necessary, and may reduce sensitivity approximately 10-fold. In a JOD-affected population, a positive PCR result was obtained from all oysters from which these bacteria were subsequently cultured. The assay also detected the presence of R. crassostreae in 2 oysters from which no R. crassostreae isolates were recovered. No R. crassostreae was detected by either PCR or bacteriology in oysters from a population that was not exhibiting JOD-signs. This assay is expected to advance regional disease management efforts and provide valuable insights into the disease process and epizootiology of JOD. ?? Inter-Research 2005.

  7. Development of real-time PCR primer and probe sets for detecting degenerated and non-degenerated forms of the butanol-producing bacterium Clostridium acetobutylicum ATCC 824.

    PubMed

    Lee, Sun-Mi; Cho, Min Ok; Um, Youngsoon; Sang, Byoung-In

    2010-05-01

    Degeneration is one of the limiting factors in butanol fermentation, and it must be monitored and prevented for stable butanol production. In Clostridium acetobutylicum ATCC 824, the most well-known butanol-producing microorganism, degeneration is caused by the loss of the pSOL1 plasmid that carries essential genes involved in solvent production. In this study, we designed two specific primer and probe sets for real-time qPCR (RT-qPCR) detection of C. acetobutylicum ATCC 824 (the C. aceto set) and pSOL1-possessing C. acetobutylicum ATCC 824 (the DGS set). Specific primer and probe sets were designed on the basis of the 16S rDNA sequence and pSOL1 sequence. The number of degenerated C. acetobutylicum could be quantified by subtracting the number of C. acetobutylicum ATCC 824 containing pSOL1 from the total number of C. acetobutylicum ATCC 824. The primer and probe sets permitted the specific detection and quantification of degenerated C. acetobutylicum and total butanol-producing C. acetobutylicum by RT-qPCR.

  8. Identification of goose (Anser anser) and mule duck (Anasplatyrhynchos x Cairina moschata) foie gras by multiplex polymerase chain reaction amplification of the 5S RDNA gene.

    PubMed

    Rodríguez, M A; García, T; González, I; Asensio, L; Fernández, A; Lobo, E; Hernández, P E; Martín, R

    2001-06-01

    Polymerase chain reaction (PCR) amplification of the nuclear 5S rDNA gene has been used for the identification of goose and mule duck foie gras. Two species-specific reverse primers were designed and used in a multiplex reaction, together with a forward universal primer, to amplify specific fragments of the 5S rDNA in each species. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose and mule duck foie gras samples. This genetic marker can be useful for detecting fraudulent substitution of the duck liver for the more expensive goose liver.

  9. Multiplex real-time PCR for detection, identification and quantification of 'Candidatus Liberibacter solanacearum' in potato plants with zebra chip.

    PubMed

    Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene

    2009-07-01

    The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated

  10. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research.

    PubMed

    Jo, Jay-Hyun; Kennedy, Elizabeth A; Kong, Heidi H

    2016-03-01

    Skin serves as a protective barrier and also harbors numerous microorganisms collectively comprising the skin microbiome. As a result of recent advances in sequencing (next-generation sequencing), our understanding of microbial communities on skin has advanced substantially. In particular, the 16S ribosomal RNA gene sequencing technique has played an important role in efforts to identify the global communities of bacteria in healthy individuals and patients with various disorders in multiple topographical regions over the skin surface. Here, we describe basic principles, study design, and a workflow of 16S ribosomal RNA gene sequencing methodology, primarily for investigators who are not familiar with this approach. This article will also discuss some applications and challenges of 16S ribosomal RNA sequencing as well as directions for future development.

  11. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  12. Processing pathway of Escherichia coli 16S precursor rRNA.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA. Images PMID:2646597

  13. Phylogenetic diversity of rhizobia associated with horsegram [Macrotyloma uniflorum (Lam.) Verdc.] grown in South India based on glnII, recA and 16S-23S intergenic sequence analyses.

    PubMed

    Appunu, Chinnaswamy; Ganesan, Govindan; Kalita, Michał; Kaushik, Raghavan; Saranya, Balamurugan; Prabavathy, Vaiyapuri Ramalingam; Sudha, Nair

    2011-04-01

    Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I-V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.

