Science.gov

Sample records for 16s rdna pcr

  1. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    PubMed

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  2. [PCR rDNA 16S used for the etiological diagnosis of blood culture negative endocarditis].

    PubMed

    Baty, G; Lanotte, P; Hocqueloux, L; Prazuck, T; Bret, L; Romano, M; Mereghetti, L

    2010-06-01

    We report the case of a 55 year-old man presenting with a double aortic and mitral endocarditis for which resected valve culture was repeatedly negative. Specific PCR made on valves because of highly positive blood tests for Bartonella henselae remained negative. A molecular approach was made with 16S rDNA PCR, followed by sequencing. Bartonella quintana was identified as the etiology of endocarditis. B. quintana, "fastidious" bacteria, even if hard to identify in a laboratory, is often reported as a blood culture negative endocarditis (BCNE) agent. Molecular biology methods have strongly improved the diagnosis of BCNE. We propose a review of the literature focusing on the interest of broad-spectrum PCR on valve for the etiological diagnosis of BCNE.

  3. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  4. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  5. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  6. Comparison of 16S rDNA analysis and rep-PCR genomic fingerprinting for molecular identification of Yersinia pseudotuberculosis.

    PubMed

    Kim, Wonyong; Song, Mi-Ok; Song, Wonkeun; Kim, Ki-Jung; Chung, Sang-In; Choi, Chul-Soon; Park, Yong-Ha

    2003-01-01

    16S rDNA sequence analysis and repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting were evaluated on 11 type strains of the genus Yersinia and 17 recognized serotype strains of Y. pseudotuberculosis to investigate their genetic relatedness and to establish the value of techniques for the identification of Y. pseudotuberculosis. A phylogenetic tree constructed from 16S rDNA sequences showed that the type strains of Yersinia species formed distinct clusters with the exception of Y. pestis and Y. pseudotuberculosis. Moreover, Y. pestis NCTC 5923T was found to be closely related to Y. pseudotuberculosis serotypes 1b, 3, and 7. Dendrograms generated from REP-PCR, and ERIC-PCR data revealed that members of the genus Yersinia differed from each other with the degree of similarity 62% and 58%, respectively. However, the BOX-PCR results showed that Y. pestis 5923T clustered with the Y. pseudotuberculosis group with a degree of similarity 74%. According to these findings, 16S rDNA sequence analysis was unable to reliably discriminate Y. pseudotuberculosis from Y. pestis. However, REP-PCR and especially ERIC-PCR provided an effective means of differentiating between members of the taxa.

  7. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  8. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  9. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics.

    PubMed

    Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  10. Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences.

    PubMed

    Sasaki, Y; Yamamoto, K; Kojima, A; Tetsuka, Y; Norimatsu, M; Tamura, Y

    2000-12-01

    Clostridium chauvoei causes blackleg, which is difficult to distinguish from the causative clostridia of malignant edema. Therefore, a single-step PCR system was developed for specific detection of C. chauvoei DNA using primers derived from the 16S-23S rDNA spacer region and partial 23S rDNA sequences. The specificity of the single-step PCR system was demonstrated by testing 37 strains of clostridia and 3 strains of other genera. A 509 bp PCR product, which is a C. choauvoei-specific PCR product, could be amplified from all of the C. chauvoei strains tested, but not from the other strains. Moreover, this single-step PCR system specifically detected C. chauvoei DNA in samples of muscle from mice 24 hr after inoculation with 100 spores of C. chauvoei, and in clinical materials from a cow affected with blackleg. These results suggest that our single-step PCR system may be useful for direct detection of C. chauvoei in culture and in clinical materials from animals affected with blackleg.

  11. Preanalytic removal of human DNA eliminates false signals in general 16S rDNA PCR monitoring of bacterial pathogens in blood.

    PubMed

    Handschur, Michael; Karlic, Heidrun; Hertel, Christian; Pfeilstöcker, Michael; Haslberger, Alexander G

    2009-05-01

    PCR detection of microbial pathogens in blood from patients is a promising issue for rapid diagnosis of sepsis and early targeted therapy. However, for PCR assays detecting all bacterial groups, broad range primers, in particular the 16S rDNA targeting primers have to be used. Upcoming false signals and reduced sensitivity are a common problem as a consequence of unspecific amplification reactions with the human DNA background. Here we show that, using total DNA extracts from blood, unspecific signals occurred in general 16S rDNA PCRs as a result of the amplification of human sequences. To address this problem, we developed a protocol by which the human background DNA is removed and bacterial DNA is enriched during sample preparation, a method we termed background-free enrichment method (BFEM). In general, we aimed to exclude false signals due to the human background DNA yielded from 16S rDNA PCR, Real-Time-PCR and IGS-PCR analyses. We applied the BFEM to the analysis of blood samples from 22 patients and obtained results similar to standard blood culture methods. The BFEM allows specific and sensitive detection of pathogens in downstream PCR assays and is easy to handle due to the quick sample preparation procedure. Thus, the BFEM contributes to the generation of replicable and more reliable data in general 16S rDNA PCR assays.

  12. Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs.

    PubMed

    Rockne, Karl J; Strand, Stuart E

    2003-09-01

    Type II alpha proteobacteria methanotrophs are capable of a wide range of cometabolic transformations of chlorinated solvents and polycyclic aromatic hydrocarbons (PAHs), and this activity has been exploited in many terrestrial bioremediation systems. However, at present, all known obligately marine methanotrophic isolates are Type I gamma proteobacteria which do not have this activity to the extent of Type II methanotrophs. In previous work in our laboratory, determining the presence of Type II alpha proteobacteria methanotrophs in marine enrichment cultures that co-metabolized PAHs required a more sensitive assay. 16S rDNA PCR primers were designed based on oligonucleotide probes for serine pathway methanotrophs and serine pathway methylotrophs with an approximate amplification fragment size of 870 base pairs. Comparison of the primers using double primer BLAST searches in established nucleotide databases showed potential amplification with all Methylocystis and Methylosinus spp., as well as potential amplification with Methylocella palustrus. DNA from Methylosinus trichosporium OB3b, a Type II methanotroph, amplified with the primers with a fragment size of approximately 850 base pairs, whereas DNA extracted from Methylomonas methanica, a Type I methanotroph, did not. The primers were used to amplify DNA extracted from two marine methanotrophic enrichment cultures: a low nitrogen/low copper enrichment to select for Type II methanotrophs and a high nitrogen/high copper enrichment to select for Type I methanotrophs. Although DNA from both cultures amplified with the PCR primers, amplification was stronger in cultures that were specifically enriched for Type II methanotrophs, suggesting the presence of higher numbers of Type II methanotrophs. These results provide further evidence for the existence of Type II marine methanotrophs, suggesting the possibility of exploiting cometabolic activity in marine systems.

  13. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores

    PubMed Central

    Atibalentja, N.; Noel, G. R.; Ciancio, A.

    2004-01-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 × 10⁶ endospores ml-1 were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis. PMID:19262793

  14. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    PubMed

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories.

  16. Applicability of the 16S-23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil.

    PubMed

    Baudoin, E; Couillerot, O; Spaepen, S; Moënne-Loccoz, Y; Nazaret, S

    2010-01-01

    To assess the applicability of the 16S-23S rDNA internal spacer regions (ISR) as targets for PCR detection of Azospirillum ssp. and the phytostimulatory plant growth-promoting rhizobacteria seed inoculant Azospirillum lipoferum CRT1 in soil. Primer sets were designed after sequence analysis of the ISR of A. lipoferum CRT1 and Azospirillum brasilense Sp245. The primers fAZO/rAZO targeting the Azospirillum genus successfully yielded PCR amplicons (400-550 bp) from Azospirillum strains but also from certain non-Azospirillum strains in vitro, therefore they were not appropriate to monitor indigenous Azospirillum soil populations. The primers fCRT1/rCRT1 targeting A. lipoferum CRT1 generated a single 249-bp PCR product but could also amplify other strains from the same species. However, with DNA extracts from the rhizosphere of field-grown maize, both fAZO/rAZO and fCRT1/rCRT1 primer sets could be used to evidence strain CRT1 in inoculated plants by nested PCR, after a first ISR amplification with universal ribosomal primers. In soil, a 7-log dynamic range of detection (10(2)-10(8) CFU g(-1) soil) was obtained. The PCR primers targeting 16S-23S rDNA ISR sequences enabled detection of the inoculant A. lipoferum CRT1 in field soil. Convenient methods to monitor Azospirillum phytostimulators in the soil are lacking. The PCR protocols designed based on ISR sequences will be useful for detection of the crop inoculant A. lipoferum CRT1 under field conditions.

  17. Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Rogers, G. B.; Hart, C. A.; Mason, J. R.; Hughes, M.; Walshaw, M. J.; Bruce, K. D.

    2003-01-01

    The leading cause of morbidity and mortality in cystic fibrosis (CF) patients stems from repeated bacterial respiratory infections. Many bacterial species have been cultured from CF specimens and so are associated with lung disease. Despite this, much remains to be determined. In the present study, we characterized without prior cultivation the total bacterial community present in specimens taken from adult CF patients, extracting DNA directly from 14 bronchoscopy or sputum samples. Bacterial 16S ribosomal DNA (rRNA) gene PCR products were amplified from extracted nucleic acids, with analyses by terminal restriction fragment length polymorphism (T-RFLP), length heterogeneity PCR (LH-PCR), and sequencing of individual cloned PCR products to characterize these communities. Using the same loading of PCR products, 12 distinct T-RFLP profiles were identified that had between 3 and 32 T-RFLP bands. Nine distinct LH-PCR profiles were identified containing between one and four bands. T-RFLP bands were detected in certain samples at positions that corresponded to pathogens cultured from CF samples, e.g., Burkholderia cepacia and Haemophilus influenzae. In every sample studied, one T-RFLP band was identified that corresponded to that produced by Pseudomonas aeruginosa. A total of 103 16S rRNA gene clones were examined from five patients. P. aeruginosa was the most commonly identified species (59% of clones). Stenotrophomonas species were also common, with eight other (typically anaerobic) bacterial species identified within the remaining 17 clones. In conclusion, T-RFLP analysis coupled with 16S rRNA gene sequencing is a powerful means of analyzing the composition and diversity of the bacterial community in specimens sampled from CF patients. PMID:12904354

  18. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

    PubMed

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  19. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  20. DNA fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using PCR-amplified 16S-23S rDNA intergenic transcribed spacer (ITS) regions.

    PubMed

    Dingman, Douglas W

    2009-01-01

    Failure to identify correctly the milky disease bacteria, Paenibacillus popilliae and Paenibacillus lentimorbus, has resulted in published research errors and commercial production problems. A DNA fingerprinting procedure, using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS) regions, has been shown to easily and accurately identify isolates of milky disease bacteria. Using 34 P. popilliae and 15 P. lentimorbus strains, PCR amplification of different ITS regions produced three DNA fingerprints. For P. lentimorbus phylogenic group 2 strains and for all P. popilliae strains tested, electrophoresis of amplified DNA produced a migratory pattern (i.e., ITS-PCR fingerprint) exhibiting three DNA bands. P. lentimorbus group 1 strains also produced this ITS-PCR fingerprint. However, the fingerprint was phase-shifted toward larger DNA sizes. Alignment of the respective P. popilliae and P. lentimorbus group 1 ITS DNA sequences showed extensive homology, except for a 108bp insert in all P. lentimorbus ITS regions. This insert occurred at the same location relative to the 23S rDNA and accounted for the phase-shift difference in P. lentimorbus group 1 DNA fingerprints. At present, there is no explanation for this 108bp insert. The third ITS-PCR fingerprint, produced by P. lentimorbus group 3 strains, exhibited approximately eight DNA bands. Comparison of the three fingerprints of milky disease bacteria to the ITS-PCR fingerprints of other Paenibacillus species demonstrated uniqueness. ITS-PCR fingerprinting successfully identified eight unknown isolates as milky disease bacteria. Therefore, this procedure can serve as a standard protocol to identify P. popilliae and P. lentimorbus.

  1. Speciation of Bacillus spp. in honey produced in Northern Ireland by employment of 16S rDNA PCR and automated DNA sequencing techniques.

    PubMed

    Tolba, Ola; Earle, J A Philip; Millar, B Cherie; Rooney, Paul J; Moore, John E

    2007-12-01

    Phenotypic speciation of foodborne Bacillus spp. remains problematic in terms of obtaining a reliable identification. In this study, we wished to identify several bacterial isolates from honey produced in Northern Ireland, and which belonged to the genus Bacillus, through employment of a molecular identification scheme based on PCR amplification of universal regions of the 16S rRNA operon in combination with direct automated sequencing of the resulting amplicons. Seven samples of honey and related materials (propolis) were examined microbiologically and were demonstrated to have total viable counts (TVC) ranging from <100 to 1700 colony-forming units/g. No yeasts or filamentous fungi were isolated from the honey materials. Several bacterial isolates were identified using this method, yielding two different genera (Paenibacillus and Bacillus), as well as four Bacillus species, namely Bacillus pumilus, B. licheniformis, B. subtilis and B. fusiformis, with B. pumilus the most frequently identified species present. When the use of molecular identification methods is justified, employment of partial 16S rDNA PCR and sequencing provides a valuable and reliable method of identification of Bacillus spp. from foodstuffs and negates associated problems of conventional laboratory and phenotypic identification.

  2. Food Targeting: A Real-Time PCR Assay Targeting 16S rDNA for Direct Quantification of Alicyclobacillus spp. Spores after Aptamer-Based Enrichment.

    PubMed

    Hünniger, Tim; Felbinger, Christine; Wessels, Hauke; Mast, Sophia; Hoffmann, Antonia; Schefer, Anna; Märtlbauer, Erwin; Paschke-Kratzin, Angelika; Fischer, Markus

    2015-05-06

    Spore-forming Alicyclobacillus spp. are able to form metabolites that induce even in small amounts an antiseptical or medicinal off-flavor in fruit juices. Microbial contaminations could occur by endospores, which overcame the pasteurization process. The current detection method for Alicyclobacillus spp. can take up to 1 week because of microbiological enrichment. In a previous study, DNA aptamers were selected and characterized for an aptamer-driven rapid enrichment of Alicyclobacillus spp. spores from orange juice by magnetic separation. In the present work, a direct quantification assay for Alicyclobacillus spp. spores was developed to complete the two-step approach of enrichment and detection. After mechanical treatment of the spores, the isolated DNA was quantified in a real-time PCR-assay targeting 16S rDNA. The assay was evaluated by the performance requirements of the European Network of Genetically Modified Organisms Laboratories (ENGL). Hence, the presented method is applicable for direct spore detection from orange juice in connection with an enrichment step.

  3. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children.

    PubMed

    Rosey, Anne-Laure; Abachin, Eric; Quesnes, Gilles; Cadilhac, Céline; Pejin, Zagorka; Glorion, Christophe; Berche, Patrick; Ferroni, Agnès

    2007-01-01

    The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.

  4. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR).

    PubMed

    Daxboeck, Florian; Dornbusch, Hans Jürgen; Krause, Robert; Assadian, Ojan; Wenisch, Christoph

    2004-01-01

    A small but significant proportion of blood cultures processed by the BACTEC 9000 series systems is signaled positive, while subsequent Gram's stain and culture on solid media yield no pathogens. In this study, 15 "false-positive" vials (7 aerobes, 8 anaerobes) from 15 patients were investigated for the presence of bacteria and fungi by eubacterial 16S rDNA and panfungal 18S rDNA amplification, respectively. All samples turned out negative by both methods. Most patients (7) had neutropenia, which does not support the theory that high leukocyte counts enhance the generation of false-positive results. In conclusion, the results of this study indicate that false-negative results generated by the BACTEC 9000 series are inherent to the automated detection and not due to the growth of fastidious organisms.

  5. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.

  6. Analysis of Endophytic Bacterial Communities of Potato by Plating and Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA Based PCR Fragments.

    PubMed

    Garbeva, P.; Overbeek, L.S.; Vuurde, J.W.L.; Elsas, J.D.

    2001-02-01

    The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desirée) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable endophytic bacterial communities detected in potato stem bases as well as in roots were in most cases on the order 103 to 105 CFU g?1 of fresh plant tissue. Dilution plating revealed that a range of bacterial types dominated these populations. Dominant isolates fell into the a and g subgroups of the Proteobacteria, as well as in the Flavobacterium/Cytophaga group. Different representatives of the Firmicutes were also found. The most frequently isolated strains (>5% of the total) were characterized as different Pseudomonas spp. (including P. aureofaciens, P. corrugata, and P. putida), Agrobacterium radiobacter, Stenotrophomonas maltophilia, and Flavobacterium resinovorans, using fatty acid methyl ester (FAME) analysis and/or sequencing of their partial 16S ribosomal RNA genes. Other Proteobacteria or Firmicutes were also found, albeit infrequently, and mainly in potato stem tissue. The fate of three putative potato endophytes, Stenotrophomonas maltophilia, Bacillus sp., and Sphingomonas paucimobilis, was monitored following their release into potato plants via injection, via root dipping, or via the soil. Following stem injection, the S. maltophilia and Bacillus inoculants could be tracked over time periods of, respectively, 22 and 1 day(s) by dilution plating as well as via PCR-DGGE. However, only S. maltophilia was able to colonize, and persist in, plant tissue from soil or dipped roots. S. paucimobilis was never recovered from the plant irrespective of the mode of introduction. The diversity of the indigenous bacterial flora associated with potato was then monitored via PCR-DGGE. The patterns obtained revealed the existence of bacterial communities of limited complexity

  7. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae).

    PubMed

    Guernaoui, S; Garcia, D; Gazanion, E; Ouhdouch, Y; Boumezzough, A; Pesson, B; Fontenille, D; Sereno, D

    2011-03-01

    In this study, we tested the capacity of Temperature Gradient Gel Electrophoresis (TGGE)-based fingerprinting of 16S rDNA PCR fragments to assess bacterial composition in a single isolated sand fly gut. Bacterial content was studied in different life stages of a laboratory-reared colony of Phlebotomus duboscqi and in a wild-caught Phlebotomus papatasi population. Our study demonstrates that a major reorganization in the gut bacterial community occurs during metamorphosis of sand flies. Chloroflexi spp. was dominant in the guts of pre-imaginal stages, although Microbacterium spp. and another as yet unidentified bacteria were detected in the gut of the adult specimen. Interestingly, Microbacterium spp. was also found in all the adult guts of both species. We demonstrate that the analysis of bacterial diversity in an individualized sand fly gut is possible with fingerprinting of 16S rDNA. The use of such methodology, in conjunction with other culture-based methods, will be of great help in investigating the behavior of the Leishmania-bacterial community in an ecological context.

  8. [Numerical taxonomy and 16S rDNA PCR-rFLP analysis of rhizobial strains isolated from root nodules of cowpea and mung bean grown in different regions of China].

    PubMed

    Zhang, Yong-fa; Wang, Feng-qin; Chen, Wen-xin

    2006-12-01

    Seventy-nine rhizobial strains, isolated from root nodules of cowpea ( Vigna unguiculata ) and mung bean (Vigna radiata ) grown in different regions of China, were studied by a fuzzy cluster analysis of 128 phenotypic characteristics. The phenotypic characterization of these strains showed that most of these strains had high stress resistance. For instance, most of them could grow from pH 5.0 to pH 11.0. Over 85% of these strains could grow well on YMA plate at 37 degrees C and several of them even could grow after a 45 minutes hot shock at 60 degrees C. Some strains had a tolerance to high concentration of Bacitracin (400 microg/mL) . The result of the fuzzy cluster analysis showed that all the strains were clustered into 2 groups, slow growers and fast growers, at the similarity level of 63.5% . At the similarity level of 79 %, there were 7 subgroups further separated. Based upon the result of the numerical taxonomy, these strains together with 22 reference stains were analyzed by the 16S rDNA PCR-RFLP. Thirty-four genotype profiles were obtained from the fingerprinting of the 16S rDNA PCR-RFLP. These strains were analyzed by GelCompare II software and clustered into 7 groups at the similarity level of 91% , which were consonant with the 7 subgroups clustered at the similarity level of 79% in numerical taxonomy. The results of numerical taxonomy and 16S rDNA PCR-RFLP analysis showed that all of the seventy-nine rhizobial Bradyrhizobium, strains isolated from root nodules of cowpea and mung bean were clustered into four genera: Agrobacterium, Rhizobium and Sinorhizobium, respectively. An individual clade without any reference stains, which was composed of CCBAU 45071, CCBAU 45111-1 and CCBAU 45248, might be a new species of Rhizobium. Overall, the study results demonstrated a high phenotypic and phylogenetic diversity of rhizobial strains nodulating cowpea and mung bean grown in different geographic regions of China.

  9. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing.

  10. Identification of a third feline Demodex species through partial sequencing of the 16S rDNA and frequency of Demodex species in 74 cats using a PCR assay.

    PubMed

    Ferreira, Diana; Sastre, Natalia; Ravera, Iván; Altet, Laura; Francino, Olga; Bardagí, Mar; Ferrer, Lluís

    2015-08-01

    Demodex cati and Demodex gatoi are considered the two Demodex species of cats. However, several reports have identified Demodex mites morphologically different from these two species. The differentiation of Demodex mites is usually based on morphology, but within the same species different morphologies can occur. DNA amplification/sequencing has been used effectively to identify and differentiate Demodex mites in humans, dogs and cats. The aim was to develop a PCR technique to identify feline Demodex mites and use this technique to investigate the frequency of Demodex in cats. Demodex cati, D. gatoi and Demodex mites classified morphologically as the third unnamed feline species were obtained. Hair samples were taken from 74 cats. DNA was extracted; a 330 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of D. cati and D. gatoi shared >98% identity with those published on GenBank. The sequence of the third unnamed species showed 98% identity with a recently published feline Demodex sequence and only 75.2 and 70.9% identity with D. gatoi and D. cati sequences, respectively. Demodex DNA was detected in 19 of 74 cats tested; 11 DNA sequences corresponded to Demodex canis, five to Demodex folliculorum, three to D. cati and two to Demodex brevis. Three Demodex species can be found in cats, because the third unnamed Demodex species is likely to be a distinct species. Apart from D. cati and D. gatoi, DNA from D. canis, D. folliculorum and D. brevis was found on feline skin. © 2015 ESVD and ACVD.

  11. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  12. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  13. Phylogenetic positions of Clostridium novyi and Clostridium haemolyticum based on 16S rDNA sequences.

    PubMed

    Sasaki, Y; Takikawa, N; Kojima, A; Norimatsu, M; Suzuki, S; Tamura, Y

    2001-05-01

    The partial sequences (1465 bp) of the 16S rDNA of Clostridium novyi types A, B and C and Clostridium haemolyticum were determined. C. novyi types A, B and C and C. haemolyticum clustered with Clostridium botulinum types C and D. Moreover, the 16S rDNA sequences of C. novyi type B strains and C. haemolyticum strains were completely identical; they differed by 1 bp (level of similarity > 99.9%) from that of C. novyi type C, they were 98.7% homologous to that of C. novyi type A (relative positions 28-1520 of the Escherichia coli 16S rDNA sequence) and they exhibited a higher similarity to the 16S rDNA sequence of C. botulinum types D and C than to that of C. novyi type A. These results suggest that C. novyi types B and C and C. haemolyticum may be one independent species generated from the same phylogenetic origin.

  14. [Analysis of bacterial diversity of kefir grains by denaturing gradient gel electrophoresis and 16S rDNA sequencing].

    PubMed

    Wang, Yin-Yu; Li, Hui-Rong; Jia, Shi-Fang; Wu, Zheng-Jun; Guo, Ben-Heng

    2006-04-01

    Kefir is an acidic, mildly alcoholic dairy beverage produced by the fermentation of milk with a grain-like starter culture. These grains usually contain a relatively stable and specific balance of microbes that exist in a complex symbiotic relationship. Kefir grains can be considered a probiotic source as it presents anti-bacterial, anti-mycotic, anti-neoplasic and immunomodulatory properties. The microorganisms in Kefir grains are currently identified by traditional methods such as growth on selective media, morphological and biochemical characteristics. However, the microorganisms that isolate by these methods can not revert to Kefir grains which indicate that there are some other bacteria that are not isolate from it. In this study, PCR-based Denaturing gradient gel electrophoresis(DGGE) and sequence analysis of 16S ribosomal RNA gene (16S rDNA) clone libraries was used for the rapid and accurate identification of microorganisms from Kefir grains. The PCR primers were designed from conserved nucleotide sequences on region V3 of 16S rDNA with GC rich clamp at the 5'-end. PCR was performed using the primers and genomic DNAs of Kefir grains bacteria. The generated region V3 of 16S rDNA fragments were separated by denaturing gel, and the dominant 16S rDNA bands were cloned, sequenced and subjected to an online similarity search. Research has shown that regions V3 of 16S rDNAs have eight evident bands on the DGGE gel. The sequence analysis of these eight bands has indicated that they belong to different four genera, among them three sequences are similar to Sphingobacterium sp. whose similarities with database sequences are over 98%, three sequences are similar to Lactobacillus sp. whose similarities with database sequences are over 96%, the other two sequence are similar to Enterobacter sp., and Acinetobacter sp. whose similarities with database sequences are over 99% respectively. Although the DGGE method may have a lower sensitivity than the ordinary PCR methods

  15. Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing

    PubMed Central

    Angeletti, Silvia; Lorino, Giulia; Gherardi, Giovanni; Battistoni, Fabrizio; De Cesaris, Marina; Dicuonzo, Giordano

    2001-01-01

    For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddlE. faecalis and ddlE. faecium primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative. PMID:11158155

  16. [Bacterial 16S rDNA sequence analysis of Siberian tiger faecal flora].

    PubMed

    Tu, Ya; Zhu, Wei-yun; Lu, Cheng-ping

    2005-10-01

    Bacterial 16S rDNA library of Siberian tiger was developed and 15 different clones were obtained using EcoR I and Hind III in restriction fragment length polymorphism analysis. DNA sequencing and similarity analysis showed that 10 clones matched corresponding Clostridium sequences, of which 6 sequences had over 99% similarity with Clostridium novyi type A, and 4 sequences had 97% similarity with Swine manure bacterium RT-18B, which identified as Peptostreptococcus spp. The other five 16S rDNA sequences had 94% - 95% similarity with Clostridium pascui, Clostridium tetani E88, Clostridium sp. 14505 Clostridium perfringens and Carnobacterium sp. R-7279 respectively.

  17. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.

  18. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats

    PubMed Central

    Camacho, H.; Tuero, A. D.; Bacardí, D.; Palenzuela, D. O.; Aguilera, A.; Silva, J. A.; Estrada, R.; Gell, O.; Suárez, J.; Ancizar, J.; Brown, E.; Colarte, A. B.; Castro, J.; Novoa, L. I.

    2016-01-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies. PMID:27382362

  19. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  20. Use of single-strand conformation polymorphism of amplified 16S rDNA for grouping of bacteria isolated from foods.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Tanaka, Yuichiro; Mori, Mayumi; Yokoi, Asami; Fujii, Tateo

    2008-04-01

    The grouping method for isolated strains from foods using single-strand conformation polymorphism (SSCP) after PCR amplification of a portion of 16S rDNA was developed. This method was able to group the strains from various food samples based on 16S rDNA sequence. As 97.8% of the isolated strains from various foods were grouped correctly, use of the PCR-SSCP method enables the prompt and labor-saving analysis of microbial population of food-derived bacterial strains. Advantages in speed and accuracy of bacterial population identification by the PCR-SSCP method have practical application for food suppliers and testing laboratories.

  1. 16S rDNA sequencing of valve tissue improves microbiological diagnosis in surgically treated patients with infective endocarditis.

    PubMed

    Vondracek, Martin; Sartipy, Ulrik; Aufwerber, Ewa; Julander, Inger; Lindblom, Dan; Westling, Katarina

    2011-06-01

    The aim was to evaluate 16S rDNA sequencing in heart valves in patients with infective endocarditis undergoing surgery. Fifty-seven patients with infective endocarditis were examined in this prospective study by analysing heart valves with 16S rDNA sequencing and culturing methods and comparing the results to blood cultures. As controls, heart valves from 61 patients without any signs of endocarditis were examined. All together 77% of the endocarditis patients were positive for 16S rDNA, 84% had positive blood cultures and 23% had positive cultures from heart valves, whereas only 16% of the cultures from heart valves were concordant with results from blood cultures or 16S rDNA. Concordant results between 16S rDNA sequencing and blood cultures were found in 75% patients. All controls were negative for 16S rDNA. In 4 out of 9 patients with negative blood cultures, the aetiology was established by 16S rDNA alone, i.e. viridans group streptococci. In this Swedish study, 16S rDNA sequencing of valve material was shown to be a valuable addition in blood culture-negative cases. The value of heart valve culture was low. Molecular diagnosis using 16S rDNA sequencing should be recommended in patients undergoing valve replacement for infective endocarditis. Copyright © 2011 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  2. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)

    PubMed Central

    2014-01-01

    Background The 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are

  3. Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments.

    PubMed

    Hayes, L A; Lovley, Derek R

    2002-01-01

    Previous studies have demonstrated that naphthalene and other polycyclic aromatic hydrocarbons (PAHs) can be anaerobically oxidized with the reduction of sulfate in PAH-contaminated marine harbor sediments, including those in San Diego Bay. In order to learn more about the microorganisms that might be involved in anaerobic naphthalene degradation, the microorganisms associated with naphthalene degradation in San Diego Bay sediments were evaluated. A dilution-to-extinction enrichment culture strategy, designed to recover the most numerous culturable naphthalene-degrading sulfate reducers, resulted in the enrichment of microorganisms with 16S rDNA sequences in the d-Proteobacteria, which were closely related to a previously described pure culture of a naphthalene-degrading sulfate reducer, NaphS2, isolated from sediments in Germany. A more traditional enrichment culture approach, expected to enrich for the fastest-growing naphthalene-degrading sulfate reducers, yielded 16S rDNA sequences closely related to those found in the dilution-to-extinction enrichments and NaphS2. Analysis of 16S rDNA sequences in sediments from two sites in San Diego Bay that had been adapted for rapid naphthalene degradation by continual amendment with low levels of naphthalene suggested that the microbial community composition in the amended sediments differed from that present in the unamended sediments from the same sites. Most significantly, 6-8% of the sequences recovered from 100 clones of each of the naphthalene-amended sediments were closely related to the 16S rDNA sequences in the enrichment cultures as well as the sequence of the pure culture, NaphS2. No sequences in this NaphS2 phylotype were recovered from the sediments that were not continually exposed to naphthalene. A PCR primer, which was designed based on these phylotype sequences, was used to amplify additional 16S rDNA sequences belonging to the NaphS2 phylotype from PAH-degrading sediments from Island End River (Boston

  4. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays.

    PubMed

    Warsen, Adelaide E; Krug, Melissa J; LaFrentz, Stacey; Stanek, Danielle R; Loge, Frank J; Call, Douglas R

    2004-07-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.

  5. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities.

    PubMed

    Logares, Ramiro; Sunagawa, Shinichi; Salazar, Guillem; Cornejo-Castillo, Francisco M; Ferrera, Isabel; Sarmento, Hugo; Hingamp, Pascal; Ogata, Hiroyuki; de Vargas, Colomban; Lima-Mendez, Gipsi; Raes, Jeroen; Poulain, Julie; Jaillon, Olivier; Wincker, Patrick; Kandels-Lewis, Stefanie; Karsenti, Eric; Bork, Peer; Acinas, Silvia G

    2014-09-01

    Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.

  6. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. Copyright © 2012 Elsevier Inc

  7. Mitochondrial 16S rDNA analysis of Tunisian androctonus species (Scorpions, Buthidae): phylogenetic approach.

    PubMed

    Ben Othmen, A; Said, K; Ben Alp, Z; Chatti, N; Ready, P D

    2006-01-01

    Tunisian Androctonus species, for long time discussed, were recognized on the basis of mitochondrial 16S rDNA sequences. Although the analysed nucleotide sequence is rather short (about 300 bp), the obtained phlogenetic trees revealed that A. amoreuxi and A. aeneas form two well-supported sister clades against A. australis haplotypes. Each specimen of the very rare species A. aeneas showed a specific haplotype, but together formed a well-defined clade. Some A. amoreuxi specimens highlighted unidirectional mitochondrial introgression from neighbouring A. australis population. Within A. australis, previously described, subspecies subdivision (A. a .hector and A. a. garzonii) was not supported.

  8. Characterization of the dominant bacterial communities during storage of Norway lobster and Norway lobster tails (Nephrops norvegicus) based on 16S rDNA analysis by PCR-DGGE.

    PubMed

    Bekaert, Karen; Devriese, Lisa; Maes, Sara; Robbens, Johan

    2015-04-01

    The aim of this study was to investigate the microbial quality of whole Norway lobster (Nephrops norvegicus) and Norway lobster tails to optimize handling conditions. This was done by assessing the total viable count (TVC) and characterizing the dominant microbiota. The cultivable microorganisms were quantified via classical microbiological plating methods. To characterize as many bacterial species present as possible, we performed advanced molecular identification techniques (PCR-DGGE). The initial TVC of fresh Norway lobster meat was high (3.0 log cfu/g) as compared to fish. No significant difference between whole Norway lobster and Norway lobster tails could be found during the storage period. From day 6 of storage, a significant difference between Plate Count Agar (PCA) and Marine Agar (MA) was observed. The microbiota of Norway lobster was dominated by members of the Gram-negative genera such as Psychrobacter spp., Pseudoalteromonas spp., Pseudomonas spp., Luteimonas spp., and Aliivibrio spp. From these bacteria, mainly Psychrobacter spp. and Pseudomonas spp. remained present until the end of the storage period. These are known spoilage organisms in fishery products. Other known spoilage organisms of crustaceans such as Photobacterium spp. could not be identified.

  9. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 16S-23S rDNA internal transcribed spacer regions in four Proteus species.

    PubMed

    Cao, Boyang; Wang, Min; Liu, Lei; Zhou, Zhemin; Wen, Shaoping; Rozalski, Antoni; Wang, Lei

    2009-04-01

    Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.

  11. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  12. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing

    PubMed Central

    Kvich, Lasse; Eickhardt, Steffen; Omland, Lars H.; Bjarnsholt, Thomas; Moser, Claus

    2015-01-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii-specific PCR and immunohistochemistry. The patient was later diagnosed with HIV/AIDS. PMID:25854484

  13. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    PubMed

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  14. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  15. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    PubMed

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  16. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  17. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  18. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR.

    PubMed

    Ochsenreiter, Torsten; Selezi, Drazenka; Quaiser, Achim; Bonch-Osmolovskaya, Liza; Schleper, Christa

    2003-09-01

    Novel phylogenetic lineages of as yet uncultivated crenarchaeota have been frequently detected in low to moderate-temperature, marine and terrestrial environments. In order to gain a more comprehensive view on the distribution and diversity of Crenarchaeota in moderate habitats, we have studied 18 different terrestrial and freshwater samples by 16S rDNA-based phylogenetic surveys. In seven different soil samples of diverse geographic areas in Europe (forest, grassland, ruderal) and Asia (permafrost, ruderal) as well as in two microbial mats, we have consistently found one particular lineage of crenarchaeota. The diversity of Crenarchaeota in freshwater sediments was considerably higher with respresentative 16S rDNA sequences distributed over four different groups within the moderate crenarchaeota. Systematic analysis of a 16S rDNA universal library from a sandy ecosystem containing 800 clones exclusively revealed the presence of the soil-specific crenarchaeotal cluster. With primers specific for non-thermophilic crenarchaeota we established a rapid method to quantify archaeal 16S rDNA in real time PCR. The relative abundance of crenarchaeotal rDNA was 0.5-3% in the bulk soil sample and only 0.16% in the rhizosphere of the sandy ecosystem. A nearby agricultural setting yielded a relative abundance of 0.17% crenarchaeotal rDNA. In total our data suggest that soil crenarchaeota represent a stable and specific component of the microbiota in terrestrial habitats.

  19. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  20. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  1. Electronic microarray analysis of 16S rDNA amplicons for bacterial detection.

    PubMed

    Barlaan, Edward A; Sugimori, Miho; Furukawa, Seiji; Takeuchi, Kazuhisa

    2005-01-12

    Electronic microarray technology is a potential alternative in bacterial detection and identification. However, conditions for bacterial detection by electronic microarray need optimization. Using the NanoChip electronic microarray, we investigated eight marine bacterial species. Based on the 16S rDNA sequences of these species, we constructed primers, reporter probes, and species-specific capture probes. We carried out two separate analyses for longer (533 bp) and shorter (350 and 200 bp) amplified products (amplicons). To detect simultaneously the hybridization signals for the 350- and 200-bp amplicons, we designed a common reporter probe from an overlapping sequence within both fragments. We developed methods to optimize detection of hybridization signals for processing the DNA chips. A matrix analysis was performed for different bacterial species and complementary capture probes on electronic microarrays. Results showed that, when using the longer amplicon, not all bacterial targets hybridized with the complementary capture probes, which was characterized by the presence of false-positive signals. However, with the shorter amplicons, all bacterial species were correctly and completely detected using the constructed complementary capture probes.

  2. Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report.

    PubMed

    Hotta, Fumika; Eguchi, Hiroshi; Naito, Takeshi; Mitamura, Yoshinori; Kusujima, Kohei; Kuwahara, Tomomi

    2014-11-24

    In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes. Corynebacterium species were found to be contaminants from the ocular surface. Achromobacter spp. should be recognized as causative agents for device-related ophthalmic infections. Molecular species identification by 16S rDNA sequence analysis should be combined with conventional cultivation techniques to investigate the significance of Achromobacter spp. in ophthalmic infections.

  3. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  4. [Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI].

    PubMed

    Wang, Jian-Yan; Zhen, Yu; Wang, Guo-shan; Mi, Tie-Zhu; Yu, Zhi-gang

    2013-03-01

    Taking the moon jellyfish Aurelia sp. commonly found in our coastal sea areas as test object, its genome DNA was extracted, the partial sequences of mt-16S rDNA (650 bp) and mt-COI (709 bp) were PCR-amplified, and, after purification, cloning, and sequencing, the sequences obtained were BLASTn-analyzed. The sequences of greater difference with those of the other jellyfish were chosen, and eight specific primers for the mt-16S rDNA and mt-COI of Aurelia sp. were designed, respectively. The specificity test indicated that the primer AS3 for the mt-16S rDNA and the primer AC3 for the mt-COI were excellent in rapidly detecting the target jellyfish from Rhopilema esculentum, Nemopilema nomurai, Cyanea nozakii, Acromitus sp., and Aurelia sp., and thus, the techniques for the molecular identification and detection of moon jellyfish were preliminarily established, which could get rid of the limitations in classical morphological identification of Aurelia sp. , being able to find the Aurelia sp. in the samples more quickly and accurately.

  5. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  6. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing.

    PubMed

    Kruse, Alexandra Y C; Kvich, Lasse; Eickhardt, Steffen; Omland, Lars H; Bjarnsholt, Thomas; Moser, Claus

    2015-06-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii-specific PCR and immunohistochemistry. The patient was later diagnosed with HIV/AIDS. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  8. [Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].

    PubMed

    Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun

    2015-08-01

    To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (P<0.05). Of the 20 tissue samples from human corps found in water, 15 were found positive for algae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.

  9. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  10. Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Sasaki, Y; Yamamoto, K; Amimoto, K; Kojima, A; Ogikubo, Y; Norimatsu, M; Ogata, H; Tamura, Y

    2001-12-01

    Amplification of the 16S-23S rDNA spacer region by polymerase chain reaction (PCR) was used for the rapid detection of Clostridium chauvoei and C septicum. To assess its specificity, PCR was performed with total DNA from 42 strains of clostridia and three strains of other genera. PCR products specific to C chauvoei or to C septicum were generated from homologous cultures only. Clostridium chauvoer-specific or C septicum-specific amplicons were also generated from tissues of cows experimentally infected with C chauvoei or C septicum and in DNA samples from cows clinically diagnosed as having blackleg or malignant oedema. These results suggest that a species-specific PCR may be useful for the rapid and direct detection of C chauvoei and C septicum in clinical specimens.

  11. Usefulness of 16S rDNA sequencing for the diagnosis of infective endocarditis caused by Corynebacterium diphtheriae.

    PubMed

    Pathipati, Padmaja; Menon, Thangam; Kumar, Naveen; Francis, Thara; Sekar, Prem; Cherian, Kotturathu Mammen

    2012-08-01

    We report a rare case of infective endocarditis caused by Corynebacterium diphtheriae in an 8-year-old boy, 2 years after a right ventricular outflow tract reconstruction with a bovine Contegra valved conduit. The patient recovered well after an RV-PA conduit enblock explantation and replacement with an aortic homograft with antibiotic treatment. All bacteriological cultures of excised tissue and blood were negative. The aetiological agent was identified as C. diphtheriae subsp. gravis by 16s rDNA sequencing.

  12. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  13. Bifidobacterial diversity determined by culturing and by 16S rDNA sequence analysis in feces and mucosa from ten healthy Spanish adults.

    PubMed

    Delgado, Susana; Suárez, Adolfo; Mayo, Baltasar

    2006-10-01

    This study aimed to identify the numerically predominant bifidobacterial species in feces and mucosa of healthy Spanish people and to determine their phenotypic and genetic diversity. To this end, both traditional culturing and molecular methods were used. A set of 196 bifidobacterial colonies was identified from the counting plates by sequencing of a stretch of their 16S rRNA gene. Representative isolates were phenotypically characterized by their carbohydrate fermentation profile and genotypically typed by RAPD-PCR. Four 16S rDNA libraries composed of 113 clones from two fecal and two mucosal samples were independently analyzed. Seven bifidobacterial species were identified by culturing, and six by 16S rDNA analysis. Both methodologies showed Bifidobacterium longum and B. pseudocatenulatum to predominate in feces and mucosa, although high interindividual variability was noted. High phenotypic variation was observed in the fermentation profile of different isolates from the same species. RAPD analysis showed that two to five strains made up the subjects' personal bifidobacterial communities. The identification of the dominant bifidobacterial species could be useful for the rational design, use, and evaluation of probiotics in our community.

