Science.gov

Sample records for 16s rdna pyrosequencing

  1. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing.

    PubMed

    Wolcott, Randall D; Hanson, John D; Rees, Eric J; Koenig, Lawrence D; Phillips, Caleb D; Wolcott, Richard A; Cox, Stephen B; White, Jennifer S

    2016-01-01

    The extent to which microorganisms impair wound healing is an ongoing controversy in the management of chronic wounds. Because the high diversity and extreme variability of the microbiota between individual chronic wounds lead to inconsistent findings in small cohort studies, evaluation of a large number of chronic wounds using identical sequencing and bioinformatics methods is necessary for clinicians to be able to select appropriate empiric therapies. In this study, we utilized 16S rDNA pyrosequencing to analyze the composition of the bacterial communities present in samples obtained from patients with chronic diabetic foot ulcers (N = 910), venous leg ulcers (N = 916), decubitus ulcers (N = 767), and nonhealing surgical wounds (N = 370). The wound samples contained a high proportion of Staphylococcus and Pseudomonas species in 63 and 25% of all wounds, respectively; however, a high prevalence of anaerobic bacteria and bacteria traditionally considered commensalistic was also observed. Our results suggest that neither patient demographics nor wound type influenced the bacterial composition of the chronic wound microbiome. Collectively, these findings indicate that empiric antibiotic selection need not be based on nor altered for wound type. Furthermore, the results provide a much clearer understanding of chronic wound microbiota in general; clinical application of this new knowledge over time may help in its translation to improved wound healing outcomes.

  2. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing.

    PubMed

    Armougom, F; Bittar, F; Stremler, N; Rolain, J-M; Robert, C; Dubus, J-C; Sarles, J; Raoult, D; La Scola, B

    2009-09-01

    Recent studies using 16S rRNA gene amplification followed by clonal Sanger sequencing in cystic fibrosis demonstrated that cultured microorganisms are only part of the infecting flora. The purpose of this paper was to compare pyrosequencing and clonal Sanger sequencing on sputum. The sputum of a patient with cystic fibrosis was analysed by culture, Sanger clone sequencing and pyrosequencing after 16S rRNA gene amplification. A total of 4,499 sequencing reads were obtained, which could be attributed to six consensus sequences, but the length of reads leads to fastidious data analysis. Compared to clonal Sanger sequencing and to cultivation results, pyrosequencing recovers greater species richness and gives a more reliable estimate of the relative abundance of bacterial species. The 16S pyrosequencing approach expands our knowledge of the microbial diversity of cystic fibrosis sputum. The current lack of phylogenetic resolution at the species level for the GS 20 sequencing reads will be overcome with the next generation of pyrosequencing apparatus.

  3. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s rDNA

    PubMed Central

    Oikonomou, Georgios; Machado, Vinicius Silva; Santisteban, Carlos; Schukken, Ynte Hein; Bicalho, Rodrigo Carvalho

    2012-01-01

    Dairy cow mastitis is an important disease in the dairy industry. Different microbial species have been identified as causative agents in mastitis, and are traditionally diagnosed by bacterial culture. The objective of this study was to use metagenomic pyrosequencing of bacterial 16S rRNA genes to investigate bacterial DNA diversity in milk samples of mastitic and healthy dairy cows and compare the results with those obtained by classical bacterial culture. One hundred and thirty-six milk samples were collected from cows showing signs of mastitis and used for microbiological culture. Additionally, 20 milk samples were collected from healthy quarters. Bacterial DNA was isolated from the same milk samples and the 16S rRNA genes were individually amplified and pyrosequenced. Discriminant analysis showed that the groups of samples that were most clearly different from the rest and thus easily discriminated were the normal milk samples from healthy cows and those characterised by culture as Trueperella pyogenes and Streptococcus spp. The mastitis pathogens identified by culture were generally among the most frequent organisms detected by pyrosequencing, and in some cases (Escherichia coli, Klebsiella spp. and Streptococcus uberis mastitis) the single most prevalent microorganism. Trueperella pyogenes sequences were the second most prevalent sequences in mastitis cases diagnosed as Trueperella pyogenes by culture, Streptococcus dysgalactiae sequences were the second most prevalent sequences in mastitis cases diagnosed as Streptococcus dysgalactiae by culture, and Staphyloccocus aureus sequences were the third most prevalent in mastitis cases diagnosed as Staphylococcus aureus by culture. In samples that were aerobic culture negative, pyrosequencing identified DNA of bacteria that are known to cause mastitis, DNA of bacteria that are known pathogens but have so far not been associated with mastitis, and DNA of bacteria that are currently not known to be pathogens. A

  4. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing.

    PubMed

    Min, Byeng R; Solaiman, Sandra; Shange, Raymon; Eun, Jong-Su

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  5. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    PubMed Central

    Min, Byeng R.; Solaiman, Sandra; Shange, Raymon

    2014-01-01

    Eighteen Kiko-cross meat goats (n = 6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB) to 46.5% (control) and 47.1% (15% PB). Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%), Methanosphaera (3.3, 2.3, and 3.4%), and Methanobacteriaceae (1.2, 0.6, and 0.7%) population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P = 0.05) with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats. PMID:24669219

  6. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth

    PubMed Central

    Oikonomou, Georgios; Teixeira, Andre Gustavo Vieira; Foditsch, Carla; Bicalho, Marcela Lucas; Machado, Vinicius Silva; Bicalho, Rodrigo Carvalho

    2013-01-01

    In this study, we use barcoded pyrosequencing of the 16S rRNA gene to characterize the fecal microbiota of neonatal calves and identify possible relationships of certain microbiota profiles with health and weight gain. Fecal samples were obtained weekly from 61 calves from birth until weaning (seventh week of the calves' life). Firmicutes was the most prevalent phylum, with a prevalence ranging from 63.84% to 81.90%, followed by Bacteroidetes (8.36% to 23.93%), Proteobacteria (3.72% to 9.75%), Fusobacteria (0.76% to 5.67%), and Actinobacteria (1.02% to 2.35%). Chao1 index gradually increased from the first to the seventh postnatal week. Chao1 index was lower during the third, fourth, and fifth week of life in calves that suffered from pneumonia and were treated with antibiotics. Diarrhea incidence during the first four weeks of the calves' life was also associated with a reduction of microbial diversity during the third week of life. Increased fecal microbial diversity after the second week of life was associated with higher weight gain. Using discriminant analysis we were able to show differences in the microbiota profiles between different weeks of life, between high and low weight gain groups of calves, and between calves affected and not affected with diarrhea during the first four weeks life. The prevalence of Faecalibacterium spp. in the first week of life was associated with weight gain and the incidence of diarrhea, with higher prevalence being associated with higher weight gain and less diarrhea. Representative sequences from Faecalibacterium spp. were closely affiliated to Faecalibacterium prausnitzii. Results presented here provide new information regarding the intestinal microbiota of neonatal calves and its association with health and growth. Fecal microbial diversity was associated with calf age, disease status and growth rates. Results suggesting a possible beneficial effect of Faecalibacterium spp. on health and growth are promising. PMID:23646192

  7. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

    PubMed Central

    Liu, Zongzhi; DeSantis, Todd Z.; Andersen, Gary L.; Knight, Rob

    2008-01-01

    The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517. PMID:18723574

  8. Mitochondrial 16S rDNA analysis of Tunisian androctonus species (Scorpions, Buthidae): phylogenetic approach.

    PubMed

    Ben Othmen, A; Said, K; Ben Alp, Z; Chatti, N; Ready, P D

    2006-01-01

    Tunisian Androctonus species, for long time discussed, were recognized on the basis of mitochondrial 16S rDNA sequences. Although the analysed nucleotide sequence is rather short (about 300 bp), the obtained phlogenetic trees revealed that A. amoreuxi and A. aeneas form two well-supported sister clades against A. australis haplotypes. Each specimen of the very rare species A. aeneas showed a specific haplotype, but together formed a well-defined clade. Some A. amoreuxi specimens highlighted unidirectional mitochondrial introgression from neighbouring A. australis population. Within A. australis, previously described, subspecies subdivision (A. a .hector and A. a. garzonii) was not supported.