  14. PCR detection of enzyme-encoding genes in Leuconostoc mesenteroides strains of wine origin.

    PubMed

    Mtshali, Phillip Senzo; Divol, Benoit; du Toit, Maret

    2012-04-01

    Fifteen isolates of lactic acid bacteria originating from South African grape and wine samples were identified as Leuconostoc mesenteroides subsp. mesenteroides through the taxonomic analysis of their 16S rDNA gene sequences. These isolates were further tested for the presence of genes coding for enzymes of oenological relevance using PCR detection technique. A type strain of Leuc. mesenteroides (NCDO 529(T)) was also incorporated for comparative analysis. From the PCR detection results, the estA, prtP, alsD, alsS, metK, metC and metB genes were present in all the strains tested. The bgl and gshR genes encoding β-glucosidase and glutathione reductase, respectively, were not detected in some strains. On the other hand, none of the tested strains possessed the genes encoding phenolic acid decarboxylase (padA), citrate permease (citP), citrate lyase (citD, citE and citF) and arginine deiminase pathway enzymes (arcA, arcB and arcC). The verification of PCR-generated fragments was performed by sequencing. GenBank database was used to search for homologous DNA sequences. Neighbour-joining trees based on nucleotide sequences of alsS, estA, metK and mleA genes were also constructed in order to study the phylogenetic relationship between Leuc. mesenteroides strains and closely related species. The phylogenetic analyses revealed that there are genetic heterogeneities between strains of Leuc. mesenteroides species. In conclusion, this study has improved our knowledge on the genetics of oenological strains of Leuc. mesenteroides and their genetic potential to contribute to certain wine aroma compounds.

  15. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies.

    PubMed

    Rössler, D; Ludwig, W; Schleifer, K H; Lin, C; McGill, T J; Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  16. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  17. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  18. Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences

    PubMed Central

    Rodrigues, Jorge L. M.; Silva-Stenico, M. E.; Gomes, J. E.; Lopes, J. R. S.; Tsai, S. M.

    2003-01-01

    The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease. PMID:12839807

  19. Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine.

    PubMed

    Kumar, Dileep; Rub, Malik Abdul; Akram, Mohd; Kabir-ud-Din

    2014-11-11

    The effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium(III) complex of glycylphenylalanine ([Cr(III)-Gly-Phe]2+) has been investigated using UV-visible spectrophotometer at different temperatures. The order of reaction with respect to [Cr(III)-Gly-Phe]2+ is unity while it is fractional with respect to ninhydrin. Whereas, the values of rate constant (kψ) increase and leveling-off regions, like conventional single chain cetyltrimethylammonium bromide (CTAB) surfactant, were observed with geminis, later produces a third region of increasing kψ at higher gemini surfactant concentrations. This unusual third-region effect of the gemini micelles is assigned to changes in their micellar morphologies. The results obtained in micellar media were treated in terms of pseudo-phase model. The values of thermodynamic parameters (Ea, ΔH# and ΔS#) and binding constants (KA and KNin) have been evaluated.

  20. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs.

  1. Ovine pedomics: the first study of the ovine foot 16S rRNA-based microbiome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Ovine foot rot is an infectious, contagious disease of sheep that causes severe lameness and economic loss from decreased flock produc...

  2. 16S rRNA Phylogeny of Sponge-Associated Cyanobacteria

    PubMed Central

    Steindler, Laura; Huchon, Dorothée; Avni, Adi; Ilan, Micha

    2005-01-01

    Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales. PMID:16000832

  3. Molecular Diagnosis of Actinomadura madurae Infection by 16S rRNA Deep Sequencing

    PubMed Central

    SenGupta, Dhruba J.; Hoogestraat, Daniel R.; Cummings, Lisa A.; Bryant, Bronwyn H.; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W.; Chau, Mimosa; Barbee, Lindley A.; Rosenthal, Christopher; Cookson, Brad T.; Hoffman, Noah G.

    2013-01-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms. PMID:24108607

  4. Molecular diagnosis of Actinomadura madurae infection by 16S rRNA deep sequencing.

    PubMed

    Salipante, Stephen J; Sengupta, Dhruba J; Hoogestraat, Daniel R; Cummings, Lisa A; Bryant, Bronwyn H; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W; Chau, Mimosa; Barbee, Lindley A; Rosenthal, Christopher; Cookson, Brad T; Hoffman, Noah G

    2013-12-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms.