  14. A 16S rDNA-based nested PCR protocol to detect Campylobacter gracilis in oral infections.

    PubMed

    Siqueira, José Freitas; Rôças, Isabela das Neves

    2003-01-01

    The aim of this study was to describe a 16S rDNA-based nested polymerase chain reaction (nPCR) assay to investigate the occurrence of Campylobacter gracilis in oral infections. Samples were collected from ten infected root canals, ten cases of acute periradicular abscesses and eight cases of adult marginal periodontitis. DNA extracted from the samples was initially amplified using universal 16S rDNA primers. A second round of amplification used the first PCR products to detect C. gracilis using oligonucleotide primers designed from species-specific 16S rDNA signature sequences. The nPCR assay used in this study showed a detection limit of 10 C. gracilis cells and no cross-reactivity was observed with nontarget bacteria. C. gracilis was detected in the three types of oral infections investigated - 4/10 infected root canals; 2/10 acute periradicular abscesses; and 1/8 subgingival specimens from adult periodontitis. The method proposed in this study showed both high sensitivity and high specificity to directly detect C. gracilis in samples from root canal infections, abscesses, and subgingival plaque. Our findings confirmed that C. gracilis may be a member of the microbiota associated with distinct oral infections, and its specific role in such diseases requires further clarification.

  15. [The use of 16S rDNA sequencing in species diversity analysis for sputum of patients with ventilator-associated pneumonia].

    PubMed

    Yang, Xiaojun; Wang, Xiaohong; Liang, Zhijuan; Zhang, Xiaoya; Wang, Yanbo; Wang, Zhenhai

    2014-05-01

    To study the species and amount of bacteria in sputum of patients with ventilator-associated pneumonia (VAP) by using 16S rDNA sequencing analysis, and to explore the new method for etiologic diagnosis of VAP. Bronchoalveolar lavage sputum samples were collected from 31 patients with VAP. Bacterial DNA of the samples were extracted and identified by polymerase chain reaction (PCR). At the same time, sputum specimens were processed for routine bacterial culture. The high flux sequencing experiment was conducted on PCR positive samples with 16S rDNA macro genome sequencing technology, and sequencing results were analyzed using bioinformatics, then the results between the sequencing and bacteria culture were compared. (1) 550 bp of specific DNA sequences were amplified in sputum specimens from 27 cases of the 31 patients with VAP, and they were used for sequencing analysis. 103 856 sequences were obtained from those sputum specimens using 16S rDNA sequencing, yielding approximately 39 Mb of raw data. Tag sequencing was able to inform genus level in all 27 samples. (2) Alpha-diversity analysis showed that sputum samples of patients with VAP had significantly higher variability and richness in bacterial species (Shannon index values 1.20, Simpson index values 0.48). Rarefaction curve analysis showed that there were more species that were not detected by sequencing from some VAP sputum samples. (3) Analysis of 27 sputum samples with VAP by using 16S rDNA sequences yielded four phyla: namely Acitinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. With genus as a classification, it was found that the dominant species included Streptococcus 88.9% (24/27), Limnohabitans 77.8% (21/27), Acinetobacter 70.4% (19/27), Sphingomonas 63.0% (17/27), Prevotella 63.0% (17/27), Klebsiella 55.6% (15/27), Pseudomonas 55.6% (15/27), Aquabacterium 55.6% (15/27), and Corynebacterium 55.6% (15/27). (4) Pyrophosphate sequencing discovered that Prevotella, Limnohabitans, Aquabacterium

  16. Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR.

    PubMed

    Lazarevic, Vladimir; Gaïa, Nadia; Girard, Myriam; Schrenzel, Jacques

    2016-04-23

    Identification of unexpected taxa in 16S rRNA surveys of low-density microbiota, diluted mock communities and cultures demonstrated that a variable fraction of sequence reads originated from exogenous DNA. The sources of these contaminants are reagents used in DNA extraction, PCR, and next-generation sequencing library preparation, and human (skin, oral and respiratory) microbiota from the investigators. For in silico removal of reagent contaminants, a pipeline was used which combines the relative abundance of operational taxonomic units (OTUs) in V3-4 16S rRNA gene amplicon datasets with bacterial DNA quantification based on qPCR targeting of the V3 segment of the 16S rRNA gene. Serially diluted cultures of Escherichia coli and Staphylococcus aureus were used for 16S rDNA profiling, and DNA from each of these species was used as a qPCR standard. OTUs assigned to Escherichia or Staphylococcus were virtually unaffected by the decontamination procedure, whereas OTUs from Pseudomonas, which is a major reagent contaminant, were completely or nearly completely removed. The decontamination procedure also attenuated the trend of increase in OTU richness in serially diluted cultures. Removal of contaminant sequences derived from reagents based on use of qPCR data may improve taxonomic representation in samples with low DNA concentration. Using the described pipeline, OTUs derived from cross-contamination of negative extraction controls were not recognized as contaminants and not removed from the sample dataset.

  17. Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.

    PubMed

    Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S

    2013-07-15

    Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products.

  18. Molecular analysis of the 16S-23S rDNA internal spacer region (ISR) and truncated tRNA(Ala) gene segments in Campylobacter lari.

    PubMed

    Hayashi, K; Tazumi, A; Nakanishi, S; Nakajima, T; Matsubara, K; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-06-01

    Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.

  19. 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull.

    PubMed

    Inbakandan, D; Murthy, P Sriyutha; Venkatesan, R; Khan, S Ajmal

    2010-11-01

    Marine bacteria from the hull of a ship in the form of biofilms or microfouling were isolated, cultured, and identified by phylogenetic analysis using 16S rDNA sequences. With an average length of 946 bp, all the 16 sequences were classified using the Ribosomal database project (RDP) and were submitted to the National Center for Biotechnology Information. Phylogenetic analysis using 16S rDNA sequences indicated that the 16 strains belonged to the Firmicutes (IK-MB6 Exiguobacterium aurantiacum, IK-MB7 Exiguobacterium arabatum, IK-MB8 Exiguobacterium arabatum, IK-MB9 Jeotgalibacillus alimentarius, IK-MB10 Bacillus megaterium, IK-MB11 Bacillus pumilus, IK-MB12 Bacillus pumilus, IK-MB13 Bacillus pumilus, IK-MB14 Bacillus megaterium), High GC, Gram-positive bacteria (IK-MB2 Micrococcus luteus, IK-MB5 Micrococcus luteus, IK-MB16 Arthrobacter mysorens), G-Proteobacteria (IK-MB3 Halomonas aquamarina, IK-MB15 Halotalea alkalilenta), CFB group bacteria (IK-MB1 Myroides odoratimimus), and Enterobacteria (IK-MB4 Proteus mirabilis). Among the 16 strains, representatives of the Firmicutes were dominant (56.25%) compared to the high GC, Gram-positive bacteria (18.75%), G-Proteobacteria (12.5%), CFB group bacteria (6.25%), and Enterobacteria (6.25%). Analysis revealed that majority of marine species found in marine biofilm are of anthropogenic origin.

  20. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  1. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  2. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory.

  3. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    PubMed

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  4. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem.

    PubMed

    Rieu-Lesme, Françoise; Delbès, Céline; Sollelis, Lauriane

    2005-11-01

    Human feces collected from 10 healthy teenagers was analyzed for the presence of Crenarchaeota. After a first polymerase chain reaction (PCR) with Archaea-specific primers, a nested real-time PCR was performed using Crenarchaeota-specific primers. Real-time Crenarchaeotal PCR products detected from four subjects were cloned and the sequencing revealed that most of the partial 16S rRNA gene sequences were highly similar (> or = 97% homology) to sequences affiliated to the Sulfolobus group of the Crenarchaeota phylum. Our findings suggest for the first time that Crenarchaeota might be present in the microbiota of the human digestive ecosystem in which this phylum has never been found yet.

  5. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  6. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  7. Algae–bacteria association inferred by 16S rDNA similarity in established microalgae cultures

    PubMed Central

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-01-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga–Flavobacterium–Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  8. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  9. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  10. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K‐t; Fung, A M Y; Woo, G K S; Chan, K‐m; Que, T‐l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non‐duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  11. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy.

    PubMed

    Coolen, Marco J L; Talbot, Helen M; Abbas, Ben A; Ward, Christopher; Schouten, Stefan; Volkman, John K; Damsté, Jaap S Sinninghe

    2008-07-01

    Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in (13)C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake approximately 3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake.

  12. Characteristics and diversity of endophytic bacteria in moso bamboo (Phyllostachys edulis) based on 16S rDNA sequencing.

    PubMed

    Liu, Fang; Yuan, Zongsheng; Zhang, Xintao; Zhang, Guofang; Xie, Baogui

    2017-06-10

    To understand the diversity and distribution of endophytic bacteria in moso bamboo (Phyllostachys edulis), we used 16S rDNA sequencing to investigate the characteristics and diversity of endophytic bacteria in different moso bamboo tissues. After 454 pyrosequencing, we obtained 141,269 sequences from seven moso bamboo tissue samples. The taxonomic origins of unique sequences were identified using RDP classifier. The results showed that these sequences belonged to 26 bacterial orders, including the Actinomycetales, Rickettsiales, Burkholderiales, Enterobacteriales, and Rhizobiales. Among these, Enterobacteriales was widely found in all bamboo tissues. Endophytic bacterial communities differed between the moso bamboo shoot and pole. With continuous growth and development, the number of endophytic species in the moso bamboo pole increased gradually.

  13. Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16S rDNA sequencing.

    PubMed

    Yilmaz, Fadime; Orman, Nazlı; Serim, Gamze; Kochan, Ceren; Ergene, Aysun; Icgen, Bulent

    2013-12-01

    Four Staphylococcus isolates having both multidrug- and multimetal-resistant ability were isolated from surface water. Further identification of the isolates was obtained through biochemical tests and 16S rDNA gene sequencing. One methicillin-resistant and two methicillin-sensitive isolates were determined as Staphylococcus aureus. The other isolate was identified as Staphylococcus warneri. The antibiotic and heavy metal resistance profiles of the Staphylococcus isolates were determined by using 26 antibiotics and 17 heavy metals. S. aureus isolates displayed resistance to most of the β-lactam antibiotics tested. All Staphylococcus isolates were resistant to heavy metals including silver, lithium, and barium. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  14. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  15. Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotizing enterocolitis.

    PubMed Central

    Millar, M R; Linton, C J; Cade, A; Glancy, D; Hall, M; Jalal, H

    1996-01-01

    The purpose of the present study was to determine the extent to which bacteria not detected by culture contribute to the microbial flora of the bowel of preterm infants with and without neonatal necrotizing enterocolitis (NEC). Fecal samples from 32 preterm infants in special care baby units including samples from 10 infants with NEC were examined by culture and PCR amplification of the 16S rRNA gene (rDNA). The 16S rDNA V3 region was amplified with eubacterial primers, and the amplification products derived from the fecal sample DNA were compared with the products from individual cultured isolates by PCR and denaturing gradient gel electrophoresis (PCR-DGGE), allowing the DNA from uncultured bacteria to be identified. For the 22 infants without NEC weekly samples were examined for a mean of 5.3 postnatal weeks. The total number of types detected by culture combined with PCR-DGGE was 10.1 per infant, of which PCR-DGGE contributed 10.4% of the types identified. Additional types detected by PCR-DGGE were found in 14 (63.6%) of the 22 infants. The majority of the sequences associated with uncultured bacteria showed > 90% 16S rDNA sequence identity with sequences from culturable human enteric flora, and all were found in single infants with the exception of sequences indistinguishable by DGGE from seven infants. These sequences showed > 90% sequence identity with the 16S rDNA of Streptococcus salivarius and may have been derived from upper gastrointestinal or respiratory tract flora. In the present study uncultured bacteria detected by PCR-DGGE were no more frequent in fecal samples from infants with NEC than in samples from infants without NEC, although these findings do not exclude the possibility of unrecognized bacteria associated with the mucosa of the small intestine of infants with NEC. PMID:8880510

  16. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).

  17. Utility of 16S rRNA PCR performed on clinical specimens in patient management.

    PubMed

    Akram, A; Maley, M; Gosbell, I; Nguyen, T; Chavada, R

    2017-04-01

    Broad-range 16S rRNA PCR can be used for the detection and identification of bacteria from clinical specimens in patients for whom there is a high suspicion of infection and cultures are negative. The aims of this study were (1) to compare 16S rRNA PCR results with microbiological culture results, (2) to assess the utility of 16S rRNA PCR with regard to antimicrobial therapy, and (3) to compare the yield of 16S rRNA PCR for different types of clinical specimen and to perform a cost analysis of the test. A retrospective study was performed on different clinical specimens which had 16S performed over 3 years (2012-2015). Standard microbiological cultures were performed on appropriate media, as per the laboratory protocol. Patient clinical and microbiological data were obtained from the electronic medical records and laboratory information system, respectively. 16S rRNA PCR was performed in a reference laboratory using a validated method for amplification and sequencing. The outcomes assessed were the performance of 16S rRNA PCR, change of antimicrobials (rationalization, cessation, or addition), and duration of therapy. Concordance of 16S rRNA PCR with bacterial cultures was also determined for tissue specimens. Thirty-two patients were included in the study, for whom an equal number of specimens (n=32) were sent for 16S rRNA PCR. 16S rRNA PCR could identify an organism in 10 of 32 cases (31.2%), of which seven were culture-positive and three were culture-negative. The sensitivity was 58% (confidence interval (CI) 28.59-83.5%) and specificity was 85% (CI 61.13-96%), with a positive predictive value of 70% (CI 35.3-91.9%) and negative predictive value of 77.2% (CI 54.17-91.3%). Antimicrobial therapy was rationalized after 16S rRNA PCR results in five patients (15.6%) and was ceased in four based on negative results (12.5%). Overall the 16S rRNA PCR result had an impact on antimicrobial therapy in 28% of patients (9/32). The highest concordance of 16S rRNA PCR with

  18. Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants.

    PubMed

    Poitelon, Jean-Baptiste; Joyeux, Michel; Welté, Bénédicte; Duguet, Jean-Pierre; Prestel, Eric; DuBow, Michael S

    2010-02-01

    We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer's tap.

  19. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing.

    PubMed

    Jordan, Jeanne A; Durso, Mary Beth; Butchko, Allyson R; Jones, Judith G; Brozanski, Beverly S

    2006-07-01

    Although the rate of early onset sepsis in the near-term neonate is low (one to eight of 1,000 cases), the rate of mortality and morbidity is high. As a result, infants receive multiple, broad-spectrum antibiotic therapy, many for up to 7 days despite blood cultures showing no growth. Maternal intrapartum antibiotic prophylaxis and small blood volume collections from infants are cited as reasons for the lack of confidence in negative culture results. Incorporating an additional, more rapid test could facilitate a more timely diagnosis in these infants. To this end, a 16S rDNA polymerase chain reaction (PCR) assay was compared to blood culturing for use as a tool in evaluating early onset sepsis. Of 1,751 neonatal intensive care unit admissions that were screened, 1,233 near-term infants met inclusion criteria. Compared to culture, PCR demonstrated excellent analytical specificity (1,186 of 1,216, 97.5%) and negative predictive value (1,186 of 1,196, 99.2%); however, PCR failed to detect a significant number of culture-proven cases. These findings underscore the cautionary stance that should be taken at this time when considering the use of a molecular amplification test for diagnosing neonatal sepsis. The experience gained from this study illustrates the need for changes in sample collection and preparation techniques so as to improve analytical sensitivity of the assay.

  20. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra

    PubMed Central

    Ota-Tsuzuki, C.; Brunheira, A.T.P.; Mayer, M.P.A.

    2008-01-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes. PMID:24031274

  1. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra.

    PubMed

    Ota-Tsuzuki, C; Brunheira, A T P; Mayer, M P A

    2008-10-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes.

  2. [Sequence analysis of 16S rDNA gene of endosymbiont of Acanthamoeba sp. CB/S1 isolated from soil].

    PubMed

    Xuan, Ying-hua; Cui, Chun-quan; Zheng, Shan-zi

    2011-04-30

    The endosymbiont of Acanthamoeba sp. CB/SI was identified by orcein-carmine staining and 16S rDNA sequence analysis. The endosymbiont bacteria were rod-shaped and darkly stained, and irregularly localized within the cytoplasm. The length of the 16S rDNA was 1534 bp and its DNA sequence was closely related to those of Candidatus Amoebophilus asiaticus and Acanthamoeba sp. KA/E21 with 98% homology. Phylogenetic analysis showed that the endosymbiont of CB/SI, the endosymbiont of KA/E21, Candidatus Amoebophilus asiaticus, the endosymbiont of Ixodes scapularis, and the endosymbiont of Encarsia pergandiella constitute a monophyletic lineage in phylogenetic tree.

  3. Distribution and 16S rDNA sequences of Argas monachus (Acari: Argasidae), a soft tick parasite of Myiopsitta monachus (Aves: Psittacidae).

    PubMed

    Mastropaolo, Mariano; Turienzo, Paola; Di Iorio, Osvaldo; Nava, Santiago; Venzal, José M; Guglielmone, Alberto A; Mangold, Atilio J

    2011-11-01

    Specimens of Argas monachus Keirans et al. were collected from Myiopsitta monachus nests in 42 localities in Argentina and Paraguay from 2006 to 2010. A list of localities where this tick has been found is presented. 16S rDNA sequences of specimens of A. monachus from different localities were compared to confirm whether they belong to the same specific taxon. Argas monachus is present in the phytogeographic provinces of Chaco, Espinal, and Monte, but not in the Pampa (all from de Chaco Domain) where the host is well distributed. No differences were found among 16S rDNA sequences of geographically distant specimens.

  4. Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood.

    PubMed

    Mühl, Helge; Kochem, Anna-Julia; Disqué, Claudia; Sakka, Samir G

    2010-01-01

    Universal 16S rRNA gene polymerase chain reaction (PCR) is a promising means of detecting bacteremia. Among other factors, the PCR reagents play a prominent role for obtaining a high sensitivity of detection. The reagents are ideally optimized with respect to the amplifying activity and absence of contaminating DNA. In this study, it was shown in a universal 16S rDNA real-time PCR assay that commercial PCR reagents can vary greatly among each other in these characters. Only 1 of the 5 reagents tested met the criteria of sensitive detection of pathogen DNA with a minimum of false-positive results. The reagent was validated by the detection of pathogens at low titers using bacterial DNA extracted from blood that was spiked with various Gram-positive and Gram-negative bacteria.

  5. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing.

    PubMed

    Wolcott, Randall D; Hanson, John D; Rees, Eric J; Koenig, Lawrence D; Phillips, Caleb D; Wolcott, Richard A; Cox, Stephen B; White, Jennifer S

    2016-01-01

    The extent to which microorganisms impair wound healing is an ongoing controversy in the management of chronic wounds. Because the high diversity and extreme variability of the microbiota between individual chronic wounds lead to inconsistent findings in small cohort studies, evaluation of a large number of chronic wounds using identical sequencing and bioinformatics methods is necessary for clinicians to be able to select appropriate empiric therapies. In this study, we utilized 16S rDNA pyrosequencing to analyze the composition of the bacterial communities present in samples obtained from patients with chronic diabetic foot ulcers (N = 910), venous leg ulcers (N = 916), decubitus ulcers (N = 767), and nonhealing surgical wounds (N = 370). The wound samples contained a high proportion of Staphylococcus and Pseudomonas species in 63 and 25% of all wounds, respectively; however, a high prevalence of anaerobic bacteria and bacteria traditionally considered commensalistic was also observed. Our results suggest that neither patient demographics nor wound type influenced the bacterial composition of the chronic wound microbiome. Collectively, these findings indicate that empiric antibiotic selection need not be based on nor altered for wound type. Furthermore, the results provide a much clearer understanding of chronic wound microbiota in general; clinical application of this new knowledge over time may help in its translation to improved wound healing outcomes.

  6. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.

    PubMed Central

    Black, W C; Piesman, J

    1994-01-01

    Ticks are parasitiform mites that are obligate hematophagous ectoparasites of amphibians, reptiles, birds, and mammals. A phylogeny for tick families, subfamilies, and genera has been described based on morphological characters, life histories, and host associations. To test the existing phylogeny, we sequenced approximately 460 bp from the 3' end of the mitochondrial 16S rRNA gene (rDNA) in 36 hard- and soft-tick species; a mesostigmatid mite, Dermanyssus gallinae, was used as an outgroup. Phylogenies derived using distance, maximum-parsimony, or maximum-likelihood methods were congruent. The existing phylogeny was largely supported with four exceptions. In hard ticks (Ixodidae), members of Haemaphysalinae were monophyletic with the primitive Amblyomminae and members of Hyalomminae grouped within the Rhipicephalinae. In soft ticks (Argasidae), the derived phylogeny failed to support a monophyletic relationship among members of Ornithodorinae and supported placement of Argasinae as basal to the Ixodidae, suggesting that hard ticks may have originated from an Argas-like ancestor. Because most Argas species are obligate bird octoparasites, this result supports earlier suggestions that hard ticks did not evolve until the late Cretaceous. PMID:7937832

  7. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  8. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR.

    PubMed

    Farrell, D J

    1999-02-01

    Certain strains of Neisseria subflava and Neisseria cinerea are known to produce false-positive results with the AMPLICOR Neisseria gonorrhoeae PCR (Roche Diagnostic Systems, Branchburg, N.J.). The analytical sensitivity and analytical specificity of three PCR tests were assessed with 3 geographically diverse N. gonorrhoeae strains and 30 non-N. gonorrhoeae Neisseria spp. The sensitivities of the in-house nested cppB gene and the 16S rRNA PCR methods were greater than that of the AMPLICOR N. gonorrhoeae PCR with purified DNA from all 3 N. gonorrhoeae strains. Six of 14 clinical strains of N. subflava (1 from a vaginal swab, 5 from respiratory sites) produced false-positive AMPLICOR N. gonorrhoeae PCR results and were negative by the two other PCR methods. When applied to 207 clinical specimens selected from a population with a high prevalence ( approximately 9%) of infection, the results for 15 of 96 (15.6%) AMPLICOR-positive specimens and 14 of 17 (82.3%) AMPLICOR-equivocal specimens were not confirmed by the more sensitive nested cppB PCR method. Only 2 of 94 (2.1%) of AMPLICOR N. gonorrhoeae PCR-negative specimens from the same population tested positive by the nested cppB method. These results suggest that for this population the AMPLICOR N. gonorrhoeae PCR test is suitable as a screening test only and all positive results should be confirmed by a PCR method that is more specific and at least as sensitive. This study also illustrates that caution should be used when introducing commercially available nucleic acid amplification-based diagnostic tests into the regimens of tests used for populations not previously tested with these products.

  9. Identification by 16S rDNA fragment amplification and determination of genetic diversity by random amplified polymorphic DNA analysis of Pasteurella pneumotropica isolated from laboratory rodents.

    PubMed

    Kodjo, A; Villard, L; Veillet, F; Escande, F; Borges, E; Maurin, F; Bonnod, J; Richard, Y

    1999-02-01

    Pasteurella pneumotropica is an opportunistic bacterium frequently isolated from colonies of various laboratory rodents. Identification of this species, including its differentiation into two distinct biotypes (Jawetz and Heyl), is usually based on the use of conventional bacteriologic methods. In this study, a 16S rDNA fragment amplification procedure was developed for use as an alternative method for identification and differentiation of P. pneumotropica. Polymerase chain reaction (PCR) products were two distinctive fragments of 937 and 564 bp specific for biotypes Jawetz and Heyl, respectively. Specificity of PCR products could be achieved by EcoRI cleavage, leading to 596 plus 341-bp and 346 plus 218-bp fragments for each of the amplification products. Use of this procedure confirmed identification of 34 field isolates and allowed definitive identification of some strains that could not have been done by use of bacteriologic examinations. Field isolates subjected to random amplified polymorphic DNA (RAPD) analysis had high genetic diversity among biotype Jawetz strains in contrast to biotype Heyl strains. In conclusion, RAPD could represent an additional means for identification of ambiguous strains of biotype Heyl and a valuable epidemiologic tool for identification of biotype Jawetz strains of P. pneumotropica.

  10. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  11. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries.

    PubMed

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2015-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis.

  12. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  13. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  14. Validation of the 16S rDNA and COI DNA barcoding technique for rapid molecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae).

    PubMed

    Yang, Qianqian; Zhao, Shuo; Kucerová, Zuzana; Stejskal, Václav; Opit, George; Qin, Meng; Cao, Yang; Li, Fujun; Li, Zhihong

    2013-02-01

    Psocids are serious storage pests, and their control is hampered by the fact that different species respond differently to insecticides used for the control of stored-product insect pests. Additionally, psocids of genus Liposcelis that are commonly associated with stored-products are difficult to identify using morphological characteristics. The goal of this study was to validate molecular identification of stored-product psocids of genus Liposcelis based on 16S rDNA and cytochrome oxidase I (COI) DNA barcoding. Unidentified liposcelids (Liposcelis DK) imported from Denmark to China were compared with 14 population samples of seven common species (L. bostrychophila, L. brunnea, L. corrodens, L. decolor, L. entomophila, L. mendax, and L. paeta). The explored species (DK) liposcelids shared >98% sequence similarity for both the 16S rDNA and COI genes with the reference L. corrodens samples (98.32 and 98.94% for 16S rDNA and COI, respectively). A neighbor-joining tree revealed that the explored DK sample and the reference L. corrodens samples belong to the same clade. These molecular results were verified by morphological identification of DK specimens, facilitated by SEM microphotography. The DNA barcoding method and the neighbor-joining phylogenetic analyses indicated that both the 16S rDNA and COI genes were suitable for Liposcelis species identification. DNA barcoding has great potential for use in fast and accurate liposcelid identification.

  15. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library.

    PubMed

    Manichanh, Chaysavanh; Chapple, Charles E; Frangeul, Lionel; Gloux, Karine; Guigo, Roderic; Dore, Joel

    2008-09-01

    The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.

  16. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval.

    PubMed

    Selenska-Pobell, S; Kampf, G; Hemming, K; Radeva, G; Satchanska, G

    2001-06-01

    The bacterial diversity in two uranium waste piles was studied. Total DNA was recovered from a large number of soil samples collected from different sites and depths in the piles using two procedures for direct lysis. Significant differences in the bacterial composition of the samples were revealed by the use of rep-APD, RISA and 16S ARDREA. The 16S rDNA analyses showed that the uranium wastes were dominated by Acidithiobacillusferrooxidans and by several Pseudomonas species classified in the gamma-subdivision of the Proteobacteria. The three kinds of A. ferrooxidans 16S and IGS rDNA specific fragments that were found corresponded to the three phylogenetic groups recognised in this species. This microdiversity probably reflects the genetic adaptation of the uranium waste strains to different concentrations of heavy metals.

  17. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo.

    PubMed

    Paul, S S; Deb, S M; Dey, A; Somvanshi, S P S; Singh, D; Rathore, R; Stiverson, J

    2015-10-01

    The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance.

  18. Lactic acid bacterial diversity in the traditional mexican fermented dough pozol as determined by 16S rDNA sequence analysis.

    PubMed

    Escalante, A; Wacher, C; Farrés, A

    2001-02-28

    The lactic acid bacteria diversity of pozol, a Mexican fermented maize dough, was studied using a total DNA extraction and purification procedure and PCR amplification of 16S rDNA for gram-positive and related bacterial groups. Thirty-six clones were obtained and sequenced to 650 nucleotides. These partial sequences were identified by submission to the non-redundant nucleotide database of NCBI. The identified sequences were aligned with reference sequences of the closest related organisms. This analysis indicated that only 14 sequences were unique clones and these were identified as Lactococcus lactis, Streptococcus suis, Lactobacillus plantarum, Lact. casei, Lact. alimentarium, and Lact. delbruekii and Clostridium sp. Two non-ribosomal sequences were also detected. Unlike other environments analyzed with this molecular approach where many unidentified microorganisms are found, the identity of most sequences could be established as lactic acid bacteria, indicating that this is the main group among the gram-positive bacteria in pozol. Use of this molecular method permitted detection of lactic acid bacteria different from those previously isolated and identified by culture techniques

  19. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations.

  20. Self-organizing maps: a tool to ascertain taxonomic relatedness based on features derived from 16S rDNA sequence.

    PubMed

    Raje, D V; Purohit, H J; Badhe, Y P; Tambe, S S; Kulkarni, B D

    2010-12-01

    Exploitation of microbial wealth, of which almost 95% or more is still unexplored, is a growing need. The taxonomic placements of a new isolate based on phenotypic characteristics are now being supported by information preserved in the 16S rRNA gene. However, the analysis of 16S rDNA sequences retrieved from metagenome, by the available bioinformatics tools, is subject to limitations. In this study, the occurrences of nucleotide features in 16S rDNA sequences have been used to ascertain the taxonomic placement of organisms. The tetra- and penta-nucleotide features were extracted from the training data set of the 16S rDNA sequence, and was subjected to an artificial neural network (ANN) based tool known as self-organizing map (SOM), which helped in visualization of unsupervised classification. For selection of significant features, principal component analysis (PCA) or curvilinear component analysis (CCA) was applied. The SOM along with these techniques could discriminate the sample sequences with more than 90% accuracy, highlighting the relevance of features. To ascertain the confidence level in the developed classification approach, the test data set was specifically evaluated for Thiobacillus, with Acidiphilium, Paracocus and Starkeya, which are taxonomically reassigned. The evaluation proved the excellent generalization capability of the developed tool. The topology of genera in SOM supported the conventional chemo-biochemical classification reported in the Bergey manual.

  1. Estimation of the Relative Abundance of Different Bacteroides and Prevotella Ribotypes in Gut Samples by Restriction Enzyme Profiling of PCR-Amplified 16S rRNA Gene Sequences

    PubMed Central

    Wood, Jacqueline; Scott, Karen P.; Avguštin, Gorazd; Newbold, C. James; Flint, Harry J.

    1998-01-01

    We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples. PMID:9758785

  2. Phylogenetic relationships among the Braconidae (Hymenoptera: Ichneumonoidea) inferred from partial 16S rDNA, 28S rDNA D2, 18S rDNA gene sequences and morphological characters.

    PubMed

    Shi, M; Chen, X X; van Achterberg, C

    2005-10-01

    Phylogenetic relationships among the Braconidae were examined using homologous 16S rDNA, 28S rDNA D2 region, and 18S rDNA gene sequences and morphological data using both PAUP* 4.0 and MRBAYES 3.0B4 from 88 in-group taxa representing 35 subfamilies. The monophyletic nature of almost all subfamilies, of which multiple representatives are present in this study, is well-supported except for two subfamilies, Cenocoelinae and Neoneurinae that should probably be treated as tribal rank taxa in the subfamily Euphorinae. The topology of the trees generated in the present study supported the existence of three large generally accepted lineage or groupings of subfamilies: two main entirely endoparasitic lineages of this family, referred to as the "helconoid complex" and the "microgastroid complex," and the third "the cyclostome." The Aphidiinae was recovered as a member of the non-cyclostomes, probably a sister group of Euphorinae or Euphorinae-complex. The basal position of the microgastroid complex among the non-cyclostomes has been found in all our analyses. The cyclostomes were resolved as a monophyletic group in all analyses if two putatively misplaced groups (Mesostoa and Aspilodemon) were excluded from them. Certain well-supported relationships evident in this family from the previous analyses were recovered, such as a sister-group relationships of Alysiinae+Opiinae, of Braconinae+Doryctinae, and a close relationship between Macrocentrinae, Xiphozelinae, Homolobinae, and Charmontinae. The relationships of "Ichneutinae + ((Adeliinae + Cheloninae) + (Miracinae + (Cardiochilinae + Microgastrinae)))" was confirmed within the microgastroid complex. The position of Acampsohelconinae, Blacinae, and Trachypetinae is problematic.

  3. The 16S rDNA Phylogenetic Composition of Bacteria Implicated in Sulfur Redox Cycles and Associated Sulfur Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Bicknell, B. T.; Batts, J. E.; Krouse, H. R.

    2006-12-01

    The reduction of sulfate ion to sulfide species by sulfate reducing bacteria (SRB) is accompanied by sulfur isotope fractionation, measured in terms of changes in the δ^{34}S values for sulfate and sulfide ions relative to a defined standard. In open environments, the S-isotope compositions of sulfate and sulfide can be affected by loss from the system of sulfide species as gaseous H2S, insoluble metal sulfides such as FeS2, organic complexes or by re-oxidation. The S-isotope fractionation accompanying bacterial sulfate reduction in nature is often much larger than the maxima obtained in chemical and bacterial sulfate reduction experiments in the laboratory. One mechanism postulated for the large natural S-isotope selectivity depends on repetitive reduction-oxidation cycles. In turn, this would require a level of tolerance to oxygen by SRB in the sedimentary environment, contrary to laboratory experience with SRB strains. Bird Lake (The Coorong, South Australia) is a small calcareous, evaporative lake, where average Δ^{34}S (δ^{34}Ssulfate - δ^{34}Ssulfide) values for groundwater at 16 of the 27 sites sampled periodically since 1974, vary from 15.0 ‰ to 62.3 ‰ within the range -1.8 ‰ to 70.6 ‰. Wide fluctuations in δ34Ssulfide values at individual sites are the significant factor affecting the variability of Δ^{34}S values. Values for δ18Osulfate are elevated over that of the sulfate source to an unusual extent, reflecting re-oxidation of sulfur species and O- isotope exchange between some of these species and water. One aspect of investigations at Bird Lake was the evaluation of bacterial populations in subsurface sediments and their role in sulfur cycling. To achieve this, microcosms were established with subsurface sediment and incubated under a nitrogen atmosphere, for up to 119 days. These were sampled at various times to determine sulfur species concentrations and sulfur isotope fractionation and to generate 16S rDNA clone libraries. Results

  4. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  5. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.

  6. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  7. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR.

    PubMed

    Corless, C E; Guiver, M; Borrow, R; Edwards-Jones, V; Kaczmarski, E B; Fox, A J

    2000-05-01

    A set of universal oligonucleotide primers specific for the conserved regions of the eubacterial 16S rRNA gene was designed for use with the real-time PCR Applied Biosystems 7700 (TaqMan) system. During the development of this PCR, problems were noted with the use of this gene as an amplification target. Contamination of reagents with bacterial DNA was a major problem exacerbated by the highly sensitive nature of the real-time PCR chemistry. This was compounded by the use of a small amplicon of approximately 100 bases, as is necessary with TaqMan chemistry. In an attempt to overcome this problem, several methodologies were applied. Certain treatments were more effective than others in eliminating the contaminating DNA; however, to achieve this there was a decrease in sensitivity. With UV irradiation there was a 4-log reduction in PCR sensitivity, with 8-methoxypsoralen activity facilitated by UV there was between a 5- and a 7-log reduction, and with DNase alone and in combination with restriction digestion there was a 1.66-log reduction. Restriction endonuclease treatment singly and together did not reduce the level of contaminating DNA. Without the development of ultrapure Taq DNA polymerase, ultrapure reagents, and plasticware guaranteed to be free of DNA, the implementation of a PCR for detection of eubacterial 16S rRNA with the TaqMan system will continue to be problematical.

  8. Genetic variation in 12S and 16S mitochondrial rDNA genes of four geographically isolated populations of Gulf Coast ticks (Acari: Ixodidae).

    PubMed

    Ketchum, H R; Teel, P D; Coates, C J; Strey, O F; Longnecker, M T

    2009-05-01

    Single-strand conformation polymorphism (SSCP) analysis was examined in a 303-bp region of the 16S and 12S mitochondrial rDNA genes to study haplotype frequencies among populations of Gulf Coast ticks collected from Refugio Co., TX, Payne Co., OK, and two sites in Osage Co., KS. Seven haplotypes were identified from the 16S rDNA gene fragment, whereas only two haplotypes were detected from the 12S fragment. Only the results from the 16S rDNA fragment are discussed. Haplotype diversity was greatest in Kansas (site 1), where three of the four haplotypes detected were unique to this site. All Gulf Coast tick populations shared the fourth haplotype. Two haplotypes were determined for Texas and Oklahoma populations, one of which appeared only in Texas, whereas the other was shared. Nei's haplotype diversity (h) indicated that the Texas population was relatively homogeneous (15%), whereas the remaining populations were heterogeneous (42-59%), although the Bonferroni confidence interval found no significant differences (P < 0.05). Nucleotide sequencing of the seven haplotypes and subsequent phylogenetic analysis using neighbor joining showed a monophyletic relationship among these haplotypes. One haplotype, shared by both Oklahoma and Kansas (site 2), was basal to the remaining haplotypes and formed a distinct clade. Two haplotypes, both from Kansas (site 1), formed a unique clade, whereas the remaining four haplotypes were unresolved polytomies.

  9. Structural analysis and genetic variation of the 16S-23S rDNA internal spacer region from Micrococcus luteus strains.

    PubMed

    Haga, S; Hirano, Y; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2003-01-01

    To clone and sequence the 16S-23S ribosomal DNA (rDNA) internal spacer region (ISR) from Micrococcus luteus. The primer pair for 16S-23S rDNA ISR amplified a fragment of about 850 bp in length for two strains, JCM3347 and JCM3348 and a fragment of about 790 bp for a strain, ATCC9341. After sequencing the ISRs were identified by the comparison of the ISRs and the flanking regions of ISR. Although the sequence difference of the ISR occurred at only one position between the two JCM strains, the highly variable length (440 and 370 bp) and sequence similarity (about 40%) were demonstrated between the ISRs of the two JCM strains and a ATCC strain. A CCTCCT sequence was first detected at the 3'-end of the 16S rDNA of the three strains. Moreover, highly similar sequence to the 21-bp region containing a putative rRNA processing site was observed in the ISR of the three strains. Interestingly, no intercistronic tRNAs were demonstrated in the ISRs from the three strains.

  10. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing.

    PubMed

    Zhou, Mi; Rong, Ruichen; Munro, Daniel; Zhu, Chunxia; Gao, Xiang; Zhang, Qi; Dong, Qunfeng

    2013-01-01

    Diabetes mellitus is a major risk factor for chronic periodontitis. We investigated the effects of type 2 diabetes on the subgingival plaque bacterial composition by applying culture-independent 16S rDNA sequencing to periodontal bacteria isolated from four groups of volunteers: non-diabetic subjects without periodontitis, non-diabetic subjects with periodontitis, type 2 diabetic patients without periodontitis, and type 2 diabetic patients with periodontitis. A total of 71,373 high-quality sequences were produced from the V1-V3 region of 16S rDNA genes by 454 pyrosequencing. Those 16S rDNA sequences were classified into 16 phyla, 27 classes, 48 orders, 85 families, 126 genera, and 1141 species-level OTUs. Comparing periodontally healthy samples with periodontitis samples identified 20 health-associated and 15 periodontitis-associated OTUs. In the subjects with healthy periodontium, the abundances of three genera (Prevotella, Pseudomonas, and Tannerella) and nine OTUs were significantly different between diabetic patients and their non-diabetic counterparts. In the subjects carrying periodontitis, the abundances of three phyla (Actinobacteria, Proteobacteria, and Bacteriodetes), two genera (Actinomyces and Aggregatibacter), and six OTUs were also significantly different between diabetics and non-diabetics. Our results show that type 2 diabetes mellitus could alter the bacterial composition in the subgingival plaque.

  11. Investigation of the Effect of Type 2 Diabetes Mellitus on Subgingival Plaque Microbiota by High-Throughput 16S rDNA Pyrosequencing

    PubMed Central

    Munro, Daniel; Zhu, Chunxia; Gao, Xiang; Zhang, Qi; Dong, Qunfeng

    2013-01-01

    Diabetes mellitus is a major risk factor for chronic periodontitis. We investigated the effects of type 2 diabetes on the subgingival plaque bacterial composition by applying culture-independent 16S rDNA sequencing to periodontal bacteria isolated from four groups of volunteers: non-diabetic subjects without periodontitis, non-diabetic subjects with periodontitis, type 2 diabetic patients without periodontitis, and type 2 diabetic patients with periodontitis. A total of 71,373 high-quality sequences were produced from the V1-V3 region of 16S rDNA genes by 454 pyrosequencing. Those 16S rDNA sequences were classified into 16 phyla, 27 classes, 48 orders, 85 families, 126 genera, and 1141 species-level OTUs. Comparing periodontally healthy samples with periodontitis samples identified 20 health-associated and 15 periodontitis-associated OTUs. In the subjects with healthy periodontium, the abundances of three genera (Prevotella, Pseudomonas, and Tannerella) and nine OTUs were significantly different between diabetic patients and their non-diabetic counterparts. In the subjects carrying periodontitis, the abundances of three phyla (Actinobacteria, Proteobacteria, and Bacteriodetes), two genera (Actinomyces and Aggregatibacter), and six OTUs were also significantly different between diabetics and non-diabetics. Our results show that type 2 diabetes mellitus could alter the bacterial composition in the subgingival plaque. PMID:23613868

  12. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE.