  9. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses.

  10. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  11. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  12. 16S-23S rDNA internal transcribed spacer regions in four Proteus species.

    PubMed

    Cao, Boyang; Wang, Min; Liu, Lei; Zhou, Zhemin; Wen, Shaoping; Rozalski, Antoni; Wang, Lei

    2009-04-01

    Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.

  13. Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing.

    PubMed

    Barker, Christopher J; Gillett, Amber; Polkinghorne, Adam; Timms, Peter

    2013-12-27

    As a dietary source, the foliage of Eucalyptus spp. is low in available protein and carbohydrate while containing polyphenolic compounds that interfere with enzymatic digestion. To overcome this, the koala (Phascolarctos cinereus) has evolved a range of anatomical and physiological adaptations to assist with digestion and absorption of nutrients from this food source. Microbial fermentation of partially digested eucalyptus leaves is thought to be critical in this process, however, little is known about the composition and diversity of microorganisms that are associated with digestive health in this native species. In this study, we performed 16S rRNA gene pyrosequencing of caecum, colon and faecal pellet samples from two wild, free ranging, Queensland koalas. Our results reveal a highly complex and diverse ecosystem with considerable intra-individual variation. Although samples were dominated by sequences from the Bacteroidetes and Firmicutes phyla there was considerable variation at the genus level. This study is the first non-culture based microbiota analysis, using 454-amplicon pyrosequencing, and provides preliminary data to expand our understanding of the koala hindgut.

  14. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    PubMed

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  15. [PCR rDNA 16S used for the etiological diagnosis of blood culture negative endocarditis].

    PubMed

    Baty, G; Lanotte, P; Hocqueloux, L; Prazuck, T; Bret, L; Romano, M; Mereghetti, L

    2010-06-01

    We report the case of a 55 year-old man presenting with a double aortic and mitral endocarditis for which resected valve culture was repeatedly negative. Specific PCR made on valves because of highly positive blood tests for Bartonella henselae remained negative. A molecular approach was made with 16S rDNA PCR, followed by sequencing. Bartonella quintana was identified as the etiology of endocarditis. B. quintana, "fastidious" bacteria, even if hard to identify in a laboratory, is often reported as a blood culture negative endocarditis (BCNE) agent. Molecular biology methods have strongly improved the diagnosis of BCNE. We propose a review of the literature focusing on the interest of broad-spectrum PCR on valve for the etiological diagnosis of BCNE.

  16. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  17. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    PubMed

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  18. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  19. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  20. Identification of bacteria directly from positive blood culture samples by DNA pyrosequencing of the 16S rRNA gene.

    PubMed

    Motoshima, Maiko; Yanagihara, Katsunori; Morinaga, Yoshitomo; Matsuda, Junichi; Hasegawa, Hiroo; Kohno, Shigeru; Kamihira, Shimeru

    2012-11-01

    Rapid identification of the causative bacteria of sepsis in patients can contribute to the selection of appropriate antibiotics and improvement of patients' prognosis. Genotypic identification is an emerging technology that may provide an alternative method to, or complement, established phenotypic identification procedures. We evaluated a rapid protocol for bacterial identification based on PCR and pyrosequencing of the V1 and V3 regions of the 16S rRNA gene using DNA extracted directly from positive blood culture samples. One hundred and two positive blood culture bottles from 68 patients were randomly selected and the bacteria were identified by phenotyping and pyrosequencing. The results of pyrosequencing identification displayed 84.3 and 64.7 % concordance with the results of phenotypic identification at the genus and species levels, respectively. In the monomicrobial samples, the concordance between the results of pyrosequencing and phenotypic identification at the genus level was 87.0 %. Pyrosequencing identified one isolate in 60 % of polymicrobial samples, which were confirmed by culture analysis. Of the samples identified by pyrosequencing, 55.7 % showed consistent results in V1 and V3 targeted sequencing; other samples were identified based on the results of V1 (12.5 %) or V3 (31.8 %) sequencing alone. One isolate was erroneously identified by pyrosequencing due to high sequence similarity with another isolate. Pyrosequencing identified one isolate that was not detected by phenotypic identification. The process of pyrosequencing identification can be completed within ~4 h. The information provided by DNA-pyrosequencing for the identification of micro-organisms in positive blood culture bottles is accurate and could prove to be a rapid and useful tool in standard laboratory practice.

  1. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  2. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  3. Identification of bacteria recovered from animals using the 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing.

    PubMed

    Tewari, Deepanker; Cieply, Stephen; Livengood, Julia

    2011-11-01

    Bacterial identification using genetic sequencing is fast becoming a confirmatory tool for microbiologists. Its application in veterinary diagnostic laboratories is still growing. In addition to availability of Sanger sequencing, pyrosequencing has recently emerged as a unique method for short-read DNA sequencing for bacterial identifications. Its ease of use makes it possible to diagnose infections rapidly at a low cost even in smaller laboratories. In the current study, pyrosequencing was compared with Sanger sequencing for identification of the bacterial organisms. Fifty-four bacterial isolates spanning 23 different bacterial families encountered in veterinary diagnostic microbiology laboratories were sequenced using 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing. Pyrosequencing was able to identify 80% of isolates to the genus level, and 43% isolates to the species level. Sanger sequencing with approximately 500 bp performed better for both genus (100%) and species (87%) identification. Use of different sequence databases to identify bacteria isolated from animals showed relative importance of public databases compared to a validated commercial library. A time and limited cost comparison between pyrosequencing and genetic sequencing of 500 bp showed pyrosequencing was not only faster but also comparable in cost, making it a viable alternative for use in classifying bacteria isolated from animals.

  4. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  5. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  6. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.

  7. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  8. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities

    PubMed Central

    Hanshew, Alissa S.; Mason, Charles J.; Raffa, Kenneth F.; Currie, Cameron R.

    2014-01-01

    Chloroplast sequence contamination in 16S ribosomal RNA gene (16S) analyses can be particularly problematic when sampling microbial communities in plants and folivorous arthropods. We previously encountered high levels of plastid contamination in herbivorous insect samples when we used the predominant 454 pyrosequencing 16S methodologies described in the literature. 799F, a primer previously found to exclude chloroplast sequences, was modified to enhance its efficacy, and we describe, in detail, our methodology throughout amplicon pyrosequencing. Thirteen versions of 799F were assessed for the exclusion of chloroplast sequences from our samples. We found that a shift in the mismatch between 799F and chloroplast 16S resulted in significant reduction of chloroplast reads. Our results also indicate that amplifying sequences from environmental samples in a two-step PCR process, with the addition of the multiplex identifiers and 454 adapters in a second round of PCR, further improved primer specificity. Primers that included 3′ phosphorothioate bonds, which were designed to block primer degradation, did not amplify consistently across samples. The different forward primers do not appear to bias the bacterial communities detected. We provide a methodological framework for reducing chloroplast reads in high-throughput sequencing data sets that can be applied to a number of environmental samples and sequencing techniques. PMID:23968645

  9. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  10. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  11. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    PubMed

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology.