  5. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    PubMed Central

    Elbrecht, Vasco; Taberlet, Pierre; Dejean, Tony; Valentini, Alice; Usseglio-Polatera, Philippe; Beisel, Jean-Nicolas; Coissac, Eric; Boyer, Frederic

    2016-01-01

    Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate. PMID:27114891

  6. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  7. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis.

    PubMed

    Delhalle, L; Korsak, N; Taminiau, B; Nezer, C; Burteau, S; Delcenserie, V; Poullet, J B; Daube, G

    2016-02-01

    Steak tartare is a popular meat dish in Belgium. It is prepared with raw minced beef and is eaten with sauce, vegetables, and spices. Because it contains raw meat, steak tartare is highly prone to bacterial spoilage. The objective of this study was to explore the diversity of bacterial flora in steak tartare in Belgium according to the source and to determine which bacteria are able to grow during shelf life. A total of 58 samples from butchers' shops, restaurants, sandwich shops, and supermarkets were collected. These samples were analyzed using 16S rDNA metagenetics, a classical microbiological technique, and quantitative real-time PCR (qPCR) targeting the Lactobacillus genus. Samples were analyzed at the beginning and at the end of their shelf life, except for those from restaurants and sandwich shops, which were analyzed only on the purchase date. Metagenetic analysis identified up to 180 bacterial species and 90 genera in some samples. But only seven bacterial species were predominant in the samples, depending on the source: Brochothrix thermosphacta, Lactobacillus algidus, Lactococcus piscium, Leuconostoc gelidum, Photobacterium kishitani, Pseudomonas spp., and Xanthomonas oryzae. With this work, an alternative method is proposed to evaluate the total flora in food samples based on the number of reads from metagenetic analysis and the results of qPCR. The degree of underestimation of aerobic plate counts at 30°C estimated with the classical microbiology method was demonstrated in comparison with the proposed culture-independent method. Compared with culture-based methods, metagenetic analysis combined with qPCR targeting Lactobacillus provides valuable information for characterizing the bacterial flora of raw meat.

  8. Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis.

    PubMed

    Miranda, Catia A C; Martins, Orlando B; Clementino, Maysa Mandetta

    2008-03-01

    The aim of this study was to compare the ability of commonly used conventional biochemical tests, sequencing analysis of 16S rRNA genes and tDNA-intergenic spacer length polymorphism (tDNA-PCR) to identify species of the genus Bacillus recovered from marine sediments. While biochemical tests were not sufficiently sensitive to distinguish between the 23 marine strains analyzed, partial 16S rRNA gene sequences allowed a correct identification, clustering them into four species belonging to Bacillus licheniformis (n = 6), Bacillus cereus (n = 9), Bacillus subtilis (n = 7) and Bacillus pumilus (n = 1). The identification results obtained with 16S rRNA sequencing were validated by tDNA-PCR analysis of 23 marine isolates that were identified by the similarities of their fingerprints to those of reference strains. tDNA-PCR fingerprinting was as discriminatory as 16S rRNA sequencing analysis. Although it was not able to distinguish among the species of the B. cereus and B. subtilis groups, it should be considered a rapid and easy approach for the reliable identification of unknown Bacillus isolates or at least for the primary differentiation of Bacillus groups.

  9. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  10. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene

    PubMed Central

    Estruch, G.; Collado, M. C.; Peñaranda, D. S.; Tomás Vidal, A.; Jover Cerdá, M.; Pérez Martínez, G.; Martinez-Llorens, S.

    2015-01-01

    Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to

  11. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies.

    PubMed

    Jaspers, Elke; Overmann, Jörg

    2004-08-01

    A combination of cultivation-based methods with a molecular biological approach was used to investigate whether planktonic bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of 11 strains of Brevundimonas alba were isolated from a bacterial freshwater community by conventional plating or by using a liquid most-probable-number (MPN) dilution series. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction, as well as in the highest positive dilutions of the MPN series. However, internally transcribed spacer and enterobacterial repetitive intergenic consensus PCR fingerprinting analyses, as well as DNA-DNA hybridization analyses, revealed great genetic diversity among the 11 strains. Each strain utilized a specific combination of 59 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. In dialysis cultures incubated in situ, each strain had a different growth rate and cell yield. We thus demonstrated that the B. alba strains represent distinct populations with genetically determined adaptations and probably occupy different ecological niches. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences.