    PubMed

    Yu, Jie; Zhou, Xiao-Feng; Yang, Sui-Juan; Liu, Wen-Hong; Hu, Xiu-Fang

    2013-11-01

    Novel specific 16S rDNA-targeted primers were successfully designed and applied to the characterization of endophytic diversity in Dendrobium officinale. Using the popular universal bacterial primers 27f/1492r, the fragments of chloroplast and mitochondrion 16S/18S rDNA were amplified from D. officinale. They shared high nucleotide identity with the chloroplast 16S rDNAs (99-100 %) and with the mitochondrion 18S rDNAs (93-100 %) from various plants, respectively, and both shared 73-86 % identities with the bacterial 16S rDNA sequences in GenBank. The current bacterial universal primers, including 27f/1492r, match well with the chloroplast and mitochondrion 16S/18S rDNAs, which accordingly renders these primers not useful for endophytic diversity analysis. Novel 16S rDNA-targeted primers fM1 (5'-CCGCGTGNRBGAHGAAGGYYYT-3') and rC5 (5'-TAATCCTGTTTGCTCC CCAC-3') were designed, which show good specificity compared to the 16S/18S rDNAs of D. officinale, and perfect universality within bacteria except for Cyanobacteria. The primers fM1/rC5, together with 515f-GC/rC5, which overlaps the whole V4 region of 16S rDNA, were subjected to nested polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the diversity of endophytic bacteria in D. officinale from three different sources in China. The results showed diversities in roots and stems of the plants from all three locations. Altogether, 29 bands were identified as bacteria, with the dominant group being Proteobacteria and the dominant genus being Burkholderia, some of which commonly has the function of nitrogen fixation and thus may play potentially important roles in D. officinale. Therefore, the nested PCR-DGGE method based on the novel primers provides a good alternative for investigating the communities and roles of endophytes in D. officinale.

  13. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  14. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  15. Phylogenetic relationships linking Duttaphrynus (Amphibia: Anura: Bufonidae) species based on 12S and 16S rDNA sequences.

    PubMed

    Pratihar, Suman; Bhattacharya, Manojit; Deuti, Kaushik

    2016-07-01

    Genus Duttaphrynus (Amphibia: Anura: Bufonidae) is endemic to southwestern and southern China and throughout southern Asia. Duttaphrynus phylogeny was also under debate for many years. 12S and 16S rDNAs help us to elucidate Duttaphrynus phylogeny.

  16. Specific Detection of Bradyrhizobium and Rhizobium Strains Colonizing Rice (Oryza sativa) Roots by 16S-23S Ribosomal DNA Intergenic Spacer-Targeted PCR

    PubMed Central

    Tan, Zhiyuan; Hurek, Thomas; Vinuesa, Pablo; Müller, Peter; Ladha, Jagdish K.; Reinhold-Hurek, Barbara

    2001-01-01

    In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial

  17. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Ki, Jang-Seu; Qian, Pei-Yuan

    2008-02-01

    Bacteria, as the most abundant sediment organism, play a major role in the fate of pollutants. Therefore, many pollutant-related bacteria have been studied in harbor sediments, yet the entire bacterial profiles have not been reported. The bacterial diversity and community structures from sediments in Victoria Harbor (Hong Kong), including two polluted (VH and VHW) and two adjacent (open oceanic, TLC; estuary discharge affected, PC) sites, were characterized by analyses of four 16S rDNA clone libraries. Upon comparisons of RFLP patterns from 254 clones in the libraries, 178 unique phylotypes were retrieved. LIBSHUFF and Rarefaction analyses indicated that the sediment bacterial communities at the four sites showed high 16S rDNA richness and were significantly different from each other. Phylogenetic analysis of full-length 16S rDNA revealed 19 bacterial phyla in Victoria Harbor sediments. γ- and δ-proteobacteria, holophaga/acidobacteria, and planctomycetales were recorded in all the libraries. In addition, γ- and δ-proteobacteria were dominant at all sites (33.33-11.67%). Besides these two phyla, ɛ-proteobacteria, firmicutes, aminobacterium, holophaga/acidobacteria and bacteroidetes were judged to be major components of a given library since they constituted 10% or more of the total OTUs of the given library. The cyanobacteria, verrucomicrobia, β-proteobacteria, aminobacterium, chlorofiexi, and candidate division OP1, OP8 were detected in minor proportions in various libraries. A portion of the clones were only distantly related to sequences in the GenBank, suggesting bacteria in Victoria Harbor sediments were unique and diversified.

  18. The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA.

    PubMed

    Tsuboi, Shun; Amemiya, Takashi; Seto, Koji; Itoh, Kiminori; Rajendran, Narasimmalu

    2013-05-01

    Based on quantification and qualification of bacterial 16S rDNA, we verified the bacterial ecological characteristics of surface sediments of Lakes Shinji and Nakaumi, which are representative of coastal lagoons in Japan. Quantification and qualification of the 16S rDNA sequences was carried out using real time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis and non-metric multidimensional scaling, respectively. The results revealed that the copy number per gram of sediment ranged from 8.33 × 10(8) (Lake Nakaumi) to 1.69 × 10(11) (Honjo area), suggesting that bacterial carbon contributed only 0.05-9.64 % of the total carbon content in the samples. Compared with other aquatic environments, these results indicate that sedimentary bacteria are not likely to be important transporters of nutrients to higher trophic levels, or to act as carbon sinks in the lagoons. The bacterial compositions of Lake Shinji and Lake Nakaumi and the Honjo area were primarily influenced by sediment grain sizes and salinity, respectively. Statistical comparisons of the environmental properties suggested that the areas that were oxygen-abundant (Lake Shinji) and at a higher temperature (Honjo area) presented efficient organic matter degradation. The 16S rDNA copy number per gram of carbon and nitrogen showed the same tendency. Consequently, the primary roles of bacteria were degradation and preservation of organic materials, and this was affected by oxygen and temperature. These roles were supported by the bacterial diversity rather than the differences in the community compositions of the sedimentary bacteria in these coastal lagoons.

  19. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA.

    PubMed

    Garbaj, Aboubaker M; Awad, Enas M; Azwai, Salah M; Abolghait, Said K; Naas, Hesham T; Moawad, Ashraf A; Gammoudi, Fatim T; Barbieri, Ilaria; Eldaghayes, Ibrahim M

    2016-11-01

    The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow's milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow's milk (11%), 3 isolates from she-camel's milk (11%), two isolates from goat's milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya.

  20. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  1. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  2. Evaluation of an ethidium monoazide–enhanced 16S rDNA real-time polymerase chain reaction assay for bacterial screening of platelet concentrates and comparison with automated culture

    PubMed Central

    Garson, Jeremy A; Patel, Poorvi; McDonald, Carl; Ball, Joanne; Rosenberg, Gillian; Tettmar, Kate I; Brailsford, Susan R; Pitt, Tyrone; Tedder, Richard S

    2014-01-01

    BACKGROUND Culture-based systems are currently the preferred means for bacterial screening of platelet (PLT) concentrates. Alternative bacterial detection techniques based on nucleic acid amplification have also been developed but these have yet to be fully evaluated. In this study we evaluate a novel 16S rDNA polymerase chain reaction (PCR) assay and compare its performance with automated culture. STUDY DESIGN AND METHODS A total of 2050 time-expired, 176 fresh, and 400 initial-reactive PLT packs were tested by real-time PCR using broadly reactive 16S primers and a “universal” probe (TaqMan, Invitrogen). PLTs were also tested using a microbial detection system (BacT/ALERT, bioMérieux) under aerobic and anaerobic conditions. RESULTS Seven of 2050 (0.34%) time-expired PLTs were found repeat reactive by PCR on the initial nucleic acid extract but none of these was confirmed positive on testing frozen second aliquots. BacT/ALERT testing also failed to confirm any time-expired PLTs positive on repeat testing, although 0.24% were reactive on the first test. Three of the 400 “initial-reactive” PLT packs were found by both PCR and BacT/ALERT to be contaminated (Escherichia coli, Listeria monocytogenes, and Streptococcus vestibularis identified) and 14 additional packs were confirmed positive by BacT/ALERT only. In 13 of these cases the contaminating organisms were identified as anaerobic skin or oral commensals and the remaining pack was contaminated with Streptococcus pneumoniae. CONCLUSION These results demonstrate that the 16S PCR assay is less sensitive than BacT/ALERT and inappropriate for early testing of concentrates. However, rapid PCR assays such as this may be suitable for a strategy of late or prerelease testing. PMID:23701338

  3. Evaluation of an ethidium monoazide-enhanced 16S rDNA real-time polymerase chain reaction assay for bacterial screening of platelet concentrates and comparison with automated culture.

    PubMed

    Garson, Jeremy A; Patel, Poorvi; McDonald, Carl; Ball, Joanne; Rosenberg, Gillian; Tettmar, Kate I; Brailsford, Susan R; Pitt, Tyrone; Tedder, Richard S

    2014-03-01

    Culture-based systems are currently the preferred means for bacterial screening of platelet (PLT) concentrates. Alternative bacterial detection techniques based on nucleic acid amplification have also been developed but these have yet to be fully evaluated. In this study we evaluate a novel 16S rDNA polymerase chain reaction (PCR) assay and compare its performance with automated culture. A total of 2050 time-expired, 176 fresh, and 400 initial-reactive PLT packs were tested by real-time PCR using broadly reactive 16S primers and a "universal" probe (TaqMan, Invitrogen). PLTs were also tested using a microbial detection system (BacT/ALERT, bioMérieux) under aerobic and anaerobic conditions. Seven of 2050 (0.34%) time-expired PLTs were found repeat reactive by PCR on the initial nucleic acid extract but none of these was confirmed positive on testing frozen second aliquots. BacT/ALERT testing also failed to confirm any time-expired PLTs positive on repeat testing, although 0.24% were reactive on the first test. Three of the 400 "initial-reactive" PLT packs were found by both PCR and BacT/ALERT to be contaminated (Escherichia coli, Listeria monocytogenes, and Streptococcus vestibularis identified) and 14 additional packs were confirmed positive by BacT/ALERT only. In 13 of these cases the contaminating organisms were identified as anaerobic skin or oral commensals and the remaining pack was contaminated with Streptococcus pneumoniae. These results demonstrate that the 16S PCR assay is less sensitive than BacT/ALERT and inappropriate for early testing of concentrates. However, rapid PCR assays such as this may be suitable for a strategy of late or prerelease testing. © 2013 American Association of Blood Banks.

  4. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing.

    PubMed

    Armougom, F; Bittar, F; Stremler, N; Rolain, J-M; Robert, C; Dubus, J-C; Sarles, J; Raoult, D; La Scola, B

    2009-09-01

    Recent studies using 16S rRNA gene amplification followed by clonal Sanger sequencing in cystic fibrosis demonstrated that cultured microorganisms are only part of the infecting flora. The purpose of this paper was to compare pyrosequencing and clonal Sanger sequencing on sputum. The sputum of a patient with cystic fibrosis was analysed by culture, Sanger clone sequencing and pyrosequencing after 16S rRNA gene amplification. A total of 4,499 sequencing reads were obtained, which could be attributed to six consensus sequences, but the length of reads leads to fastidious data analysis. Compared to clonal Sanger sequencing and to cultivation results, pyrosequencing recovers greater species richness and gives a more reliable estimate of the relative abundance of bacterial species. The 16S pyrosequencing approach expands our knowledge of the microbial diversity of cystic fibrosis sputum. The current lack of phylogenetic resolution at the species level for the GS 20 sequencing reads will be overcome with the next generation of pyrosequencing apparatus.

  5. [Identification of Lactobacillus and Streptococcus thermophilus by PCR amplification and sequence analysis of 16S rRNA].

    PubMed

    Dong, Yinping; Cui, Shenghui; Li, Fengqin; Yu, Hongxia

    2010-07-01

    To develop a PCR method for identifying the 16S rRNA of Lactobacillus and Streptococcus thermophilus at the species level. Optimizing the method for DNA extraction and the conditions for PCR amplification. Joining the PCR amplification products from 16S rRNA to plasmid puc18-T and detecting the sequence. All 50 isolates recovered from yoghourt products were characterized by 16S rRNA sequence analysis and 7 groups were identified as L. bulgaricus (24 strains), S. thermophilus (12 strains), L. acidophilus (7 strains), L. casei (3 strains), L. delbrueckii (2 strains), L. fermentum (1 strain) and S. lutetiensis (1 strain). 16S rRNA PCR method developed in this research is a sensitive and reliable method for the identification of both Lactobacillus and Streptococcus thermophilus.

  6. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  7. An unusual case of seronegative, 16S PCR positive Brucella infection

    PubMed Central

    Backhouse, Lucy; Rawat, David; Naik, Sandhia; Millar, Michael

    2016-01-01

    Introduction: Brucella is a zoonotic infection commonly diagnosed by isolation of the organism from blood culture or positive serological testing. It is an uncommon cause of a pyrexia of unknown origin in the United Kingdom. Case presentation: We describe the case of a 14-year-old girl with no history of travel who presented with pyrexia, weight loss, arthralgia, multiple splenic abscesses and a subsequent pleural effusion, the latter of which isolated a Brucella species on 16S rRNA PCR. The patient responded well to initiation of treatment for brucellosis and on repeat imaging, after 3 months, the splenic abscesses had resolved. Conclusion: This unique case demonstrates uncommon complications of brucellosis and the challenges of diagnosing the organism, the latter of which can be alleviated by the utilization of molecularbased technologies. This patient had a negative serology result for brucellosis, which highlights the need to interpret serology results with caution in non-endemic regions for brucellosis. PMID:28348782

  8. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis.

    PubMed

    Delgado, Susana; Suárez, Adolfo; Mayo, Baltasar

    2006-04-01

    The aim of this work was to examine by culturing the changes in the total and indicator populations of the feces of two individuals over 1 year and to identify the dominant microbial components of a single sample of feces from each donor. Populations and dominant bacteria from a sample of colonic mucosa from a further individual were also assessed. The culture results were then compared to those obtained with the same samples by 16S rDNA cloning and sequencing. High interindividual variation in representative microbial populations of the gastrointestinal tract (GIT) was revealed by both the culture and the culture-independent techniques. Species belonging to Clostridium clusters (XIVa, IV, and XVIII) predominated in both the fecal and the mucosal samples (except in the mucose cultured isolates), members of Clostridium coccoides cluster XIVa being the most numerous microorganisms. Species of gamma-proteobacteria (Escherichia coli and Shigella spp.), bifidobacteria, and actinobacteria appeared in lower numbers than those of clostridia. From the mucosal cultured sample, only facultative anaerobes and bifidobacteria were recovered, suggesting destruction of the anaerobe population during processing. In accordance with this, the microbial diversity revealed by 16S rDNA sequence analysis was greater than that revealed by culturing. Despite large interindividual differences, distinct human communities may have group-associated GIT microbiota characteristics, such as the low number of Bacteroides seen in the subjects in this study.

  9. Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis.

    PubMed

    Li, Z-Y; Liu, Y

    2006-10-01

    The aim of this study was to investigate the bacterial diversity associated with the sponge Craniella australiensis using a molecular strategy and isolating Actinomycetes with antimicrobial potentials. The bacterial diversity associated with South China Sea sponge C. austrialiensis was assessed using a 16S rDNA clone library alongside restriction fragment length polymorphism and phylogenetic analysis. It was found that the C. austrialiensis-associated bacterial community consisted of alpha, beta and gamma-Proteobacteria, Firmicutes, Bacteroidetes as well as Actinobacterium. Actinomycetes were isolated successfully using seawater medium with sponge extracts. According to the BLAST and phylogenetic analysis based on about 600-bp 16S rDNA sequences, 11 of the representative 23 isolates closely matched the Streptomyces sp. while the remaining 12 matched the Actinomycetales. Twenty Actinomycetes have antimicrobial potentials, of which 15 are found to possess broad-spectrum antimicrobial potentials. The sponge C. austrialiensis-associated bacterial community is very abundant including Proteobacteria, Firmicutes, Bacteroidetes and Actinobacterium while Actinomycetes is not predominant. Artificial seawater medium with sponge extracts is suitable for Actinomycetes isolation. Most of the isolated C. austrialiensis-associated Actinomycetes have a broad spectrum of antimicrobial activity. This study revealed the diversity of the bacterial community and the isolated Actinomycetes with antimicrobial potentials associated with sponge C. australiensis.

  10. Microbial Diversity of Cold-Seep Sediments in Sagami Bay, Japan as Determined by 16S rDNA and Lipid Analyses

    NASA Astrophysics Data System (ADS)

    Fang, J.; Arakawa, S.; Kato, C.; Schouten, S.

    2006-12-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan were characterized by using 16S rDNA sequencing and lipid biomarker analysis. Characterization of 16S rDNA isolated from these samples suggested a predominance of bacterial phylotypes related to γ- (57-64%) and δ-subclasses (27-29%) of the Proteobacteria. The ɛ-subclass of the Proteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. There are significantly different archaeal phylotypes between Calyptogena sediment and microbial mat; the former contains only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones including the ANME-2a and ANME-2c archaeal groups. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggests the presence of sulfate-reducing and sulfur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether (GDGT) lipid analysis indicate the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold seep environments.

  11. Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic-oxic bioreactor system degrading azo dyes.

    PubMed

    Dafale, Nishant; Agrawal, Leena; Kapley, Atya; Meshram, Sudhir; Purohit, Hemant; Wate, Satish

    2010-01-01

    Dye degradation has gained attention of late due to indiscriminate disposal from user industries. Enhancing efficiency of biological treatment provides a cheaper alternative vis-à-vis other advanced technologies. Dye molecules are metabolized biologically via anoxic and oxic treatments. In this study, bacterial community surviving on dye effluent working in anoxic-oxic bioreactor was analyzed using 16S rDNA approach. Azo-dye decolorizing and degrading bacterial community was enriched in lab-scale two-stage anoxic-oxic bioreactor. 16S rDNA metagenomic libraries of enriched population were constructed, screened and phylogenetically analyzed separately. Removal of approximately 35% COD with complete decolorization was observed in anoxic bioreactor. Process was carried out by uncultured gamma proteobacterium constituting 48% of the total population and 12% clones having homology to Klebsiella. Aromatic amines generated during partial treatment under anoxic bioreactor were treated by aerobic population having 72% unculturable unidentified bacterium and rest of the population consisting of Thauera sp., Pseudoxanthomonas sp., Desulfomicrobium sp., Ottowia sp., Acidovorax sp., and Bacteriodetes bacterium sp.

  12. Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China, based on COI and 16S rDNA gene sequences.

    PubMed

    Guo, Yadong; Cai, Jifeng; Chang, Yunfeng; Li, Xiang; Liu, Qinlai; Wang, Xinghua; Wang, Xiang; Zhong, Ming; Wen, Jifang; Wang, Jiangfeng

    2011-11-01

    Insects attracted to cadavers may provide important indications of the postmortem interval (PMI). However, use of the flesh flies (Diptera: Sarcophagidae) for PMI estimation is limited as the species are often not morphologically distinct, especially as immatures. In this study, 23 forensically important flesh flies were collected from 13 locations in 10 Chinese provinces. Then, a 278-bp segment of the cytochrome oxidase subunits one (COI) gene and a 289-bp segment of the 16S rDNA gene of all specimens were successfully sequenced. Phylogenetic analysis of the sequenced segments showed that all sarcophagid specimens were properly assigned into four species (Boerttcherisca peregrina [Robineau-Desvoidy, 1830], Helicophagella melanura [Meigen, 1826], Parasarcophaga albiceps [Meigen, 1826], and Parasarcophaga dux [Thompson, 1869]) with relatively strong supporting values, thus indicating that the COI and 16S rDNA regions are suitable for identification of sarcophagid species. The difference between intraspecific threshold and interspecific divergence confirmed the potential of the two regions for sarcophagid species identification.

  13. Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening.

    PubMed

    Singh, Shalini Thakur; Priya, Natarajan Gayatri; Kumar, Jitendra; Rana, Vipin Singh; Ellango, R; Joshi, Adita; Priyadarshini, Garima; Asokan, R; Rajagopal, Raman

    2012-03-01

    Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed no correlation between the host genetic group and the endosymbiont diversity. These results suggest that the bacterial endosymbiont diversity of B. tabaci is much larger and complex than previously perceived and probably N. Indian strains of the bacterial symbionts could have evolved from some other ancestor.

  14. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  15. Detection of 16S rDNA sequences representing the novel phylum "Nanoarchaeota": indication for a wide distribution in high temperature biotopes.

    PubMed

    Hohn, Michael J; Hedlund, Brian P; Huber, Harald

    2002-12-01

    We screened samples from high temperature biotopes for 16S rRNA genes of the novel archaeal phylum "Nanoarchaeota". Positive PCR amplifications were obtained from Yellowstone National Park, Uzon Caldera, and an abyssal vent system. These sequences form a cluster with the sequence of "Nanoarchaeum equitans", indicating a wide distribution of this phylum.

  16. Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences.

    PubMed Central

    Nazaret, S; Cournoyer, B; Normand, P; Simonet, P

    1991-01-01

    Actinomycetes of the genus Frankia establish a nitrogen-fixing symbiosis with a large number of woody dicotyledonous plants. Hundreds of strains isolated from various actinorhizal plants growing in different geographical areas have recently been classified into at least nine genomic species by use of the DNA-DNA hybridization technique (M.P. Fernandez, H. Meugnier, P.A.D. Grimont, and R. Bardin, Int. J. Syst. Bacteriol. 39:424-429, 1989). A protocol based on the amplification and sequencing of 16S ribosomal DNA segments was used to classify and estimate the phylogenetic relationships among eight different genomic species. A good correlation was established between the grouping of strains according to their 16S ribosomal DNA sequence homology and that based on total DNA homology, since most genomic species could be characterized by a specific sequence. The phylogenetic tree showed that strains belonging to the Alnus infectivity group are closely related to strains belonging to the Casuarina infectivity group and that strains of these two infectivity groups are well separated from strains of the Elaeagnus infectivity group, which also includes atypical strains isolated from the Casuarina group. This phylogenetic analysis was also very efficient for classifying previously unclassified pure cultures or unisolatable strains by using total DNA extracted directly from nodules. PMID:2061287

  17. COMPARISON OF 16S rRNA-PCR-RFLP, LipL32-PCR AND OmpL1-PCR METHODS IN THE DIAGNOSIS OF LEPTOSPIROSIS

    PubMed Central

    GÖKMEN, Tülin GÜVEN; SOYAL, Ayben; KALAYCI, Yıldız; ÖNLEN, Cansu; KÖKSAL, Fatih

    2016-01-01

    SUMMARY Leptospirosis is still one of the most important health problems in developing countries located in humid tropical and subtropical regions. Human infections are generally caused by exposure to water, soil or food contaminated with the urine of infected wild and domestic animals such as rodents and dogs. The clinical course of leptospirosis is variable and may be difficult to distinguish from many other infectious diseases. The dark-field microscopy (DFM), serology and nucleic acid amplification techniques are used to diagnose leptospirosis, however, a distinctive standard reference method is still lacking. Therefore, in this study, we aimed to determine the presence of Leptospira spp., to differentiate the pathogenic L. interrogans and the non-pathogenic L. biflexa, and also to determine the sensitivity and specificity values of molecular methods as an alternative to conventional ones. A total of 133 serum samples, from 47 humans and 86 cattle were evaluated by two conventional tests: the Microagglutination Test (MAT) and the DFM, as well as three molecular methods, the 16S rRNA-PCR followed by Restriction Fragment Lenght Polymorphism (RFLP) of the amplification products 16S rRNA-PCR-RFLP, LipL32-PCR and OmpL1-PCR. In this study, for L. interrogans, the specificity and sensitivity rates of the 16S rRNA-PCR and the LipL32-PCR were considered similar (100% versus 98.25% and 100% versus 98.68%, respectively). The OmpL1-PCR was able to classify L. interrogans into two intergroups, but this PCR was less sensitive (87.01%) than the other two PCR methods. The 16S rRNA-PCR-RFLP could detect L. biflexa DNA, but LipL32-PCR and OmpL1-PCR could not. The 16S rRNA-PCR-RFLP provided an early and accurate diagnosis and was able to distinguish pathogenic and non-pathogenic Leptospira species, hence it may be used as an alternative method to the conventional gold standard techniques for the rapid disgnosis of leptospirosis. PMID:27680169

  18. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences.

    PubMed

    Munson, M A; Baumann, P; Moran, N A

    1992-03-01

    A portion of the gene coding for the 16S ribosomal RNA from the endosymbionts of three species of mealybugs [Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus maritimus (Ehrhorn), and Dysmicoccus neobrevipes (Beardsley)] was cloned, sequenced, and compared to a homologous fragment from bacteria representative of aphid endosymbionts as well as major subdivisions of the Proteobacteria. Parsimony analysis of the sequences indicated that the mealybug endosymbionts are related and belong to the beta-subdivision; in contrast, previous studies showed that aphid endosymbionts are part of the gamma-subdivision. These findings suggest that the endosymbiosis of mealybugs is a consequence of a single bacterial infection and indicate that this ancestor was different from the ancestor involved in aphid endosymbiosis.

  19. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s rDNA

    PubMed Central

    Oikonomou, Georgios; Machado, Vinicius Silva; Santisteban, Carlos; Schukken, Ynte Hein; Bicalho, Rodrigo Carvalho

    2012-01-01

    Dairy cow mastitis is an important disease in the dairy industry. Different microbial species have been identified as causative agents in mastitis, and are traditionally diagnosed by bacterial culture. The objective of this study was to use metagenomic pyrosequencing of bacterial 16S rRNA genes to investigate bacterial DNA diversity in milk samples of mastitic and healthy dairy cows and compare the results with those obtained by classical bacterial culture. One hundred and thirty-six milk samples were collected from cows showing signs of mastitis and used for microbiological culture. Additionally, 20 milk samples were collected from healthy quarters. Bacterial DNA was isolated from the same milk samples and the 16S rRNA genes were individually amplified and pyrosequenced. Discriminant analysis showed that the groups of samples that were most clearly different from the rest and thus easily discriminated were the normal milk samples from healthy cows and those characterised by culture as Trueperella pyogenes and Streptococcus spp. The mastitis pathogens identified by culture were generally among the most frequent organisms detected by pyrosequencing, and in some cases (Escherichia coli, Klebsiella spp. and Streptococcus uberis mastitis) the single most prevalent microorganism. Trueperella pyogenes sequences were the second most prevalent sequences in mastitis cases diagnosed as Trueperella pyogenes by culture, Streptococcus dysgalactiae sequences were the second most prevalent sequences in mastitis cases diagnosed as Streptococcus dysgalactiae by culture, and Staphyloccocus aureus sequences were the third most prevalent in mastitis cases diagnosed as Staphylococcus aureus by culture. In samples that were aerobic culture negative, pyrosequencing identified DNA of bacteria that are known to cause mastitis, DNA of bacteria that are known pathogens but have so far not been associated with mastitis, and DNA of bacteria that are currently not known to be pathogens. A

  20. Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences.

    PubMed

    Kisand, Veljo; Wikner, Johan

    2003-08-01

    The phylogenetic affiliation of 91 operational taxonomic units, randomly sampled from three aquatic microcosm experiments, was investigated by two PCR based and one culture dependent method. The occurrence of multiple melting domains and poor coupling between Tm and DGGE retardation was demonstrated to cause poor resolution at the species level in PCR-DGGE analysis of microbial communities. We also showed that the problem of multiple melting domains was particularly prone for brackish water bacterioplankton in the Flavobacterium genus, providing characteristic band morphology for this genus. Banding patterns from DGGE analysis may therefore be misinterpreted in terms of the species richness in natural bacterial communities, when using commonly applied universal primers.

  1. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing

    PubMed Central

    Qian, Pei-Yuan; Wang, Yong; Lee, On On; Lau, Stanley C K; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Wong, Tim YH

    2011-01-01

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. PMID:20668490

  2. Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica, in India.

    PubMed

    Verma, Subhash Chandra; Chowdhury, Soumitra Paul; Tripathi, Anil Kumar

    2004-05-01

    Bacterial symbionts present in the indeterminate-type nitrogen (N)-fixing nodules of Mimosa pudica grown in North and South India showed maximum similarity to Ralstonia taiwanensis on the basis of carbon-source utilization patterns and 16S rDNA sequence. Isolates from the nodules of M. pudica from North India and South India showed identical ARDRA (Amplified Ribosomal DNA Restriction Analysis) patterns with Sau3AI and RsaI, but AluI revealed dimorphy between the North Indian and South Indian isolates. Alignment of 16S rDNA sequences revealed similarity of North Indian isolates with an R. taiwanensis strain isolated from M. pudica in Taiwan, whereas South Indian isolates showed closer relatedness with the isolates from Mimosa diplotricha. Alignment of nifH sequences from both North Indian and South Indian isolates with that of the related isolates revealed their closer affinity to alpha-rhizobia, suggesting that nif genes in the beta-rhizobia might have been acquired from alpha-rhizobia via lateral transfer during co-occupancy of nodules by alpha-rhizobia and progenitors of R. taiwanensis, members of the beta-subclass of Proteobacteria. Immunological cross-reaction of the bacteroid preparation of M. pudica nodules showed strong a positive signal with anti-dinitrogenase reductase antibody, whereas a weak positive cross-reaction was observed with free-living R. taiwanensis grown microaerobically in minimal medium with and without NH4Cl. In spite of the expression of dinitrogenase reductase under free-living conditions, acetylene reduction was not observed under N-free conditions even after prolonged incubation.

  3. Sequence-Based Identification of Mycobacterium Species Using the MicroSeq 500 16S rDNA Bacterial Identification System

    PubMed Central

    Patel, Jean Baldus; Leonard, Debra G. B.; Pan, Xai; Musser, James M.; Berman, Richard E.; Nachamkin, Irving

    2000-01-01

    We evaluated the MicroSeq 500 16S rDNA Bacterial Sequencing Kit (PE Applied Biosystems), a 500-bp sequence-based identification system, for its ability to identify clinical Mycobacterium isolates. The organism identity was determined by comparing the 16S rDNA sequence to the MicroSeq database, which consists primarily of type strain sequences. A total of 113 isolates (18 different species), previously recovered and identified by routine methods from two clinical laboratories, were analyzed by the MicroSeq method. Isolates with discordant results were analyzed by hsp65 gene sequence analysis and in some cases repeat phenotypic identification, AccuProbe rRNA hybridization (Gen-Probe, Inc., San Diego, Calif.), or high-performance liquid chromatography of mycolic acids. For 93 (82%) isolates, the MicroSeq identity was concordant with the previously reported identity. For 18 (16%) isolates, the original identification was discordant with the MicroSeq identification. Of the 18 discrepant isolates, 7 (six unique sequences) were originally misidentified by phenotypic analysis or the AccuProbe assay but were correctly identified by the MicroSeq assay. Of the 18 discrepant isolates, 11 (seven unique sequences) were unusual species that were difficult to identify by phenotypic methods and, in all but one case, by molecular methods. The remaining two isolates (2%) failed definitive phenotypic identification, but the MicroSeq assay was able to definitively identify one of these isolates. The MicroSeq identification system is an accurate and rapid method for the identification of Mycobacterium spp. PMID:10618095

  4. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing.

    PubMed

    Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian

    2015-01-01

    To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.

  5. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis.

    PubMed

    Li, Zhiyong; He, Liming; Miao, Xiaoling

    2007-12-01

    The cultivable bacterial communities associated with four South China Sea sponges-Stelletta tenuis, Halichondria rugosa, Dysidea avara, and Craniella australiensis in mixed cultures-were investigated by microbial community DNA-based DGGE fingerprinting and 16S rDNA phylogenetic analysis. Diverse bacteria such as alpha-, gamma-, delta-Proteobacteria, Bacteroidetes, and Firmicutes were cultured, some of which were previously uncultivable bacteria, potential novel strains with less than 95% similarity to their closest relatives and sponge symbionts growing only in the medium with the addition of sponge extract. According to 16S rDNA BLAST analysis, most of the bacteria were cultured from sponge for the first time, although similar phyla of bacteria have been previously recognized. The selective pressure of sponge extract on the cultured bacterial species was suggested, although the effect of sponge extract on bacterial community in high nutrient medium is not significant. Although alpha- and gamma-Proteobacteria appeared to form the majority of the dominant cultivable bacterial communities of the four sponges, the composition of the cultivable bacterial community in the mixed culture was different, depending on the medium and sponge species. Greater bacterial diversity was observed in media C and CS for Stelletta tenuis, in media F and FS for Halichondria rugosa and Craniella australiensis. S. tenuis was found to have the highest cultivable bacterial diversity including alpha-, gamma-, delta-Proteobacteria, Bacteroidetes, and Firmicutes, followed by sponge Dysidea avara without delta-Proteobacteria, sponge Halichondria rugosa with only alpha-, gamma-Proteobacteria and Bacteroidetes, and sponge C. australiensis with only alpha-, gamma-Proteobacteria and Firmicutes. Based on this study, by the strategy of mixed cultivation integrated with microbial community DNA-based DGGE fingerprinting and phylogenetic analysis, the cultivable bacterial community of sponge could be

  6. Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 (Acari: Ixodidae): hosts, distribution and 16S rDNA sequences.

    PubMed

    Guglielmone, A A; Estrada-Peña, A; Mangold, A J; Barros-Battesti, D M; Labruna, M B; Martins, J R; Venzal, J M; Arzua, M; Keirans, J E

    2003-05-01

    DNA sequences of Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 were obtained to determine genetic differences between these tick species. Collections of these species are discussed in relation to distribution and hosts. Seven ticks collections (four from Brazil, one from Argentina, one from Uruguay and one from USA) house a total of 1272 A. aureolatum (224 males, 251 females, 223 nymphs and 574 larvae) and 1164 A. ovale (535 males, 556 females, 66 nymphs and 7 larvae). The length of the sequenced mitochondrial 16S rRNA gene fragment for A. aureolatum was 370bp and for A. ovale was 373bp. The DNA sequence analysis showed a 13.1% difference between the two species. Apart from one male A. ovale found on a toad, all adult ticks were found on mammals. The majority of adult specimens of both tick species were removed from Carnivora (96.1 and 84.3% of A. aureolatum and A. ovale, respectively), especially from dogs (53.1% of A. aureolatum, and 46.4% of A. ovale). Collections on wild Canidae were higher for A. aureolatum (23.3%) than for A. ovale (7.1%). On the other hand, collections of A. ovale adults on wild Felidae were higher (18.3%) than findings of A. aureolatum (9.2%). The contribution of other mammalian orders as hosts for adults of A. aureolatum and A. ovale was irrelevant, with the exception of Perissodactyla because Tapiridae contributed with 13.0% of the total number of A. ovale adults. Adults of both tick species have been found occasionally on domestic hosts (apart of the dog) and humans. Most immature stages of A. aureolatum were found on Passeriformes birds, while rodents and carnivores were the most common hosts for nymphs and larvae of A. ovale. A. aureolatum has been found restricted to the Neotropical region, covering the eastern area of South America from Uruguay to Surinam, including northeastern Argentina, eastern Paraguay, southeastern Brazil and French Guiana. A. ovale showed a distribution that covers the Neotropical region

  7. Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2003-10-01

    Phthiraptera (chewing and sucking lice) and Psocoptera (booklice and barklice) are closely related to each other and compose the monophyletic taxon Psocodea. However, there are two hypotheses regarding their phylogenetic relationship: (1) monophyletic Psocoptera is the sister group of Phthiraptera or (2) Psocoptera is paraphyletic, and Liposcelididae of Psocoptera is the sister group of Phthiraptera. Each hypothesis is supported morphologically and/or embryologically, and this problem has not yet been resolved. In the present study, the phylogenetic position of Phthiraptera was examined using mitochondrial 12S and 16S rDNA sequences, with three methods of phylogenetic analysis. Results of all analyses strongly supported the close relationship between Phthiraptera and Liposcelididae. Results of the present analyses also provided some insight into the elevated rate of evolution in mitochondrial DNA (mtDNA) in Phthiraptera. An elevated substitution rate of mtDNA appears to originate in the common ancestor of Phthiraptera and Liposcelididae, and directly corresponds to an increased G+C content. Therefore, the elevated substitution rate of mtDNA in Phthiraptera and Liposcelididae appears to be directional. A high diversity of 12S rDNA secondary structure was also observed in wide range of Phthiraptera and Liposcelididae, but these structures seem to have evolved independently in different clades.

  8. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  9. [16S rDNA diversity analysis of 30 Streptomycetes isolates displaying significant cytotoxic activity against B16 cell from near-shore sediments of Hainan Island].

    PubMed

    Yan, Li-Ping; Hong, Kui; Hu, Shen-cai; Liu, Li-hua

    2005-04-01

    A total of 354 isolates of actinomycetes, of which 76 were detected cytotoxic activity was isolated from near-shore marine samples collected at Wenchang mangrove, DanZhou harbor and YanPu harbor. Four isolation methods were employed, which are SDS pretreatment, phenol pretreatment, heating pretreatment and potassium dichromate selection culture, and media such as'Yeast extract-Malt extract (YE), Glucose-Asprine (GA), Starch-Casin (SC), Starch-KNO3 (Gause) were used. It was showed that heating pretreatment and potassium dichromate selection culture were more considerable methods for extensive isolation of actinomycetes. Medium YE and Gause showed best results in both the total number of actinomycetes and the number of active isolates against tumor cell B16. The genotypic diversity of 30 strains of Streptomycetes possessing strong cytotoxic activity against B16 cell (ID50 > or =200) was analyzed by 16S ARDRA, which resulted in 17 RFLP types, and indicated relatively rich genotypic diversity among these Streptomycetes. 16S rDNA sequence analysis of three strains, 050642, 060386 and 060524 (ID50 > or = 1200) further confirmed that they all belong to Streptomyces genus and strain 050642 was suggested a novel Streptomyces. Spp with the highest similarity of 95% to Streptomyces cattleya.

  10. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep.

    PubMed

    Krause, D O; Dalrymple, B P; Smith, W J; Mackie, R I; McSweeney, C S

    1999-07-01

    The ruminococci are an important group of fibrolytic bacteria inhabiting the rumen. Seventeen strains of presumptively identified Ruminococcus were evaluated by a combination of nearly complete and partial 16S rDNA sequence that identified all strains as either Ruminococcus albus or Ruminococcus flavefaciens. All sequences fell into cluster IV of the clostridia, while other species of ruminococci (e.g. Ruminococcus obeum, Ruminococcus gnavus, Ruminococcus lactaris) fall into cluster XIVa of the clostridia. Ruminococcus cluster IV sequences were used to design a 16S rRNA oligonucleotide probe to assess the relative abundance of target populations in a stable ruminal environment. A stable population (animals fed eight times per day) was established in sheep so that statistically robust comparisons could be made in the absence of variation due to diurnal rumen fluctuations. The steady state populations were sampled six times over a 24 d period and direct microscopic counts (DC), total culturable counts (TCC), and total cellulolytic counts (CEL) were determined. DC and culturable data (TCC and CEL) were compared with relative abundance estimates of Ruminococcus IV and Fibrobacter succinogenes. A combination of the Ruminococcus and F. succinogenes probes accounted for 4.0% of the bacterial population and cellulolytic bacteria (measured by most-probable numbers) were 5.2% of the total culturable count. These data suggest that a major portion of the Ruminococcus and Fibrobacter diversity has been cultured and is represented by available sequences. Steady state populations were measured over several days in three sheep and an estimate of variation in DC, TCC, CEL and 16S-based data were obtained. These variance estimates could be used to determine the theoretical sample sizes required to obtain statistically significant differences under different experimental conditions.

  11. Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation

    PubMed Central

    Ellis, Collin L.; Ma, Zhong-Min; Mann, Surinder K.; Li, Chin-Shang; Wu, Jian; Knight, Thomas H.; Yotter, Tammy; Hayes, Timothy L.; Maniar, Archana H.; Troia-Cancio, Paolo V.; Overman, Heather A; Torok, Natalie J.; Albanese, Anthony; Rutledge, John C.; Miller, Christopher J.; Pollard, Richard B.; Asmuth, David M.