  12. Usefulness of 16S rDNA sequencing for the diagnosis of infective endocarditis caused by Corynebacterium diphtheriae.

    PubMed

    Pathipati, Padmaja; Menon, Thangam; Kumar, Naveen; Francis, Thara; Sekar, Prem; Cherian, Kotturathu Mammen

    2012-08-01

    We report a rare case of infective endocarditis caused by Corynebacterium diphtheriae in an 8-year-old boy, 2 years after a right ventricular outflow tract reconstruction with a bovine Contegra valved conduit. The patient recovered well after an RV-PA conduit enblock explantation and replacement with an aortic homograft with antibiotic treatment. All bacteriological cultures of excised tissue and blood were negative. The aetiological agent was identified as C. diphtheriae subsp. gravis by 16s rDNA sequencing.

  13. Comparison of 16S rDNA analysis and rep-PCR genomic fingerprinting for molecular identification of Yersinia pseudotuberculosis.

    PubMed

    Kim, Wonyong; Song, Mi-Ok; Song, Wonkeun; Kim, Ki-Jung; Chung, Sang-In; Choi, Chul-Soon; Park, Yong-Ha

    2003-01-01

    16S rDNA sequence analysis and repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting were evaluated on 11 type strains of the genus Yersinia and 17 recognized serotype strains of Y. pseudotuberculosis to investigate their genetic relatedness and to establish the value of techniques for the identification of Y. pseudotuberculosis. A phylogenetic tree constructed from 16S rDNA sequences showed that the type strains of Yersinia species formed distinct clusters with the exception of Y. pestis and Y. pseudotuberculosis. Moreover, Y. pestis NCTC 5923T was found to be closely related to Y. pseudotuberculosis serotypes 1b, 3, and 7. Dendrograms generated from REP-PCR, and ERIC-PCR data revealed that members of the genus Yersinia differed from each other with the degree of similarity 62% and 58%, respectively. However, the BOX-PCR results showed that Y. pestis 5923T clustered with the Y. pseudotuberculosis group with a degree of similarity 74%. According to these findings, 16S rDNA sequence analysis was unable to reliably discriminate Y. pseudotuberculosis from Y. pestis. However, REP-PCR and especially ERIC-PCR provided an effective means of differentiating between members of the taxa.

  14. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  15. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory.

  16. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  17. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  18. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    PubMed

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  19. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.

  20. Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences.

    PubMed

    Sasaki, Y; Yamamoto, K; Kojima, A; Tetsuka, Y; Norimatsu, M; Tamura, Y

    2000-12-01

    Clostridium chauvoei causes blackleg, which is difficult to distinguish from the causative clostridia of malignant edema. Therefore, a single-step PCR system was developed for specific detection of C. chauvoei DNA using primers derived from the 16S-23S rDNA spacer region and partial 23S rDNA sequences. The specificity of the single-step PCR system was demonstrated by testing 37 strains of clostridia and 3 strains of other genera. A 509 bp PCR product, which is a C. choauvoei-specific PCR product, could be amplified from all of the C. chauvoei strains tested, but not from the other strains. Moreover, this single-step PCR system specifically detected C. chauvoei DNA in samples of muscle from mice 24 hr after inoculation with 100 spores of C. chauvoei, and in clinical materials from a cow affected with blackleg. These results suggest that our single-step PCR system may be useful for direct detection of C. chauvoei in culture and in clinical materials from animals affected with blackleg.

  1. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  2. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K‐t; Fung, A M Y; Woo, G K S; Chan, K‐m; Que, T‐l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non‐duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  3. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  4. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy.

    PubMed

    Coolen, Marco J L; Talbot, Helen M; Abbas, Ben A; Ward, Christopher; Schouten, Stefan; Volkman, John K; Damsté, Jaap S Sinninghe

    2008-07-01

    Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in (13)C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake approximately 3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake.

  5. Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16S rDNA sequencing.

    PubMed

    Yilmaz, Fadime; Orman, Nazlı; Serim, Gamze; Kochan, Ceren; Ergene, Aysun; Icgen, Bulent

    2013-12-01

    Four Staphylococcus isolates having both multidrug- and multimetal-resistant ability were isolated from surface water. Further identification of the isolates was obtained through biochemical tests and 16S rDNA gene sequencing. One methicillin-resistant and two methicillin-sensitive isolates were determined as Staphylococcus aureus. The other isolate was identified as Staphylococcus warneri. The antibiotic and heavy metal resistance profiles of the Staphylococcus isolates were determined by using 26 antibiotics and 17 heavy metals. S. aureus isolates displayed resistance to most of the β-lactam antibiotics tested. All Staphylococcus isolates were resistant to heavy metals including silver, lithium, and barium. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  6. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  7. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Pajarillo, Edward Alain B.; Chae, Jong Pyo; Balolong, Marilen P.; Kim, Hyeun Bum; Seo, Kang-Seok; Kang, Dae-Kyung

    2015-01-01

    This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs. PMID:25656184

  8. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data.

  9. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons.

    PubMed

    Rodrigues, Viviane D; Torres, Tatiana T; Ottoboni, Laura M M

    2014-11-01

    Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.

  10. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis.

    PubMed

    Liu, Aicui; Wang, Chao; Liang, Zhijuan; Zhou, Zhi-Wei; Wang, Lin; Ma, Qiaoli; Wang, Guowei; Zhou, Shu-Feng; Wang, Zhenhai

    2015-01-01

    Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions.

  11. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in patients with ventilator-associated pneumonia.

    PubMed

    Yang, Xiao-Jun; Wang, Yan-Bo; Zhou, Zhi-Wei; Wang, Guo-Wei; Wang, Xiao-Hong; Liu, Qing-Fu; Zhou, Shu-Feng; Wang, Zhen-Hai

    2015-01-01

    Ventilator-associated pneumonia (VAP) is a life-threatening disease that is associated with high rates of morbidity and likely mortality, placing a heavy burden on an individual and society. Currently available diagnostic and therapeutic approaches for VAP treatment are limited, and the prognosis of VAP is poor. The present study aimed to reveal and discriminate the identification of the full spectrum of the pathogens in patients with VAP using high-throughput sequencing approach and analyze the species richness and complexity via alpha and beta diversity analysis. The bronchoalveolar lavage fluid samples were collected from 27 patients with VAP in intensive care unit. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 27 samples of VAP were sequenced using the 454 GS FLX system. A total of 103,856 pyrosequencing reads and 638 operational taxonomic units were obtained from these 27 samples. There were four dominant phyla, including Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. There were 90 different genera, of which 12 genera occurred in over ten different samples. The top five dominant genera were Streptococcus, Acinetobacter, Limnohabitans, Neisseria, and Corynebacterium, and the most widely distributed genera were Streptococcus, Limnohabitans, and Acinetobacter in these 27 samples. Of note, the mixed profile of causative pathogens was observed. Taken together, the results show that the high-throughput sequencing approach facilitates the characterization of the pathogens in bronchoalveolar lavage fluid samples and the determination of the profile for bacteria in the bronchoalveolar lavage fluid samples of the patients with VAP. This study can provide useful information of pathogens in VAP and assist clinicians to make rational and effective therapeutic decisions.

  12. [Sequence analysis of 16S rDNA gene of endosymbiont of Acanthamoeba sp. CB/S1 isolated from soil].