  12. Analysis of 16S rRNA gene lactic acid bacteria (LAB) isolate from Markisa fruit (Passiflora sp.) as a producer of protease enzyme and probiotics

    NASA Astrophysics Data System (ADS)

    Hidayat, Habibi

    2017-03-01

    16S rRNA gene analysis of bacteria lactic acid (LAB) isolate from Markisa Kuning Fruit (Passiflora edulis var. flavicarpa) as a producer of protease enzyme and probiotics has been done. The aim of the study is to determine the protease enzyme activity and 16S rRNA gene amplification using PCR. The calculation procedure was done to M4 isolate bacteria lactic acid (LAB) Isolate which has been resistant to acids with pH 2.0 in the manner of screening protease enzyme activity test result 6.5 to clear zone is 13 mm againts colony diametre is 2 mm. The results of study enzyme activity used spectrophotometer UV-Vis obtainable the regression equation Y=0.02983+0.001312X, with levels of protein M4 isolate is 0.6594 mg/mL and enzyme activity of obtainable is 0.8626 unit/ml while the spesific enzyme activity produced is 1.308 unit/mg. Then, 16S rRNA gene amplificatiom and DNA sequencing has been done. The results of study showed that the bacteria species contained from M4 bacteria lactic acid (LAB) isolate is Weisella cibiria strain II-I-59. Weisella cibiria strain II-I-59 is one of bacteria could be utilized in the digestive tract.

  13. Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves.

    PubMed

    Campos-Herrera, Raquel; El-Borai, Fahiem E; Stuart, Robin J; Graham, James H; Duncan, Larry W

    2011-09-01

    Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp

  14. A loop-mediated isothermal amplification (LAMP) assay targeting 16S rRNA gene for rapid detection of Anaplasma phagocytophilum infection in sheep and goats.

    PubMed

    Ning, Changshen; Wang, Jinhong; Zhang, Yan; Wang, Xiaoxing; Cui, Yanyan; Yan, Yaqun; Wang, Rongjun; Jian, Fuchun; Zhang, Longxian

    2017-01-24

    Anaplasma phagocytophilum is a zoonotic pathogen and the causative agent of human granulocytic anaplasmosis (HGA) in humans and tick-borne fever in various kinds of animals. In the present study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of A. phagocytophilum was developed using primers specific to 16S rRNA gene of this organism. The LAMP assay was performed at 65 C for 60 min and terminated at 80 C for 10 min. The optimal reaction conditions, under which no cross-reaction was observed with other closely related tick borne parasites (Anaplasma bovis, Anaplasma ovis, Theileria luwenshuni, Babesia motasi and Schistosoma japonicum) was established. The assay exhibited much higher sensitivity when compared with conventional PCR (1 copy vs 1000 copies). To evaluate the applicability of the LAMP assay, 94 sheep field blood samples were analyzed for A. phagocytophilum infection using LAMP, nested PCR and conventional PCR assay at the same time. A positive LAMP result was obtained from 53 of the 94 samples (56.4%), while only 12 (12.8%) and 3 (3.2%) were tested positive by nested PCR and conventional PCR, respectively. In conclusion, this LAMP assay is a specific, sensitive, and rapid method for the detection of A. phagocytophilum in sheep.

  15. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    PubMed Central

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-01-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg−1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites. PMID:26184609

  16. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  17. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences.

    PubMed

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A; Allsopp, Michael H

    2003-10-01

    High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.

  18. Detection and quantification of cultured marine Alexandrium species by real-time PCR.

    PubMed

    Zhang, Fengli; Li, Zhiyong

    2012-12-01

    The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.

  19. 16S rRNA gene-targeted TTGE in determining diversity of gut microbiota during acute diarrhoea and convalescence.

    PubMed

    Monira, Shirajum; Shabnam, Syeda Antara; Alam, Nur Haque; Endtz, Hubert Ph; Cravioto, Alejandro; Alam, Munirul

    2012-09-01

    The human gut microbiota play a vital role in health and nutrition but are greatly modified during severe diarrhoea due to purging and pathogenic colonization. To understand the extent of loss during and after diarrhoea, faecal samples collected from children (n=21) suffering from acute diarrhoea and from their healthy siblings (n=9) were analyzed by 16S rRNA gene-targeted universal primer polymerase chain reaction (PCR), followed by temporal temperature gradient gel electrophoresis (TTGE). The gut microbiota decreased signif