    2011-01-01

    Background The relationship between gut microbial community composition at the higher-taxonomic order-level and local and systemic immunologic abnormalities in HIV disease may provide insight into how bacterial translocation impacts HIV disease. Methods Antiretroviral (ART)-naive HIV patients underwent upper endoscopy before and nine months after starting ART. Duodenal tissue was paraffin-embedded for immunohistochemical analysis (IHC) and digested for FACS for T-cell subsets and immune activation (CD38+/HLA-DR+) enumeration. Stool samples were provided from patients and controls for comparison. Metagenomic microbial DNA was extracted from feces for optimized 16S ribosomal RNA gene (rDNA) real-time qPCR assays designed to quantify panbacterial loads and the relative abundances of proinflammatory Enterobacteriales order, and the dominant Bacteroidales and Clostridiales orders. Results Samples from 10 HIV-subjects prior to initiating, and from 6 subjects receiving, ART were available for analysis. There was a trend for a greater proportion of Enterobacteriales in HIV-positive subjects compared to controls (p=0.099). There were significant negative correlations between total bacterial load and duodenal CD4+ and CD8+ T-cell activation levels (r= −0.74, p= 0.004 and r= −0.67, p=0.013, respectively). The proportions of Enterobacteriales and Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. Conclusions These data represent the first report of quantitative molecular and cellular correlations between total/universal and order-level gut bacterial populations and GALT levels of immune activation in HIV-infected subjects. The correlations between lower overall 16S rDNA levels and tissue immune activation suggest that the gut microbiome may contribute to immune activation and influence HIV progression. PMID:21436711

  12. Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes

    PubMed Central

    Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza

    2017-01-01

    Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826

  13. Comparison of PCR-Electrospray Ionization Mass Spectrometry with 16S rRNA PCR and Amplicon Sequencing for Detection of Bacteria in Excised Heart Valves

    PubMed Central

    Peeters, Bart; Herijgers, Paul; Beuselinck, Kurt; Peetermans, Willy E.; Herregods, Marie-Christin

    2016-01-01

    Identification of the causative pathogen of infective endocarditis (IE) is crucial for adequate management and therapy. A broad-range PCR-electrospray ionization mass spectrometry (PCR-ESI-MS) technique was compared with broad-spectrum 16S rRNA PCR and amplicon sequencing (16S rRNA PCR) for the detection of bacterial pathogens in 40 heart valves obtained from 34 definite infective endocarditis patients according to the modified Duke criteria and six nonendocarditis patients. Concordance between the two molecular techniques was 98% for being positive or negative, 97% for concordant identification up to the genus level, and 77% for concordant identification up to the species level. Sensitivity for detecting the causative pathogen (up to the genus level) in excised heart valves was 88% for 16S rRNA PCR and 85% for PCR-ESI-MS; the specificity was 83% for both methods. The two molecular techniques were significantly more sensitive than valve culture (18%) and accurately identified bacteria in excised heart valves. In eight patients with culture-negative IE, the following results were obtained: concordant detection of Coxiella burnetii (n = 2), Streptococcus gallolyticus (n = 1), Propionibacterium acnes (n = 1), and viridans group streptococci (n = 1) by both molecular tests, detection of P. acnes by PCR-ESI-MS whereas the 16S rRNA PCR was negative (n = 1), and a false-negative result by both molecular techniques (n = 2). In one case of IE caused by viridans streptococci, PCR-ESI-MS was positive for Enterococcus spp. The advantages of PCR-ESI-MS compared to 16S rRNA PCR are its automated workflow and shorter turnaround times. PMID:27629895

  14. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

    PubMed Central

    Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Highlander, Sarah K.; Sodergren, Erica; Methé, Barbara; DeSantis, Todd Z.; Petrosino, Joseph F.; Knight, Rob; Birren, Bruce W.

    2011-01-01

    Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. PMID:21212162

  15. Preliminary evaluation of the use of soil bacterial 16S rDNA DNA markers in sediment fingerprinting in two small endorheic lagoons in southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Landa del Castillo, Blanca; Guzman, Gema; Petticrew, Ellen L.; Owens, Phillip N.

    2016-04-01

    127 % in Dulce and from 80 to 117 % in Zóñar. These rangesare within values reported for other soil chemical and physical properties, although the higher values are above the most commonly reported CVs which tend to be in the range from 30 to 80 %. Some groups, that are relatively stable to the normalization process, can provide enough information for solving a mixing model, although the specific groups vary between the two catchments as expected from previous studies. Overall, all the models for Zóñar tended to provide similar results with low contributions from source areas 1 and 2, and a much larger contribution from source area 3. For this solution, the mixing model was able to replicate the values of all the OTUs included in the model. The predicted values for Dulce were not as stable. The model with 10 OTUs were similar with a very low contribution from source area 2, a moderate contribution from source area 3 and a maximum contribution from source area 1. However, these values differed from those with only three OTUs, and they also differed between themselves when the normalized and non-normalized values were used. This solution also seemed to replicate the averaged measured values of most of the OTÚs included in the model. These preliminary results demonstrate the potential of soil bacterial 16S rDNA in sediment fingerprinting studies, although some questions need to be addressed in more detail, including: the temporal evolution of the distribution of the bacterial markers with soil depth; the implications of selective transport by runoff; and the relatively large variability of counts among samples from the same area. We are currently repeating the sampling in one of the subcatchments to provide some insight into these issues. Key words: sediment, fingerprinting, soil, microbial, DNA, lagoon References Joe-Strack, J.A., Petticrew, E.L. 2012. Use of LH-PCR as a DNA fingerprint technique to trace sediment-associated microbial communities from various land

  16. Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes.

    PubMed Central

    Borrell, N; Acinas, S G; Figueras, M J; Martínez-Murcia, A J

    1997-01-01

    Identification of Aeromonas species, emergent pathogens for humans, has long been controversial due to their phenotypic and genomic heterogeneities. Computer analysis of the published 16S rRNA gene sequences revealed that restriction fragment length polymorphism of the PCR-amplified 16S rRNA gene is a good and rapid way of assessing the identities of all known species of Aeromonas. The method was evaluated with the reference strains of all species (or DNA homology groups) and 76 clinical isolates of diverse origin. Most results from the two approaches were in agreement, but some discrepancies were discerned. Advantages over previous phenotypic and genetic methods are discussed. PMID:9196171

  17. Epitheliocystis hyperinfection in captive spotted eagle rays Aetobatus narinari associated with a novel Chlamydiales 16S rDNA signature sequence.

    PubMed

    Camus, Alvin; Soto, Esteban; Berliner, Aimee; Clauss, Tonya; Sanchez, Susan

    2013-04-29

    This report details 2 cases of epitheliocystis in spotted eagle rays Aetobatus narinari associated with a novel Chlamydiales 16S rDNA signature sequence. Epitheliocystis is a common disease of variable severity affecting >50 species of wild and cultured freshwater and marine teleosts. Disease in elasmobranchs is rarely reported and descriptions are limited. Occurring in gill and skin epithelium, lesions are characterized by large hypertrophied cells with basophilic inclusions containing Gram-negative, chlamydia-like bacteria. Acute lethargy, labored respiration, and abnormal swimming developed in a captive spotted eagle ray following an uneventful quarantine period, and mild epitheliocystis lesions were found microscopically. Three months later, a second animal exhibited similar signs. A gill clip revealed myriad spherical bodies identical to the previous case, and treatment with chloramphenicol and oxytetracycline was initiated. Despite therapy, respiration became irregular and euthanasia was elected. Histologically, epitheliocystis inclusions up to 200 µm filled approximately 80% of lamellar troughs. Multifocal mild hypertrophy and hyperplasia of lamellar tips was accompanied by mild to moderate infiltrates of granulocytes and lymphocytes. Electron microscopy revealed a homogeneous population of elongate chlamydia-like bacterial forms similar in size and morphology to the primary long cells described in teleosts. Immunohistochemical staining with a polyclonal anti-chlamydial lipopolysaccharide antibody was positive. Sequence analysis of a unique 296 bp Chlamydiales signature sequence amplicon isolated from the rays showed greatest homology (85 to 87%) to 'Candidatus Piscichlamydia salmonis'.

  18. Direct identification of Mycobacterium abscessus through 16S rDNA sequence analysis and a citrate utilization test: A case report.

    PubMed

    Zou, Ziying; Liu, Yuan; Zhu, Bing; Zeng, Ping

    2014-07-01

    A growing number of nontuberculous mycobacteria infection cases, especially those caused by rapidly growing mycobacteria (RGM), have been reported in the past decade. Conventional methods for mycobacteria diagnosis are inefficient and easily lead to misdiagnosis. New detection methods, such as gene sequencing, have been reported but are not widely used. The aim of the present case report was to provide a quick and exact method of identifying Myobacterium abscessus (M. abscessus) infections. The particular case reported in this study initially manifested as hyperglycemia and papules in the right leg. Routine cultures for fungus were repeatedly negative. However, cultures of the purulent material under aerobic cultivation for five days yielded a rapidly growing, nontuberculous mycobacterium. A Ziehl-Neelsen staining of this mycobacterium revealed the presence of acid-fast bacilli that were finally identified as M. abscessus through 16S rDNA sequence analysis and a citrate utilization test. The current report may help other clinicians to make a quick and accurate diagnosis of RGM infection.

  19. Characterization of Lactobacillus from Algerian Goat’S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties

    PubMed Central

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez- Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat’s milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  20. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing.

    PubMed

    Min, Byeng R; Solaiman, Sandra; Shange, Raymon; Eun, Jong-Su

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  1. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    PubMed Central

    Min, Byeng R.; Solaiman, Sandra; Shange, Raymon

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats. PMID:24669219

  2. Identification and Phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing.

    PubMed

    Leu, J Y; McGovern-Traa, C P; Porter, A J; Harris, W J; Hamilton, W A

    1998-06-01

    Thermophilic sulfate-reducing bacteria (SRB) have been recognized as an important source of hydrogen sulfide (H2S) in hydrocarbon reservoirs and in production systems. Four thermophilic SRB enrichment cultures from three different oil field samples (sandstone core, drilling mud, and production water) were investigated using 16S rDNA sequence comparative analysis. In total, 15 different clones were identified. We found spore-forming, low G+C content, thermophilic, sulfate-reducing Desulfotomaculum-related sequences present in all oil field samples, and additionally a clone originating from sandstone core which was assigned to the mesophilic Desulfomicrobium group. Furthermore, three clones related to Gram-positive, non-sulfate-reducing Thermoanaerobacter species and four clones close to Clostridium thermocopriae were found in enrichment cultures from sandstone core and from production water, respectively. In addition, the deeply rooted lineage of two of the clones suggested previously undescribed, Gram-positive, low G+C content, thermophilic, obligately anaerobic bacteria present in production water. Such thermophilic, non-sulfate-reducing microorganisms may play an important ecological role alongside SRB in oil field environments.

  3. The phylogenetic position of Ixodes stilesi Neumann, 1911 (Acari: Ixodidae): morphological and preliminary molecular evidences from 16S rDNA sequences.

    PubMed

    Guglielmone, Alberto A; Venzal, José M; González-Acuña, Daniel; Nava, Santiago; Hinojosa, Ana; Mangold, Atilio J

    2006-09-01

    The female of Ixodes stilesi Neumann, 1911 (Acari Ixodidae) is redescribed and the male and nymph are described from specimens collected from Pudu puda (Molina) (Artiodactyla: Cervidae) in Chile. Both sexes of I. stilesi have characteristics of the subgenera Ixodes Latreille, 1795 and Ixodiopsis Filippova, 1957. The females of I. stilesi are peculiar in having the combination of the sinuous scutum outline, rounded porose areas with distinct borders separated by the width of one area, slender and long palpi, and two subequal spurs on coxa I. The male is unique in having a combination of a posteriorly wrinkled marginal folder, a basis capituli longer than wide, a non-crenulate hypostome toothed portion, two spurs on coxa II to IV and the presence of a pseudoscutum. The nymph of I. stilesi has blunt anterior and posterior processes on palpal article I (characteristics of the subgenus Ixodiopsis and some Pholeoixodes Schulze, 1942) and a wing-shaped basis capituli with a prominent triangular cornua. Phylogenetic analyses based on 16S mitochondrial rDNA sequences of 12 Neotropical and two Australian Ixodes species, plus three argasids, were carried out to clarify the position of I. stilesi. The results of phylogenetic analyses and morphological characters indicate a close relationships between I. stilesi and two other Neotropical species of uncertain subgeneric status, I. neuquenensis Ringuelet, 1947 and I. sigelos Keirans, Clifford & Corwin, 1976.

  4. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    PubMed Central

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-01-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371

  5. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-12-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.

  6. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy.

    PubMed

    Oberreuter, Helene; Charzinski, Joachim; Scherer, Siegfried

    2002-05-01

    The intraspecific diversity of 31 strains of Brevibacterium linens, 27 strains of Corynebacterium glutamicum and 29 strains of Rhodococcus erythropolis was determined by partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. As a prerequisite for the analyses, 27 strains derived from culture collections which had carried invalid or wrong species designations were reclassified in accordance with polyphasic taxonomical data. FT-IR spectroscopy proved to be a rapid and reliable method for screening for similar isolates and for identifying these actinomycetes at the species level. Two main conclusions emerged from the analyses. (1) Comparison of intraspecific 16S rDNA similarities suggested that R. erythropolis strains have a very low diversity, B. linens displays high diversity and C. glutamicum occupies an intermediate position. (2) No correlation of FT-IR spectral similarity and 16S rDNA sequence similarity below the species level (i.e. between strains of one species) was observed. Therefore, diversification of 16S rDNA sequences and microevolutionary change of the cellular components detected by FT-IR spectroscopy appear to be de-coupled.

  7. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes

    PubMed Central

    Laguerre, Gisèle; Allard, Marie-Reine; Revoy, Françoise; Amarger, Noelle

    1994-01-01

    Forty-eight strains representing the eight recognized Rhizobium species, two new Phaseolus bean Rhizobium genomic species, Bradyrhizobium spp., Agrobacterium spp., and unclassified rhizobia from various host plants were examined by restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes amplified by polymerase chain reaction (PCR). Twenty-one composite genotypes were obtained from the combined data of the RFLP analysis with nine endonucleases. Species assignments were in full agreement with the established taxonomic classification. Estimation from these data of genetic relationships between and within genera and species correlated well with previously published data based on DNA-rRNA hybridizations and sequence analysis of 16S rRNA genes. This PCR-RFLP method provides a rapid tool for the identification of root nodule isolates and the detection of new taxa. Images PMID:16349165

  8. Development of an ethidium monoazide-enhanced internally controlled universal 16S rDNA real-time polymerase chain reaction assay for detection of bacterial contamination in platelet concentrates.

    PubMed

    Patel, Poorvi; Garson, Jeremy A; Tettmar, Kate I; Ancliff, Siobhan; McDonald, Carl; Pitt, Tyrone; Coelho, Juliana; Tedder, Richard S

    2012-07-01

    Bacterial contamination of platelet (PLT) concentrates remains a problem for blood transfusion services. Culture-based bacterial screening techniques are available but offer inadequate speed and sensitivity. Alternative techniques based on polymerase chain reaction (PCR) amplification have been described but their performance is often compromised by traces of bacterial DNA in reagents. Universal 16S rDNA primers were used to develop a real-time PCR assay (TaqMan, Applied Biosystems) and various reagent decontamination strategies were explored. Detection sensitivity was assessed by spiking PLT concentrates with known concentrations of 13 different organisms. Restriction enzyme digestion, master mix ultrafiltration, and use of alternative Taq polymerases all reduced the level of reagent DNA contamination to some extent but all proved unreliable. In contrast, ethidium monoazide (EMA) treatment of the PCR master mix followed by photoactivation was reliable and effective, permitting a full 40 amplification cycles, and totally eliminated contamination without compromising assay sensitivity. All 13 organisms were efficiently detected and the limit of detection for Escherichia coli-spiked PLTs was approximately 1 colony-forming unit/mL. Coamplification of human mitochondrial DNA served to confirm efficient nucleic acid extraction and the absence of PCR inhibition in each sample. One of five automated extraction platforms evaluated was found to be contamination free and capable of high-throughput processing. Cross-linking of EMA to DNA via photoactivation solved the previously intractable problem of reagent contamination and permitted the development of a high-sensitivity universal bacterial detection system. Trials are ongoing to assess the suitability of the system for high-throughput screening of PLT concentrates. © 2011 American Association of Blood Banks.

  9. Development of Specific Nested Oligonucleotide PCR Primers for the Streptococcus iniae 16S-23S Ribosomal DNA Intergenic Spacer

    PubMed Central

    Berridge, Brian R.; Fuller, Jeffrey D.; de Azavedo, Joyce; Low, Donald E.; Bercovier, Herve; Frelier, Paul F.

    1998-01-01

    Streptococcus iniae is a cause of septicemia, meningoencephalitis, and death in farmed fish and of cellulitis in human beings. A set of nested oligonucleotide PCR primers that specifically amplified a 373-bp subunit from a variety of clinical isolates from farmed fish and human patients were constructed from a 524-bp consensus sequence of the S. iniae 16S-23S ribosomal DNA intergenic spacer. PMID:9705438

  10. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis.

    PubMed

    Liu, Aicui; Wang, Chao; Liang, Zhijuan; Zhou, Zhi-Wei; Wang, Lin; Ma, Qiaoli; Wang, Guowei; Zhou, Shu-Feng; Wang, Zhenhai

    2015-01-01

    Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions.

  11. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in patients with ventilator-associated pneumonia.

    PubMed

    Yang, Xiao-Jun; Wang, Yan-Bo; Zhou, Zhi-Wei; Wang, Guo-Wei; Wang, Xiao-Hong; Liu, Qing-Fu; Zhou, Shu-Feng; Wang, Zhen-Hai

    2015-01-01

    Ventilator-associated pneumonia (VAP) is a life-threatening disease that is associated with high rates of morbidity and likely mortality, placing a heavy burden on an individual and society. Currently available diagnostic and therapeutic approaches for VAP treatment are limited, and the prognosis of VAP is poor. The present study aimed to reveal and discriminate the identification of the full spectrum of the pathogens in patients with VAP using high-throughput sequencing approach and analyze the species richness and complexity via alpha and beta diversity analysis. The bronchoalveolar lavage fluid samples were collected from 27 patients with VAP in intensive care unit. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 27 samples of VAP were sequenced using the 454 GS FLX system. A total of 103,856 pyrosequencing reads and 638 operational taxonomic units were obtained from these 27 samples. There were four dominant phyla, including Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. There were 90 different genera, of which 12 genera occurred in over ten different samples. The top five dominant genera were Streptococcus, Acinetobacter, Limnohabitans, Neisseria, and Corynebacterium, and the most widely distributed genera were Streptococcus, Limnohabitans, and Acinetobacter in these 27 samples. Of note, the mixed profile of causative pathogens was observed. Taken together, the results show that the high-throughput sequencing approach facilitates the characterization of the pathogens in bronchoalveolar lavage fluid samples and the determination of the profile for bacteria in the bronchoalveolar lavage fluid samples of the patients with VAP. This study can provide useful information of pathogens in VAP and assist clinicians to make rational and effective therapeutic decisions.

  12. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions.

    PubMed

    Aloisio, Irene; Quagliariello, Andrea; De Fanti, Sara; Luiselli, Donata; De Filippo, Carlotta; Albanese, Davide; Corvaglia, Luigi Tommaso; Faldella, Giacomo; Di Gioia, Diana

    2016-06-01

    Different factors are known to influence the early gut colonization in newborns, among them the perinatal use of antibiotics. On the other hand, the effect on the baby of the administration of antibiotics to the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has received less attention, although routinely used in group B Streptococcus positive women to prevent the infection in newborns. In this work, the fecal microbiota of neonates born to mothers receiving IAP and of control subjects were compared taking advantage for the first time of high-throughput DNA sequencing technology. Seven different 16S rDNA hypervariable regions (V2, V3, V4, V6 + V7, V8, and V9) were amplified and sequenced using the Ion Torrent Personal Genome Machine. The results obtained showed significant differences in the microbial composition of newborns born to mothers who had received IAP, with a lower abundance of Actinobacteria and Bacteroidetes as well as an overrepresentation of Proteobacteria. Considering that the seven hypervariable regions showed different discriminant ability in the taxonomic identification, further analyses were performed on the V4 region evidencing in IAP infants a reduced microbial richness and biodiversity, as well as a lower number of bacterial families with a predominance of Enterobacteriaceae members. In addition, this analysis pointed out a significant reduction in Bifidobacterium spp. strains. The reduced abundance of these beneficial microorganisms, together with the increased amount of potentially pathogenic bacteria, may suggest that IAP infants are more exposed to gastrointestinal or generally health disorders later in age.

  13. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis

    PubMed Central

    Liu, Aicui; Wang, Chao; Liang, Zhijuan; Zhou, Zhi-Wei; Wang, Lin; Ma, Qiaoli; Wang, Guowei; Zhou, Shu-Feng; Wang, Zhenhai

    2015-01-01

    Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions. PMID:26300628

  14. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons.

    PubMed

    Rodrigues, Viviane D; Torres, Tatiana T; Ottoboni, Laura M M

    2014-11-01

    Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.

  15. Nested PCR and RFLP analysis based on the 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...

  16. 16S rRNA gene-based identification of bacteria in postoperative endophthalmitis by PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprinting

    PubMed Central

    Navarro-Noya, Yendi; Hernández-Rodríguez, César; Zenteno, Juan C.; Buentello-Volante, Beatriz; Cancino-Díaz, Mario E.; Jan-Roblero, Janet; Cancino-Díaz, Juan C.

    2012-01-01

    Conventional microbiological culture techniques are frequently insufficient to confirm endophthalmitis clinical cases which could require urgent medical attention because it could lead to permanent vision loss. We are proposing PCR-DGGE and 16S rRNA gene libraries as an alternative to improve the detection and identification rate of bacterial species from endophthalmitis cases. PMID:24031830

  17. PCR detection of colonization by Helicobacter pylori in conventional, euthymic mice based on the 16S ribosomal gene sequence.

    PubMed Central

    Smith, J G; Kong, L; Abruzzo, G K; Gill, C J; Flattery, A M; Scott, P M; Bramhill, D; Cioffe, C; Thompson, C M; Bartizal, K

    1996-01-01

    Many animal models of Helicobacter infection have been described, including infection in rhesus monkeys, ferrets, gnotobiotic piglets, and mice. These animal models utilize a combination of detection methods, including culture, urease testing, and histopathology, all of which may be unreliable, insensitive, or labor-intensive. Development of new animal models of Helicobacter pylori requires new methods of detection with increased sensitivity and specificity. We have developed sensitive and specific PCR primers based on the 16S ribosomal gene sequence of H. pylori. The primers detected single-copy 16S DNA representing 0.2 cell of pure H. pylori (2 cells in the presence of mouse stomach mucosal DNA) and did not cross-react with closely related bacteria. We were able to detect colonization by H. pylori in conventional, euthymic, outbred mice up to 4 weeks postinoculation with a high percentage of isolates tested. One isolate of H. pylori was detected by PCR in 100% of the mice at 6 months and 60% of the mice 1 year after inoculation. Approximately 10(3) to 10(4) H. pylori cells per stomach were detected by utilizing this PCR methodology semiquantitatively. These primers and PCR methodology have facilitated detection of H. pylori colonization in conventional, euthymic mice, colonization which may not have been detectable by other methods. PMID:8770506

  18. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2.

    PubMed

    Sze, Marc A; Abbasi, Meysam; Hogg, James C; Sin, Don D

    2014-01-01

    Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR. Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue. There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05). Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.

  19. Real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal bacteraemia.

    PubMed

    Ohlin, Andreas; Bäckman, Anders; Björkqvist, Maria; Mölling, Paula; Jurstrand, Margaretha; Schollin, Jens

    2008-10-01

    To evaluate a real-time PCR assay for the diagnosis of neonatal bacteraemia. Two hundred ninety-five plasma samples from 288 newborns with suspected neonatal sepsis were collected prospectively for the purpose of polymerase chain reaction (PCR)-based bacterial detection. A real-time PCR targeting the bacterial gene for 16S-rRNA gene combined with four specific probes designed to detect Gram-negative bacteria, Staphylococcus aureus and coagulase-negative staphylococci (CoNS) was developed. All samples positive in the universal PCR were further sequenced for bacterial identification. When applied to a material from 50 patients with positive blood culture and 245 patients with negative blood culture, the universal PCR showed a sensitivity of 42% (28-57), a specificity of 95% (92-97), a positive predictive value of 64% (45-80), and a negative predictive value of 89% (84-92) (95% confidence intervals in brackets). A new real-time PCR technique was for the first time applied to a well-defined prospectively and consecutively enrolled material of newborns with suspected sepsis, combining the benefits of real-time PCR with specific probes and sequencing. The method managed to detect bacteraemia with high specificity even though the sensitivity was low. Factors causing the low sensitivity are identified and further strategies to develop the method are described.

  20. Rapid Identification of Clinically Relevant Nocardia Species to Genus Level by 16S rRNA Gene PCR

    PubMed Central

    Laurent, Frederic J.; Provost, Frederique; Boiron, Patrick

    1999-01-01

    Two regions of the gene coding for 16S rRNA in Nocardia species were selected as genus-specific primer sequences for a PCR assay. The PCR protocol was tested with 60 strains of clinically relevant Nocardia isolates and type strains. It gave positive results for all strains tested. Conversely, the PCR assay was negative for all tested species belonging to the most closely related genera, including Dietzia, Gordona, Mycobacterium, Rhodococcus, Streptomyces, and Tsukamurella. Besides, unlike the latter group of isolates, all Nocardia strains exhibited one MlnI recognition site but no SacI restriction site. This assay offers a specific and rapid alternative to chemotaxonomic methods for the identification of Nocardia spp. isolated from pathogenic samples. PMID:9854071

  1. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.

    PubMed Central

    Kowalchuk, G A; Stephen, J R; De Boer, W; Prosser, J I; Embley, T M; Woldendorp, J W

    1997-01-01

    Denaturing gradient gel electrophoresis (DGGE) is a powerful and convenient tool for analyzing the sequence diversity of complex natural microbial populations. DGGE was evaluated for the identification of ammonia oxidizers of the beta subdivision of the Proteobacteria based on the mobility of PCR-amplified 16S rDNA fragments and for the analysis of mixtures of PCR products from this group generated by selective PCR of DNA extracted from coastal sand dunes. Degenerate PCR primers, CTO189f-GC and CTO654r, incorporating a 5' GC clamp, were designed to amplify a 465-bp 16S rDNA region spanning the V-2 and V-3 variable domains. The primers were tested against a representative selection of clones and cultures encompassing the currently recognized beta-subdivision ammonia oxidizer 16S rDNA sequence diversity. Analysis of these products by DGGE revealed that while many of the sequences could be separated, some which were known to be different migrated similarly in the denaturant system used. The CTO primer pair was used to amplify 16S rDNA sequences from DNA extracted from soil sampled from Dutch coastal dune locations of differing in pH and distance from the beach. The derived DGGE patterns were reproducible across multiple DNA isolations and PCRs. Ammonia oxidizer-like sequences from different phylogenetic groupings isolated from gene libraries made from the same sand dune DNA samples but prepared with different primers gave DGGE bands which comigrated with most of the bands detected from the sand dune samples. Bands from the DGGE gels of environmental samples were excised, reamplified, and directly sequenced, revealing strong similarity or identity of the recovered products to the corresponding regions of library clones. Six of the seven sequenced clusters of beta-subdivision ammonia oxidizers were detected in the dune systems, and differences in community structure between some sample sites were demonstrated. The most seaward dune site contained sequences showing

  2. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  3. Near-full length sequencing of 16S rDNA and RFLP indicates that Rhizobium etli is the dominant species nodulating Egyptian winter Berseem clover (Trifolium alexandrinum L.).

    PubMed

    Shamseldin, Abdelaal; Moawad, Hassan; Abd El-Rahim, Wafaa M; Sadowsky, Michael J

    2014-03-01

    Egyptian winter Berseem clover (EWBC) is one of the main important forage legume crops in Egypt that is used for animal feeding in winter and it occupies about 2.5 million feddans (Feddan=4200m(2)) in winter agricultural rotation systems. Forty-eight rhizobial isolates that nodulated this legume host from different geographical regions within Egypt were isolated. RFLP analyses of 16S rDNA (1.5kb) and whole ribosomal DNA (5kb), the sequencing of 16S rDNA, and the sequencing of nodC, nifH and house keeping genes were used to identify these isolates. The RFLP analysis of 16S rDNA (1.5kb) among 15 representative strains with three enzymes generated two genotypes. The largest genotype was similar to Rhizobium etli CFN42T (93.33%) except for strain 902 that failed to re-nodulate EWBC. RFLP analysis of complete ribosomal DNA (5kb) produced five genotypes. The majority of tested strains shared the genotype with R. etli CFN42T (53.33%). Only one strain (1002) shared the genotype with Rhizobium leguminosarum sv. trifolii 3023. The other four strains were comprised of two unique genotypes. Phylogenetic analysis of 16S rDNA sequences revealed that seven representative strains could be divided into two genetic clusters sharing the ancestral clad with R. etli CFN42T. A phylogenetic tree based on nodC gene sequence confirmed that all the examined strains shared the genetic lineage with R. leguminosarum sv. trifolii WSM1325. The phylogenetic trees of house keeping genes are supported strongly the identification of majority of strains as a novel symbiovar of R. etli with new lineages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR.

    PubMed

    Clifford, Robert J; Milillo, Michael; Prestwood, Jackson; Quintero, Reyes; Zurawski, Daniel V; Kwak, Yoon I; Waterman, Paige E; Lesho, Emil P; Mc Gann, Patrick

    2012-01-01

    Within the paradigm of clinical infectious disease research, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa represent the four most clinically relevant, and hence most extensively studied bacteria. Current culture-based methods for identifying these organisms are slow and cumbersome, and there is increasing need for more rapid and accurate molecular detection methods. Using bioinformatic tools, 962,279 bacterial 16S rRNA gene sequences were aligned, and regions of homology were selected to generate a set of real-time PCR primers that target 93.6% of all bacterial 16S rRNA sequences published to date. A set of four species-specific real-time PCR primer pairs were also designed, capable of detecting less than 100 genome copies of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa. All primers were tested for specificity in vitro against 50 species of Gram-positive and -negative bacteria. Additionally, the species-specific primers were tested against a panel of 200 clinical isolates of each species, randomly selected from a large repository of clinical isolates from diverse areas and sources. A comparison of culture and real-time PCR demonstrated 100% concordance. The primers were incorporated into a rapid assay capable of positive identification from plate or broth cultures in less than 90 minutes. Furthermore, our data demonstrate that current targets, such as the uidA gene in E.coli, are not suitable as species-specific genes due to sequence variation. The assay described herein is rapid, cost-effective and accurate, and can be easily incorporated into any research laboratory capable of real-time PCR.

  5. Simultaneous detection of Dialister pneumosintes and Filifactor alocis in endodontic infections by 16S rDNA-directed multiplex PCR.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2004-12-01

    Dialister pneumosintes and Filifactor alocis have been recently considered as candidate endodontic pathogens. In this study, we devised a 16S rDNA-directed multiplex PCR protocol for simultaneous detection of these two bacterial species in endodontic infections. Samples were taken from infected root canals associated with asymptomatic periradicular lesions as well as from cases of acute periradicular abscesses. DNA extracted from the samples was used as template for simultaneous detection of D. pneumosintes and F. alocis through a multiplex PCR assay. Two fragments of the expected sizes, one specific for D. pneumosintes and the other for F. alocis, were simultaneously amplified from a mixture of reference genomic DNA containing DNA from both species. Clinical samples that were positive for the target species showed a single band of the predicted size for each species. D. pneumosintes was detected by multiplex PCR in 11 samples (7 asymptomatic and 4 abscesses) and F. alocis was identified in 9 cases (6 asymptomatic and 3 abscesses). Six samples (3 asymptomatic and 3 abscesses) shared the two species. Data from the present study confirmed that D. pneumosintes and F. alocis are common members of the microbiota present in primary endodontic infections and thereby may participate in the pathogenesis of periradicular lesions. The proposed multiplex PCR assay is a simple, rapid, and accurate method for the simultaneous detection of these two candidate endodontic pathogens.

  6. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  7. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  8. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    USDA-ARS?s Scientific Manuscript database

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  9. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  10. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  11. Rapid identification of veterinary-relevant Mycobacterium tuberculosis complex species using 16S rDNA, IS6110 and Regions of Difference-targeted dual-labelled hydrolysis probes.

    PubMed

    Costa, Pedro; Amaro, Ana; Ferreira, Ana S; Machado, Diana; Albuquerque, Teresa; Couto, Isabel; Botelho, Ana; Viveiros, Miguel; Inácio, João

    2014-12-01

    Members of the Mycobacterium tuberculosis complex (MTC) are causative agents of tuberculosis (TB) in both humans and animals. MTC species are genetically very similar but may differ in their epidemiology, namely geographic distribution and host preferences, virulence traits and antimicrobial susceptibility patterns. However, the conventional laboratory diagnosis does not routinely differentiate between the species of the MTC. In this work we describe a rapid and robust two-step five-target probe-based real-time PCR identification algorithm, based on genomic deletion analysis, to identify the MTC species most commonly associated with TB in livestock and other animals. The first step allows the confirmation of the cultures as MTC members, by targeting their IS6110 element, or as a mycobacterial species, if only a 16S rDNA product is detected in the duplex amplification reaction. If a MTC member is identified, the second amplification step allows the assessment of the presence or absence of the RD1, RD4 and RD9 genomic regions. The correspondent pattern allows us to infer the species of the isolate as M. tuberculosis (if all RDs are present), Mycobacterium caprae (if only RD1 and RD4 are present) and Mycobacterium bovis (if only RD1 is present). The identification algorithm developed presented an almost perfect agreement with the results of the routine bacteriological analysis, with a kappa coefficient of 0.970 (CI(P95%) 0.929-1.000). The assay is able to be adaptable to automation and implementation in the routine diagnostic framework of veterinary diagnostic laboratories, with a particular focus for reference laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparison of 16S rRNA Gene PCR and BACTEC 9240 for Detection of Neonatal Bacteremia

    PubMed Central

    Jordan, J. A.; Durso, M. B.

    2000-01-01

    Ten percent of infants born in the United States are admitted to neonatal intensive care units (NICU) annually. Approximately one-half of these admissions are from term infants (>34 weeks of gestation) at risk for systemic infection. Most of the term infants are not infected but rather have symptoms consistent with other medical conditions that mimic sepsis. The current standard of care for evaluating bacterial sepsis in the newborn is performing blood culturing and providing antibiotic therapy while awaiting the 48-h preliminary result of culture. Implementing a more rapid means of ruling out sepsis in term newborns could result in shorter NICU stays and less antibiotic usage. The purpose of this feasibility study was to compare the utility of PCR to that of conventional culture. To this end, a total of 548 paired blood samples collected from infants admitted to the NICU for suspected sepsis were analyzed for bacterial growth using the BACTEC 9240 instrument and for the bacterial 16S rRNA gene using a PCR assay which included a 5-h preamplification culturing step. The positivity rates by culture and PCR were 25 (4.6%) and 27 (4.9%) positive specimens out of a total of 548 specimens, respectively. The comparison revealed sensitivity, specificity, and positive and negative predictive values of 96.0, 99.4, 88.9, and 99.8%, respectively, for PCR. In summary, this PCR-based approach, requiring as little as 9 h of turnaround time and blood volumes as small as 200 μl, correlated well with conventional blood culture results obtained for neonates suspected of having bacterial sepsis. PMID:10878046

  13. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species

    PubMed Central

    2010-01-01

    Background The genus Vibrio is a diverse group of Gram-negative bacteria comprised of 74 species. Furthermore, the genus has and is expected to continue expanding with the addition of several new species annually. Consequently, it is of paramount importance to have a method which is able to reliably and efficiently differentiate the numerous Vibrio species. Results In this study, a novel and rapid polymerase chain reaction (PCR)-based intergenic spacer (IGS)-typing system for vibrios was developed that is based on the well-known IGS regions located between the 16S and 23S rRNA genes on the bacterial chromosome. The system was optimized to resolve heteroduplex formation as well as to take advantage of capillary gel electrophoresis technology such that reproducible analyses could be achieved in a rapid manner. System validation was achieved through testing of 69 archetypal Vibrio strains, representing 48 Vibrio species, from which an 'IGS-type' profile database was generated. These data, presented here in several cluster analyses, demonstrated successful differentiation of the 69 type strains showing that this PCR-based fingerprinting method easily discriminates bacterial strains at the species level among Vibrio. Furthermore, testing 36 strains each of V. parahaemolyticus and V. vulnificus, important food borne pathogens, isolated from a variety of geographical locations with the IGS-typing method demonstrated distinct IGS-typing patterns indicative of subspecies divergence in both populations making this technique equally useful for intraspecies differentiation, as well. Conclusion This rapid, reliable and efficient IGS-typing system, especially in combination with 16S rRNA gene sequencing, has the capacity to not only discern and identify vibrios at the species level but, in some cases, at the sub-species level, as well. This procedure is particularly well-suited for preliminary species identification and, lends itself nicely to epidemiological investigations

  14. Ralstonia paucula (Formerly CDC Group IV c-2): Unsuccessful Strain Differentiation with PCR-Based Methods, Study of the 16S-23S Spacer of the rRNA Operon, and Comparison with Other Ralstonia Species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum)

    PubMed Central

    Moissenet, Didier; Bidet, Philippe; Garbarg-Chenon, Antoine; Arlet, Guillaume; Vu-Thien, Hoang

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNAIle and tRNAAla genes, which are identical to genes described for R. pickettii and R. solanacearum. PMID:11136807

  15. Ralstonia paucula (Formerly CDC group IV c-2): unsuccessful strain differentiation with PCR-based methods, study of the 16S-23S spacer of the rRNA operon, and comparison with other Ralstonia species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum).

    PubMed

    Moissenet, D; Bidet, P; Garbarg-Chenon, A; Arlet, G; Vu-Thien, H

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNA(Ile) and tRNA(Ala) genes, which are identical to genes described for R. pickettii and R. solanacearum.

  16. Detection of 16S rDNA of Candidatus Liberibacter asiaticus by quantitative real-time PCR

    USDA-ARS?s Scientific Manuscript database

    Orange juice processed from Huanglongbing (HLB) infected fruit is often associated with bitter taste and/or off-flavor. The widely spread HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to diagnose HLB for citrus tr...

  17. Analysis of 525 Samples To Determine the Usefulness of PCR Amplification and Sequencing of the 16S rRNA Gene for Diagnosis of Bone and Joint Infections

    PubMed Central

    Fenollar, Florence; Roux, Véronique; Stein, Andréas; Drancourt, Michel; Raoult, Didier

    2006-01-01

    The 16S rRNA gene PCR in the diagnosis of bone and joint infections has not been systematically tested. Five hundred twenty-five bone and joint samples collected from 525 patients were cultured and submitted to 16S rRNA gene PCR detection of bacteria in parallel. The amplicons with mixed sequences were also cloned. When discordant results were observed, culture and PCR were performed once again. Bacteria were detected in 139 of 525 samples. Culture and 16S rRNA gene PCR yielded identical documentation in 475 samples. Discrepancies were linked to 13 false-positive culture results, 5 false-positive PCR results, 9 false-negative PCR results, 16 false-negative culture results, and 7 mixed infections. Cloning and sequencing of 16S rRNA gene amplicons in 6 of 8 patients with mixed infections identified 2 to 8 bacteria per sample. Rarely described human pathogens such as Alcaligenes faecalis, Comamonas terrigena, and 21 anaerobes were characterized. We also detected, by 16S rRNA gene PCR, four previously identified bacteria never reported in human infection, Alkanindiges illinoisensis, dehydroabietic acid-degrading bacterium DhA-73, unidentified Hailaer soda lake bacterium, and uncultured bacterium clone HuCa4. Seven organisms representing new potential species were also detected. PCR followed by cloning and sequencing may help to identify new pathogens involved in mixed bone infection. PMID:16517890

  18. Touchdown Enzyme Time Release-PCR for Detection and Identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci Using the 16S and 16S-23S Spacer rRNA Genes

    PubMed Central

    Madico, Guillermo; Quinn, Thomas C.; Boman, Jens; Gaydos, Charlotte A.

    2000-01-01

    Three touchdown enzyme time release (TETR)-PCR assays were used to amplify different DNA sequences in the variable regions of the 16S and 16S-23S spacer rRNA genes specific for Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci as improved tests for sensitive diagnosis and rapid species differentiation. The TETR-PCR protocol used 60 cycles of amplification, which provided improved analytical sensitivity (0.004 to 0.063 inclusion-forming unit of Chlamydia species per PCR). The sensitivity of TETR-PCR with primer set CTR 70-CTR 71 was 96.7%, and the specificity was 99.6%, compared to those of the AMPLICOR PCR for the detection of C. trachomatis in vaginal swab samples. TETR-PCR for C. pneumoniae with primer set CPN 90-CPN 91 was 90% sensitive and 93.3% specific compared with a nested PCR with primer set CP1/2-CPC/D for clinical respiratory samples. TETR-PCR for C. psittaci with primer set CPS 100-CPS 101 showed substantial agreement with cell culturing (κ, 0.78) for animal tissue samples. Primer sets were then combined into a single multiplex TETR-PCR test. The respective 315-, 195-, and 111-bp DNA target products were precisely amplified when DNA from each of the respective Chlamydia species or combinations of them was used. Multiplex chlamydia TETR-PCR correctly identified one strain of each of the 15 serovars of C. trachomatis, 22 isolates of C. pneumoniae, and 20 isolates of C. psittaci. The primer sets were specific for each species. No target products were amplified when DNA from C. pecorum or a variety of other microorganisms was tested for specificity. TETR-PCR with primers selected for specific sequences in the 16S and 16S-23S spacer rRNA genes is a valuable test that could be used either with individual primers or in a multiplex assay for the identification and differentiation of Chlamydia species from culture isolates or for the detection of chlamydiae in clinical samples. PMID:10699002

  19. Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis

    PubMed Central

    Siala, Mariam; Gdoura, Radhouane; Fourati, Hela; Rihl, Markus; Jaulhac, Benoit; Younes, Mohamed; Sibilia, Jean; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Sghir, Abdelghani; Hammami, Adnane

    2009-01-01

    Introduction Broad-range rDNA PCR provides an alternative, cultivation-independent approach for identifying bacterial DNA in reactive and other form of arthritis. The aim of this study was to use broad-range rDNA PCR targeting the 16S rRNA gene in patients with reactive and other forms of arthritis and to screen for the presence of DNA from any given bacterial species in synovial fluid (SF) samples. Methods We examined the SF samples from a total of 27 patients consisting of patients with reactive arthritis (ReA) (n = 5), undifferentiated arthritis (UA) (n = 9), rheumatoid arthritis (n = 7), and osteoarthritis (n = 6) of which the latter two were used as controls. Using broad-range bacterial PCR amplifying a 1400 bp fragment from the 16S rRNA gene, we identified and sequenced at least 24 clones from each SF sample. To identify the corresponding bacteria, DNA sequences were compared to the EMBL (European Molecular Biology Laboratory) database. Results Bacterial DNA was identified in 20 of the 27 SF samples (74, 10%). Analysis of a large number of sequences revealed the presence of DNA from more than one single bacterial species in the SF of all patients studied. The nearly complete sequences of the 1400 bp were obtained for most of the detected species. DNA of bacterial species including Shigella species, Escherichia species, and other coli-form bacteria as well as opportunistic pathogens such as Stenotrophomonas maltophilia and Achromobacter xylosoxidans were shared in all arthritis patients. Among pathogens described to trigger ReA, DNA from Shigella sonnei was found in ReA and UA patients. We also detected DNA from rarely occurring human pathogens such as Aranicola species and Pantoea ananatis. We also found DNA from bacteria so far not described in human infections such as Bacillus niacini, Paenibacillus humicus, Diaphorobacter species and uncultured bacterium genera incertae sedis OP10. Conclusions Broad-range PCR followed by cloning and sequencing the entire

  20. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies.