    PubMed

    Xuan, Ying-hua; Cui, Chun-quan; Zheng, Shan-zi

    2011-04-30

    The endosymbiont of Acanthamoeba sp. CB/SI was identified by orcein-carmine staining and 16S rDNA sequence analysis. The endosymbiont bacteria were rod-shaped and darkly stained, and irregularly localized within the cytoplasm. The length of the 16S rDNA was 1534 bp and its DNA sequence was closely related to those of Candidatus Amoebophilus asiaticus and Acanthamoeba sp. KA/E21 with 98% homology. Phylogenetic analysis showed that the endosymbiont of CB/SI, the endosymbiont of KA/E21, Candidatus Amoebophilus asiaticus, the endosymbiont of Ixodes scapularis, and the endosymbiont of Encarsia pergandiella constitute a monophyletic lineage in phylogenetic tree.

  13. Use of single-strand conformation polymorphism of amplified 16S rDNA for grouping of bacteria isolated from foods.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Tanaka, Yuichiro; Mori, Mayumi; Yokoi, Asami; Fujii, Tateo

    2008-04-01

    The grouping method for isolated strains from foods using single-strand conformation polymorphism (SSCP) after PCR amplification of a portion of 16S rDNA was developed. This method was able to group the strains from various food samples based on 16S rDNA sequence. As 97.8% of the isolated strains from various foods were grouped correctly, use of the PCR-SSCP method enables the prompt and labor-saving analysis of microbial population of food-derived bacterial strains. Advantages in speed and accuracy of bacterial population identification by the PCR-SSCP method have practical application for food suppliers and testing laboratories.

  14. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.

    PubMed Central

    Black, W C; Piesman, J

    1994-01-01

    Ticks are parasitiform mites that are obligate hematophagous ectoparasites of amphibians, reptiles, birds, and mammals. A phylogeny for tick families, subfamilies, and genera has been described based on morphological characters, life histories, and host associations. To test the existing phylogeny, we sequenced approximately 460 bp from the 3' end of the mitochondrial 16S rRNA gene (rDNA) in 36 hard- and soft-tick species; a mesostigmatid mite, Dermanyssus gallinae, was used as an outgroup. Phylogenies derived using distance, maximum-parsimony, or maximum-likelihood methods were congruent. The existing phylogeny was largely supported with four exceptions. In hard ticks (Ixodidae), members of Haemaphysalinae were monophyletic with the primitive Amblyomminae and members of Hyalomminae grouped within the Rhipicephalinae. In soft ticks (Argasidae), the derived phylogeny failed to support a monophyletic relationship among members of Ornithodorinae and supported placement of Argasinae as basal to the Ixodidae, suggesting that hard ticks may have originated from an Argas-like ancestor. Because most Argas species are obligate bird octoparasites, this result supports earlier suggestions that hard ticks did not evolve until the late Cretaceous. PMID:7937832

  15. Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study.

    PubMed

    Minard, Guillaume; Tran, Florence-Hélène; Dubost, Audrey; Tran-Van, Van; Mavingui, Patrick; Moro, Claire Valiente

    2014-01-01

    The Asian tiger mosquito Aedes (Stegomya) albopictus is an invasive species that has spread across the world in the last two decades, showing a great capacity to adapt to contrasting climates and environments. While demonstrated in many insects, the contribution of bacterial symbionts in Aedes ecology is a challenging aspect that needs to be investigated. Also some bacterial species have already been identified in Ae. albopictus using classical methods, but a more accurate survey of mosquito-associated bacterial diversity is needed to decipher the potential biological functions of bacterial symbionts in mediating or constraining insect adaptation. We surveyed the bacteria associated with field populations of Ae. albopictus from Madagascar by pyrosequencing 16S rRNA gene amplicons. Different aspects of amplicon preparation and sequencing depth were tested to optimize the breadth of bacterial diversity identified. The results revealed that all mosquitoes collected from different sites have a bacterial microbiota dominated by a single taxon, Wolbachia pipientis, which accounted for about 99% of all 92,615 sequences obtained. As Ae. albopictus is known to harbor two Wolbachia strains (wAlbA and wAlbB), a quantitative PCR was used to estimate the relative densities, (i.e., the bacteria-to-host gene ratios) of each strains in individual mosquitoes. Relative densities were between 6.25 × 10(0.01) and 5.47 × 10(0.1) for wAlbA and between 2.03 × 10(0.1) and 1.4 × 10(1) for wAlbB. Apart from Wolbachia, a total of 31 bacterial taxa were identified at the genus level using different method variations. Diversity index values were low and probably underestimated the true diversity due to the high abundance of Wolbachia sequences vastly outnumbering sequences from other taxa. Further studies should implement alternative strategies to specifically discard from analysis any sequences from Wolbachia, the dominant endosymbiotic bacterium in Ae. albopictus from this area.

  16. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  17. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  18. Validation of the 16S rDNA and COI DNA barcoding technique for rapid molecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae).

    PubMed

    Yang, Qianqian; Zhao, Shuo; Kucerová, Zuzana; Stejskal, Václav; Opit, George; Qin, Meng; Cao, Yang; Li, Fujun; Li, Zhihong

    2013-02-01

    Psocids are serious storage pests, and their control is hampered by the fact that different species respond differently to insecticides used for the control of stored-product insect pests. Additionally, psocids of genus Liposcelis that are commonly associated with stored-products are difficult to identify using morphological characteristics. The goal of this study was to validate molecular identification of stored-product psocids of genus Liposcelis based on 16S rDNA and cytochrome oxidase I (COI) DNA barcoding. Unidentified liposcelids (Liposcelis DK) imported from Denmark to China were compared with 14 population samples of seven common species (L. bostrychophila, L. brunnea, L. corrodens, L. decolor, L. entomophila, L. mendax, and L. paeta). The explored species (DK) liposcelids shared >98% sequence similarity for both the 16S rDNA and COI genes with the reference L. corrodens samples (98.32 and 98.94% for 16S rDNA and COI, respectively). A neighbor-joining tree revealed that the explored DK sample and the reference L. corrodens samples belong to the same clade. These molecular results were verified by morphological identification of DK specimens, facilitated by SEM microphotography. The DNA barcoding method and the neighbor-joining phylogenetic analyses indicated that both the 16S rDNA and COI genes were suitable for Liposcelis species identification. DNA barcoding has great potential for use in fast and accurate liposcelid identification.

  19. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores

    PubMed Central

    Atibalentja, N.; Noel, G. R.; Ciancio, A.

    2004-01-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 × 10⁶ endospores ml-1 were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis. PMID:19262793

  20. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities.

    PubMed

    Logares, Ramiro; Sunagawa, Shinichi; Salazar, Guillem; Cornejo-Castillo, Francisco M; Ferrera, Isabel; Sarmento, Hugo; Hingamp, Pascal; Ogata, Hiroyuki; de Vargas, Colomban; Lima-Mendez, Gipsi; Raes, Jeroen; Poulain, Julie; Jaillon, Olivier; Wincker, Patrick; Kandels-Lewis, Stefanie; Karsenti, Eric; Bork, Peer; Acinas, Silvia G

    2014-09-01

    Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.

  1. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  2. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library.

    PubMed

    Manichanh, Chaysavanh; Chapple, Charles E; Frangeul, Lionel; Gloux, Karine; Guigo, Roderic; Dore, Joel

    2008-09-01

    The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.

  3. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  4. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons

    PubMed Central

    Starke, Ingo C.; Vahjen, Wilfried; Pieper, Robert; Zentek, Jürgen

    2014-01-01

    In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns) and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r) were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2 × 105 sequences were used for analysis after processing for read length (150 bp), minimum sequence occurrence (5), and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis. PMID:25120931

  5. Species-level core oral bacteriome identified by 16S rRNA pyrosequencing in a healthy young Arab population

    PubMed Central

    Al-hebshi, Nezar Noor; Abdulhaq, Ahmed; Albarrag, Ahmed; Basode, Vinod Kumar; Chen, Tsute

    2016-01-01

    Background Reports on the composition of oral bacteriome in Arabs are lacking. In addition, the majority of previous studies on other ethnic groups have been limited by low-resolution taxonomic assignment of next-generation sequencing reads. Furthermore, there has been a conflict about the existence of a ‘core’ bacteriome. Objective The objective of this study was to characterize the healthy core oral bacteriome in a young Arab population at the species level. Methods Oral rinse DNA samples obtained from 12 stringently selected healthy young subjects of Arab origin were pyrosequenced (454's FLX chemistry) for the bacterial 16S V1–V3 hypervariable region at an average depth of 11,500 reads. High-quality, non-chimeric reads ≥380 bp were classified to the species level using the recently described, prioritized, multistage assignment algorithm. A core bacteriome was defined as taxa present in at least 11 samples. The Chao2, abundance-based coverage estimator (ACE), and Shannon indices were computed to assess species richness and diversity. Results Overall, 557 species-level taxa (211±42 per subject) were identified, representing 122 genera and 13 phyla. The core bacteriome comprised 55 species-level taxa belonging to 30 genera and 7 phyla, namely Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, Fusobacteria, Saccharibacteria, and SR1. The core species constituted between 67 and 87% of the individual bacteriomes. However, the abundances differed by up to three orders of magnitude among the study subjects. On average, Streptococcus mitis, Rothia mucilaginosa, Haemophilus parainfluenzae, Neisseria flavescence/subflava group, Prevotella melaninogenica, and Veillonella parvula group were the most abundant. Streptococcus sp. C300, a taxon never reported in the oral cavity, was identified as a core species. Species richness was estimated at 586 (Chao2) and 614 (ACE) species, whereas diversity (Shannon index) averaged at 3.99. Conclusions A species

  6. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  7. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  8. [Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI].

    PubMed

    Wang, Jian-Yan; Zhen, Yu; Wang, Guo-shan; Mi, Tie-Zhu; Yu, Zhi-gang

    2013-03-01

    Taking the moon jellyfish Aurelia sp. commonly found in our coastal sea areas as test object, its genome DNA was extracted, the partial sequences of mt-16S rDNA (650 bp) and mt-COI (709 bp) were PCR-amplified, and, after purification, cloning, and sequencing, the sequences obtained were BLASTn-analyzed. The sequences of greater difference with those of the other jellyfish were chosen, and eight specific primers for the mt-16S rDNA and mt-COI of Aurelia sp. were designed, respectively. The specificity test indicated that the primer AS3 for the mt-16S rDNA and the primer AC3 for the mt-COI were excellent in rapidly detecting the target jellyfish from Rhopilema esculentum, Nemopilema nomurai, Cyanea nozakii, Acromitus sp., and Aurelia sp., and thus, the techniques for the molecular identification and detection of moon jellyfish were preliminarily established, which could get rid of the limitations in classical morphological identification of Aurelia sp. , being able to find the Aurelia sp. in the samples more quickly and accurately.

  9. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons.

    PubMed

    Shepherd, Megan L; Swecker, William S; Jensen, Roderick V; Ponder, Monica A

    2012-01-01

    The diversity of the equine fecal bacterial community was evaluated using pyrosequencing of 16S rRNA gene amplicons. Fecal samples were obtained from horses fed cool-season grass hay. Fecal bacteria were characterized by amplifying the V4 region of bacterial 16S rRNA gene. Of 5898 mean unique sequences, a mean of 1510 operational taxonomic units were identified in the four fecal samples. Equine fecal bacterial richness was higher than that reported in humans, but lower than that reported in either cattle feces or soil. Bacterial classified sequences were assigned to 16 phyla, of which 10 were present in all samples. The largest number of reads belonged to Firmicutes (43.7% of total bacterial sequences), Verrucomicrobia (4.1%), Proteobacteria (3.8%), and Bacteroidetes (3.7%). The less abundant Actinobacteria, Cyanobacteria, and TM7 phyla presented here have not been previously described in the gut contents or feces of horses. Unclassified sequences represented 38.1% of total bacterial sequences; therefore, the equine fecal microbiome diversity is likely greater than that described. This is the first study to characterize the fecal bacterial community in horses by the use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the fecal microbiota of forage-fed horses.

  10. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi.

    PubMed

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Håvard

    2013-06-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ≈9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (≈3-5% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions.

  11. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    PubMed Central

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Håvard

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ≈9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (≈3–5% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions. PMID:23789083

  12. Phylogenetic relationships linking Duttaphrynus (Amphibia: Anura: Bufonidae) species based on 12S and 16S rDNA sequences.

    PubMed

    Pratihar, Suman; Bhattacharya, Manojit; Deuti, Kaushik

    2016-07-01

    Genus Duttaphrynus (Amphibia: Anura: Bufonidae) is endemic to southwestern and southern China and throughout southern Asia. Duttaphrynus phylogeny was also under debate for many years. 12S and 16S rDNAs help us to elucidate Duttaphrynus phylogeny.

  13. PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

    PubMed Central

    2012-01-01

    Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly

  14. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome

    PubMed Central

    Schulze-Schweifing, Kathrin; Banerjee, Avijit; Wade, William G.

    2014-01-01

    Culture-independent analyses have greatly expanded knowledge regarding the composition of complex bacterial communities including those associated with oral diseases. A consistent finding from such studies, however, has been the under-reporting of members of the phylum Actinobacteria. In this study, five pairs of broad range primers targeting 16S rRNA genes were used in clonal analysis of 6 samples collected from tooth lesions involving dentine in subjects with active caries. Samples were also subjected to cultural analysis and pyrosequencing by means of the 454 platform. A diverse bacterial community of 229 species-level taxa was revealed by culture and clonal analysis, dominated by representatives of the genera Prevotella, Lactobacillus, Selenomonas, and Streptococcus. The five most abundant species were: Lactobacillus gasseri, Prevotella denticola, Alloprevotella tannerae, S. mutans and Streptococcus sp. HOT 070, which together made up 31.6 % of the sequences. Two samples were dominated by lactobacilli, while the remaining samples had low numbers of lactobacilli but significantly higher numbers of Prevotella species. The different primer pairs produced broadly similar data but proportions of the phylum Bacteroidetes were significantly higher when primer 1387R was used. All of the primer sets underestimated the proportion of Actinobacteria compared to culture. Pyrosequencing analysis of the samples was performed to a depth of sequencing of 4293 sequences per sample which were identified to 264 species-level taxa, and resulted in significantly higher coverage estimates than the clonal analysis. Pyrosequencing, however, also underestimated the relative abundance of Actinobacteria compared to culture. PMID:25429361

  15. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  16. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.

    PubMed

    Ratti, Regiane Priscila; Delforno, Tiago Palladino; Okada, Dagoberto Yukio; Varesche, Maria Bernadete Amâncio

    2015-04-01

    In this study, the composition and diversity of the bacterial community in thermophilic H2-producing reactors fed with glucose were investigated using pyrosequencing. The H2-producing experiments in batch were conducted using 0.5 and 2.0 g l(-1) glucose at 550 °C. Under the two conditions, the H2 production and yield were 1.3 and 1.6 mol H2 mol glucose(-1), respectively. Acetic, butyric, iso-butyric, lactic and propionic acids were detected in the two reactors. The increase in substrate concentration favored a high H2 yield. In this reactor, a predominance of acetic and iso-butyric acids, 27.7% and 40%, were measured, respectively. By means of pyrosequencing, a total of 323 and 247 operational taxonomic units were obtained, with a predominance of the phylum Firmicutes (68.73-67.61%) for reactors with 0.5 and 2.0 g l(-1) glucose, respectively. Approximately 40.55% and 62.34% of sequences were affiliated with Thermoanaerobacterium and Thermohydrogenium, microorganisms that produce H2 under thermophilic conditions.