    PubMed

    Schloss, Patrick D; Gevers, Dirk; Westcott, Sarah L

    2011-01-01

    The advent of next generation sequencing has coincided with a growth in interest in using these approaches to better understand the role of the structure and function of the microbial communities in human, animal, and environmental health. Yet, use of next generation sequencing to perform 16S rRNA gene sequence surveys has resulted in considerable controversy surrounding the effects of sequencing errors on downstream analyses. We analyzed 2.7×10(6) reads distributed among 90 identical mock community samples, which were collections of genomic DNA from 21 different species with known 16S rRNA gene sequences; we observed an average error rate of 0.0060. To improve this error rate, we evaluated numerous methods of identifying bad sequence reads, identifying regions within reads of poor quality, and correcting base calls and were able to reduce the overall error rate to 0.0002. Implementation of the PyroNoise algorithm provided the best combination of error rate, sequence length, and number of sequences. Perhaps more problematic than sequencing errors was the presence of chimeras generated during PCR. Because we knew the true sequences within the mock community and the chimeras they could form, we identified 8% of the raw sequence reads as chimeric. After quality filtering the raw sequences and using the Uchime chimera detection program, the overall chimera rate decreased to 1%. The chimeras that could not be detected were largely responsible for the identification of spurious operational taxonomic units (OTUs) and genus-level phylotypes. The number of spurious OTUs and phylotypes increased with sequencing effort indicating that comparison of communities should be made using an equal number of sequences. Finally, we applied our improved quality-filtering pipeline to several benchmarking studies and observed that even with our stringent data curation pipeline, biases in the data generation pipeline and batch effects were observed that could potentially confound the

  1. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  2. Sensitive detection and serovar differentiation of typhoidal and nontyphoidal Salmonella enterica species using 16S rRNA Gene PCR coupled with high-resolution melt analysis.

    PubMed

    Masek, Billie J; Hardick, Justin; Won, Helen; Yang, Samuel; Hsieh, Yu-Hsiang; Rothman, Richard E; Gaydos, Charlotte A

    2014-03-01

    Salmonella enterica species infections are a significant public health problem causing high morbidity rates worldwide and high mortality rates in the developing world. These infections are not always rapidly diagnosed as a cause of bloodstream infections because of the limitations of blood culture, which greatly affects clinical care as a result of treatment delays. A molecular diagnostic assay that could rapidly detect and identify S. enterica species infections as a cause of sepsis is needed. Nine typhoidal and nontyphoidal S. enterica serovars were used to establish the limit of detection (LOD) of a previously published 16S rRNA gene PCR (16S PCR) in mock whole blood specimens. In addition, 16 typhoidal and nontyphoidal S. enterica serovars were used to evaluate the serovar differentiation capability of 16S PCR coupled with high-resolution melt analysis. The overall LOD of 16S PCR for the nine typhoidal and nontyphoidal S. enterica serovars analyzed was <10 colony-forming units per milliliter (CFU/mL) in mock whole blood specimens, with the lowest and highest LOD at <1 CFU/mL and 9 CFU/mL, respectively. By high-resolution melt analysis, the typhoidal and nontyphoidal S. enterica serovar groups analyzed each generated a unique grouping code, allowing for serovar-level identification. 16S PCR coupled with high-resolution melt analysis could be a useful molecular diagnostic that could enhance the current diagnostic, treatment, and surveillance methods of S. enterica bloodstream infections.

  3. Design and application of an internal amplification control to improve Dehalococcoides mccartyi 16S rRNA gene enumeration by qPCR.

    PubMed

    Hatt, Janet K; Ritalahti, Kirsti M; Ogles, Dora M; Lebrón, Carmen A; Löffler, Frank E

    2013-10-01

    Dehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of chlorinated ethenes to nontoxic ethene in contaminated aquifers. Enumeration of Dhc biomarker genes using quantitative real-time PCR (qPCR) in groundwater is a key component of site assessment and bioremediation monitoring. Unfortunately, standardized qPCR procedures that recognize impaired measurements due to PCR inhibition, low template DNA concentrations, or analytical error are not available, thus limiting confidence in qPCR data. To improve contemporary approaches for enumerating Dhc in environmental samples, multiplex qPCR assays were designed to quantify the Dhc 16S rRNA gene and one of two different internal amplification controls (IACs): a modified Dhc 16S rRNA gene fragment (Dhc*) and the firefly luciferase gene luc. The Dhc* IAC exhibited competitive inhibition in qPCR with the Dhc 16S rRNA gene template when the ratio of either target was 100-fold greater than the other target. A multiplex qPCR assay with the luc IAC avoided competitive inhibition and accurately quantified Dhc abundances ranging from ∼10 to 10(7) 16S rRNA gene copies per reaction. The addition of ∼10(6) E. coli luc IAC to simulated groundwater amended with the Dhc-containing consortium KB-1 yielded reproducible luc counts after DNA extraction and multiplex qPCR enumeration. The application of the luc IAC assay improved Dhc biomarker gene quantification from simulated groundwater samples and is a valuable approach for "ground truthing" qPCR data obtained in different laboratories, thus reducing ambiguity associated with qPCR enumeration and reproducibility.

  4. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    PubMed

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-03-31

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments.

  5. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR

    PubMed Central

    Tatti, Enrico; McKew, Boyd A.; Whitby, Corrine; Smith, Cindy J.

    2016-01-01

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included. PMID:27341629

  6. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    PubMed

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-06-11

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.

  7. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  8. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes.

    PubMed

    Moreira, David; Rodríguez-Valera, Francisco; López-García, Purificación

    2004-09-01

    We have sequenced and analysed a 39.5 kbp genome fragment of a marine Group II euryarchaeote identified in a metagenomic library of 500 m deep plankton at the Antarctic Polar Front. The clone contains a 16S rRNA gene that is separated from the 23S rRNA gene in the genome. This appears to be a trait shared by Thermoplasmatales and Group II euryarchaeota. This genome fragment exhibits a compact organization, including a few overlapping genes in the canonical spectinomycin-like (spc) operon for ribosomal proteins that is immediately upstream the 16S rDNA. Most open reading frames (ORFs) encoded proteins involved in housekeeping processes and, as expected, exhibited a phylogenetic distribution congruent with that of the 16S rRNA. A considerable number of proteins with predicted transmembrane helices was identified. Among those, two proteins encoded by genes likely forming an operon appear to be part of a membrane terminal electron transport chain. One of these proteins has an unusual domain arrangement including ferredoxin, flavodoxin and one succinate dehydrogenase/fumarate reductase subunit. These proteins probably constitute a new succinate dehydrogenase-like oxidoreductase involved in what could be a novel pathway for energy metabolism in Group II euryarchaeota.

  9. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  10. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences.

    PubMed

    Mergaert, J; Verhelst, A; Cnockaert, M C; Tan, T L; Swings, J

    2001-04-01

    One hundred and seventy three bacterial strains, isolated previously after enrichment under oligotrophic, psychrophylic conditions from Arctic (98 strains) and Antarctic seawater (75 strains), were characterized by gas-liquid chromatographic analysis of their fatty acid compositions. By numerical analysis, 8 clusters, containing 2 to 59 strains, could be delineated, and 8 strains formed separate branches. Five clusters contained strains from both poles, two minor clusters were confined to Arctic isolates, and one cluster consisted of Antarctic isolates only. The 16S rRNA genes from 23 strains, representing the different fatty acid profile clusters and including the unclustered strains, were sequenced. The sequences grouped with the alpha and gamma Proteobacteria, the high percent G+C gram positives, and the Cytophaga-Flavobacterium-Bacteroides branch. The sequences of strains from 4 clusters and of 7 unclustered strains were closely related (sequence similarities above 97%) to reference sequences of Sulfitobacter mediterraneus, Halomonas variabilis, Alteromonas macleodii, Pseudoalteromonas species, Shewanella frigidimarina, and Rhodococcus fascians. Strains from the other four clusters and an unclustered strain showed sequence similarities below 97% with nearest named neighbours, including Rhizobium, Glaciecola, Pseudomonas, Alteromonas macleodii and Cytophaga marinoflava, indicating that the clusters which they represent form as yet unnamed taxa.

  11. Broad-range 16S rRNA PCR with cerebrospinal fluid may be unreliable for management of postoperative aseptic meningitis.

    PubMed

    Zarrouk, Virginie; Leflon-Guibout, Véronique; Robineaux, Sébastien; Kalamarides, Michel; Nicolas-Chanoine, Marie-Hélène; Sterkers, Olivier; Fantin, Bruno

    2010-09-01

    We previously demonstrated that discontinuing presumptive antibiotic treatment in cases of negative conventional cultures is safe and effective for patients with postoperative aseptic meningitis (PAM). Here, we prospectively investigated 32 patients with postoperative meningitis. All 26 patients with PAM diagnosed on the basis of conventional cultures demonstrated negative 16S rRNA PCR results. Our results suggest that the PCR technique does not change PAM management.

  12. The potential role of incorporating real-time PCR and DNA sequencing for amplification and detection of 16S rRNA gene signatures in neonatal sepsis.

    PubMed

    Midan, Dina A; Abo El Fotoh, Wafaa Moustafa M; El Shalakany, Abeer H

    2017-06-01

    This study aimed to explore whether 16S rRNA gene amplification by real time PCR and sequencing could serve as genetic-based methods in rapid and accurate diagnosis of neonatal sepsis. This case control study was conducted on 40 neonates suffering from sepsis like manifestations recruited from the neonatal intensive care unit of Menoufia university hospital over a period of 6 months. Their blood samples were used for paired analysis of bacterial growth using BACTEC 9050 instrument and real time PCR assay with subsequent DNA sequencing for bacterial species identification. The detection rate of culture proven sepsis was 70%. By using real time 16S r RNA PCR amplification method, the detection of bacteria was improved to 80%. Real time PCR revealed sensitivity, specificity, positive predictive value and negative predictive value of [100%, 66.7%, 87.5% and 100%] respectively. Compared to culture, the 16S rRNA real time PCR demonstrated a high negative value for ruling out neonatal sepsis. There was significant statistical difference between the PCR positive and negative cases as regards the hematological sepsis score. The results demonstrated the ability of DNA sequencing to recognize 4 pathogens which were negative by blood culture. The time consumed to detect sepsis using blood culture was up to 5 days while it took up to 16 h only by PCR and sequencing methods. 16S rRNA gene amplification by real time PCR and sequence analysis could be served as ideal and reliable genetic-based methods to diagnose and rule out sepsis with provision of additional data that cannot be obtained by routine laboratory tests with a shorter turnaround time than those with culture-based protocols.

  13. Importance of Micromonospora spp. as Colonizers of Cellulose in Freshwater Lakes as Demonstrated by Quantitative Reverse Transcriptase PCR of 16S rRNA

    PubMed Central

    de Menezes, Alexandre B.; McDonald, James E.; Allison, Heather E.

    2012-01-01

    The relative abundance of micromonosporas in the bacterial communities inhabiting cellulose baits, water columns, and sediments of two freshwater lakes was determined by quantitative PCR (qPCR) of reverse-transcribed 16S rRNA. Micromonospora spp. were shown to be significant members of the active bacterial population colonizing cellulosic substrates in the lake sediment, and their increased prevalence with greater depth was confirmed by enumeration of CFU. PMID:22389367

  14. Application of a 16S rRNA PCR-high-resolution melt analysis assay for rapid detection of Salmonella Bacteremia.

    PubMed

    Jeng, Kevin; Yang, Samuel; Won, Helen; Gaydos, Charlotte A; Hsieh, Yu-Hsiang; Kecojevic, Alex; Carroll, Karen C; Hardick, Justin; Rothman, Richard E

    2012-03-01

    Current culture and phenotypic protocols for diagnosing Salmonella infections can be time-consuming. Here, we describe the application of a 16S rRNA PCR coupled to high-resolution melt analysis (HRMA) for species and serotype identification within 6 h of blood sample collection from a patient with Salmonella enterica serotype Enteritidis bacteremia.

  15. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth

    PubMed Central

    Oikonomou, Georgios; Teixeira, Andre Gustavo Vieira; Foditsch, Carla; Bicalho, Marcela Lucas; Machado, Vinicius Silva; Bicalho, Rodrigo Carvalho

    2013-01-01

    In this study, we use barcoded pyrosequencing of the 16S rRNA gene to characterize the fecal microbiota of neonatal calves and identify possible relationships of certain microbiota profiles with health and weight gain. Fecal samples were obtained weekly from 61 calves from birth until weaning (seventh week of the calves' life). Firmicutes was the most prevalent phylum, with a prevalence ranging from 63.84% to 81.90%, followed by Bacteroidetes (8.36% to 23.93%), Proteobacteria (3.72% to 9.75%), Fusobacteria (0.76% to 5.67%), and Actinobacteria (1.02% to 2.35%). Chao1 index gradually increased from the first to the seventh postnatal week. Chao1 index was lower during the third, fourth, and fifth week of life in calves that suffered from pneumonia and were treated with antibiotics. Diarrhea incidence during the first four weeks of the calves' life was also associated with a reduction of microbial diversity during the third week of life. Increased fecal microbial diversity after the second week of life was associated with higher weight gain. Using discriminant analysis we were able to show differences in the microbiota profiles between different weeks of life, between high and low weight gain groups of calves, and between calves affected and not affected with diarrhea during the first four weeks life. The prevalence of Faecalibacterium spp. in the first week of life was associated with weight gain and the incidence of diarrhea, with higher prevalence being associated with higher weight gain and less diarrhea. Representative sequences from Faecalibacterium spp. were closely affiliated to Faecalibacterium prausnitzii. Results presented here provide new information regarding the intestinal microbiota of neonatal calves and its association with health and growth. Fecal microbial diversity was associated with calf age, disease status and growth rates. Results suggesting a possible beneficial effect of Faecalibacterium spp. on health and growth are promising. PMID:23646192

  16. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis.

    PubMed

    Singh, Ramesh K; Mishra, Ravi P N; Jaiswal, Hemant K; Kumar, Vinod; Pandey, Shree P; Rao, Sasi B; Annapurna, Kannepalli

    2006-05-01

    Three novel endophytic rhizobial strains (RRE3, RRE5, and RRE6) were isolated from naturally growing surface-sterilized rice roots. These isolates had the ability to nodulate common bean (Phaseolus vulgaris). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing of 16S rDNA of these isolates revealed that RRE3 and RRE5 are phylogenetically very close to Burkholderia cepacia complex, whereas RRE6 has affinity with Rhizobium leguminosarum bv. phaseoli. Plant infection test using gusA reporter gene-tagged construct of these isolates indicated that bacterial cells can go inside and colonize the rice root interiors. A significant increase in biomass and grain yield was also recorded in greenhouse-grown rice plants inoculated with these isolates.

  17. Use of universal 16S rRNA gene PCR as a diagnostic tool for venous access port-related bloodstream infections.

    PubMed

    Guembe, M; Marín, M; Martín-Rabadán, P; Echenagusia, A; Camúñez, F; Rodríguez-Rosales, G; Simó, G; Echenagusia, M; Bouza, E

    2013-03-01

    Amplification of the universal 16S rRNA gene using PCR has improved the diagnostic yield of microbiological samples. However, no data have been reported on the reliability of this technique with venous access ports (VAPs). We assessed the utility of 16S rRNA PCR for the prediction of VAP-related bloodstream infection (VAP-RBSI). During a 2-year period, we prospectively received all VAPs removed by interventional radiologists. PCR and conventional cultures were performed using samples from the different VAP sites. We compared the results of PCR with those of conventional culture for patients with confirmed VAP-RBSI. We collected 219 VAPs from 219 patients. Conventional VAP culture revealed 15 episodes of VAP-RBSI. PCR revealed a further 4 episodes in patients undergoing antibiotic therapy which would have gone undetected using conventional culture. Moreover, it had a negative predictive value of 97.8% for the prediction of VAP-RBSI when it was performed using biofilm from the internal surface of the port. In conclusion, universal 16S rRNA PCR performed with samples from the inside of VAPs proved to be a useful tool for the diagnosis of VAP-RBSI. It increased detection of VAP-RBSI episodes by 21.1% in patients undergoing antibiotic therapy whose episodes would have gone undetected using conventional culture. Therefore, we propose a new application of 16S rRNA PCR as a useful tool for the diagnosis of VAP-RBSI in patients receiving antibiotic therapy.

  18. Use of Universal 16S rRNA Gene PCR as a Diagnostic Tool for Venous Access Port-Related Bloodstream Infections

    PubMed Central

    Marín, M.; Martín-Rabadán, P.; Echenagusia, A.; Camúñez, F.; Rodríguez-Rosales, G.; Simó, G.; Echenagusia, M.; Bouza, E.

    2013-01-01

    Amplification of the universal 16S rRNA gene using PCR has improved the diagnostic yield of microbiological samples. However, no data have been reported on the reliability of this technique with venous access ports (VAPs). We assessed the utility of 16S rRNA PCR for the prediction of VAP-related bloodstream infection (VAP-RBSI). During a 2-year period, we prospectively received all VAPs removed by interventional radiologists. PCR and conventional cultures were performed using samples from the different VAP sites. We compared the results of PCR with those of conventional culture for patients with confirmed VAP-RBSI. We collected 219 VAPs from 219 patients. Conventional VAP culture revealed 15 episodes of VAP-RBSI. PCR revealed a further 4 episodes in patients undergoing antibiotic therapy which would have gone undetected using conventional culture. Moreover, it had a negative predictive value of 97.8% for the prediction of VAP-RBSI when it was performed using biofilm from the internal surface of the port. In conclusion, universal 16S rRNA PCR performed with samples from the inside of VAPs proved to be a useful tool for the diagnosis of VAP-RBSI. It increased detection of VAP-RBSI episodes by 21.1% in patients undergoing antibiotic therapy whose episodes would have gone undetected using conventional culture. Therefore, we propose a new application of 16S rRNA PCR as a useful tool for the diagnosis of VAP-RBSI in patients receiving antibiotic therapy. PMID:23254136

  19. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli.

    PubMed

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the "central pseudoknot" and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A-916U and betaproteobacterial 19C-916G) and the non-native 19A-916G pair retained function, whereas the non-native 19C-916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A-916U or 19C-916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts.

  20. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli

    PubMed Central

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the “central pseudoknot” and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A–916U and betaproteobacterial 19C–916G) and the non-native 19A–916G pair retained function, whereas the non-native 19C–916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A–916U or 19C–916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts. PMID:28293553

  1. Evaluations of Different Hypervariable Regions of Archaeal 16S rRNA Genes in Profiling of Methanogens by Archaea-Specific PCR and Denaturing Gradient Gel Electrophoresis▿

    PubMed Central

    Yu, Zhongtang; García-González, Rubén; Schanbacher, Floyd L.; Morrison, Mark

    2008-01-01

    Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples. PMID:18083874

  2. Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis.

    PubMed

    Morales, Sergio E; Holben, William E

    2009-05-01

    Phylogenetic and "fingerprinting" analyses of the 16S rRNA genes of prokaryotes have been a mainstay of microbial ecology during the last two decades. However, many methods and results from studies that rely on the 16S rRNA gene for detection and quantification of specific microbial taxa have seemingly received only cursory or even no validation. To directly examine the efficacy and specificity of 16S rRNA gene-based primers for phylum-, class-, and operational taxonomic unit-specific target amplification in quantitative PCR, we created a collection of primers based solely on an extensive soil bacterial 16S rRNA gene clone library containing approximately 5,000 sequences from a single soil sample (i.e., a closed site-specific library was used to create PCR primers for use at this site). These primers were initially tested in silico prior to empirical testing by PCR amplification of known target sequences and of controls based on disparate phylogenetic groups. Although all primers were highly specific according to the in silico analysis, the empirical analyses clearly exhibited a high degree of nonspecificity for many of the phyla or classes, while other primers proved to be highly specific. These findings suggest that significant care must be taken when interpreting studies whose results were obtained with target specific primers that were not adequately validated, especially where population densities or dynamics have been inferred from the data. Further, we suggest that the reliability of quantification of specific target abundance using 16S rRNA-based quantitative PCR is case specific and must be determined through rigorous empirical testing rather than solely in silico.

  3. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes.

    PubMed

    Njiru, Z K; Constantine, C C; Guya, S; Crowther, J; Kiragu, J M; Thompson, R C A; Dávila, A M R

    2005-02-01

    There are 11 different pathogenic trypanosomes in trypanosomiasis endemic regions of Africa. Their detection and characterisation by molecular methods relies on species-specific primers; consequently several PCR tests have to be made on each sample. Primers ITS1 CF and ITS1 BR, previously designed to amplify the internal transcribed spacer (ITS1) of rDNA, have been evaluated for use in a universal diagnostic test for all pathogenic trypanosomes. Blood was collected from 373 cattle and 185 camels. The primers gave constant PCR products with the stocks of each taxon tested. Members of subgenus Trypanozoon (T. brucei brucei, T. evansi, T. b. rhodesiense and T. b. gambiense) gave a constant product of approximately 480 bp; T. congolense, savannah 700 bp, T. congolense kilifi 620 bp and T. congolense forest 710 bp: T. simiae 400 bp, T. simiae tsavo 370 bp, T. godfreyi 300 bp and T. vivax 250 bp. The sensitivity of the test ranged from 10 pg for Trypanozoon, T. congolense clade and T. vivax to 100 pg for T. simiae and T. godfreyi. The primers detected cases of multi-taxa samples, although the sensitivity was reduced with an increase in the combinations. A better detection rate of trypanosome DNA was recorded with buffy coats than from direct blood. With the field samples, the diagnostic sensitivity was close to the sensitivity obtained using single reactions with species-specific primers for Trypanozoon 38/40 (95%) and T. congolense savannah 30/33 (90.9%) but was lower with T. vivax 25/31 (77.4%). The primers offer promise as a routine diagnostic tool through the use of a single PCR; however, further evaluation is recommended.

  4. 16S rRNA Gene Sequence Analysis of Photobacterium damselae and Nested PCR Method for Rapid Detection of the Causative Agent of Fish Pasteurellosis

    PubMed Central

    Osorio, Carlos R.; Collins, Matthew D.; Toranzo, Alicia E.; Barja, Juan L.; Romalde, Jesús L.

    1999-01-01

    The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis. PMID:10388687

  5. [A case of culture-negative brain abscess caused by Streptococcus intermedius infection diagnosed by broad-range PCR of 16S ribosomal RNA].

    PubMed

    Ohara, Nobuyuki; Asai, Katsunori; Ohkusu, Kiyofumi; Wakayama, Akatsuki

    2013-10-01

    A 50-year-old man presented with altered mental status during hospitalization for pneumonia. MRI showed multifocal ring-enhanced lesions, which consisted of multiple cerebral abscesses. We started empirical antibiotic therapy, but the following morning, his condition rapidly deteriorated and a CT scan revealed acute hydrocephalus, which required ventricular drainage. Gram staining of cerebro-spinal fluid from the ventricular drainage showed gram-positive cocci in chains, but culture results were negative. 16S ribosomal RNA sequencing with broad-range PCR of the cerebro-spinal fluid identified Streptococcus intermedius. On the basis of this identification, the antibiotic regimen was changed to ampicillin monotherapy. After 1 year of antibiotic therapy, all the abscesses had disappeared and the patient was discharged without any sequelae. Bacterial 16S rRNA gene analysis with broad-range PCR is a very useful method for facilitating the etiological diagnosis and selection of appropriate treatment for culture-negative infections.

  6. Septic arthritis and osteomyelitis in a 10-year-old boy, caused by Fusobacterium nucleatum, diagnosed with PCR/16S ribosomal bacterial DNA amplification

    PubMed Central

    Kroon, Elke; Arents, Niek A; Halbertsma, Feico Jan

    2012-01-01

    A 10-year-old boy presented with an atypical non-febrile septic arthritis/osteomyelitis. He was unresponsive to routine antibiotic treatment with flucloxacillin/gentamicin as the pain and fluid collection increased. Synovial fluid cultures are negative and gram stain remained negative. Only after PCR/16S ribosomal bacterial DNA amplification a Fusobacterium nucleatum could be detected, and antibiotic therapy switched to clindamycin with rapid response. Septic osteomyelitis and arthritis are relatively rare but important infections in children needing prompt treatment, and should be considered when a child complaints about joint or bone pain without prior recent trauma. Skin bacteria are the most prevalent causative organisms, whereas Fusobacteria or other anaerobic, Gram-negative microorganisms are very seldom encountered. If cultures remain negative and the patients responds insufficiently to empiric treatment, PCR/16S ribosomal bacterial DNA amplification can be useful to detect the causative microorganisms. PMID:22605875

  7. Actinobacillus (Aggregatibacter) actinomycetemcomitans (HACEK) identified by PCR/16S rRNA sequence analysis from the heart valve in a patient with blood culture negative endocarditis.

    PubMed

    Westling, Katarina; Vondracek, Martin

    2008-01-01

    We report a case of infective endocarditis caused by Actinobacillus actinomycetemcomitans (Aggregatibacter actinomycetemcomitans) from the HACEK group diagnosed by PCR/16S from the heart valve. Multiple blood cultures and cultures from heart valve were negative and cardiac surgery was performed due to therapeutic and cardiac failures. Molecular biological methods are useful in such a patient, to choose an optimal antibiotic treatment post-surgery.

  8. Identification of Group B Streptococci Using 16S rRNA, cfb, scpB, and atr Genes in Pregnant Women by PCR.

    PubMed

    Mousavi, Seyed Masoud; Hosseini, Seyed Mostafa; Mashouf, Rasoul Yousefi; Arabestani, Mohammad Reza

    2016-12-01

    Streptococcus agalactiae is acommensalorganism, but it may cause infection in susceptible hosts. The aim of this study was to evaluate PCR assay compared with conventional culture method for direct detection of Streptococcus agalactiae. Total of 203 paired low vaginal swabs were collected from women at 35-37 weeks of pregnancy from June 2013 through February 2014 for detection of Streptococcus agalactiae using PCR assay targeting 16S rRNA, cfb, scpB, and atr genes and culture method following broth enrichment. The results were recorded and evaluated for determining of sensitivity, specificity, positive and negative predictive values of PCR assaycompared with culture method. Prevalence of Streptococcus agalactiae was determined as 7.39% (n=15) using culture method; 19.70% (n=40) by PCR targeting 16S rRNA gene; 18.23% (n=37) by targeting atr gene; 17.24% (n=35) by cfb gene; and 8.87% (n=18) by scpB gene. Generally, a total of 49 specimens were considered true positive (27 samples by PCR assay using the four genes in sum, 4 samples only by atr gene PCR, 3 samples only by cfb gene PCR, 2 samples only by culture method, and 13 samples by PCR assay and culture method in common) and prevalence of Streptococcus agalactiae determined 24.14% in Hamadan. The current data demonstrated that performing only culture method for detecting GBS from pregnant women leads to missed false negative carrier individuals. Thus, it is recommended that both the PCR assay and conventional culture method to be performed in order to detect Streptococcus agalactiae.

  9. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study.

    PubMed

    Bémer, Pascale; Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-10-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Evaluation of 16S rRNA Gene PCR Sensitivity and Specificity for Diagnosis of Prosthetic Joint Infection: a Prospective Multicenter Cross-Sectional Study

    PubMed Central

    Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-01-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥1 positive sample for strict pathogens and ≥2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis. PMID:25056331

  11. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis.

    PubMed

    Wellinghausen, Nele; Kochem, Anna-Julia; Disqué, Claudia; Mühl, Helge; Gebert, Susanne; Winter, Juliane; Matten, Jens; Sakka, Samir G

    2009-09-01

    In a prospective, multicenter study of 342 blood samples from 187 patients with systemic inflammatory response syndrome, sepsis, or neutropenic fever, a new commercial PCR test (SepsiTest; Molzym) was evaluated for rapid diagnosis of bacteremia. The test comprises a universal PCR from the 16S rRNA gene, with subsequent identification of bacteria from positive samples by sequence analysis of amplicons. Compared to blood culture (BC), the diagnostic sensitivity and specificity of the PCR were 87.0 and 85.8%, respectively. Considering the 34 BC-positive patients, 28 were also PCR positive in at least one of the samples, resulting in a patient-related sensitivity of 82.4%. The concordance of PCR and BC for both positive and negative samples was (47 + 247)/342, i.e., 86.0%. In total, 31 patients were PCR/sequencing positive and BC negative, in whom the PCR result was judged as possible or probable to true bacteremia in 25. In conclusion, the PCR approach facilitates the detection of bacteremia in blood samples within a few hours. Despite the indispensability of BC diagnostics, the rapid detection of bacteria by SepsiTest appears to be a valuable tool, allowing earlier pathogen-adapted antimicrobial therapy in critically ill patients.

  12. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes.

    PubMed

    Sessitsch, Angela; Reiter, Birgit; Pfeifer, Ulrike; Wilhelm, Eva

    2002-01-01

    Abstract Endophytic bacteria are ubiquitous in most plants and colonise plants without exhibiting pathogenicity. Studies on the diversity of bacterial endophytes have been mainly approached by characterisation of isolates obtained from internal tissues. Despite the broad application of culture-independent techniques for the analysis of microbial communities in a wide range of natural habitats, little information is available on the species diversity of endophytes. In this study, microbial communities inhabiting stems, roots and tubers of three potato varieties were analysed by 16S rRNA-based techniques such as terminal restriction fragment length polymorphism analysis, denaturing gradient gel electrophoresis as well as 16S rDNA cloning and sequencing. Two individual plant experiments were conducted. In the first experiment plants suffered from light deficiency, whereas healthy and robust plants were obtained in the second experiment. Plants obtained from both experiments showed comparable endophytic populations, but healthy potato plants possessed a significantly higher diversity of endophytes than stressed plants. In addition, plant tissue and variety specific endophytes were detected. Sequence analysis of 16S rRNA genes indicated that a broad phylogenetic spectrum of bacteria is able to colonise plants internally including alpha-, beta-, and gamma-Proteobacteria, high-GC Gram-positives, microbes belonging to the Flexibacter/Cytophaga/Bacteroides group and Planctomycetales. Group-specific analysis of Actinomycetes indicated a higher abundance and diversity of Streptomyces scabiei-related species in the variety Mehlige Mühlviertler, which is known for its resistance against potato common scab caused by S. scabiei.

  13. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers.

    PubMed

    Vobis, M; D'Haese, J; Mehlhorn, H; Mencke, N; Blagburn, B L; Bond, R; Denholm, I; Dryden, M W; Payne, P; Rust, M K; Schroeder, I; Vaughn, M B; Bledsoe, D

    2004-10-01

    The phylogenetic relationships among 31 different flea isolates representing seven different species were studied by nucleotide sequence comparison of the internal transcribed spacer 1 (ITS1), internal transcribed spacer 2 (ITS2) and/or mitochondrial 16S ribosomal RNA gene (mt16S-rDNA) to examine the patterns of variation. Results show that all regions are useful in discriminating among flea species. In Ctenocephalides felis and Tunga penetrans, some differences in these gene regions occurred among different isolates within the same species. In the latter case, the differences are in the mt16S-rDNA region, with one isolate showing 48% divergence in nucleotide sequence. The taxonomic implications of this result are unclear at present. The gene regions revealed differences between C. felis isolates only after DNA sequencing the PCR products. Further differentiation among C. felis isolates was obtained using four different random binding primers (decamers) and primers for mammalian aldolase to amplify narrow differences in the genome. Using these primers we were able to discriminate between different C. felis isolates and determine that some of the genetic variation coincided with minor differences in response to the control agent imidacloprid. However, overall findings do not support the existence of subspecies of C. felis.

  14. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  15. Specific detection and identification of [Actinobacillus] muris by PCR using primers targeting the 16S-23S rRNA internal transcribed spacer regions.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2013-08-01

    [Actinobacillus] muris represents along with [Pasteurella] pneumotropica the most prevalent Pasteurellaceae species isolated from the laboratory mouse. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals, no molecular based methods for the identification of [A.] muris are available. The aim of the present investigation was to develop a PCR method allowing detection and identification of [A.] muris. In this assay, a Pasteurellaceae common forward primer based on a conserved region of the 16S rRNA gene was used in conjunction with two different reverse primers specific for [A.] muris, targeting the 16S-23S internal transcribed spacer sequences. The specificity of the assay was tested against 78 reference and clinical isolates of Pasteurellaceae, including 37 strains of [A.] muris. In addition, eight other mice associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and 97.95% specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA sequencing. This multiplex PCR represents the first molecular tool able to detect [A.] muris and may become a reliable alternative to the present diagnostic methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Assessment of rpoB and 16S rRNA genes as targets for PCR-based identification of Pasteurella pneumotropica.

    PubMed

    Dole, Vandana S; Banu, Laila A; Fister, Richard D; Nicklas, Werner; Henderson, Kenneths S

    2010-12-01

    Diagnosis of Pasteurella pneumotropica in laboratory animals relies on isolation of the organism, biochemical characterization, and, more recently, DNA-based diagnostic methods. 16S rRNA and rpoB gene sequences were examined for development of a real-time PCR assay. Partial sequencing of rpoB (456 bp) and 16S rRNA (1368 bp) of Pasteurella pneumotropica isolates identified by microbiologic and biochemical assays indicated that either gene sequence can be used to distinguish P. pneumotropica from other members of the Pasteurellaceae family. However, alignment of rpoB sequences from the Pasteurella pneumotropica Heyl (15 sequences) and Jawetz (16 sequences) biotypes with other Pasteurellaceae sequences from GenBank indicated that although rpoB DNA sequencing could be used for diagnosis, development of diagnostic primers and probes would be difficult, because the sequence variability between Heyl and Jawetz biotypes is not clustered in any particular region of the rpoB sequence. In contrast, alignment of 16S rRNA sequences revealed a region with unique and stable nucleotide motifs sufficient to permit development of a specific fluorogenic real-time PCR assay to confirm P. pneumotropica isolated by culture and to differentiate Heyl and Jawetz biotypes.

  17. Assessment of rpoB and 16S rRNA Genes as Targets for PCR-Based Identification of Pasteurella pneumotropica

    PubMed Central

    Dole, Vandana S; Banu, Laila A; Fister, Richard D; Nicklas, Werner; Henderson, Kenneth S

    2010-01-01

    Diagnosis of Pasteurella pneumotropica in laboratory animals relies on isolation of the organism, biochemical characterization, and, more recently, DNA-based diagnostic methods. 16S rRNA and rpoB gene sequences were examined for development of a real-time PCR assay. Partial sequencing of rpoB (456 bp) and 16S rRNA (1368 bp) of Pasteurella pneumotropica isolates identified by microbiologic and biochemical assays indicated that either gene sequence can be used to distinguish P. pneumotropica from other members of the Pasteurellaceae family. However, alignment of rpoB sequences from the Pasteurella pneumotropica Heyl (15 sequences) and Jawetz (16 sequences) biotypes with other Pasteurellaceae sequences from GenBank indicated that although rpoB DNA sequencing could be used for diagnosis, development of diagnostic primers and probes would be difficult, because the sequence variability between Heyl and Jawetz biotypes is not clustered in any particular region of the rpoB sequence. In contrast, alignment of 16S rRNA sequences revealed a region with unique and stable nucleotide motifs sufficient to permit development of a specific fluorogenic real-time PCR assay to confirm P. pneumotropica isolated by culture and to differentiate Heyl and Jawetz biotypes. PMID:21262128

  18. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  19. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    PubMed Central

    Esfandiari, Leyla; Wang, Siqing; Wang, Siqi; Banda, Anisha; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G.; Schmidt, Jacob J.

    2016-01-01

    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids. PMID:27455337

  20. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor.

    PubMed

    Esfandiari, Leyla; Wang, Siqing; Wang, Siqi; Banda, Anisha; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G; Schmidt, Jacob J

    2016-07-22

    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100-1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.

  1. Optimization and head-to-head comparison of MISSR-PCR, ERIC-PCR, RAPD and 16S rRNA evolutionary clock for the genotyping of Vibrio cholerae isolated in China.

    PubMed

    Mo, Q H; Wang, H B; Tan, H; An, S L; Feng, Z L; Wang, Q; Lin, J C; Yang, Z

    2015-01-01

    To establish a new genotyping method for Vibrio cholerae and compare it with other methods. In the current study, a modified inter simple sequence repeat-polymerase chain reaction (MISSR-PCR) system was developed via several rounds of optimisation. Comparison study was then conducted between MISSR-PCR and three other methods, including enterobacterial repetitive intergenic consensus sequences-based PCR (ERIC-PCR), randomly amplified polymorphic DNA (RAPD) and 16S rRNA evolutionary clock, for the detection and genetic tracing of Vibrio cholerae isolated from seafood in China. The results indicated that the MISSR-PCR system could generate the highest polymorphic fingerprinting map in a single round PCR and showed the best discriminatory ability for Vibrio cholerae genotyping by clearly separating toxigenic/nontoxigenic strains, local/foreign strains, and O1/O139/non-O1/non-O139 serogroup strains, comparing to ERIC-PCR, RAPD and 16S rRNA evolutionary clock. Moreover, the MISSR-PCR is superior to previously described traditional simple sequence repeat based PCR method on genotyping by more clearly separating different clusters. To the best of our knowledge, this is the first head-to-head comparison of four detection and genotyping methods for Vibrio cholerae The MISSR-PCR system established here could serve as a simple, quick, reliable and cost-effective tool for the genotyping and epidemiological study.

  2. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR.

    PubMed

    Aparecida de Oliveira, Maria; Abeid Ribeiro, Eliana Guimarães; Morato Bergamini, Alzira Maria; Pereira De Martinis, Elaine Cristina

    2010-02-01

    Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirão Preto, São Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L. monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTE QPCR SYBR Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fast and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method.

  3. Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes.

    PubMed Central

    Rijpens, N P; Jannes, G; Van Asbroeck, M; Rossau, R; Herman, L M

    1996-01-01

    The 16S-23S rRNA spacer regions of Brucella abortus, B. melitensis, and B. suis were cloned and subcloned after PCR amplification. Sequence analysis of the inserts revealed a spacer of about 800 bp with very high ( > 99%) homology among the three species examined. Two genus-specific primer pairs, BRU-P5-BRU-P8 and BRU-P6-BRU-P7, that could be used in a nested PCR format and three genus-specific DNA probes, BRU-ICG2, BRU-ICG3, and BRU-ICG4, were deduced from this spacer. The specificity and sensitivity of both primer sets and probes were examined by testing them against a collection of 18 Brucella strains and 56 strains from other relevant taxa by using PCR and the Line Probe Assay (LiPA), respectively. A method for direct detection of Brucella spp. in 1 ml of raw milk was developed on the basis of enzymatic treatment of the milk components and subsequent PCR and LiPA hybridization. After a single PCR, sensitivities of 2.8 x 10(5) and 2.8 x 10(4) CFU/ml were obtained for detection by agarose gel electrophoresis and LiPA, respectively. Nested PCR yielded a sensitivity of 2.8 x 10(2) CFU/ml for both methods. PMID:8633866

  4. Evaluation of Borrelia real time PCR DNA targeting OspA, FlaB and 5S-23S IGS and Borrelia 16S rRNA RT-qPCR.

    PubMed

    de Leeuw, Bertie H C G M; Maraha, Boulos; Hollemans, Leonie; Sprong, Hein; Brandenburg, Afke H; Westenend, Pieter J; Kusters, Johannes G

    2014-12-01

    Borrelia burgdorferi non-sensu lato (s.l.) strains occurred in the Netherlands. A multiplex OspA, FlaB, IGS real time PCR was compared to 16S rRNA/rDNA RT-qPCR with lower average Cycle threshold (Ct) and LOD on strain dilutions. Multiplexing increased sensitivity on CSF samples (n=74), distinguishing B. burgdorferi s.l. from non-s.l. strains.

  5. Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers.

    PubMed

    Lee, Dae-Young; Weir, Susan C; Lee, Hung; Trevors, Jack T

    2010-12-01

    PCR-based analysis of Bacteroidales 16S rRNA genes has emerged as a promising tool to identify sources of fecal water pollution. In this study, three TaqMan real-time PCR assays (BacGeneral, BacHuman, and BacBovine) were developed and evaluated for their ability to quantitatively detect general (total), human-specific, and bovine-specific Bacteroidales 16S rRNA genetic markers. The detection sensitivity was determined to be 6.5 copies of 16S rRNA gene for the BacGeneral and BacHuman assays and 10 copies for the BacBovine assay. The assays were capable of detecting approximately one to two cells per PCR. When tested with 70 fecal samples from various sources (human, cattle, pig, deer, dog, cat, goose, gull, horse, and raccoon), the three assays positively identified the target markers in all samples without any false-negative results. The BacHuman and BacBovine assays exhibited false-positive reactions with non-target samples in a few cases. However, the level of the false-positive reactions was about 50 times smaller than that of the true-positive ones, and therefore, these cross-reactions were unlikely to cause misidentifications of the fecal pollution sources. Microbial source-tracking capability was tested at two freshwater streams of which water quality was influenced by human and cattle feces, respectively. The assays accurately detected the presence of the corresponding host-specific markers upon fecal pollution and the persistence of the markers in downstream areas. The assays are expected to reliably determine human and bovine fecal pollution sources in environmental water samples.