  17. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  18. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Ki, Jang-Seu; Qian, Pei-Yuan

    2008-02-01

    Bacteria, as the most abundant sediment organism, play a major role in the fate of pollutants. Therefore, many pollutant-related bacteria have been studied in harbor sediments, yet the entire bacterial profiles have not been reported. The bacterial diversity and community structures from sediments in Victoria Harbor (Hong Kong), including two polluted (VH and VHW) and two adjacent (open oceanic, TLC; estuary discharge affected, PC) sites, were characterized by analyses of four 16S rDNA clone libraries. Upon comparisons of RFLP patterns from 254 clones in the libraries, 178 unique phylotypes were retrieved. LIBSHUFF and Rarefaction analyses indicated that the sediment bacterial communities at the four sites showed high 16S rDNA richness and were significantly different from each other. Phylogenetic analysis of full-length 16S rDNA revealed 19 bacterial phyla in Victoria Harbor sediments. γ- and δ-proteobacteria, holophaga/acidobacteria, and planctomycetales were recorded in all the libraries. In addition, γ- and δ-proteobacteria were dominant at all sites (33.33-11.67%). Besides these two phyla, ɛ-proteobacteria, firmicutes, aminobacterium, holophaga/acidobacteria and bacteroidetes were judged to be major components of a given library since they constituted 10% or more of the total OTUs of the given library. The cyanobacteria, verrucomicrobia, β-proteobacteria, aminobacterium, chlorofiexi, and candidate division OP1, OP8 were detected in minor proportions in various libraries. A portion of the clones were only distantly related to sequences in the GenBank, suggesting bacteria in Victoria Harbor sediments were unique and diversified.

  19. The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA.

    PubMed

    Tsuboi, Shun; Amemiya, Takashi; Seto, Koji; Itoh, Kiminori; Rajendran, Narasimmalu

    2013-05-01

    Based on quantification and qualification of bacterial 16S rDNA, we verified the bacterial ecological characteristics of surface sediments of Lakes Shinji and Nakaumi, which are representative of coastal lagoons in Japan. Quantification and qualification of the 16S rDNA sequences was carried out using real time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis and non-metric multidimensional scaling, respectively. The results revealed that the copy number per gram of sediment ranged from 8.33 × 10(8) (Lake Nakaumi) to 1.69 × 10(11) (Honjo area), suggesting that bacterial carbon contributed only 0.05-9.64 % of the total carbon content in the samples. Compared with other aquatic environments, these results indicate that sedimentary bacteria are not likely to be important transporters of nutrients to higher trophic levels, or to act as carbon sinks in the lagoons. The bacterial compositions of Lake Shinji and Lake Nakaumi and the Honjo area were primarily influenced by sediment grain sizes and salinity, respectively. Statistical comparisons of the environmental properties suggested that the areas that were oxygen-abundant (Lake Shinji) and at a higher temperature (Honjo area) presented efficient organic matter degradation. The 16S rDNA copy number per gram of carbon and nitrogen showed the same tendency. Consequently, the primary roles of bacteria were degradation and preservation of organic materials, and this was affected by oxygen and temperature. These roles were supported by the bacterial diversity rather than the differences in the community compositions of the sedimentary bacteria in these coastal lagoons.

  20. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories.

  1. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  2. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR).

    PubMed

    Daxboeck, Florian; Dornbusch, Hans Jürgen; Krause, Robert; Assadian, Ojan; Wenisch, Christoph

    2004-01-01

    A small but significant proportion of blood cultures processed by the BACTEC 9000 series systems is signaled positive, while subsequent Gram's stain and culture on solid media yield no pathogens. In this study, 15 "false-positive" vials (7 aerobes, 8 anaerobes) from 15 patients were investigated for the presence of bacteria and fungi by eubacterial 16S rDNA and panfungal 18S rDNA amplification, respectively. All samples turned out negative by both methods. Most patients (7) had neutropenia, which does not support the theory that high leukocyte counts enhance the generation of false-positive results. In conclusion, the results of this study indicate that false-negative results generated by the BACTEC 9000 series are inherent to the automated detection and not due to the growth of fastidious organisms.

  3. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis.

    PubMed

    Delgado, Susana; Suárez, Adolfo; Mayo, Baltasar

    2006-04-01

    The aim of this work was to examine by culturing the changes in the total and indicator populations of the feces of two individuals over 1 year and to identify the dominant microbial components of a single sample of feces from each donor. Populations and dominant bacteria from a sample of colonic mucosa from a further individual were also assessed. The culture results were then compared to those obtained with the same samples by 16S rDNA cloning and sequencing. High interindividual variation in representative microbial populations of the gastrointestinal tract (GIT) was revealed by both the culture and the culture-independent techniques. Species belonging to Clostridium clusters (XIVa, IV, and XVIII) predominated in both the fecal and the mucosal samples (except in the mucose cultured isolates), members of Clostridium coccoides cluster XIVa being the most numerous microorganisms. Species of gamma-proteobacteria (Escherichia coli and Shigella spp.), bifidobacteria, and actinobacteria appeared in lower numbers than those of clostridia. From the mucosal cultured sample, only facultative anaerobes and bifidobacteria were recovered, suggesting destruction of the anaerobe population during processing. In accordance with this, the microbial diversity revealed by 16S rDNA sequence analysis was greater than that revealed by culturing. Despite large interindividual differences, distinct human communities may have group-associated GIT microbiota characteristics, such as the low number of Bacteroides seen in the subjects in this study.

  4. Molecular analysis of the 16S-23S rDNA internal spacer region (ISR) and truncated tRNA(Ala) gene segments in Campylobacter lari.

    PubMed

    Hayashi, K; Tazumi, A; Nakanishi, S; Nakajima, T; Matsubara, K; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-06-01

    Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.

  5. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  6. Microbial Diversity of Cold-Seep Sediments in Sagami Bay, Japan as Determined by 16S rDNA and Lipid Analyses

    NASA Astrophysics Data System (ADS)

    Fang, J.; Arakawa, S.; Kato, C.; Schouten, S.

    2006-12-01

    Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan were characterized by using 16S rDNA sequencing and lipid biomarker analysis. Characterization of 16S rDNA isolated from these samples suggested a predominance of bacterial phylotypes related to γ- (57-64%) and δ-subclasses (27-29%) of the Proteobacteria. The ɛ-subclass of the Proteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. There are significantly different archaeal phylotypes between Calyptogena sediment and microbial mat; the former contains only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones including the ANME-2a and ANME-2c archaeal groups. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggests the presence of sulfate-reducing and sulfur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether (GDGT) lipid analysis indicate the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold seep environments.

  7. Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China, based on COI and 16S rDNA gene sequences.

    PubMed

    Guo, Yadong; Cai, Jifeng; Chang, Yunfeng; Li, Xiang; Liu, Qinlai; Wang, Xinghua; Wang, Xiang; Zhong, Ming; Wen, Jifang; Wang, Jiangfeng

    2011-11-01

    Insects attracted to cadavers may provide important indications of the postmortem interval (PMI). However, use of the flesh flies (Diptera: Sarcophagidae) for PMI estimation is limited as the species are often not morphologically distinct, especially as immatures. In this study, 23 forensically important flesh flies were collected from 13 locations in 10 Chinese provinces. Then, a 278-bp segment of the cytochrome oxidase subunits one (COI) gene and a 289-bp segment of the 16S rDNA gene of all specimens were successfully sequenced. Phylogenetic analysis of the sequenced segments showed that all sarcophagid specimens were properly assigned into four species (Boerttcherisca peregrina [Robineau-Desvoidy, 1830], Helicophagella melanura [Meigen, 1826], Parasarcophaga albiceps [Meigen, 1826], and Parasarcophaga dux [Thompson, 1869]) with relatively strong supporting values, thus indicating that the COI and 16S rDNA regions are suitable for identification of sarcophagid species. The difference between intraspecific threshold and interspecific divergence confirmed the potential of the two regions for sarcophagid species identification.

  8. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

    PubMed

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  9. Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.

    PubMed

    Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S

    2013-07-15

    Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products.

  10. Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening.

    PubMed

    Singh, Shalini Thakur; Priya, Natarajan Gayatri; Kumar, Jitendra; Rana, Vipin Singh; Ellango, R; Joshi, Adita; Priyadarshini, Garima; Asokan, R; Rajagopal, Raman

    2012-03-01

    Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed no correlation between the host genetic group and the endosymbiont diversity. These results suggest that the bacterial endosymbiont diversity of B. tabaci is much larger and complex than previously perceived and probably N. Indian strains of the bacterial symbionts could have evolved from some other ancestor.

  11. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  12. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem.

    PubMed

    Rieu-Lesme, Françoise; Delbès, Céline; Sollelis, Lauriane

    2005-11-01

    Human feces collected from 10 healthy teenagers was analyzed for the presence of Crenarchaeota. After a first polymerase chain reaction (PCR) with Archaea-specific primers, a nested real-time PCR was performed using Crenarchaeota-specific primers. Real-time Crenarchaeotal PCR products detected from four subjects were cloned and the sequencing revealed that most of the partial 16S rRNA gene sequences were highly similar (> or = 97% homology) to sequences affiliated to the Sulfolobus group of the Crenarchaeota phylum. Our findings suggest for the first time that Crenarchaeota might be present in the microbiota of the human digestive ecosystem in which this phylum has never been found yet.

  13. Cloacal Microbiome Structure in a Long-Distance Migratory Bird Assessed Using Deep 16sRNA Pyrosequencing

    PubMed Central

    Kreisinger, Jakub; Čížková, Dagmar; Kropáčková, Lucie; Albrecht, Tomáš

    2015-01-01

    Effects of vertebrate-associated microbiota on physiology and health are of significant interest in current biological research. Most previous studies have focused on host-microbiota interactions in captive-bred mammalian models. These interactions and their outcomes are still relatively understudied, however, in wild populations and non-mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important proportion of the digestive tract microbiome in many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition did not differ between males and females. A significant correlation of CM within breeding pair members is consistent with the hypothesis that cloacal contact during within-pair copulation may promote transfer of bacterial assemblages. This effect on CM composition had a relatively low effect size, however, possibly due to the species’ high level of sexual promiscuity. PMID:26360776

  14. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing.

    PubMed

    Tortosa, Germán; Castellano-Hinojosa, Antonio; Correa-Galeote, David; Bedmar, Eulogio J

    2017-01-01

    Microorganisms are the main contributing factor responsible for organic matter degradation during composting. In this research, the 454-pyrosequencing of the 16S rRNA gene was used to elucidate evolution of bacterial diversity during mesophilic, thermophilic and maturation composting stages of the two-phase olive mill waste ("alperujo"), the main by-product of the Spanish olive oil industry. Two similar piles were performance composting AL with sheep manure as bulking agent. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the main phyla found in genomic libraries from each composting phase. Shannon and Chao1 biodiversity indices showed a clear difference between the mesophilic/thermophilic and maturation phases, which was mainly due to detection of new genera. PCA analysis of the relative number of sequences confirmed maturation affected bacterial population structure, and Pearson correlation coefficients between physicochemical composting parameters and relative number of genera sequences suggest that Planomicrobium and Ohtaekwangia could be considered as biomarkers for AL composting maturation.

  15. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.)

    PubMed Central

    2011-01-01

    The microbes in the gastrointestinal (GI) tract are of high importance for the health of the host. In this study, Roche 454 pyrosequencing was applied to a pooled set of different 16S rRNA gene amplicons obtained from GI content of common carp (Cyprinus carpio) to make an inventory of the diversity of the microbiota in the GI tract. Compared to other studies, our culture-independent investigation reveals an impressive diversity of the microbial flora of the carp GI tract. The major group of obtained sequences belonged to the phylum Fusobacteria. Bacteroidetes, Planctomycetes and Gammaproteobacteria were other well represented groups of micro-organisms. Verrucomicrobiae, Clostridia and Bacilli (the latter two belonging to the phylum Firmicutes) had fewer representatives among the analyzed sequences. Many of these bacteria might be of high physiological relevance for carp as these groups have been implicated in vitamin production, nitrogen cycling and (cellulose) fermentation. PMID:22093413

  16. Influence of DNA Extraction Method, 16S rRNA Targeted Hypervariable Regions, and Sample Origin on Microbial Diversity Detected by 454 Pyrosequencing in Marine Chemosynthetic Ecosystems

    PubMed Central

    Cruaud, Perrine; Vigneron, Adrien; Lucchetti-Miganeh, Céline; Ciron, Pierre Emmanuel; Godfroy, Anne

    2014-01-01

    Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities. PMID:24837380

  17. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    PubMed

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).

  18. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers.

    PubMed

    Singh, K M; Shah, T; Deshpande, S; Jakhesara, S J; Koringa, P G; Rank, D N; Joshi, C G

    2012-12-01

    The performance of birds appears to vary among the flock of growing broilers which may in part be due to variation in their gut microbiota. In the view of poultry industry, it is desirable to minimise such variation. We investigated metagenomic profile of fecal bacteria in birds with high and low feed conversion ratio (FCR) to identify microbial community linked to low and high FCR by employing high throughput pyrosequencing of 16S rRNA genomic targets. Therefore feeding trial was investigated in order to identify fecal bacteria consistently linked with better feed conversion ratio in bird performance as measured by body weight gain. High-throughput 16S rRNA gene based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. The fecal microbial community of birds was predominated by Proteobacteria (48.04 % in high FCR and 49.98 % in low FCR), Firmicutes (26.17 % in high FCR and 36.23 % in low FCR), Bacteroidetes (18.62 % in high FCR and 11.66 % in low FCR), as well as unclassified bacteria (15.77 % in high FCR and 14.29 % in low FCR), suggesting that a large portion of fecal microbiota is novel and could be involved in currently unknown functions. The most prevalent bacterial classes in high FCR and low FCR were Gammaproteobacteria, Clostridia and Bacteroidia. However in low FCR birds Phascolarctobacterium, Faecalibacterium and Clostridium predominated among the Clostridia. In FCR comparison of fecal bacteria, about 36 genera were differentially abundant between high and low FCR birds. This information could be used to formulate effective strategies to improve feed efficiency and feed formulation for optimal gut health.

  19. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences.

    PubMed

    Munson, M A; Baumann, P; Moran, N A

    1992-03-01

    A portion of the gene coding for the 16S ribosomal RNA from the endosymbionts of three species of mealybugs [Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus maritimus (Ehrhorn), and Dysmicoccus neobrevipes (Beardsley)] was cloned, sequenced, and compared to a homologous fragment from bacteria representative of aphid endosymbionts as well as major subdivisions of the Proteobacteria. Parsimony analysis of the sequences indicated that the mealybug endosymbionts are related and belong to the beta-subdivision; in contrast, previous studies showed that aphid endosymbionts are part of the gamma-subdivision. These findings suggest that the endosymbiosis of mealybugs is a consequence of a single bacterial infection and indicate that this ancestor was different from the ancestor involved in aphid endosymbiosis.