  6. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs.

    PubMed

    Skillman, Lucy C; Evans, Paul N; Naylor, Graham E; Morvan, Brieuc; Jarvis, Graeme N; Joblin, Keith N

    2004-10-01

    The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.

  7. Effect of comprehensive validation of the template isolation procedure on the reliability of bacteraemia detection by a 16S rRNA gene PCR.

    PubMed

    Heininger, A; Binder, M; Ellinger, A; Pfisterer, J; Botzenhart, K; Unertl, K; Döering, G

    2004-05-01

    The influence of the DNA extraction method on the sensitivity and specificity of bacteraemia detection by a 16S rRNA gene PCR assay was investigated. The detection limit of the assay was 5 fg with purified DNA from Escherichia coli or Staphylococcus aureus, corresponding to one bacterial cell. However, with spiked blood samples, the detection limits were 10(4) and 10(6) CFU/mL, respectively. The sensitivity of the S. aureus assay was improved to the level of the E. coli test with the addition of proteinase K to the commercial DNA extraction kit protocol. Ten (16.6%) of 60 amplification reactions were positive with templates isolated from sterile blood, while PCR reagent controls were negative, thereby indicating contamination during the DNA extraction process. Blood samples were spiked with serial dilutions of E. coli and S. aureus cells, and six PCR results were obtained from three extractions for each blood sample. A classification threshold system was devised, based on the number of positive reactions for each sample. Samples were deemed positive if at least four positive reactions were recorded, making it possible to avoid false-positive results caused by contamination. These results indicate that a comprehensive validation procedure covering all aspects of the assay, including DNA extraction, can improve considerably the validity of PCR assays for bacteraemia, and is a prerequisite for the meaningful detection of bacteraemia by PCR in the clinical setting.

  8. Development of a multiplex PCR assay based on the 16S-23S rRNA internal transcribed spacer for the detection and identification of rodent Pasteurellaceae.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Bleich, André; Gougoula, Christina; Sager, Martin

    2013-11-01

    The rodents Pasteurellaceae have to be excluded from the specified pathogen free experimental animal facilities. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals just a few molecular based methods are available for their detection and identification. The aim of the present investigation was to develop a multiplex PCR assay allowing detection of all rodent Pasteurellaceae and identification of [Pasteurella] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl and [Actinobacillus] muris, as the most prevalent members of the group. For this, a Pasteurellaceae common forward primer located on the 16S rRNA gene was used in conjunction with four different reverse primers specific for [P.] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl, [A.] muris and a common reverse primer for all rodent Pasteurellaceae, all targeting the 16S-23S rRNA internal transcribed spacer sequences. The performance characteristics of the assay were tested against 125 Pasteurellaceae isolates belonging to eleven different species and including 34 strains of [P.] pneumotropica biotype Jawetz, 44 strains of [P.] pneumotropica biotype Heyl and 37 strains of [A.] muris. Additionally, eight other mouse associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA gene sequencing. This multiplex PCR represents the first molecular tool able to detect and differentiate in a single assay among the Pasteurellaceae found in laboratory mouse and may become a reliable alternative to the present diagnostic methods. © 2013.

  9. Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction-capillary electrophoresis assay.

    PubMed

    Pingle, Maneesh R; Granger, Kathleen; Feinberg, Philip; Shatsky, Rebecca; Sterling, Bram; Rundell, Mark; Spitzer, Eric; Larone, Davise; Golightly, Linnie; Barany, Francis

    2007-06-01

    We have developed a novel high-throughput PCR-ligase detection reaction-capillary electrophoresis (PCR-LDR-CE) assay for the multiplexed identification of 20 blood-borne pathogens (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Acinetobacter baumannii, Neisseria meningitidis, Bacteroides fragilis, Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella abortus), the last four of which are biothreat agents. The method relies on the amplification of two regions within the bacterial 16S rRNA gene, using universal PCR primers and querying the identity of specific single-nucleotide polymorphisms within the amplified regions in a subsequent LDR. The ligation products vary in color and size and are separated by CE. Each organism generates a specific pattern of ligation products, which can be used to distinguish the pathogens using an automated software program we developed for that purpose. The assay has been verified on 315 clinical isolates and demonstrated a detection sensitivity of 98%. Additionally, 484 seeded blood cultures were tested, with a detection sensitivity of 97.7%. The ability to identify geographically variant strains of the organisms was determined by testing 132 isolates obtained from across the United States. In summary, the PCR-LDR-CE assay can successfully identify, in a multiplexed fashion, a panel of 20 blood-borne pathogens with high sensitivity and specificity.

  10. Identification of bacterial pathogens in ascitic fluids from patients with suspected spontaneous bacterial peritonitis by use of broad-range PCR (16S PCR) coupled with high-resolution melt analysis.

    PubMed

    Hardick, Justin; Won, Helen; Jeng, Kevin; Hsieh, Yu-Hsiang; Gaydos, Charlotte A; Rothman, Richard E; Yang, Samuel

    2012-07-01

    Spontaneous bacterial peritonitis (SBP) can be a severe complication occurring in patients with cirrhosis and ascites, with associated mortality often as high as 40%. Traditional diagnostics for SBP rely on culture techniques for proper diagnosis, although recent reports suggest that the presence of bacterial DNA in peritoneal fluid in patients with cirrhosis and ascites is an indicator of SBP. A previously published broad-range PCR (16S PCR) coupled with high-resolution melt analysis (HRMA) was compared with standard culture techniques for diagnosis of SBP in 106 peritoneal fluid samples from patients with suspected SBP. The sensitivity and specificity for 16S PCR for detecting eubacterial DNA compared with those of standard culture techniques were 100% (17/17) and 91.5% (85/89), respectively. Overall, HRMA concordance with species identification was 70.6% (12/17), although the 5 samples that were discordant at the species level were SBP resulting from a polymicrobial infection, and species-level identification for polymicrobial infections is outside the capability of HRMA. Both the broad-range 16S PCR and HRMA analysis provide useful diagnostic adjunctive assays for clinicians in detecting and identifying pathogens responsible for SBP.

  11. Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of enterococcus species in environmental samples.

    PubMed

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan; Santo Domingo, Jorge W

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.

  12. Development of Quantitative PCR Assays Targeting the 16S rRNA Genes of Enterococcus spp. and Their Application to the Identification of Enterococcus Species in Environmental Samples

    PubMed Central

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water. PMID:23087032

  13. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces.

    PubMed

    Yang, Yun-Wen; Chen, Mang-Kun; Yang, Bing-Ya; Huang, Xian-Jie; Zhang, Xue-Rui; He, Liang-Qiang; Zhang, Jing; Hua, Zi-Chun

    2015-10-01

    Mouse models are widely used for studying gastrointestinal (GI) tract-related diseases. It is necessary and important to develop a new set of primers to monitor the mouse gut microbiota. In this study, 16S rRNA gene-targeted group-specific primers for Firmicutes, Actinobacteria, Bacteroidetes, Deferribacteres, "Candidatus Saccharibacteria," Verrucomicrobia, Tenericutes, and Proteobacteria were designed and validated for quantification of the predominant bacterial species in mouse feces by real-time PCR. After confirmation of their accuracy and specificity by high-throughput sequencing technologies, these primers were applied to quantify the changes in the fecal samples from a trinitrobenzene sulfonic acid-induced colitis mouse model. Our results showed that this approach efficiently predicted the occurrence of colitis, such as spontaneous chronic inflammatory bowel disease in transgenic mice. The set of primers developed in this study provides a simple and affordable method to monitor changes in the intestinal microbiota at the phylum level.

  14. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA)

    PubMed Central

    2012-01-01

    Background La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest

  15. Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting.

    PubMed

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.

  16. Microdiversity of Deep-Sea Bacillales Isolated from Tyrrhenian Sea Sediments as Revealed by ARISA, 16S rRNA Gene Sequencing and BOX-PCR Fingerprinting

    PubMed Central

    Ettoumi, Besma; Guesmi, Amel; Brusetti, Lorenzo; Borin, Sara; Najjari, Afef; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments. PMID:24005887

  17. Rapid Identification and Differentiation of the Soft Rot Erwinias by 16S-23S Intergenic Transcribed Spacer-PCR and Restriction Fragment Length Polymorphism Analyses

    PubMed Central

    Toth, I. K.; Avrova, A. O.; Hyman, L. J.

    2001-01-01

    Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the α-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten “atypical” E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two “atypical” E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica. PMID:11526007

  18. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Hong, Jin-Kyung; Kim, Hye-Jin; Cho, Jae-Chang

    2014-01-01

    Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer's specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and

  19. Genus-specific primers targeting the 16S rRNA gene for PCR detection of members of the genus Verrucosispora.

    PubMed

    Xie, Qingyi; Hong, Kui; Goodfellow, Michael

    2011-06-01

    Little is known about the genus Verrucosispora though it does contain organisms which produce novel antibiotics. A set of genus-specific oligonucleotide primers was generated to gain an insight into the presence, distribution and taxonomic diversity of members of this genus in diverse samples taken from marine habitats. In silico and pure culture studies showed that the primers matched perfectly with target sequences of the 16S rRNA genes of representatives of the genus Verrucosispora. The primers, designated S-G-Verr-0195-a-S-20 and S-G-Verr-1152-a-A-18, amplified an ≈960 bp stretch of the 16S rRNA genes of Verrucosispora strains but not those of representatives of other genera classified in the family Micromonosporaceae. Genus-specific amplicons were detected from 17 out of 20 community DNA samples prepared from diverse marine sediments and coastal soils. Phylogenetic analysis of over 40% of clones derived from five of the samples indicated they belonged to novel Verrucosispora species. The primers were also used to confirm the identity of Verrucosispora-like strains isolated from two of the environmental samples. The primers can be used to facilitate the isolation of novel Verrucosispora strains by allowing prescreening of environmental samples and the subsequent identification of verrucosisporae on selective isolation plates. For this purpose, a novel medium facilitating the recovery of Verrucosispora strains was formulated and used to recover novel isolates validated using the novel PCR primers. This medium may be useful as the basis for development of a selective medium.

  20. Use of quantitative 16S rRNA PCR to determine bacterial load does not augment conventional cerebrospinal fluid (CSF) cultures among children undergoing treatment for CSF shunt infection☆,☆☆

    PubMed Central

    Simon, Tamara D.; Van Yserloo, Brian; Nelson, Kevin; Gillespie, David; Jensen, Randy; McAllister, James P.; Riva-Cambrin, Jay; Stockmann, Chris; Daly, Judy A.; Blaschke, Anne J.

    2013-01-01

    The aim of this study was to develop a quantitative 16S rRNA assay for determination of bacterial nucleic acid load in cerebrospinal fluid (CSF) shunt infection and to compare quantitative 16S rRNA polymerase chain reaction (PCR) findings to those of conventional bacterial culture in patients treated for CSF shunt infection. We developed a quantitative 16S rRNA PCR assay that detected bacterial load across a range of 2.5 × 109 down to 2.5 × 104 16S copies/mL CSF under experimental conditions for numerous Gram-positive and Gram-negative organisms. However, when applied to archived CSF samples from 25 shunt infection episodes, correlations between positive bacterial culture and 16S rRNA levels were seen in only half of infections, and 16S rRNA levels dropped precipitously after an initial peak on the first day of sample collection. Bacterial load measured using 16S rRNA PCR does not provide sufficient information beyond bacterial culture to inform CSF shunt infection treatment. PMID:23953744

  1. Analyses of methanogenic archaea populations in swine feces and stored swine manure using 16S rDNA and mcrA PCR and pure culture isolation

    USDA-ARS?s Scientific Manuscript database

    Background: Storage of swine manure is associated with the microbial production of odorous compounds and gaseous emissions which result from anaerobic microbial digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to...

  2. Frequent detection of Streptococcus tigurinus in the human oral microbial flora by a specific 16S rRNA gene real-time TaqMan PCR

    PubMed Central

    2014-01-01

    Background Many bacteria causing systemic invasive infections originate from the oral cavity by entering the bloodstream. Recently, a novel pathogenic bacterium, Streptococcus tigurinus, was identified as causative agent of infective endocarditis, spondylodiscitis and meningitis. In this study, we sought to determine the prevalence of S. tigurinus in the human oral microbial flora and analyzed its association with periodontal disease or health. Results We developed a diagnostic highly sensitive and specific real-time TaqMan PCR assay for detection of S. tigurinus in clinical samples, based on the 16S rRNA gene. We analyzed saliva samples and subgingival plaque samples of a periodontally healthy control group (n = 26) and a periodontitis group (n = 25). Overall, S. tigurinus was detected in 27 (53%) out of 51 patients. There is no significant difference of the frequency of S. tigurinus detection by RT-PCR in the saliva and dental plaque samples in the two groups: in the control group, 14 (54%) out of 26 individuals had S. tigurinus either in the saliva samples and/or in the plaque samples; and in the periodontitis group, 13 (52%) out of 25 patients had S. tigurinus in the mouth samples, respectively (P = 0.895). The consumption of nicotine was no determining factor. Conclusion Although S. tigurinus was a frequently detected species of the human oral microbial flora, it was not associated with periodontal disease. Further investigations are required to determine whether S. tigurinus is a commensal or an opportunistic oral pathogen with a potential for development of invasive infections. PMID:25170686

  3. Frequent detection of Streptococcus tigurinus in the human oral microbial flora by a specific 16S rRNA gene real-time TaqMan PCR.

    PubMed

    Zbinden, Andrea; Aras, Fatma; Zbinden, Reinhard; Mouttet, Forouhar; Schmidlin, Patrick R; Bloemberg, Guido V; Bostanci, Nagihan

    2014-08-24

    Many bacteria causing systemic invasive infections originate from the oral cavity by entering the bloodstream. Recently, a novel pathogenic bacterium, Streptococcus tigurinus, was identified as causative agent of infective endocarditis, spondylodiscitis and meningitis. In this study, we sought to determine the prevalence of S. tigurinus in the human oral microbial flora and analyzed its association with periodontal disease or health. We developed a diagnostic highly sensitive and specific real-time TaqMan PCR assay for detection of S. tigurinus in clinical samples, based on the 16S rRNA gene. We analyzed saliva samples and subgingival plaque samples of a periodontally healthy control group (n = 26) and a periodontitis group (n = 25). Overall, S. tigurinus was detected in 27 (53%) out of 51 patients. There is no significant difference of the frequency of S. tigurinus detection by RT-PCR in the saliva and dental plaque samples in the two groups: in the control group, 14 (54%) out of 26 individuals had S. tigurinus either in the saliva samples and/or in the plaque samples; and in the periodontitis group, 13 (52%) out of 25 patients had S. tigurinus in the mouth samples, respectively (P = 0.895). The consumption of nicotine was no determining factor. Although S. tigurinus was a frequently detected species of the human oral microbial flora, it was not associated with periodontal disease. Further investigations are required to determine whether S. tigurinus is a commensal or an opportunistic oral pathogen with a potential for development of invasive infections.

  4. Group-specific PCR primers for the phylum Acidobacteria designed based on the comparative analysis of 16S rRNA gene sequences.

    PubMed

    Lee, Sang-Hoon; Cho, Jae-Chang

    2011-08-01

    We performed a comprehensive phylogenetic analysis of the phylum Acidobacteria and developed novel, group-specific PCR primers for Acidobacteria and its class-level subgroups. Acidobacterial 16S rRNA gene sequences deposited in the RDP database were used to construct a local database then subsequently analyzed. A total of 556 phylotypes were observed and the majority of the phylotypes belonged to five major subgroups (subgroups 1, 2, 3, 4, and 6), which comprised >80% of the acidobacterial sequences in the RDP database. Phylum-specific and subgroup-specific primers were designed from the consensus sequences of the phylotype sequences, and the specificities of the designed primers were evaluated both in silico and empirically for coverage and tolerance. The phylum-specific primer ACIDO, which was designed in this study, showed increased coverage for Acidobacteria, as compared to the previous phylum-specific primer 31F. However, the tolerance of the primer ACIDO for non-target sequences was slightly higher than that of the primer 31F. We also developed subgroup-specific PCR primers for the major subgroups of Acidobacteria, except for subgroup 4. Subgroup-specific primers S1, S2, and S3, which targeted subgroups 1, 2, and 3, respectively, showed high coverage for their target subgroups and low tolerance for non-target sequences. However, the primer S6 targeting subgroup 6 showed a lower specificity in its empirical evaluation than expected from the in silico results. The subgroup-specific primers, as well as the phylum-specific primer designed in this study, will be valuable tools in understanding the phylogenetic diversity and ecological niche of the phylum Acidobacteria and its subgroups.

  5. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces

    PubMed Central

    Yang, Yun-Wen; Chen, Mang-Kun; Yang, Bing-Ya; Huang, Xian-Jie; Zhang, Xue-Rui; He, Liang-Qiang

    2015-01-01

    Mouse models are widely used for studying gastrointestinal (GI) tract-related diseases. It is necessary and important to develop a new set of primers to monitor the mouse gut microbiota. In this study, 16S rRNA gene-targeted group-specific primers for Firmicutes, Actinobacteria, Bacteroidetes, Deferribacteres, “Candidatus Saccharibacteria,” Verrucomicrobia, Tenericutes, and Proteobacteria were designed and validated for quantification of the predominant bacterial species in mouse feces by real-time PCR. After confirmation of their accuracy and specificity by high-throughput sequencing technologies, these primers were applied to quantify the changes in the fecal samples from a trinitrobenzene sulfonic acid-induced colitis mouse model. Our results showed that this approach efficiently predicted the occurrence of colitis, such as spontaneous chronic inflammatory bowel disease in transgenic mice. The set of primers developed in this study provides a simple and affordable method to monitor changes in the intestinal microbiota at the phylum level. PMID:26187967

  6. Distribution and diversity of bacteria in a saline meromictic lake as determined by PCR-DGGE of 16S rRNA gene fragments.

    PubMed

    Gugliandolo, Concetta; Lentini, Valeria; Maugeri, Teresa L

    2011-01-01

    The variations in vertical distribution and composition of bacteria in the meromictic Lake Faro (Messina, Italy) were analysed by culture-independent methods in two different mixing conditions. Water samples were collected from a central station from the surface to the bottom (30 m depth) on two different sampling dates--the first characterised by a well-mixed water mass and the second by a marked stratification. A 'red-water' layer, caused by a dense growth of photosynthetic sulphur bacteria, was present at a depth of 25 m in December 2005 and at 15 m in August 2006, defining two different zones in terms of their physicochemical properties. The vertical distribution of bacterioplankton showed that the interface zones were more densely populated than others. In both sampling periods, the highest numbers of live cells were observed within 'red water' layers. The dominant phylotypes of the bacterial community were determined by sequencing the Denaturing Gradient Gel Electrophoresis (DGGE) bands resulting from PCR amplification of 16S rRNA gene fragments. The number of DGGE bands, considered indicative of the total species richness, did not vary predictably across the two different sampling periods. Proteobacteria (α-, γ-, δ- and ε subclass members), Cytophaga-Flavobacterium-Bacteroides, green sulphur bacteria and Cyanobacteria were retrieved from Lake Faro. Most of the bands showed DNA sequences that did not match with other previously described organisms, suggesting the presence of new indigenous bacterial phylotypes.

  7. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  8. Identification of Yersinia enterocolitica in minced meat: a comparative analysis of API 20E, Yersinia identification kit and a 16S rRNA-based PCR method.

    PubMed

    Arnold, T; Neubauer, H; Nikolaou, K; Roesler, U; Hensel, A

    2004-02-01

    The isolation and identification of Yersinia enterocolitica from minced meat on CIN agar medium is still one of the major problems in food microbiology because of the low selectivity of cefsulodin-irgasan-novobiocin (CIN) agar. A total of 198 minced meat samples were collected from commercial establishments (butcher shops and supermarkets) in seven German cities in order to investigate the sensitivity and specificity of three identification techniques suitable for the differentiation of Y. enterocolitica within the rich background flora on CIN agar plates. As expected isolation of Y. enterocolitica from minced meat on CIN agar medium after 72 h enrichment in peptone, sorbitol and bile salts (PSB) broth was difficult because all plates were abundantly covered with numerous 'typical'Yersinia-like colonies of bull's eye appearance as well as with atypical colonies. Based on the phenotype of the colonies it was possible to detect colonies showing Yersinia-like growth on CIN agar in 52 samples (26%). For identification of Y. enterocolitica the API 20E system (bioMerieux, Nürtingen, Germany), the Yersinia identification kit (Merlin, Bornheim-Hersel, Germany) and a 16S rRNA based PCR assay were compared. Only in one sample (0.5%) a Y. enterocolitica strain was detected by all methods. Of the three identification systems tested for routine laboratory diagnostics the API 20E system was found to be the most suitable tool to identify Y. enterocolitica colonies within the rich background flora from minced meat samples on CIN agar plates.

  9. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment.

    PubMed Central

    Devereux, R; Mundfrom, G W

    1994-01-01

    The divergence of 16S rDNA sequences in marine sediment was investigated. Twenty unique partial sequences were found among 33 cloned following PCR. Thirteen shared 82 to 91% similarity with sequences of delta subclass sulfate-reducing bacteria. Three contained the target sequence for a sulfate-reducing bacterium-specific oligonucleotide probe designed from pure-culture studies. PMID:7524446

  10. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  11. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  12. Added diagnostic value and impact on antimicrobial therapy of 16S rRNA PCR and amplicon sequencing on resected heart valves in infective endocarditis: a prospective cohort study.

    PubMed

    Peeters, B; Herijgers, P; Beuselinck, K; Verhaegen, J; Peetermans, W E; Herregods, M-C; Desmet, S; Lagrou, K

    2017-06-19

    For adequate management and therapy of infective endocarditis (IE), identification of the causative pathogen is crucial but molecular testing results are not currently included in diagnostic criteria. The added diagnostic value and impact on antimicrobial therapy of 16S rRNA PCR and amplicon sequencing (16S rRNA PCR) performed on excised heart valves from patients with IE was evaluated alongside the effect of pre-operative antibiotics on the performance of blood culture (BC), valve culture (VC) and 16S rRNA PCR. All patients undergoing valve surgery for definite or possible IE, according to modified Duke Criteria, were prospectively included from July 2013 up to and including June 2016. In all, 127 patients were included. Sensitivity for detecting the causative micro-organism in 120 post-operative definite IE patients was 26% for VC and 87% for BC and 16S rRNA PCR. 16S rRNA PCR, VC and BC were equally sensitive for different valve types and causative pathogens. In 27 (21%) definite IE patients, 16S rRNA PCR clarified discrepant culture results or was the only method identifying the causative pathogen. In 12 (10%) post-operative definite IE cases, molecular testing results influenced antimicrobial therapy. The very good performance characteristics, added diagnostic value and impact on antimicrobial therapy of molecular testing of heart valves should support the incorporation of molecular testing in diagnostic criteria and guidelines for IE. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Combined assay for two-hour identification of Streptococcus pneumoniae and Neisseria meningitidis and concomitant detection of 16S ribosomal DNA in cerebrospinal fluid by real-time PCR.

    PubMed

    Deutch, Susanna; Møller, Jens K; Ostergaard, Lars

    2008-01-01

    The main object was to examine the diagnostic performance of a novel combination of a specific real-time PCR (combined real-time PCR) for immediate and simultaneous detection of Streptococcus pneumoniae and Neisseria meningitidis and of a real-time PCR of the 16S rRNA gene (16S DNA). During 12 months, 1015 routine CSF samples were consecutively collected from patients in the County of Aarhus, Denmark. The samples were cultured, examined by microscopy, and, in parallel, CSF DNA was automatically purified and subjected to real-time PCR. Melting curve analysis discriminated between the 2 specific pathogens and 16S DNA positive samples were sequenced. Clinical data were extracted from patients having positive samples. Clinically, 35 of 46 (76%) patients with positive samples had bacterial meningitis. 18 of these 35 patients had a concomitant culture and real-time PCR-positive sample. The remaining 17 patients were either culture positive (n =7) or real-time PCR-positive (n = 10). The aetiology of bacterial meningitis was revealed by microscopy in 18/35 (51.4%), culture in 24/35 (68.6%) and combined real-time PCR in 27/35 (77.1%) patients, respectively. In conclusion, the combined real-time PCR strategy is superior to microscopy and a valuable supplement to routine culture to establish the aetiology of bacterial meningitis.

  14. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days

  15. Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay.

    PubMed

    Sarpong-Duah, Mabel; Frimpong, Michael; Beissner, Marcus; Saar, Malkin; Laing, Ken; Sarpong, Francisca; Loglo, Aloysius Dzigbordi; Abass, Kabiru Mohammed; Frempong, Margaret; Sarfo, Fred Stephen; Bretzel, Gisela; Wansbrough-Jones, Mark; Phillips, Richard Odame

    2017-07-01

    Buruli ulcer (BU) caused by Mycobacterium ulcerans is effectively treated with rifampicin and streptomycin for 8 weeks but some lesions take several months to heal. We have shown previously that some slowly healing lesions contain mycolactone suggesting continuing infection after antibiotic therapy. Now we have determined how rapidly combined M. ulcerans 16S rRNA reverse transcriptase / IS2404 qPCR assay (16S rRNA) became negative during antibiotic treatment and investigated its influence on healing. Fine needle aspirates and swab samples were obtained for culture, acid fast bacilli (AFB) and detection of M. ulcerans 16S rRNA and IS2404 by qPCR (16S rRNA) from patients with IS2404 PCR confirmed BU at baseline, during antibiotic and after treatment. Patients were followed up at 2 weekly intervals to determine the rate of healing. The Kaplan-Meier survival analysis was used to analyse the time to clearance of M. ulcerans 16S rRNA and the influence of persistent M ulcerans 16S rRNA on time to healing. The Mann Whitney test was used to compare the bacillary load at baseline in patients with or without viable organisms at week 4, and to analyse rate of healing at week 4 in relation to detection of viable organisms. Out of 129 patients, 16S rRNA was detected in 65% of lesions at baseline. The M. ulcerans 16S rRNA remained positive in 78% of patients with unhealed lesions at 4 weeks, 52% at 8 weeks, 23% at 12 weeks and 10% at week 16. The median time to clearance of M. ulcerans 16S rRNA was 12 weeks. BU lesions with positive 16S rRNA after antibiotic treatment had significantly higher bacterial load at baseline, longer healing time and lower healing rate at week 4 compared with those in which 16S rRNA was not detected at baseline or had become undetectable by week 4. Current antibiotic therapy for BU is highly successful in most patients but it may be possible to abbreviate treatment to 4 weeks in patients with a low initial bacterial load. On the other hand persistent

  16. PCR amplification and sequencing of ITS1 rDNA of Culicoides arakawae.

    PubMed

    Li, G Q; Hu, Y L; Kanu, S; Zhu, X Q

    2003-02-28

    The first internal transcribed spacer (ITS1) of nuclear ribosomal DNA from Culicoides arakawae was amplified by PCR, cloned and sequenced. The wDNAsis software was used to analyze the ITS1 sequences of C. arakawae and other nine species of Culicoides, which were obtained from GenBank and EMBL databases. For all species, the lengths of the ITS1 were 316-469 bp, and the G+C contents were 26.79-34.53%. Based on the lengths of the ITS1 sequences, the 10 Culicoides species could be divided into two groups. The first group consisted of C. arakawae, C. albicans, C. cubitalis, C. pulicaris and C. punctatus, and the second group comprised C. impunctatus, C. nubeculosus, C. variipennis, C. grisescens and C. imicola. The lengths for the first group were 316-347 bp and the second group were 457-469 bp. C. arakawae belonged to the first group by its ITS1 sequence length. Sequence analysis revealed that C. arakawae was genetically more similar to the first group than it was to the second group, consistent with results based on sequence length. The alignment of ITS1 (the alignment length was 500 bp including the gaps) sequences showed that there was a highly conserved region, which was between 288 and 388 bp, except for a few insertions and substitutions. These findings have important implications for the molecular identification of C. arakawae, for studying its molecular genetics and epidemiology, and for studying the molecular systematics of Culicoides.

  17. Characterization of a Campylobacter fetus-like strain isolated from the faeces of a sick leopard tortoise (Stigmochelys pardalis) using matrix-assisted laser desorption/ionization time of flight as an alternative to bacterial 16S rDNA phylogeny.

    PubMed

    Benejat, L; Gravet, A; Sifré, E; Ben Amor, S; Quintard, B; Mégraud, F; Lehours, P

    2014-04-01

    This article describes the isolation and characterization of a Campylobacter-like isolate originating from the faeces of a sick leopard tortoise. Molecular as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) characterization suggests that it could correspond to a new Campylobacter species. The major impact of this work is the demonstration that proteomics and especially MALDI-TOF typing can be used as an alternative method to 16S rDNA sequencing for phylogeny and can lead to the discovery of new Campylobacters. © 2013 The Society for Applied Microbiology.

  18. Epidemiologic Study of Malassezia Yeasts in Acne Patients by Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Song, Young Chan; Hahn, Hyung Jin; Kim, Ji Young; Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background Although acne is a common follicular inflammatory dermatosis, studies of the relationship between Malassezia yeasts and acne have rarely been conducted. Objective We sought to identify Malassezia yeasts from acne patients and establish a relationship between specific types of species of Malassezia and acne. Methods Sixty acne patients were enrolled. Each strain obtained was identified as one of eleven species by 26S rDNA PCR-RFLP. We then compared these data with those of age- and sex-matched healthy subjects. Results Growth of Malassezia was evident in fewer patients with acne (50%) in comparison to controls (70.6%). M. restricta was dominant in patients with acne (23.9%), whereas M. globosa was most common (26.7%) in healthy controls. In the patients group, the rate was the highest (71.7%) in the twenties and, in terms of body site, the rate was the highest (60%) in the chest. In the control group, the rate was the highest (75.0%) in the thirties and in the forehead (85.0%). Conclusion The detection rate of Malassezia yeasts was conspicuously low in the acne patients group. Statistically significant differences were observed between the patient and the control groups in the twenties and thirties, and in terms of body site, in the forehead and chest. PMID:21909202

  19. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  20. 16S rRNA-based PCR-DGGE analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang, China.

    PubMed

    Zhang, Wei; Long, XuanQi; Huo, XiangDong; Chen, YiFeng; Lou, Kai

    2013-08-01

    The purpose of this study was to examine the variations in the microbial community structure of soil actinomycetes in fields with continuous cropping of cotton in Xinjiang Autonomous Region, China. Soil samples were collected from four depths in fields with 7-year continuous cotton cropping. The community structure of soil actinomycetes was examined using the 16S rRNA-based polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) techniques. The microbial diversity indices of the soil samples from different depths generally decreased along with the period of continuous cotton cropping. When the period of continuous cropping of cotton reached 5 years, the diversity indices rose again and gradually stabilized at a level slightly lower than that of soils with original ecology (i.e., 0-year cotton cropping). Cluster analysis showed that at the 1-20-cm depth, the actinomycete community structure of the soil subjected to 1-year cotton cropping was similar to that of soil subjected to 0-year cotton cropping, whereas that of soils after 3-year continuous cotton cropping showed high similarity. At the 21-40-cm depth, the actinomycete community structure showed various changes but generally recovered to its original pattern after repeated fluctuations. Principal component analysis showed that at the 1-30-cm depth, the actinomycete community structure varied similarly regardless of the period of continuous cotton cropping. In contrast, there were no clear actinomycete community structure variation trends at the 31-40-cm soil depth. Homology comparison of sequences recovered from the DGGE bands showed that the obtained sequences shared similarities >88 %. Alignment with the known homologous sequences indicated a lack of microorganisms related to soil-borne cotton diseases. Continuous cotton cropping exerted significant influences on the community structure of soil actinomycetes in Xinjiang Autonomous Region, which were largely determined by the soil depth and

  1. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection

    PubMed Central

    Moore, M. S.; McCarroll, M. G.; McCann, C. D.; May, L.; Younes, N.

    2015-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  2. C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.

    PubMed

    Ghosh, Tarini Shankar; Gajjalla, Purnachander; Mohammed, Monzoorul Haque; Mande, Sharmila S

    2012-04-01

    Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.

  3. Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes

    PubMed Central

    Dick, Linda K.; Field, Katharine G.

    2004-01-01

    Assessment of health risk associated with fecal pollution requires a reliable fecal indicator and a rapid quantification method. We report the development of a Taq nuclease assay for enumeration of 16S rRNA genes of Bacteroidetes. Sensitivity and correlation with standard fecal indicators provide experimental evidence for application of the assay in monitoring fecal pollution. PMID:15345463

  4. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates.

    PubMed

    Lee, Min Jung; Jang, Sook Jin; Li, Xue Min; Park, Geon; Kook, Joong-Ki; Kim, Min Jung; Chang, Young-Hyo; Shin, Jong Hee; Kim, Soo Hyun; Kim, Dong-Min; Kang, Seong-Ho; Moon, Dae-Soo

    2014-01-01

    Since accurate identification of species is necessary for proper treatment of Acinetobacter infections, we compared the performances of 4 bacterial identification methods using 167 Acinetobacter clinical isolates to identify the best identification method. To secure more non-baumannii Acinetobacter (NBA) strains as target strains, we first identified Acinetobacter baumannii in a total of 495 Acinetobacter clinical isolates identified using the VITEK 2 system. Because 371 of 495 strains were identified as A. baumannii using gyrB multiplex 1 PCR and blaOXA51-like PCR, we performed rpoB gene sequencing and 16S rRNA gene sequencing on remaining 124 strains belonging to NBA and 52 strains of A. baumannii. For identification of Acinetobacter at the species level, the accuracy rates of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK 2 were 98.2%, 93.4%, 77.2%, and 35.9%, respectively. The gyrB multiplex PCR seems to be very useful for the detection of ACB complex because its concordance rates to the final identification of strains of ACB complex were 100%. Both the rpoB gene sequencing and the 16S rRNA gene sequencing may be useful in identifying Acinetobacter. © 2013.

  5. Sensitive and robust detection of citrus greening (huanglongbing) bacterium "Candidatus Liberibacter asiaticus" by DNA amplification with new 16S rDNA-specific primers.

    PubMed

    Fujikawa, Takashi; Iwanami, Toru

    2012-10-01

    Citrus greening disease is caused by "Candidatus Liberibacter spp.," including "Candidatus Liberibacter asiaticus (Las)." For detecting this disease, we designed new primers from the Las 16S rDNA and used a very small DNA template for PCR. More Las-infected tissues were detected with our primers than with the common primers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Identification of Dietzia spp. from Cardiac Tissue by 16S rRNA PCR in a Patient with Culture-Negative Device-Associated Endocarditis: A Case Report and Review of the Literature

    PubMed Central

    Wang, Guiqing; Nadelman, Robert B.

    2016-01-01

    The genus Dietzia was recently distinguished from other actinomycetes such as Rhodococcus. While these organisms are known to be distributed widely in the environment, over the past decade several novel species have been described and isolated from human clinical specimens. Here we describe the identification of Dietzia natronolimnaea/D. cercidiphylli by PCR amplification and sequencing of the 16S rRNA encoding gene from cardiac tissue in a patient with culture-negative device-associated endocarditis. PMID:28101387

  7. Increased sensitivity and specificity of Borrelia burgdorferi 16S ribosomal DNA detection.

    PubMed

    Lee, Sin Hang; Vigliotti, Veronica S; Vigliotti, Jessica S; Jones, William; Pappu, Suri

    2010-04-01

    The DNA of Borrelia burgdorferi spirochetes extracted by ammonium hydroxide was used as the template for nested polymerase chain reaction (PCR) amplification of the species-specific 16S ribosomal DNA (rDNA). The primers were those well known to be specific for signature sequence amplification of the B burgdorferi sensu lato 16S ribosomal RNA gene. The positive 293-base-pair nested PCR amplicon was subjected to routine direct automated Sanger sequencing. A 50-base sequence excised randomly from the sequencing electrophoretogram between the 2 nested PCR primer binding sites was sufficient for the Basic Local Alignment Search Tool (BLAST) analysis to validate the B burgdorferi sensu lato 16S rDNA without a reasonable doubt. Nested PCR increased the sensitivity of DNA detection by 100- to 1,000-fold. DNA sequence validation based on BLAST algorithms using the GenBank database practically eliminates any possibility of false-positive results due to molecular misidentification. This technology may be a valuable supplement to the current serologic tests for Lyme disease.

  8. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  9. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.

    PubMed

    Fracchia, Letizia; Dohrmann, Anja B; Martinotti, Maria Giovanna; Tebbe, Christoph C

    2006-08-01

    Bacterial communities are important catalysts in the production of composts. Here, it was analysed whether the diversity of bacteria in finished composts is stable and specific for the production process. Single-strand conformation polymorphism (SSCP) based on polymerase chain reaction amplified partial 16S rRNA genes was used to profile and analyse bacterial communities found in total DNA extracted from finished composts. Different batches of compost samples stored over a period of 12 years and a 1-year-old vermicompost were compared to each other. According to digital image analysis, clear differences could be detected between the profiles from compost and vermicompost. Differences between three different periods of compost storage and between replicate vermicompost windrows were only minor. A total of 41 different 16S rRNA genes were identified from the SSCP profiles by DNA sequencing, with the vast majority related to yet-uncultivated bacteria. Sequences retrieved from compost mainly belonged to the phyla Actinobacteria and Firmicutes. In contrast, vermicompost was dominated by bacteria related to uncultured Chloroflexi, Acidobacteria, Bacteroidetes and Gemmatimonadetes. The differences were underscored with specific gene probes and Southern blot hybridizations. The results confirmed that different substrates and composting processes selected for specific bacterial communities in the finished products. The specificity and consistency of the bacterial communities inhabiting the compost materials suggest that cultivation-independent bacterial community analysis is a potentially useful indicator to characterize the quality of finished composts in regard to production processes and effects of storage conditions.

  10. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood.

    PubMed

    Moriyama, Kosei; Ando, Chie; Tashiro, Kosuke; Kuhara, Satoru; Okamura, Seiichi; Nakano, Shuji; Takagi, Yasumitsu; Miki, Takeyoshi; Nakashima, Yoshiyuki; Hirakawa, Hideki

    2008-07-01

    Bacterial 16S ribosomal RNA genes (rDNA) were detected in blood samples from two healthy individuals by PCR under conditions involving 30 cycles that did not produce any visible products from negative control saline. Even from control samples, PCR involving 35-40 cycles yielded visible bands. Major clones detected in the blood samples, but not in control, were the Aquabacterium subgroup, Stenotrophomonas subgroup, Budvicia subgroup, Serratia subgroup, Bacillus subgroup and Flavobacteria subgroup. No clone was located within the bacteroides-clostridium-lactobacillus cluster, which is indigenous to gastrointestinal flora.

  11. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis.

    PubMed

    Singh, Ramesh K; Mishra, Ravi P N; Jaiswal, Hemant K; Kumar, Vinod; Pandey, Shree P; Rao, Sasi B; Annapurna, Kannapali

    2006-02-01

    Three novel endophytic rhizobial strains (RRE3, RRE5, and RRE6) were isolated from naturally growing surface sterilized rice roots. These isolates had the ability to nodulate common bean (Phaseolus vulgaris). Polymerase chain reaction-restriction fragment length polymorphism and sequencing of 16S rDNA of these isolates revealed that RRE3 and RRE5 are phylogenetically very close to Burkholderia cepacia complex, whereas RRE6 has affinity with Rhizobium leguminosarum bv. phaseoli. Plant infection test using gusA reporter gene tagged construct of these isolates indicated that bacterial cells can go inside and colonize the rice root interiors. A significant increase in biomass and grain yield was also recorded in greenhouse-grown rice plants inoculated with these isolates.

  12. Comparative analysis of two 16S rRNA gene-based PCR primer sets provides insight into the diversity distribution patterns of anammox bacteria in different environments.

    PubMed

    Wang, Shuailong; Hong, Yiguo; Wu, Jiapeng; Xu, Xiang-Rong; Bin, Liying; Pan, Yueping; Guan, Fengjie; Wen, Jiali

    2015-10-01

    Due to the high divergence among 16S rRNA genes of anammox bacteria, different diversity pattern of the community could be resulted from using different primer set. In this study, the efficiencies and specificities of two commonly used sets, Amx368F/Amx820R and Brod541F/Amx820R, were evaluated by exploring the diversity characteristics of anammox bacteria in sediments from marine, estuary, and freshwater wetland. Statistical analysis indicated that the base mispairing rate between bases on 16S rRNA gene sequences retrieved by Amx368F/Amx820R and their corresponding ones on primer Brod541F was quite high, suggesting the different efficiency and specificity of Amx368F/Amx820R and Brod541F/Amx820R. Further experimental results demonstrated that multiple genera of anammox bacteria, including Ca. Scalindua, Ca. Brocadia, and Ca. Kuenenia, were able to be detected by Amx368F/Amx820R, but only Ca. Scalindua could be retrieved by Brod541F/Amx820R. Moreover, the phylogenetic clusters of Ca. Scalindua by Amx368F/Amx820R were different completely from those by Brod541F/Amx820R, presenting a significant complementary effect. By joint application of these two primer sets, the diversity distribution patterns of anammox bacteria in different environments were analyzed. Almost all retrieved sequences from marine sediments belonged to Ca. Scalindua. Sequences from freshwater wetland were affiliated to Ca. Brocadia and two new clusters, while high diversity of anammox bacteria was found in estuary, including Ca. Scalindua, Ca. Brocadia, and Ca. Kuenenia, corresponding to the river-sea intersection environmental feature. In total, these two prime sets have different characteristic for anammox bacteria detecting from environmental samples, and their combined application could achieve better diversity display of anammox community.

  13. Detection of Helicobacter pylori by Real-Time PCR for 16s rRNA in Stools of NonInfected Healthy Children, Using ELISA Antigen Stool Test as the Gold Standard.

    PubMed

    George, Sergio; Mamani, Nora; Lucero, Yalda; Torres, Juan Pablo; Farfán, Mauricio; Lagomarcino, Anne J; Orellana, Andrea; O'Ryan, Miguel

    2016-12-01

    We previously detected Helicobacter pylori infection by stool antigen ELISA assay in 33-41% of asymptomatic Chilean children between 2-3 years of age, of which 11-20% had a transient infection and 21-22% a persistent infection. A total of 88% of ELISA-positive samples were also rtPCR positive, while 37/133 (33%) of ELISA-negative stool samples were rtPCR positive. The significance of a ELISA-negative/rtPCR-positive sample requires clarification. We aimed to determine whether rtPCR is able to detect persistent infections not detected by ELISA. We selected 36 children with an ELISA-negative/rtPCR-positive stool sample, of which 25 were never H. pylori infected according to ELISA, and 11 had a transient infection with an ELISA-positive sample before or after the discordant sample. At least two additional consecutive ELISA-negative samples per child were tested in duplicate by rtPCR for the 16s rRNA gene. A total of 14 of 78 (17.9%) rtPCR reactions were positive, but only 4/78 (5.1%) were positive in both duplicates, representing a total of 3/36 (8.3%) children with an additional rtPCR-positive sample, only one of whom was persistently negative by ELISA. One child with a transient infection had two positive rtPCR reactions despite negative ELISA samples. In H. pylori noninfected or transiently infected children, as determined by stool ELISA, additional ELISA-negative/rtPCR-positive stool samples were found in 8.3% of children, but a possible persistent infection was only identified in 2.7% of children. Thus, the characterization of infection dynamics in children is not being misrepresented by application of stool ELISA. Furthermore, rtPCR does not significantly improve dynamic characterization. © 2016 John Wiley & Sons Ltd.

  14. Lack of specificity for PCR assays targeting human Bacteroides 16S rRNA gene: cross-amplification with fish feces

    USDA-ARS?s Scientific Manuscript database

    Methods focused on members of the genus Bacteroides have been increasingly utilized in microbial source tracking studies for identifying and quantifying sources of non-point fecal contamination. We present results using real-time PCR to show significant cross-amplification of a human-specific Bacter...

  15. Development of real-time PCR assays for detection of the Streptococcus milleri group from cystic fibrosis clinical specimens by targeting the cpn60 and 16S rRNA genes.

    PubMed

    Olson, A B; Sibley, C D; Schmidt, L; Wilcox, M A; Surette, M G; Corbett, C R

    2010-04-01

    Cystic fibrosis (CF) is a multiorgan disease, with the majority of mortalities resulting from pulmonary failure due to repeated pulmonary exacerbations. Recently, members of the Streptococcus anginosus group (S. anginosus, S. constellatus, and S. intermedius), herein referred to as the "Streptococcus milleri group" (SMG) have been implicated as important etiological pathogens contributing to pulmonary exacerbations in CF patients. This is partly due to better microbiological detection of the SMG species through the development of a novel specific medium termed "McKay agar." McKay agar demonstrated that SMG has been an underreported respiratory pathogen contributing to lung exacerbations. Our aim was to develop a real-time PCR assay to expedite the detection of SMG within diagnostic samples. The cpn60 gene was chosen as a target, with all three members amplified using a single hybridization probe set. SMG strain analysis showed that speciation based on melting curve analysis allowed for the majority of the S. constellatus (96%), S. intermedius (94%), and S. anginosus (60%) strains to be correctly identified. To increase specificity for S. anginosus, two 16S rRNA real-time PCR assays were developed targeting the 16S rRNA gene. The 16s_SA assay is specific for S. anginosus (100%), while the 16s_SCI assay is specific for S. constellatus and S. intermedius (100%). These assays can detect <10 genome equivalents in pure culture and >10(4) genome equivalents in sputum samples, making this a great tool for assessment of the presence of SMG in complex polymicrobial samples. Novel molecular methods were developed providing detection ability for SMG, an emerging opportunistic pathogen.

  16. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  17. Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques.

    PubMed

    Murayama, Mayumi; Kakinuma, Yuki; Maeda, Yasunori; Rao, Juluri R; Matsuda, Motoo; Xu, Jiru; Moore, Peter J A; Millar, B Cherie; Rooney, Paul J; Goldsmith, Colin E; Loughrey, Anne; McMahon, M Ann S; McDowell, David A; Moore, John E

    2010-03-01

    Polymerase chain reaction amplification of the universal 16S ribosomal RNA (rRNA) gene was performed on a collection of 38 bacterial isolates, originating from air sampled immediately adjacent to the agricultural spreading of bovine slurry. A total of 16 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 34/38 (89.5%) of total bacterial numbers consisting of 12 genera and included Staphylococcus (most common genus isolated), Arthrobacter (2nd most common genus isolated), Brachybacterium, Exiguobacterium, Lactococcus, Microbacterium and Sporosarcina (next most common genera isolated) and finally, Bacillus, Brevibacterium, Frigoribacterium, Mycoplana and Pseudoclavibacter. Gram-negative organisms accounted for only 4/38 (10.5%) bacterial isolates and included the following genera, Brevundimonas, Lysobacter, Psychrobacter and Rhizobium. No gastrointestinal pathogens were detected. Although this study demonstrated a high diversity of the microorganisms present, only a few have been shown to be opportunistically pathogenic to humans and none of these organisms described have been described previously as having an inhalational route of infection and therefore we do not believe that the species of organisms identified pose a significant health and safety threat for immunocompetant individuals.

  18. Diagnostic Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study

    PubMed Central

    Thaipadunpanit, Janjira; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Amornchai, Premjit; Boonslip, Siriphan; Smythe, Lee D.; Limpaiboon, Roongrueng; Hoffmaster, Alex R.; Day, Nicholas P. J.; Peacock, Sharon J.

    2011-01-01

    Background Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand. Methods/Principal Findings A case-control study of 266 patients (133 cases of leptospirosis and 133 controls) was constructed to evaluate the diagnostic sensitivity and specificity (DSe & DSp) of both PCR assays. The median duration of illness prior to admission of cases was 4 days (IQR 2–5 days; range 1–12 days). DSe and DSp were determined using positive culture and/or microscopic agglutination test (MAT) as the gold standard. The DSe was higher for the rrs assay than the lipL32 assay (56%, (95% CI 47–64%) versus 43%, (95% CI 34–52%), p<0.001). No cases were positive for the lipL32 assay alone. There was borderline evidence to suggest that the DSp of the rrs assay was lower than the lipL32 assay (90% (95% CI 83–94%) versus 93%, (95%CI 88–97%), p = 0.06). Nine controls gave positive reactions for both assays and 5 controls gave a positive reaction for the rrs assay alone. The DSe of the rrs and lipL32 assays were high in the subgroup of 39 patients who were culture positive for Leptospira spp. (95% and 87%, respectively, p = 0.25). Conclusions/Significance Early detection of Leptospira using PCR is possible for more than half of patients presenting with leptospirosis and could contribute to individual patient care. PMID:21283633

  19. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    PubMed

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.

  20. [Tracing the Fecal Contamination Sources Based on Bacteroides 16S rRNA PCR- DGGE in Karst Groundwater: Taking Laolongdong Underground River System, Nanshan, Chongqing as an Example].

    PubMed

    Zhang, Hong; Jiang, Yong-jun; Zhang, Yuan-zhu; Duan, Yi-fan; Lü, Xian-fu; He, Qiu-fang

    2016-05-15

    Microbial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS). Bacteriodes was used as an indicator and PCR-DGGE analysis was used to trace fecal contamination sources in karst groundwater. The results suggested that groundwater in this area was seriously polluted by microbes from feces. The concentrations of microbial parameters exceeded limited levels greatly and the total bacterial amounts ranged 10-2.9 x 10⁷ CFU · mL⁻¹, the concentrations of E. coli were between 4.3-4.0 x 10⁵ CFU · mL⁻¹, the max concentration of FC was 1.1 x 10⁶ CFU · (100 mL)⁻¹ and the max concentration of FS was 1.1 x 10⁵ CFU · (100 mL)⁻¹. The FC/FS ratios were mostly over 2 which suggested that the main fecal source in groundwater was human feces. In addition, PCR-DGGE contrastive analysis of Bacteroides communities showed that the similarities between groundwater samples and human feces were in range of 7. 1% -69. 1% , and the similarity of the groundwater sample from Laolongdong underground river outlet was 69.1% . Bacteroides community similarities between groundwater samples and swine feces were in range of 1.1%-53.4%, and the similarity of Laolongdong underground river outlet was merely 1.5%. The similarity data implied that groundwater contamination resulted mainly from human feces, swine feces contamination composed part of animals' fecal contamination, and other animals' feces participated too. Furthermore, sequencing results of PCR-DGGE products revealed that most Bacteroides in groundwater originated from human intestinal tract and human feces.

  1. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    PubMed

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  2. Genetic Diversity of Bacillus thuringiensis from Different Geo-Ecological Regions of Ukraine by Analyzing the 16S rRNA and gyrB Genes and by AP-PCR and saAFLP

    PubMed Central

    Punina, N. V.; Zotov, V. S.; Parkhomenko, A. L.; Parkhomenko, T. U.; Topunov, A. F.

    2013-01-01

    The Bacillus cereus group consists of closely related species of bacteria and is of interest to researchers due to its importance in industry and medicine. However, it remains difficult to distinguish these bacteria at the intra- and inter-species level. Bacillus thuringiensis (Bt) is a member of the B. cereus group. In this work, we studied the inter-species structure of five entomopathogenic strains and 20 isolates of Bt, which were collected from different geo-ecological regions of Ukraine, using various methods: physiological and biochemical analyses, analysis of the nucleotide sequences of the 16S rRNA and gyrB genes, by AP-PCR (BOX and ERIC), and by saAFLP. The analysis of the 16S rRNA and gyrB genes revealed the existence of six subgroups within theB.cereus group: B anthracis, B. cereus I and II, Bt I and II, and Bt III, and confirmed that these isolates belong to the genus Bacillus. All strains were subdivided into 3 groups. Seventeen strains belong to the group Bt II of commercial, industrial strains. The AP-PCR (BOX and ERIC) and saAFLP results were in good agreement and with the results obtained for the 16S rRNA and gyrB genes. Based on the derived patterns, all strains were reliably combined into 5 groups. Interestingly, a specific pattern was revealed by the saAFLP analysis for the industrial strain Bt 0376 р.о., which is used to produce the entomopathogenic preparation “STAR-t”. PMID:23556134

  3. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  4. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  5. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis).

    PubMed

    Romero, J; García-Varela, M; Laclette, J P; Espejo, R T

    2002-11-01

    To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.

  6. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis.

    PubMed

    Randazzo, Cinzia L; Torriani, Sandra; Akkermans, Antoon D L; de Vos, Willem M; Vaughan, Elaine E

    2002-04-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene, respectively. DGGE profiles from samples taken during cheese production indicated dramatic shifts in the microbial community structure. Cloning and sequencing of rDNA amplicons revealed that mesophilic lactic acid bacteria (LAB), including species of Leuconostoc, Lactococcus lactis, and Macrococcus caseolyticus were dominant in the raw milk, while Streptococcus thermophilus prevailed during lactic fermentation. Other thermophilic LAB, especially Lactobacillus delbrueckii and Lactobacillus fermentum, also flourished during ripening. Comparison of the rRNA-derived patterns obtained by RT-PCR to the rDNA DGGE patterns indicated a substantially different degree of metabolic activity for the microbial groups detected. Identification of cultivated LAB isolates by phenotypic characterization and 16S rDNA analysis indicated a variety of species, reflecting to a large extent the results obtained from the 16S rDNA clone libraries, with the significant exception of the Lactobacillus delbrueckii species, which dominated in the ripening cheese but was not detected by cultivation. The present molecular approaches combined with culture can effectively describe the complex ecosystem of natural fermented dairy products, giving useful information for starter culture design and preservation of artisanal fermented food technology.

  7. Characterization of rDNA sequences from Syphacia obvelata, Syphacia muris, and Aspiculuris tetraptera and development of a PCR-based method for identification.

    PubMed

    Parel, Joan Dee C; Galula, Jedhan U; Ooi, Hong-Kean

    2008-05-31

    To differentiate the morphologically similar pinworms of the common laboratory rodents, such as Syphacia obvelata and Syphacia muris, we amplified and sequenced the region spanning the internal transcribed spacer 1 (ITS-1), 5.8S gene, and ITS-2 of the ribosomal DNA followed by designing of species-specific primers for future use in the identification of the worms. It was observed that S. obvelata, S. muris and Aspiculuris tetraptera can be differentiated from each other based on their rDNA sequences. This is the first report of the ITS-1, 5.8S, and ITS-2 of the rDNA of the three aforementioned rodent pinworm species. The use of restriction endonucleases, AluI or RsaI, further allowed the delineation of the three species. Moreover, we also constructed species-specific primers that were designed for unique regions of the ITS-2 of the three species. This approach allowed their specific identification with no amplicons being amplified from heterogenous DNA samples, and sequencing confirmed the identity of the sequences amplified. Thus, the use of these specific primers along with PCR-RFLP can serve as useful tools for the identification of pinworms in rats, mice, and wild rodents.

  8. Determination of fruit origin by using 26S rDNA fingerprinting of yeast communities by PCR-DGGE: preliminary application to Physalis fruits from Egypt.

    PubMed

    El Sheikha, Aly Farag; Condur, Ana; Métayer, Isabelle; Nguyen, Doan Duy Le; Loiseau, Gérard; Montet, Didier

    2009-10-01

    The determination of geographical origin is a demand of the traceability system of import-export food products. One hypothesis for tracing the source of a product is by global analysis of the microbial communities of the food and statistical linkage of this analysis to the geographical origin of the food. For this purpose, a molecular technique employing 26S rDNA profiles generated by PCR-DGGE was used to detect the variation in yeast community structures of three species of Physalis fruit (Physalis ixocarpa Brat, Physalis pubescens L, Physalis pruinosa L) from four Egyptian regions (Qalyoubia, Minufiya, Beheira and Alexandria Governments). When the 26S rDNA profiles were analysed by multivariate analysis, distinct microbial communities were detected. The band profiles of Physalis yeasts from different Governments were specific for each location and could be used as a bar code to discriminate the origin of the fruits. This method is a new traceability tool which provides fruit products with a unique biological bar code and makes it possible to trace back the fruits to their original location.

  9. The Investigation on the Distribution of Malassezia Yeasts on the Normal Korean Skin by 26S rDNA PCR-RFLP

    PubMed Central

    Jang, Soo-Jung; Lim, Sang-Hee; Ko, Jong-Hyun; Oh, Byung-Ho; Kim, Sang-Min; Song, Young-Chan; Yim, Seon-Mi; Lee, Yang-Won; Choe, Yong-Beom

    2009-01-01

    Background Malassezia yeasts are normal flora of the skin that are discovered in 75~98% of health subjects, but since its association with various skin disorders have been known, many studies have been conducted in the distribution of the yeasts. Objective To isolate, identify, and classify Malassezia yeasts from the normal human skin of Koreans by using the rapid and accurate molecular biology method (26S rDNA PCR-RFLP) which overcome the limits of morphological and biochemical methods, and to gather a basic database that will show its relation to various skin diseases. Methods Malassezia yeasts were cultured from clinically healthy human skin using scrub-wash technique at five sites (forehead, cheek, chest, upper arm, and thigh) and swabbing technique at scalp in 160 participants comprised of 80 males and 80 females aged from 0 to 80. Identification of obtained strains were placed into the one of the 11 species by 26S rDNA PCR-RFLP. Results An overall positive culture rate was 62.4% (599/960). As shown in the experiment groups by their age, the positive culture rate was the highest (74.2%) in the age 21~30 and 31~40 (89/120). In the experiment groups by different body areas, the scalp showed the highest positive culture rate of 90% (144/160). On analysis of 26S rDNA PCR-RFLP, M. globosa was the most predominant species in the age 0~10 (32.8%), 11~20 (28.9%), 21~30 (32.3%). M. restricta was identified as predominant species in the age 41~50 (27.9%), 61~70 (31.5%) and 71~80 (24.0%). In the age 31~40 years, M. sympodialis was found to be the most common species (24.6%). According to body site, M. restricta was more frequently recovered in the scalp (56.8%), forehead (39.8%) and cheek (24.0%) and while M. globosa was more frequently recovered in the chest (36.8%). Higher positive culture rates of Malassezia yeasts were shown in male subjects than female counterparts in all body areas except scalp (p<0.05). Especially in this study, M. dermatis, newly isolated

  10. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media

    PubMed Central

    Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    ABSTRACT The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations

  11. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media.

    PubMed

    Sillanpää, Saara; Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and

  12. Genetic Diversity of the Biofilm Covering Montacuta ferruginosa (Mollusca, Bivalvia) as Evaluated by Denaturing Gradient Gel Electrophoresis Analysis and Cloning of PCR-Amplified Gene Fragments Coding for 16S rRNA†

    PubMed Central

    Gillan, David C.; Speksnijder, Arjen G. C. L.; Zwart, Gabriel; De Ridder, Chantal

    1998-01-01

    The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas, Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of the Cytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes. PMID:9726898

  13. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water

    PubMed Central

    Layton, Alice; McKay, Larry; Williams, Dan; Garrett, Victoria; Gentry, Randall; Sayler, Gary

    2006-01-01

    Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds. PMID:16751534

  14. Differential detection of Debaryomyces hansenii isolated from intermediate-moisture foods by PCR-RFLP of the IGS region of rDNA.

    PubMed

    Romero, Patricia; Patiño, Belén; Quirós, Manuel; González-Jaén, María-Teresa; Valderrama, María-José; de Silóniz, María-Isabel; Peinado, José M

    2005-02-01

    The amplification by PCR of the Intergenic Spacer region (IGS) of rDNA followed by Restriction Fragment Length Polymorphism (RFLP) analysis was evaluated as a potential method for the identification of Debaryomyces hansenii among other yeast species that frequently contaminate Intermediate-Moisture Foods (IMFs). For a first rapid differentiation at the species level, the determination of the IGS-PCR fragment size was found to be a useful approach. The digestion of this region with the enzymes HhaI, HapII and MboI resulted in specific patterns that permit the identification of D. hansenii among other yeast species. This method also permitted the discrimination between the D. hansenii varieties (var. hansenii and var. fabryi) as well as the differentiation of D. hansenii from other species of the genus, such as Debaryomyces pseudopolymorphus or Debaryomyces polymorphus var. polymorphus. The IGS-PCR RFLP method was assayed for the differential detection of D. hansenii in contaminated or spoiled IMF products and compared with traditional identification procedures, resulting in a 100% detection rate for D. hansenii.

  15. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis.

    PubMed

    Wilkins, Elien E; Howell, Paul I; Benedict, Mark Q

    2006-12-19

    Polymerase chain reactions to distinguish single-nucleotide polymorphisms are commonly used for mosquito identification and identifying insecticide resistance alleles. However, the existing methods used for primer design often result in analyses that are not robust or require additional steps. Utilizing oligonucleotides that are unique in having an intentional mismatch to both templates three bases from the SNP at the 3-prime end, three new PCR assays that distinguish SNP targets using standard gel electrophoresis of undigested DNA fragments were developed and tested. These were applied to: (1) an alternative ribosomal DNA PCR assay to distinguish five members of the Anopheles gambiae complex; (2) detection of the Mopti and Savanna rDNA types; and (3) an assay to distinguish resistance to dieldrin (Rdl) alleles in Anopheles arabiensis. Reproducible specific amplification of the target alleles was observed in all three assays. The results were consistent with existing analyses but proved simpler and the results more distinct in our hands. The simplicity and effectiveness of the method should be utilized in these and other PCR analyses to increase their specificity and simplicity. These results have the potential to be extended not only to mosquito analyses but also to parasite and human polymorphisms.

  16. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis

    PubMed Central

    Wilkins, Elien E; Howell, Paul I; Benedict, Mark Q

    2006-01-01

    Background Polymerase chain reactions to distinguish single-nucleotide polymorphisms are commonly used for mosquito identification and identifying insecticide resistance alleles. However, the existing methods used for primer design often result in analyses that are not robust or require additional steps. Methods Utilizing oligonucleotides that are unique in having an intentional mismatch to both templates three bases from the SNP at the 3-prime end, three new PCR assays that distinguish SNP targets using standard gel electrophoresis of undigested DNA fragments were developed and tested. These were applied to: (1) an alternative ribosomal DNA PCR assay to distinguish five members of the Anopheles gambiae complex; (2) detection of the Mopti and Savanna rDNA types; and (3) an assay to distinguish resistance to dieldrin (Rdl) alleles in Anopheles arabiensis. Results Reproducible specific amplification of the target alleles was observed in all three assays. The results were consistent with existing analyses but proved simpler and the results more distinct in our hands. Conclusion The simplicity and effectiveness of the method should be utilized in these and other PCR analyses to increase their specificity and simplicity. These results have the potential to be extended not only to mosquito analyses but also to parasite and human polymorphisms. PMID:17177993

  17. PCR-RFLP of ITS rDNA for the rapid identification of Penicillium subgenus Biverticillium species.

    PubMed

    Dupont, Jöelle; Dennetière, Bruno; Jacquet, Claire; Dupont, Marie France

    2006-09-01

    RFLP of ITS rDNA is proposed as a useful tool for molecular identification of the most common species of biverticillate penicillia. 60 isolates were analysed representing 13 species and 21 unique sequences were produced. The combination of five restriction enzymes was successful in separating 12 species. However, the variety Penicillium purpurogenum var. rubrisclerotium remained indistinguishable from Penicillium funiculosum. P. funiculosum appeared as the most confused species, being mis-identified with Penicillium miniolutum and Penicillium pinophilum, which were originally part of the species, and with P. purpurogenum perhaps because of the common production of red pigment. Penicillium variabile was difficult to investigate as introns were found on half of the isolates. Penicillium piceum, Penicillium rugulosum, Penicillium loliense, Penicillium erythromellis and P. purpurogenum were homogeneous from molecular and morphological positions and corresponded to a well circumscribed taxon. Furthermore, intraspecific variability was evidenced within P. pinophilum and P. funiculosum. The ex-type isolate of P. funiculosum produced a unique pattern. The method is sensitive, rapid and inexpensive and can be used for isolate identification of the biverticillate species. It is recommended particularly when many isolates have to be authentificated prior to analysis for phylogenetic assessment or population genetics.

  18. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria

    PubMed Central

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J.; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC. PMID:27749897

  19. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria.

    PubMed

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I-V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.

  20. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR.

    PubMed

    Segawa, Takahiro; Miyamoto, Koji; Ushida, Kazunari; Agata, Kiyokazu; Okada, Norihiro; Kohshima, Shiro

    2005-01-01

    The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4 degrees C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 x 10(5)-fold, 1.5 x 10(5)-fold, and 1.0 x 10(4)-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world.

  1. Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes.

    PubMed

    LaMontagne, M G; Schimel, J P; Holden, P A

    2003-08-01

    The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.

  2. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Oh, Byung Ho; Choe, Yong Beom; Ahn, Kyu Joong

    2010-01-01

    Background This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. Objective The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. Methods 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. Results The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. Conclusion According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups. PMID:20548904

  3. Two different 16S rRNA genes in a mycobacterial strain.

    PubMed Central

    Ninet, B; Monod, M; Emler, S; Pawlowski, J; Metral, C; Rohner, P; Auckenthaler, R; Hirschel, B

    1996-01-01

    Sequencing of the gene coding for 16S rRNA (16S rDNA) is a well-established method used to identify bacteria, particularly mycobacteria. Unique sequences allow identification of a particular genus and species. If more than one 16S rDNA is present on one mycobacterial genome, their sequences are assumed to be strictly or almost identical. We have isolated a slowly growing Mycobacterium strain, "X", identified by conventional biochemical tests as Mycobacterium terrae. Identification by amplification and direct sequencing of 16S rDNA yielded ambiguous results in two variable regions, suggesting the presence of different copies of the sequenced gene. Total DNA was digested by restriction enzymes and hybridized after Southern blotting to a probe representing about two-thirds of the 16S rDNA. Two copies of 16S rDNA were identified and cloned. By sequencing, the clones were of two different types, A and B, differing in 18 positions. Oligonucleotides specific to each copy of the 16S rDNA were used to distinguish the positions of the two genes observed in the Southern blot. We conclude that Mycobacterium strain "X" has two different copies of 16S rDNA. Variations in the sequence between two copies of 16S rDNA gene have been described in archaeobacteria, but not in mycobacteria. When placed in a phylogenetic tree together with other slowly growing mycobacteria gene A shows a common root with M. terrae, whereas gene B is placed separately. PMID:8880515

  4. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-07-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera.

  5. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed Central

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-01-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera. PMID:9212413

  6. Evaluation of 16S rDNA-based community profiling for human microbiome research.

    PubMed

    2012-01-01

    The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730 and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for classification- and OTU-based analysis of community structure. The data production protocols used for this work are those used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can be informative for interpreting the large body of clinical 16S rDNA data produced for this project.

  7. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    PubMed

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert bacterial disease outbreaks, rather than relying on the absence of specific pathogens in the immediate farm environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bifidobacterial Diversity in Human Feces Detected by Genus-Specific PCR and Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Satokari, Reetta M.; Vaughan, Elaine E.; Akkermans, Antoon D. L.; Saarela, Maria; de Vos, Willem M.

    2001-01-01

    We describe the development and validation of a method for the qualitative analysis of complex bifidobacterial communities based on PCR and denaturing gradient gel electrophoresis (DGGE). Bifidobacterium genus-specific primers were used to amplify an approximately 520-bp fragment from the 16S ribosomal DNA (rDNA), and the fragments were separated in a sequence-specific manner in DGGE. PCR products of the same length from different bifidobacterial species showed good separation upon DGGE. DGGE of fecal 16S rDNA amplicons from five adult individuals showed host-specific populations of bifidobacteria that were stable over a period of 4 weeks. Sequencing of fecal amplicons resulted in Bifidobacterium-like sequences, confirming that the profiles indeed represent the bifidobacterial population of feces. Bifidobacterium adolescentis was found to be the most common species in feces of the human adult subjects in this study. The methodological approach revealed intragenomic 16S rDNA heterogeneity in the type strain of B. adolescentis, E-981074. The strain was found to harbor five copies of 16S rDNA, two of which were sequenced. The two 16S rDNA sequences of B. adolescentis E-981074T exhibited microheterogeneity differing in eight positions over almost the total length of the gene. PMID:11157210

  9. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis.

    PubMed

    Satokari, R M; Vaughan, E E; Akkermans, A D; Saarela, M; de Vos, W M

    2001-02-01

    We describe the development and validation of a method for the qualitative analysis of complex bifidobacterial communities based on PCR and denaturing gradient gel electrophoresis (DGGE). Bifidobacterium genus-specific primers were used to amplify an approximately 520-bp fragment from the 16S ribosomal DNA (rDNA), and the fragments were separated in a sequence-specific manner in DGGE. PCR products of the same length from different bifidobacterial species showed good separation upon DGGE. DGGE of fecal 16S rDNA amplicons from five adult individuals showed host-specific populations of bifidobacteria that were stable over a period of 4 weeks. Sequencing of fecal amplicons resulted in Bifidobacterium-like sequences, confirming that the profiles indeed represent the bifidobacterial population of feces. Bifidobacterium adolescentis was found to be the most common species in feces of the human adult subjects in this study. The methodological approach revealed intragenomic 16S rDNA heterogeneity in the type strain of B. adolescentis, E-981074. The strain was found to harbor five copies of 16S rDNA, two of which were sequenced. The two 16S rDNA sequences of B. adolescentis E-981074(T) exhibited microheterogeneity differing in eight positions over almost the total length of the gene.

  10. Molecular detection of bacteria in plant tissues, using universal 16S ribosomal DNA degenerated primers

    PubMed Central

    Tsoktouridis, Georgios; Tsiamis, George; Koutinas, Nikolaos; Mantell, Sinclair

    2014-01-01

    Highly specific, sensitive and rapid tests are required for the detection and identification of covert bacterial contaminations in plant tissue cultures. Current methods available for this purpose are tedious, time consuming, highly error prone, expensive, require advanced technical expertise and are sometimes ineffective. We report here the development of a sensitive polymerase chain reaction (PCR) based method for the rapid detection and identification of bacteria occurring in plant tissue cultures. A total of 121 16S ribosomal DNA (rDNA) coding regions from 14 different groups of bacteria, algae and plants, available in the Gene Bank/European Molecular Biology Laboratory databases, were aligned and several conserved DNA sequences of bacterial origin were identified. From those, five degenerated primers were designed in order to amplify only the bacterial DNA present in mixed plant/bacteria genomic DNA extracts. A known amount of bacterial suspension of either covert Pseudomonas or covert Bacillus were added to in vitro plant leaves and total plant/bacterial DNA extracted using three different methods to determine the lowest number of bacteria required to be present in order to allow their detection. The highest sensitivity of the bacterial cell detection was 2.5 × 106 cells of both Bacillus and Pseudomonas inoculums, using template DNA prepared by the MiniPrep method. Generation of PCR amplification fragments was achieved only for the 16S rDNA bacterial gene by using four combinations of degenerated primers. Successive sequence analysis of these amplified fragments led to the rapid detection and molecular identification of bacteria covertly associated with plants. PMID:26019546

  11. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    NASA Astrophysics Data System (ADS)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  12. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  13. USE OF BACTEROIDES PCR-BASED METHODS TO EXAMINE FECAL CONTAMINATION SOURCES IN TROPICAL COASTAL WATERS

    EPA Science Inventory

    Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...

  14. USE OF BACTEROIDES PCR-BASED METHODS TO EXAMINE FECAL CONTAMINATION SOURCES IN TROPICAL COASTAL WATERS

    EPA Science Inventory

    Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...

  15. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  16. Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.

    PubMed

    Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav

    2013-01-01

    The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.

  17. Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods.

    PubMed

    Herzberg, Michael; Fischer, Reinhard; Titze, Andreas

    2002-07-01

    Sixty-six yeast strains isolated from the nectar of various plant species in Central Europe were characterized by randomly amplified polymorphic DNA PCR (RAPD-PCR) and by sequencing of the variable D1/D2 domain of large-subunit (26S) rDNA. The usefulness of both methods for the determination and comparison of unknown ascomycetous and basidiomycetous yeast strains was compared and evaluated. The reproducibility of RAPD-PCR was shown to be low and the information obtained by this method was clearly not as precise as that obtained from sequence analysis. Numerous imponderables make RAPD-PCR analysis unreliable, at least as a means of identifying yeasts in ecological studies. The lack of standard protocols for RAPD-PCR analysis and the absence of a general database of banding patterns made it impossible to identify unknown yeast strains or to recognize new species. In contrast to RAPD-PCR, sequence analysis of the D1/D2 domain was found to be a fast and reliable method for the rapid identification of yeast species and was also shown to be an invaluable tool for the discovery of new species.

  18. [ITS1, 5.8S and A-type ITS2 rDNA sequences from Plasmoidum vivax and development of a method for retrospective PCR diagnosis of malaria by stained thick blood smears].

    PubMed

    Ivanova, N V; Morozov, E H; Kukina, I V; Maksakovskaia, E V; Rabinovich, S A; Poltaraus, A B

    2001-01-01

    Stages life cycle of the malaria parasite differ in the rate of replication and the structural properties of functionally active A-, S-, and O-type ribosomes. Regions of A-type rDNA including ITS1, 5.8S, and ITS2 from two strains of Plasmodium vivax with different incubation periods were amplified and sequenced. No substantial differences in the sequences of two strains were revealed. Phylogenetic analysis of the obtained and homologous sequences of ITS1 rDNA of A, S, and O types of P. vivax; A and S types of P. falciparum; and Cryptosporidium parvum, Eimeria maxima, Toxoplasma gondii as outgroup, by the maximum parsimony method using PAUP 4.0 revealed that divergence of ITS1 might have occurred after speciation and at different rates in individual lineages of the Plasmodium genus. Basing on the results of the analysis of orthologous sequences of P. vivax and P. falciparum, we developed genus- and species-specific primers for PCR diagnostics of malaria, as well as a one-step effective method of DNA isolation from Giemsa-Romanovsky-stained thick blood smears. It was demonstrated that stained preparations could be a reliable source of plasmodial DNA, and the quality of preparations and storage time (10-20 years) did not interfere with the results of PCR analysis.

  19. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  20. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  1. 16S rDNA-based probes for two polycyclic aromatic hydrocarbon (PAH)-degrading soil Mycobacteria

    SciTech Connect

    Govindaswami, M.; Feldhake, D.J.; Loper, J.C.

    1994-12-31

    PAHs are a class of widespread pollutants, some of which have been shown to be genotoxic, hence the fate of these compounds in the environment is of considerable interest. Research on the biodegradation of 4 and 5 ring PAHs has been limited by the general lack of microbial isolates or consortia which can completely degrade these toxicants. Heitkamp and Cerniglia have described an oxidative soil Mycobacterium-strain PYR-1 that metabolizes pyrene and fluoranthene more rapidly than the 2 and 3 ring naphthalene and phenanthrene; although some metabolites of benzo-(a)-pyrene (BaP) were detected, no mineralization of BaP was observed. In 1991 Grosser et al. reported the isolation of a Mycobacterium sp. which mineralizes pyrene and also causing some mineralization of BaP. Their study describes a comparative analysis of these two strains, which show very similar colony morphology, growth rate and yellow-orange pigmentation. Genetic differences were shown by DNA amplification fingerprinting (DAF) using two arbitrary GC-rich octanucleotide primers, and by sequence comparison of PCR amplified 16S rDNA, although both strains show similarity closest to that of the genus Mycobacteria. These 16S rDNA sequences are in use for the construction of strain-specific DNA probes to monitor the presence, survival and growth of these isolates in PAH-contaminated soils in studies of biodegradation.

  2. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  3. Worldwide Distribution of Nitrosococcus oceani, a Marine Ammonia-Oxidizing γ-Proteobacterium, Detected by PCR and Sequencing of 16S rRNA and amoA Genes

    PubMed Central

    Ward, Bess B.; O'Mullan, Gregory D.

    2002-01-01

    Diversity of cultured ammonia-oxidizing bacteria in the γ-subdivision of the Proteobacteria was investigated by using strains isolated from various parts of the world ocean. All the strains were very similar to each other on the basis of the sequences of both the 16S rRNA and ammonia monooxygenase genes and could be characterized as a single species. Sequences were also cloned directly from environmental DNA from coastal Pacific and Atlantic sites, and these sequences represented the first Nitrosococcus oceani-like sequences obtained directly from the ocean. Most of the environmental sequences clustered tightly with those of the cultivated strains, but some sequences could represent new species of Nitrosococcus. These findings imply that organisms similar to the cultivated N. oceani strains have a worldwide distribution. PMID:12147525

  4. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  5. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting

    PubMed Central

    Maneg, Daniela; Sponsel, Janina; Müller, Iris; Lohr, Benedikt; Penders, John; Madlener, Katharina; Hunfeld, Klaus-Peter

    2016-01-01

    Infective endocarditis (IE) is a life-threatening disease that is associated with high morbidity and mortality. Its long-term prognosis strongly depends on a timely and optimized antibiotic treatment. Therefore, identification of the causative pathogen is crucial and currently based on blood cultures followed by characterization and susceptibility testing of the isolate. However, antibiotic treatment starting prior to blood sampling or IE caused by fastidious or intracellular microorganisms may cause negative culture results. Here we investigate the additional diagnostic value of broad-range PCR in combination with direct sequencing on resected heart tissue or swabs in patients with tissue or swab culture-negative IE in a routine clinical setting. Sensitivity, specificity, and positive and negative predictive values of broad-range PCR from diagnostic material in our patients were 33.3%, 76.9%, 90.9%, and 14.3%, respectively. We identified a total of 20 patients (21.5%) with tissue or culture-negative IE who profited by the additional application of broad-range PCR. We conclude that broad-range PCR on resected heart tissue or swabs is an important complementary diagnostic approach. It should be seen as an indispensable new tool for both the therapeutic and diagnostic management of culture-negative IE and we thus propose its possible inclusion in Duke's diagnostic classification scheme. PMID:27110570

  6. Development of a 16S rRNA Gene Primer and PCR-Restriction Fragment Length Polymorphism Method for Rapid Detection of Members of the Genus Megasphaera and Species-Level Identification ▿ †

    PubMed Central

    Ohnishi, Akihiro; Abe, Shinko; Nashirozawa, Shiho; Shimada, Sayaka; Fujimoto, Naoshi; Suzuki, Masaharu

    2011-01-01

    The genus Megasphaera is relevant to the environment, human health and food, and renewable energy for the future. In this study, a primer set was designed for PCR-restriction fragment length polymorphism (RFLP) analyses to detect and identify the members of Megasphaera. Direct detection and identification were achieved for environmental samples and isolates. PMID:21705538

  7. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio.

    PubMed

    Moreno, Claudia; Romero, Jaime; Espejo, Romilio T

    2002-04-01

    Analysis of the 16S rDNAs obtained from cultures of single colonies of either type collection strains or environmental strains of the genus Vibrio revealed the presence of polymorphism in every one of the strains examined. Polymorphism was detected by visualization of heteroduplexes produced after 16S rDNA PCR amplification, a procedure that allows for the screening of a large number of isolates. Amplified 16S rDNAs obtained from both Vibrio parahaemolyticus and an environmental strain were cloned. Their nucleotide sequences revealed differences of up to 2% among 16S rDNAs from the same strain. Polymorphic sites were concentrated in a recognized variable stem-loop of bacterial 16S rRNA that contained in some cases up to 83% of the total mismatches observed. Most of the substitutions present in the stem-loop region showed compensating base covariation. The accumulation of so many compensating changes in the stem-loop region implies that the divergence of the different versions of this stem-loop is relatively ancient. This divergence could be the result of either a selection process or a lateral transfer of independently evolved genes.

  8. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  9. Identification of different subtypes of rapid growing Atypical Mycobacterium from water and soil sources: Using PCR-RFLP using hsp65 and rRNA 16s-23s genes.

    PubMed

    Varahram, Mohammad; Farnia, Parissa; Saif, Shima; Marashian, Mehran; Farnia, Poopak; Ghanavi, Jaladein; Velayati, Ali Akbar

    2016-12-01

    Nontuberculosis mycobacteria (NTM) are a diverse group of microorganisms that cause a variety of diseases in humans including skin, respiratory, and gastrointestinal tract infection. Generally, NTM are classified into two categories: rapid (<7days) and slow growing (>7days). In this study, we aimed to investigate NTM frequency and prevalence in environmental samples. Additionally, we tried to identify various subtypes of isolated rapid growing mycobacteria (RGM). Through a prospective descriptive cross-sectional study, water and soil samples were gathered from four neighboring towns around Tehran, the capital of Iran, at different geographic directions. Every 100m(2) of the studied areas gave one sample containing 6g of soil in 3-5cm depth deposited in 50mL sterile water as sampling media. After digestion and decontamination, DNA from culture-positive specimens (RGM) were extracted using phenol-chloroform methods. Then the molecular identification of species and subspecies were performed using 16s-23s rRNA and hsp65 gene. In total, 341 RGM were found, out of which 322 (94.4%) were identified and 20 (5.8%) could not be identified. The most frequent RGM was, Mycobacterium fortuitum (72; 22%), Mycobacterium senegalense (58; 17.7%), Mycobacterium parafortuitum (44; 13.4%) and Mycobacterium conceptionense type 1 (24; 7.2%), and Mycobacterium cheloni type 1 (20; 6.0%). As shown in Table 1, M. fortuitum had more subtypes (8), and the frequency of subtypes 1 (27.7%), 4 (16.6%), and 5 (13.8%) were higher. Among subtypes of M. senegalense, subtype 1 had a higher frequency (70.4%) in comparison to subtype 2 (29.5%). M. cheloni had just one subtype. Our results showed M. fortuitum as the most prominent strain isolated from environmental samples. The frequency was similar in different places, irrespective of climatic variations. Availability of various subtypes of M. fortuitum might indicate a large circulation of this RGM in soil and water of Iranian territory. This high

  10. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase

    SciTech Connect

    Henckel, T.; Friedrich, M.; Conrad, R.

    1999-05-01

    Rice field soil with a nonsaturated water content induced CH{sub 4} consumption activity when it was supplemented with 5% CH{sub 4}. After a lag phase of 3 days, CH{sub 4} was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH{sub 4} mixing ratios. The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type 1 methylotrophs and type 2 methylotrophs were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH{sub 4} was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH{sub 4}.

  11. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens.

  12. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    PubMed

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia.

  13. Rapid differentiation of the closely related Kluyveromyces lactis var. lactis and K. marxianus strains isolated from dairy products using selective media and PCR/RFLP of the rDNA non transcribed spacer 2.

    PubMed

    Nguyen, H V; Pulvirenti, A; Gaillardin, C

    2000-12-01

    PCR/RFLP of the NTS2 (IGS2) of rDNA was applied to differentiate two closely related yeast species, Kluyveromyces lactis var. lactis (referred to as K. lactis) and K. marxianus. Using specific primers, the NTS2 region was amplified from DNA of both K. lactis and K. marxianus type and collection strains. AluI restriction of amplified fragments generated patterns characteristic for each species. The NTS2 region from K. lactis var. drosophilarum and related species K. aestuarii, K. africanus, K. dobzhanskii, and K. wickerhamii could also be amplified with the same primers, but AluI patterns generated were clearly different. PCR/RFLP of the NTS2 appears thus to be a convenient method for rapid identification of K. lactis and K. marxianus, frequently found in dairy products. This test was validated therefore on K. lactis and K. marxianus from natural habitats. We showed that all yeast strains collected from whey samples and scoring blue on X-gal glucose plates were either K. lactis or K. marxianus. For application purposes, we propose here an approach for quickly screening for K. lactis/marxianus and Saccharomyces cerevisiae in dairy products using X-gal coloured and lysine growth media.

  14. Novel Bacterial Lineages at the (Sub)Division Level as Detected by Signature Nucleotide-Targeted Recovery of 16S rRNA Genes from Bulk Soil and Rice Roots of Flooded Rice Microcosms

    PubMed Central

    Derakshani, Manigee; Lukow, Thomas; Liesack, Werner

    2001-01-01

    Using a newly developed 16S rRNA gene (rDNA)-targeted PCR assay with proposed group specificity for planctomycetes, we examined anoxic bulk soil of flooded rice microcosms for the presence of novel planctomycete-like diversity. For comparison, oxic rice roots were included as an additional sample in this investigation. The bacterial diversity detectable by this PCR assay was assessed by using a combined approach that included terminal restriction fragment length polymorphism (T-RFLP) analysis and comparative sequence analysis of cloned 16S rDNA. T-RFLP fingerprint patterns generated from rice roots contained 12 distinct terminal restriction fragments (T-RFs). In contrast, the T-RFLP fingerprint patterns obtained from the anoxic bulk soil contained 33 distinct T-RFs, a clearly higher level of complexity. A survey of 176 bulk soil 16S rDNA clone sequences permitted correlation of 20 T-RFs with phylogenetic information. The other 13 T-RFs remained unidentified. The predominant T-RFs obtained from rice roots could be assigned to members of the genus Pirellula within the Planctomycetales, while most of the T-RFs obtained from the bulk soil corresponded to novel lines of bacterial descent. Using a level of 16S rDNA sequence dissimilarity to cultured microorganisms of approximately 20% as a threshold value, we detected 11 distinct bacterial lineages for which pure-culture representatives are not known. Four of these lineages could be assigned to the order Planctomycetales, while one lineage was affiliated with the division Verrucomicrobia and one lineage was affiliated with the spirochetes. The other five lineages either could not be assigned to any of the main lines of bacterial descent or clearly expanded the known diversity of division level lineages WS3 and OP3. Our results indicate the presence of bacterial diversity at a subdivision and/or division level that has not been detected previously by the so-called universal 16S rDNA PCR assays. PMID:11157225

  15. Emergence of Tetracycline Resistance in Helicobacter pylori: Multiple Mutational Changes in 16S Ribosomal DNA and Other Genetic Loci

    PubMed Central

    Dailidiene, Daiva; Bertoli, M. Teresita; Miciuleviciene, Jolanta; Mukhopadhyay, Asish K.; Dailide, Giedrius; Pascasio, Mario Alberto; Kupcinskas, Limas; Berg, Douglas E.

    2002-01-01

    Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tetr) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tetr isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA965-967 [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA965-967; (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tetr phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tetr parents; (iii) each of 10 Tetr mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA965-967 sequence; and (iv) transformant derivatives of Ind75 and of one of the Tetr 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity. PMID:12435699

  16. The specific isolation of complete 5S rDNA units from chromosome 1A of hexaploid, tetraploid, and diploid wheat species using PCR with head-to-head oriented primers.

    PubMed

    Van Campenhout, S; Stappen, J V; Volckaert, G

    2001-08-01

    The presence of 5S rDNA units on chromosome 1A of Triticum aestivum was shown by the development of a specific PCR test, using head-to-head oriented primers. This primer set allowed the amplification of complete 5S DNA units and was used to isolate SS-Rrna-A1 sequences from polyploid and diploid wheat species. Multiple-alignment and parsimony analyses of the 132 sequences divided the sequences into four types. The isolates from T. aestivum and the tetraploid species (T. dicoccoides, T. dicoccum, T durum, T. araraticum, and T timopheevi) were all of one type, which was shown to be closely related to the type mainly characteristic for T. urartu. The other two types were isolated exclusively from the diploid species T. monococcum, T aegilopoides, T. thaoudar, and T. sinskajae and the hexaploid species T. zhukovski. Triticum monococcum was the only species for which representatives of each of the four sequence types were found to be present. Further, we discuss the possible multicluster arrangement of the 5S-Rrna-A1 array.

  17. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

    PubMed Central

    Drancourt, Michel; Bollet, Claude; Carlioz, Antoine; Martelin, Rolland; Gayral, Jean-Pierre; Raoult, Didier

    2000-01-01

    Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter and Pantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides

  18. Molecular and functional diversity of PGPR fluorescent Pseudomonads based on 16S rDNA-RFLP and RAPD markers.

    PubMed

    Singh, Bhim Pratap

    2015-09-01

    The genetic and functional diversity of plant growth promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with chickpea (Cicer arietinum L.) rhizosphere was analyzed. In total, 34 isolates along with two reference isolates were screened for various plant growth promoting traits (phosphorous solubilization, ACC deaminase, HCN, IAA and siderophore productions) and antagonist activity against four fungal phytopathogens and three bacterial pathogens. Most of the isolates, that showed PGPR activity, also showed antagonistic activity against all the three fungal pathogens. The genetic relationship was assessed by using random amplification of polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (16S rDNA-RFLP). Relationship between both the markers was analyzed based on mantel test and a negative correlation was observed. The study concluded that PGPR traits appeared to be strain specific rather than specific to any phylogenetic group. The study also reported that 16S rDNA based profiling differentiated PGPR fluorescent Pseudomonas on the basis of location rather than biological trait. RAPD profiling could be useful to differentiate among the closely related isolates. The genetic and functional diversity of fluorescent pseudomonads, associated with the chickpea rhizosphere, has useful ecological role and potential utilization in sustainable agriculture.

  19. Multicenter Evaluation of Epidemiological Typing of Methicillin-Resistant Staphylococcus aureus Strains by Repetitive-Element PCR Analysis

    PubMed Central

    Deplano, Ariane; Schuermans, Annette; Van Eldere, Johan; Witte, Wolfgang; Meugnier, Hèléne; Etienne, Jerome; Grundmann, Hajo; Jonas, Daniel; Noordhoek, Gerda T.; Dijkstra, Jolanda; van Belkum, Alex; van Leeuwen, Willem; Tassios, Panayotis T.; Legakis, Nicholas J.; van der Zee, Anneke; Bergmans, Anneke; Blanc, Dominique S.; Tenover, Fred C.; Cookson, Barry C.; O'Neil, Gael; Struelens, Marc J.

    2000-01-01

    Rapid and efficient epidemiologic typing systems would be useful to monitor transmission of methicillin-resistant Staphylococcus aureus (MRSA) at both local and interregional levels. To evaluate the intralaboratory performance and interlaboratory reproducibility of three recently developed repeat-element PCR (rep-PCR) methods for the typing of MRSA, 50 MRSA strains characterized by pulsed-field gel electrophoresis (PFGE) (SmaI) analysis and epidemiological data were blindly typed by inter-IS256, 16S-23S ribosomal DNA (rDNA), and MP3 PCR in 12 laboratories in eight countries using standard reagents and protocols. Performance of typing was defined by reproducibility (R), discriminatory power (D), and agreement with PFGE analysis. Interlaboratory reproducibility of pattern and type classification was assessed visually and using gel analysis software. Each typing method showed a different performance level in each center. In the center performing best with each method, inter-IS256 PCR typing achieved R = 100% and D = 100%; 16S-23S rDNA PCR, R = 100% and D = 82%; and MP3 PCR, R = 80% and D = 83%. Concordance between rep-PCR type and PFGE type ranged by center: 70 to 90% for inter-IS256 PCR, 44 to 57% for 16S-23S rDNA PCR, and 53 to 54% for MP3 PCR analysis. In conclusion, the performance of inter-IS256 PCR typing was similar to that of PFGE analysis in some but not all centers, whereas other rep-PCR protocols showed lower discrimination and intralaboratory reproducibility. None of these assays, however, was sufficiently reproducible for interlaboratory exchange of data. PMID:11015358

  20. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis.

    PubMed

    Coelho, Marcia Reed Rodrigues; von der Weid, Irene; Zahner, Viviane; Seldin, Lucy

    2003-05-28

    Forty-two strains representing the eight recognized nitrogen-fixing Paenibacillus species and 12 non-identified strains were examined by restriction fragment length polymorphism (RFLP) analysis of part of 16S and 23S rRNA genes amplified by polymerase chain reaction (PCR). Eleven different 16S rDNA genotypes were obtained from the combined data of RFLP analysis with four endonucleases and they were in agreement with the established taxonomic classification. Only one group of unclassified strains (Group I) was assigned in a separate genotype, suggesting they belong to a new species. Using the 23S PCR-RFLP method only six genotypes were detected, showing that this method is less discriminative than the 16S PCR-RFLP. Using the multilocus enzyme electrophoresis (MLEE) assay, the 48 strains tested could be classified into 35 zymovars. The seven enzymatic loci tested were polymorphic and the different profiles obtained among strains allowed the grouping of strains into 10 clusters. The PCR-RFLP methods together with the MLEE assay provide a rapid tool for the characterization and the establishment of the taxonomic position of isolates belonging to this nitrogen-fixing group, which shows a great potentiality in promoting plant growth.

  1. PHYLOGENETIC AFFILIATION OF WATER DISTRIBUTION SYSTEM BACTERIAL ISOLATES USING 16S RDNA SEQUENCE ANALYSIS

    EPA Science Inventory

    In a previously described study, only 15% of the bacterial strains isolated from a water distribution system (WDS) grown on R2A agar were identifiable using fatty acid methyl esthers (FAME) profiling. The lack of success was attributed to the use of fatty acid databases of bacter...

  2. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  3. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  4. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.

    PubMed

    Tyx, Robert E; Stanfill, Stephen B; Keong, Lisa M; Rivera, Angel J; Satten, Glen A; Watson, Clifford H

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.

  5. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  6. PHYLOGENETIC AFFILIATION OF WATER DISTRIBUTION SYSTEM BACTERIAL ISOLATES USING 16S RDNA SEQUENCE ANALYSIS

    EPA Science Inventory

    In a previously described study, only 15% of the bacterial strains isolated from a water distribution system (WDS) grown on R2A agar were identifiable using fatty acid methyl esthers (FAME) profiling. The lack of success was attributed to the use of fatty acid databases of bacter...

  7. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    PubMed

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries.

  8. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning

    USDA-ARS?s Scientific Manuscript database

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fe...

  9. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach.

    PubMed

    Decuypere, Saskia; Meehan, Conor J; Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-02-01

    Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3-V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination.

  10. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    PubMed Central

    Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-01-01

    Background Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. PMID:26927306

  11. Multiplex-PCR and PCR-RFLP assays to monitor water quality against pathogenic bacteria.

    PubMed

    Abd-El-Haleem, Desouky; Kheiralla, Zeinab H; Zaki, Sahar; Rushdy, Abeer A; Abd-El-Rahiem, Walaa

    2003-12-01

    In this work we developed and optimized two molecular-based approaches to monitor rapidly, sensitively and specifically bacterial pathogens from three different genera, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp., directly in waters. To achieve this aim, firstly a multiplex-PCR assay (M-PCR) was optimized using a primer pair specific for each pathogen. Secondly, as a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed from the results that the developed M-PCR assay has significant impact on the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within a short time (5 h from sampling to obtain final results), therefore it represents a considerable advancement over other known more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.

  12. IM-TORNADO: a tool for comparison of 16S reads from paired-end libraries.

    PubMed

    Jeraldo, Patricio; Kalari, Krishna; Chen, Xianfeng; Bhavsar, Jaysheel; Mangalam, Ashutosh; White, Bryan; Nelson, Heidi; Kocher, Jean-Pierre; Chia, Nicholas

    2014-01-01

    16S rDNA hypervariable tag sequencing has become the de facto method for accessing microbial diversity. Illumina paired-end sequencing, which produces two separate reads for each DNA fragment, has become the platform of choice for this application. However, when the two reads do not overlap, existing computational pipelines analyze data from read separately and underutilize the information contained in the paired-end reads. We created a workflow known as Illinois Mayo Taxon Organization from RNA Dataset Operations (IM-TORNADO) for processing non-overlapping reads while retaining maximal information content. Using synthetic mock datasets, we show that the use of both reads produced answers with greater correlation to those from full length 16S rDNA when looking at taxonomy, phylogeny, and beta-diversity. IM-TORNADO is freely available at http://sourceforge.net/projects/imtornado and produces BIOM format output for cross compatibility with other pipelines such as QIIME, mothur, and phyloseq.

  13. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-07-01

    Tito Bustillo cave (Ribadesella, Spain) contains valuable Palaeolithic paintings, which date back 15 000-20 000 years. Since 1969, the cave has been open to the public. Rock wall surfaces, spelaeothems and soils are covered by apparent biofilms of phototrophic microorganisms, which develop under artificial lighting. In addition, rock surfaces present conspicuous bacterial growth in the form of round colonies of different colours and about 1-2 mm in diameter. Even the famous Paintings Panel shows some evident microbial growth. In the present study, bacterial communities on the paintings and on the rock surfaces near the paintings were analysed by culture-independent techniques, including polymerase chain reaction (PCR) amplification of bacterial 16S rRNA genes (16S rDNA), phylogenetic sequence analyses and genetic community fingerprinting by denaturing gradient gel electrophoresis (DGGE). DGGE fingerprints showed complex bacterial community patterns. Forty-one clones matching DGGE bands of the community fingerprints were sequenced, representing about 39% of DNA fragments in the DGGE patterns. Phylogenetic sequence analyses revealed a high number of phylogenetically novel 16S rDNA sequence types and a high diversity of putatively chemotrophic and heterotrophic bacteria. Sequences were phylogenetically most closely related to the Proteobacteria (20 clones), green non-sulphur bacteria (three clones), Planctomycetales order (one clone), Cytophaga-Flexibacter- Bacteroides division (one clone) and the Actinobacteria (four clones). Furthermore, we report the presence of members of the Acidobacterium division (12 clones) in a karstic hypogean environment. Members of this phylum have not so far been detected in these particular environments.

  14. [Phylogenetic characterization of endosymbionts of the hydrothermal vent mussel Bathymodiolus azoricus by analysis of the 16S rRNA, pmoL, and cbbA genes].

    PubMed

    Spiridonova, E M; Kuznetsov, B B; Pimenov, N V; Turova, T P

    2006-01-01

    In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine shellfish Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of Mytilidae thiotrophic symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.

  15. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns.

    PubMed

    Cook, Andrew E; Meyers, Paul R

    2003-11-01

    A rapid method for identifying filamentous actinomycete genera was developed based on 16S rRNA gene restriction fragment patterns. The patterns were generated by using specific restriction endonucleases to perform in silico digestions on the 16S rRNA gene sequences of all validly published filamentous actinomycete species. The method was applied to identifying actinomycete isolates from soil. Amplified 16S rDNA of soil actinomycetes was restricted with selected endonucleases and electrophoresed on agarose gels. The restriction fragment patterns of the unknown isolates were easily compared to the established patterns. Significantly, the genus Streptomyces could be differentiated from all other actinomycete genera by using only four restriction endonucleases, Sau3AI, AsnI, KpnI and SphI. This could be achieved in a time period of as little as a week, following PCR-template DNA isolation by a simple method. The identification method allowed unknown, non-Streptomyces soil isolates to be identified to a genus or small subgroup of genera. The genera in these subgroups could, in some cases, be distinguished by virtue of colony-morphology differences.

  16. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases

    PubMed Central

    Roth, Andreas; Reischl, Udo; Streubel, Anna; Naumann, Ludmila; Kroppenstedt, Reiner M.; Habicht, Marion; Fischer, Marga; Mauch, Harald

    2000-01-01

    A novel genus-specific PCR for mycobacteria with simple identification to the species level by restriction fragment length polymorphism (RFLP) was established using the 16S-23S ribosomal RNA gene (rDNA) spacer as a target. Panspecificity of primers was demonstrated on the genus level by testing 811 bacterial strains (122 species in 37 genera from 286 reference strains and 525 clinical isolates). All mycobacterial isolates (678 strains among 48 defined species and 5 indeterminate taxons) were amplified by the new primers. Among nonmycobacterial isolates, only Gordonia terrae was amplified. The RFLP scheme devised involves estimation of variable PCR product sizes together with HaeIII and CfoI restriction analysis. It yielded 58 HaeIII patterns, of which 49 (84%) were unique on the species level. Hence, HaeIII digestion together with CfoI results was sufficient for correct identification of 39 of 54 mycobacterial taxons and one of three or four of seven RFLP genotypes found in Mycobacterium intracellulare and Mycobacterium kansasii, respectively. Following a clearly laid out diagnostic algorithm, the remaining unidentified organisms fell into five clusters of closely related species (i.e., the Mycobacterium avium complex or Mycobacterium chelonae-Mycobacterium abscessus) that were successfully separated using additional enzymes (TaqI, MspI, DdeI, or AvaII). Thus, next to slowly growing mycobacteria, all rapidly growing species studied, including M. abscessus, M. chelonae, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium peregrinum, and Mycobacterium senegalense (with a very high 16S rDNA sequence similarity) were correctly identified. A high intraspecies sequence stability and the good discriminative power of patterns indicate that this method is very suitable for rapid and cost-effective identification of a wide variety of mycobacterial species without the need for sequencing. Phylogenetically, spacer sequence data stand in good agreement with 16S rDNA

  17. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  18. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  19. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  20. [Development of a universal primers PCR-coupled liquid bead array to detect biothreat bacteria].

    PubMed

    Wen, Hai-yan; Wang, Jing; Liu, Heng-chuan; Sun, Xiao-hong; Yang, Yu; Hu, Kong-xin; Shan, Lin-jun

    2009-10-01

    To develop a fast, high-throughput screening method with suspension array technique for simultaneous detection of biothreat bacteria. 16 S rDNA universal primers for Bacillus anthracis, Francisella tularensis, Yersinia pestis, Brucella spp.and Burkholderia pseudomallei were selected to amplify corresponding regions and the genus-specific or species-specific probes were designed. After amplification of chromosomal DNA by 16 S rDNA primers 341A and 519B, the PCR products were detected by suspension array technique. The sensitivity, specificity, reproducibility and detection power were also analyzed. After PCR amplification by 16 S rDNA primers and specific probe hybridization, the target microorganisms could be identified at genus level, cross reaction was recognized in the same genus. The detection sensitivity of the assay was 1.5 pg/microl (Burkholderia pseudomallei), 20 pg/microl (Brucella spp.), 7 pg/microl (Bacillus anthracis), 0.1 pg/microl (Francisella tularensis), and 1.1 pg/microl (Yersinia pestis), respectively. The coefficient of variation for 15 test of different probes was ranged from 5.18% to 17.88%, it showed good reproducibility. The assay could correctly identify Bacillus anthracis and Yersinia pestis strains in simulated white powder samples. The suspension array technique could be served as an opening screening method for biothreat bacteria rapid detection.

  1. 16S ribosomal RNA sequencing and molecular serotyping of Avibacterium paragallinarum isolated from Indian field conditions.

    PubMed

    Patil, Vihang Vithalrao; Mishra, Debendranath; Mane, Dilip Vithalrao

    2017-08-01

    This study was aimed at identifying Indian field isolates of Avibacterium paragallinarum on both molecular as well as serological levels that cause infectious coryza in chickens. Species-specific polymerase chain reaction (HPG-2 PCR), and 16S ribosomal RNA (rRNA) sequencing were employed for molecular identification. Whereas, multiplex PCR technique was used for serological identification of Indian field isolates of A. paragallinarum. All three field isolates were identified as A. paragallinarum using HPG-2 PCR. The species-specific PCR results were validated using 16S rRNA sequencing. The partial 16S rRNA sequences obtained from all three isolates showed 96-99% homology with the NCBI database reference strains of A. paragallinarum. The aligned partial sequences of 16S rRNA were submitted to GenBank, and accession numbers were obtained. Multiplex PCR-based molecular serotyping showed that there are three serotypes of field isolates of A. paragallinarum, namely, strain IND101 is serovar A, strain IND102 is serovar B, and strain IND103 is serovar C. HPG-2 PCR, 16S rRNA sequencing, and multiplex PCR are proved to be more accurate, sensitive, and reliable diagnostic tools for molecular and serological identification of A. paragallinarum field isolates. These diagnostic methods can substitute conventional cultural characterization and would be much valuable to formulate quick and correct prevention and control measures against this detrimental poultry pathogen.

  2. Review of 16S and ITS Direct Sequencing Results for Clinical Specimens Submitted to a Reference Laboratory

    PubMed Central

    Payne, Michael; Azana, Robert; Hoang, Linda M. N.

    2016-01-01

    We evaluated the performance of 16S and internal transcribed spacer (ITS) region amplification and sequencing of rDNA from clinical specimens, for the respective detection and identification of bacterial and fungal pathogens. Direct rDNA amplification of 16S and ITS targets from clinical samples was performed over a 4-year period and reviewed. All specimens were from sterile sites and submitted to a reference laboratory for evaluation. Results of 16S and ITS were compared to histopathology, Gram and/or calcofluor stain microscopy results. A total of 277 16S tests were performed, with 64 (23%) positive for the presence of bacterial DNA. Identification of an organism was more likely in microscopy positive 16S samples 14/21 (67%), compared to 35/175 (20%) of microscopy negative samples. A total of 110 ITS tests were performed, with 14 (13%) positive. The yield of microscopy positive ITS samples, 9/44 (21%), was higher than microscopy negative samples 3/50 (6%). Given these findings, 16S and ITS are valuable options for culture negative specimens from sterile sites, particularly in the setting of positive microscopy findings. Where microscopy results are negative, the limited sensitivity of 16S and ITS in detecting and identifying an infectious agent needs to be considered. PMID:27366168

  3. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  4. Nested-quantitative PCR approach with improved sensitivity for the detection of low titer levels of Candidatus Liberibacter asiaticus in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    Coy, M R; Hoffmann, M; Kingdom Gibbard, H N; Kuhns, E H; Pelz-Stelinski, K S; Stelinski, L L

    2014-07-01

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri, and the presumptive causal agent of citrus greening disease. The current method of detection for CLas within plant and insect samples is by a presence/absence qPCR assay using the CLas 16S rDNA gene target. Although qPCR is highly sensitive, low bacterial titers or suboptimal qPCR conditions can result in false-negatives. Using a nested qPCR assay, we determined the false-negative rate of the 16S presence/absence qPCR assay was greater than 50%. Studies to determine the performance parameters of the qPCR assays for CLas 16S and Wingless (Wg), the D. citri endogenous gene, using plasmid and psyllid DNA, revealed suboptimal and variable performance of the 16S assay in psyllid samples. Average efficiencies and sensitivity limits of the plasmid assays were 99.0% and 2.7 copies of template for Wg, respectively, and 98.5% and 2.2-22.1 copies for 16S, respectively. Variability in efficiency was significantly greater in psyllid samples for both gene targets compared to the corresponding plasmid assays, and efficiencies as low as 76% were obtained for 16S. A secondary structure analysis revealed the formation of two stem-loop structures that block the forward and probe binding sites in the 16S template, which could hinder amplification. In summary, our results suggest that suboptimal qPCR efficiency is not uncommon for the 16S presence/absence qPCR assay, which combined with lowCLas titers in some samples, could contribute significantly to the under-reporting of CLas infection in psyllid and plant samples.

  5. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp ( Marsupenaeus japonicus)

    NASA Astrophysics Data System (ADS)

    Liu, Huaide; Liu, Mei; Wang, Baojie; Jiang, Keyong; Jiang, Shan); Sun, Shujuan; Wang, Lei

    2010-07-01

    In this study, the intestinal microbiota of kuruma shrimp ( Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

  6. Seasonal shifts in population structure of Vibrio vulnificus in an estuarine environment as revealed by partial 16S ribosomal DNA sequencing.

    PubMed

    Lin, Meilan; Schwarz, John R

    2003-07-01

    Abstract The partial sequence (600 bp) containing the most variable region of Vibrio vulnificus 16S ribosomal DNA (rDNA) was determined for 208 randomly selected V. vulnificus strains isolated from Galveston Bay, TX, USA between June 2000 and June 2001. A comparative analysis of the determined partial 16S rDNA sequences revealed the existence of two different partial 16S rDNA sequences (type A and type B, 1.3% base substitutions) among the 208 V. vulnificus isolates. A higher proportion of 16S rDNA type A strains was isolated in June and July while a considerably higher proportion of type B strains was isolated in September. In addition, after no V. vulnificus strains were detected during the winter months (December-February), only type A strains were isolated during the following months (March-May). The results suggest that the relative abundance of type A and type B V. vulnificus strains in Galveston Bay varies with the season and that the differences between the two 16S rDNA types may affect the viability of these organisms in the natural environment.

  7. Development of a real-time PCR assay (SYBR Green I) for rapid identification and quantification of scyphomedusae Aurelia sp.1 planulae

    NASA Astrophysics Data System (ADS)

    Wang, Jianyan; Zhen, Yu; Mi, Tiezhu; Yu, Zhigang; Wang, Guoshan

    2015-07-01

    The complicated life cycle of Aurelia spp., comprising benthic asexually-reproducing polyps and sexually-reproducing medusae, makes it hard for researchers to identify and track them, especially for early stage individuals, such as planulae. To solve this problem, we developed a real-time PCR assay (SYBR Green I) to identify planulae in both cultured and natural seawater samples. Species-specific primers targeting Aurelia sp.1 mitochondrial 16S rDNA (mt 16S rDNA) regions were designed. Using a calibration curve constructed with plasmids containing the Aurelia sp.1 mt 16S rDNA fragment and a standard curve for planulae, the absolute number of mt 16S rDNA copies per planula was determined and from that the total number of planulae per sample was estimated. For the field samples, a 100-fold dilution of the sample DNA combined with a final concentration of 0.2 μg/μL BSA in the PCR reaction mixture was used to remove real-time PCR inhibitors. Samples collected in Jiaozhou Bay from July to September 2012 were subsequently analyzed using this assay. Peak Aurelia sp.1 planula abundance occurred in July 2012 at stations near Hongdao Island and Qingdao offshore; abundances were very low in August and September. The real-time PCR assay (SYBR Green I) developed here negates the need for traditional microscopic identification, which is laborious and time-consuming, and can detect and quantify jellyfish planulae in field plankton samples rapidly and specifically.

  8. Direct detection and differentiation of Legionella spp. and Legionella pneumophila in clinical specimens by dual-color real-time PCR and melting curve analysis.

    PubMed

    Reischl, Udo; Linde, Hans-Jörg; Lehn, Norbert; Landt, Olfert; Barratt, Kevin; Wellinghausen, Nele

    2002-10-01

    A dual-color LightCycler PCR assay targeting the 16S rDNA gene of Legionella spp. was established. By using two pairs of hybridization probes, Legionella spp. and Legionella pneumophila could be detected and differentiated simultaneously. With 26 culture-positive and 42 culture-negative respiratory specimens from patients with atypical pneumonia, 100% sensitivity and specificity was observed for L. pneumophila.

  9. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms.

    PubMed Central

    Czajka, J; Bsat, N; Piani, M; Russ, W; Sultana, K; Wiedmann, M; Whitaker, R; Batt, C A

    1993-01-01

    Differences in the 16S rRNA genes (16S rDNA) which can be used to discriminate Listeria monocytogenes from Listeria innocua have been detected. The 16S rDNA were amplified by polymerase chain reaction with a set of oligonucleotide primers which flank a 1.5-kb fragment. Sequence differences were observed in the V2 region of the 16S rDNA both between L. monocytogenes Scott A and L. innocua and between different L. monocytogenes serotypes. Although L. monocytogenes SLCC2371 had the same V2 region sequence as L. innocua, the two species were different within the V9 region at nucleotides 1259 and 1292, in agreement with previous studies (R.-F. Wang, W.-W. Cao, and M.G. Johnson, Appl. Environ. Microbiol. 57:3666-3670, 1991). Intraspecies discrimination of L. monocytogenes strains was achieved by using the patterns generated by random amplified polymorphic DNA primers. Although some distinction can be made within the L. monocytogenes species by their 16S rDNA sequence, a far greater discrimination within species could be made by generating random amplified polymorphic DNA patterns from chromosomal DNA. By using a number of 10-bp primers, unique patterns for each isolate which in all cases examined differentiate between various L. monocytogenes serotypes, even though they may have the same 16S rRNA sequences, could be generated. Images PMID:8439157

  10. [16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory].

    PubMed

    Matsumoto, Takehisa; Sugano, Mitsutoshi

    2013-12-01

    The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. For many years, sequencing of the 16S ribosomal RNA (rRNA) gene has served as an important tool for determining phylogenetic relationships between bacteria. The features of this molecular target that make it a useful phylogenetic tool also make it useful for bacterial detection and identification in the clinical laboratory. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, and can lead to the recognition of novel pathogens and noncultured bacteria. In clinical microbiology, molecular identification based on 16S rDNA sequencing is applied fundamentally to bacteria whose identification by means of other types of techniques is impossible or difficult. However, there are some cases in which 16S rRNA gene sequence analysis can not differentiate closely related bacteria such as Shigella spp. and Escherichia coli at the species level. Thus, it is important to understand the advantages and disadvantages of 16S rRNA gene sequence analysis.

  11. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

    PubMed

    Ward, B B; Martino, D P; Diaz, M C; Joye, S B

    2000-07-01

    Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.

  12. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis.

    PubMed

    Endo, Akihito; Okada, Sanae

    2005-03-01

    The presence of lactic acid bacteria (LAB) during shochu fermentation was monitored by PCR-denaturing gradient gel electrophoresis (DGGE) and by bacteriological culturing. No LAB were detected from fermented mashes by PCR-DGGE using a universal bacterial PCR primer set. However, PCR-DGGE using a new primer specific for the 16S rDNA of Lactococcus, Streptococcus, Tetragenococcus, Enterococcus, and Vagococcus and two primers specific for the 16S rDNA of Lactobacillus, Pediococcus, Leuconostoc, and Weissella revealed that Enterococcus faecium, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus nagelii, Lactobacillus plantarum, Lactococcus lactis, Leuconostoc citreum, Leuconostoc mesenteroides, and Weissella cibaria inhabited in shochu mashes. It was also found that the LAB community composition during shochu fermentation changed after the main ingredient and water were added during the fermentation process. Therefore, we confirmed that PCR-DGGE using all three primers specific for groups of LAB together was well suited to the study of the LAB diversity in shochu mashes. The results of DGGE profiles were similar to the results of bacteriological culturing. In conclusion, LAB are present during shochu fermentation but not dominant.

  13. Characterization of fecal microbiota from a Salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes.

    PubMed

    Patton, Toni G; Scupham, Alexandra J; Bearson, Shawn M D; Carlson, Steve A

    2009-05-12

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. The objective of the current work was to examine inter-individual diversity of cattle fecal microbiota and determine whether Salmonella shedding status correlated with community richness or evenness parameters. Using a ribosomal gene array-based approach, oligonucleotide fingerprinting of ribosomal genes (OFRG), we analyzed 1440 16S genes from 19 fecal samples obtained from a cattle herd with a history of salmonellosis. Identified bacteria belonged to the phyla Firmicutes (53%), Bacteroidetes (17%), and Proteobacteria (17%). Sequence analysis of 16S rDNA gene clones revealed that Spirochaetes and Verrucomicrobia were also present in the feces. The majority of Firmicutes present in the feces belonged to the order Clostridiales, which was verified via dot blot analysis. beta-Proteobacteria represented 1.5% of the bacterial community as determined by real-time PCR. Statistical analysis of the 16S libraries from the 19 animals indicated very high levels of species richness and evenness, such that individual libraries represented unique populations. Finally, this study did not identify species that prevented Salmonella colonization or resulted from Salmonella colonization.

  14. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  15. Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Yang, Guanpin; Wang, Hualei; Chen, Jixiang; Shi, Xianming; Zou, Guiwei; Wei, Qiwei; Sun, Xiuqin

    2006-04-01

    The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

  16. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  17. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis.

    PubMed

    Schuppler, M; Mertens, F; Schön, G; Göbel, U B

    1995-02-01

    The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

  18. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  19. Unsuitability of quantitative Bacteroidales 16S rRNA gene assays for discerning fecal contamination of drinking water.

    PubMed

    van der Wielen, Paul W J J; Medema, Gertjan

    2010-07-01

    Bacteroidales species were detected in (tap) water samples from treatment plants with three different PCR assays. 16S rRNA gene sequence analysis indicated that the sequences had an environmental rather than fecal origin. We conclude that assays for Bacteroidales 16S rRNA genes are not specific enough to discern fecal contamination of drinking water in the Netherlands.

  20. Nested PCR detection of Centipeda periodontii in primary endodontic infections.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2004-03-01

    In recent years, molecular genetic methodologies have provided significant additional knowledge about components of the microbiota associated with infections of endodontic origin. Following this research line, the purpose of the present study was to investigate the prevalence of Centipeda periodontii in primary endodontic infections using a species-specific nested PCR assay. Samples were collected from fifty teeth having carious lesions, necrotic pulps, and different forms of periradicular diseases. DNA extracted from the samples was initially amplified using universal 16S rDNA primers, and a second round of amplification used the first PCR products to detect a specific fragment of C. periodontii 16S rDNA. This species was detected in 3 (13%) of 23 asymptomatic cases, in 1 (14%) of 7 cases diagnosed as acute apical periodontitis, and in 3 (15%) of 20 pus samples aspirated from acute periradicular abscesses. There was no significant association between C. periodontii and the presence of clinical symptoms. Overall, C. periodontii was detected in 14% of the cases of endodontic infections. This is probably the hitherto first study to detect C. periodontii in primary endodontic infections. The specific role played by this bacterial species in infections of endodontic origin awaits further clarification.

  1. Detection of Ehrlichia canis and Anaplasma platys DNA using multiplex PCR.

    PubMed

    Rufino, Claudia Pinheiro; Moraes, Pablo Henrique Gonçalves; Reis, Thais; Campos, Ruan; Aguiar, Délia Cristina Figueira; McCulloch, John Anthony; Meneses, Andre Marcelo Conceição; Gonçalves, Evonnildo Costa

    2013-12-01

    We hereby propose a novel sensitive, specific, and cost-efficient method to detect Ehrlichia canis and Anaplasma platys DNA from canine whole blood samples by multiplex PCR. Blood samples from hemoparasited dogs attending the Veterinary Hospital at the Universidade Federal Rural da Amazônia-UFRA, Belém, Brazil, were collected in tubes containing EDTA. Amplification of E. canis and A. platys 16S rDNA by nested (n) PCR was successfully achieved by using primers specific to the Anaplasmataceae in the first round of PCR, followed by a second round of PCR using E. canis-specific primers in conjunction with A. platys-specific primers. The amplicons obtained were cloned and sequenced, yielding sequences of 478 and 473 bp (including primers) pertaining to regions of the 16S rDNA of E. canis and A. platys, respectively. The protocol we here propose may help to measure the prevalence of canine monocytic ehrlichiosis (CME) and canine cyclic thrompocytopenia, not only in northern Brazil, where there is no data available, but also elsewhere.

  2. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  3. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis.

    PubMed

    Jiang, Xiran; Shao, Ning; Jing, Wenwen; Tao, Shengce; Liu, Sixiu; Sui, Guodong

    2014-05-01

    Rapid identification of clinical pathogens is the initial and essential step for antimicrobial therapy. Herein, we successfully developed a microfluidic device which combines high-throughput continuous-flow PCR and DNA hybridization for the detection of various bacterial pathogens. Universal primers were designed based on the conserved regions of bacterial 16S ribosomal DNA (16S rDNA), and specific probes were designed from a variable region of 16S rDNA within the amplicon sequences. In the chip operation, after the continuous flow PCR was achieved in the first microfluidic chip, the product was directly introduced into a hybridization chip integrated with microarray containing the immobilized DNA probes. The target-probe hybridization was completed within 1h at 55 °C, and fluorescence signals were obtained as the readout. The presented device is simple, versatile and with less sample consumption compared with traditional instruments. It can perform high-throughput bacteria detections continuously in a single assay, which makes it a promising platform for clinical bacteria identifications.

  4. [Identification of key markers of normal and pathogenic microbiota determining health of periodontium by NGS-sequencing 16S-rDNA libraries of periodontal swabs].

    PubMed

    Zorina, O A; Petrukhina, N B; Basova, A A; Shibaeva, A V; Trubnikova, E V; Shevelev, A B

    2014-01-01

    By using NGS-sequencing libraries of DNA from periodontal swabs with primers specific to V6 region of 16S rDNA prevalence of bacterial genera and species in periodontal microbiota of patients with aggressive periodontitis and healthy donors was analyzed. Six genera of putative periodontal protectors and eight periodontal pathogens were identified with respect to aggressive (but not chronic) periodontitis. Statistically relevant over-colonization by general Porphyromonas, Treponema, Synergistes, Tannerella, Filifactor, Ruminococcus, Parvimonas and Mycoplasma was found to be associated with the condition. From these, only three genera Porphyromonas, Treponema and Tannerella are traditionally considered as periodontal pathogens. Statistically confidential over-colonization by genus Veillonella was found in healthy patients. This genus should be considered as a relevant marker of a healthy periodontium. Genera Streptococcus, Bergeyella, Granulicatella, Kingella and Corynebacterium may be considered as putative periodontal protectors. Comparison of data of NGS-sequencing and real-time PCR demonstrated a good agreement if different PCR efficiency using independent primer pairs is taken into account.

  5. 16S-ARDRA and MALDI-TOF mass spectrometry as tools for identification of Lactobacillus bacteria isolated from poultry.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2016-06-13

    The objective of our study is to evaluate the potential use of Amplified 16S Ribosomal DNA Restriction Analysis (16S-ARDRA) and MALDI-TOF mass spectrometry (MS) as methods for species identification of Lactobacillus strains in poultry. A total of 80 Lactobacillus strains isolated from the cloaca of chicken, geese and turkeys were identified to the species level by MALDI-TOF MS (on-plate extraction method) and 16S-ARDRA. The two techniques produced comparable classification results, some of which were additionally confirmed by sequencing of 16S rDNA. MALDI-TOF MS enabled rapid species identification but produced more than one reliable identification result for 16.25 % of examined strains (mainly of the species L. johnsonii). For 30 % of isolates intermediate log(scores) of 1.70-1.99 were obtained, indicating correct genus identification but only presumptive species identification. The 16S-ARDRA protocol was based on digestion of 16S rDNA with the restriction enzymes MseI, HinfI, MboI and AluI. This technique was able to distinguish 17 of the 19 Lactobacillus reference species tested and enabled identification of all 80 wild isolates. L. salivarius dominated among the 15 recognized species, followed by L. johnsonii and L. ingluviei. The MALDI-TOF MS and 16S-ARDRA assays are valuable tools for the identification of avian lactobacilli to the species level. MALDI-TOF MS is a fast, simple and cost-effective technique, and despite generating a high percentage of results with a log(score) <2.00, the on-plate extraction method is characterized by high-performance. For samples for which Biotyper produces more than one reliable result, MALDI-TOF MS must be used in combination with genotypic techniques to achieve unambiguous results. 16S-ARDRA is simple, repetitive method with high power of discrimination, whose sole limitation is its inability to discriminate between species with very high 16S rDNA sequence homology, such as L. casei and L. zeae. The assays can be used for

  6. 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles

    PubMed Central

    2014-01-01

    Background Sample storage conditions, extraction methods, PCR primers, and parameters are major factors that affect metagenomics analysis based on microbial 16S rRNA gene sequencing. Most published studies were limited to the comparison of only one or two types of these factors. Systematic multi-factor explorations are needed to evaluate the conditions that may impact validity of a microbiome analysis. This study was aimed to improve methodological options to facilitate the best technical approaches in the design of a microbiome study. Three readily available mock bacterial community materials and two commercial extraction techniques, Qiagen DNeasy and MO BIO PowerSoil DNA purification methods, were used to assess procedures for 16S ribosomal DNA amplification and pyrosequencing-based analysis. Primers were chosen for 16S rDNA quantitative PCR and amplification of region V3 to V1. Swabs spiked with mock bacterial community cells and clinical oropharyngeal swabs were incubated at respective temperatures of -80°C, -20°C, 4°C, and 37°C for 4 weeks, then extracted with the two methods, and subjected to pyrosequencing and taxonomic and statistical analyses to investigate microbiome profile stability. Results The bacterial compositions for the mock community DNA samples determined in this study were consistent with the projected levels and agreed with the literature. The quantitation accuracy of abundances for several genera was improved with changes made to the standard Human Microbiome Project (HMP) procedure. The data for the samples purified with DNeasy and PowerSoil methods were statistically distinct; however, both results were reproducible and in good agreement with each other. The temperature effect on storage stability was investigated by using mock community cells and showed that the microbial community profiles were altered with the increase in incubation temperature. However, this phenomenon was not detected when clinical oropharyngeal swabs were used in

  7. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  8. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

    PubMed

    Seligmann, Hervé

    2014-11-01

    Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.

  9. IM-TORNADO: A Tool for Comparison of 16S Reads from Paired-End Libraries

    PubMed Central

    Jeraldo, Patricio; Kalari, Krishna; Chen, Xianfeng; Bhavsar, Jaysheel; Mangalam, Ashutosh; White, Bryan; Ne