  20. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  1. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries.

    PubMed

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2015-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis.

  2. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  3. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation.

    PubMed

    Montassier, Emmanuel; Batard, Eric; Massart, Sébastien; Gastinne, Thomas; Carton, Thomas; Caillon, Jocelyne; Le Fresne, Sophie; Caroff, Nathalie; Hardouin, Jean Benoit; Moreau, Philippe; Potel, Gilles; Le Vacon, Françoise; de La Cochetière, Marie France

    2014-04-01

    Gastrointestinal disturbances are a side-effect frequently associated with haematological malignancies due to the intensive cytotoxic treatment given in connection with bone marrow transplantation (BMT). However, intestinal microbiota changes during chemotherapy remain poorly described, probably due to the use of culture-based and low-resolution molecular methods in previous studies. The objective of our study was to apply a next generation DNA sequencing technology to analyse chemotherapy-induced changes in faecal microbiota. We included eight patients with non-Hodgkin's lymphoma undergoing one course of BMT conditioning chemotherapy. We collected a prechemotherapy faecal sample, the day before chemotherapy was initiated, and a postchemotherapy sample, collected 1 week after the initiation of chemotherapy. Total DNA was extracted from faecal samples, denaturing high-performance liquid chromatography based on amplification of the V6 to V8 region of the 16S ribosomal RNA (rRNA) gene, and 454-pyrosequencing of the 16 S rRNA gene, using PCR primers targeting the V5 and V6 hypervariable 16S rRNA gene regions were performed. Raw sequence data were screened, trimmed, and filtered using the QIIME pipeline. We observed a steep reduction in alpha diversity and significant differences in the composition of the intestinal microbiota in response to chemotherapy. Chemotherapy was associated with a drastic drop in Faecalibacterium and accompanied by an increase of Escherichia. The chemotherapy-induced shift in the intestinal microbiota could induce severe side effects in immunocompromised cancer patients. Our study is a first step in identifying patients at risk for gastrointestinal disturbances and to promote strategies to prevent this drastic shift in intestinal microbiota.

  4. Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Sasaki, Y; Yamamoto, K; Amimoto, K; Kojima, A; Ogikubo, Y; Norimatsu, M; Ogata, H; Tamura, Y

    2001-12-01

    Amplification of the 16S-23S rDNA spacer region by polymerase chain reaction (PCR) was used for the rapid detection of Clostridium chauvoei and C septicum. To assess its specificity, PCR was performed with total DNA from 42 strains of clostridia and three strains of other genera. PCR products specific to C chauvoei or to C septicum were generated from homologous cultures only. Clostridium chauvoer-specific or C septicum-specific amplicons were also generated from tissues of cows experimentally infected with C chauvoei or C septicum and in DNA samples from cows clinically diagnosed as having blackleg or malignant oedema. These results suggest that a species-specific PCR may be useful for the rapid and direct detection of C chauvoei and C septicum in clinical specimens.

  5. Sequence-Based Identification of Mycobacterium Species Using the MicroSeq 500 16S rDNA Bacterial Identification System

    PubMed Central

    Patel, Jean Baldus; Leonard, Debra G. B.; Pan, Xai; Musser, James M.; Berman, Richard E.; Nachamkin, Irving

    2000-01-01

    We evaluated the MicroSeq 500 16S rDNA Bacterial Sequencing Kit (PE Applied Biosystems), a 500-bp sequence-based identification system, for its ability to identify clinical Mycobacterium isolates. The organism identity was determined by comparing the 16S rDNA sequence to the MicroSeq database, which consists primarily of type strain sequences. A total of 113 isolates (18 different species), previously recovered and identified by routine methods from two clinical laboratories, were analyzed by the MicroSeq method. Isolates with discordant results were analyzed by hsp65 gene sequence analysis and in some cases repeat phenotypic identification, AccuProbe rRNA hybridization (Gen-Probe, Inc., San Diego, Calif.), or high-performance liquid chromatography of mycolic acids. For 93 (82%) isolates, the MicroSeq identity was concordant with the previously reported identity. For 18 (16%) isolates, the original identification was discordant with the MicroSeq identification. Of the 18 discrepant isolates, 7 (six unique sequences) were originally misidentified by phenotypic analysis or the AccuProbe assay but were correctly identified by the MicroSeq assay. Of the 18 discrepant isolates, 11 (seven unique sequences) were unusual species that were difficult to identify by phenotypic methods and, in all but one case, by molecular methods. The remaining two isolates (2%) failed definitive phenotypic identification, but the MicroSeq assay was able to definitively identify one of these isolates. The MicroSeq identification system is an accurate and rapid method for the identification of Mycobacterium spp. PMID:10618095

  6. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  7. Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2003-10-01

    Phthiraptera (chewing and sucking lice) and Psocoptera (booklice and barklice) are closely related to each other and compose the monophyletic taxon Psocodea. However, there are two hypotheses regarding their phylogenetic relationship: (1) monophyletic Psocoptera is the sister group of Phthiraptera or (2) Psocoptera is paraphyletic, and Liposcelididae of Psocoptera is the sister group of Phthiraptera. Each hypothesis is supported morphologically and/or embryologically, and this problem has not yet been resolved. In the present study, the phylogenetic position of Phthiraptera was examined using mitochondrial 12S and 16S rDNA sequences, with three methods of phylogenetic analysis. Results of all analyses strongly supported the close relationship between Phthiraptera and Liposcelididae. Results of the present analyses also provided some insight into the elevated rate of evolution in mitochondrial DNA (mtDNA) in Phthiraptera. An elevated substitution rate of mtDNA appears to originate in the common ancestor of Phthiraptera and Liposcelididae, and directly corresponds to an increased G+C content. Therefore, the elevated substitution rate of mtDNA in Phthiraptera and Liposcelididae appears to be directional. A high diversity of 12S rDNA secondary structure was also observed in wide range of Phthiraptera and Liposcelididae, but these structures seem to have evolved independently in different clades.

  8. Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 (Acari: Ixodidae): hosts, distribution and 16S rDNA sequences.

    PubMed

    Guglielmone, A A; Estrada-Peña, A; Mangold, A J; Barros-Battesti, D M; Labruna, M B; Martins, J R; Venzal, J M; Arzua, M; Keirans, J E

    2003-05-01

    DNA sequences of Amblyomma aureolatum (Pallas, 1772) and Amblyomma ovale Koch, 1844 were obtained to determine genetic differences between these tick species. Collections of these species are discussed in relation to distribution and hosts. Seven ticks collections (four from Brazil, one from Argentina, one from Uruguay and one from USA) house a total of 1272 A. aureolatum (224 males, 251 females, 223 nymphs and 574 larvae) and 1164 A. ovale (535 males, 556 females, 66 nymphs and 7 larvae). The length of the sequenced mitochondrial 16S rRNA gene fragment for A. aureolatum was 370bp and for A. ovale was 373bp. The DNA sequence analysis showed a 13.1% difference between the two species. Apart from one male A. ovale found on a toad, all adult ticks were found on mammals. The majority of adult specimens of both tick species were removed from Carnivora (96.1 and 84.3% of A. aureolatum and A. ovale, respectively), especially from dogs (53.1% of A. aureolatum, and 46.4% of A. ovale). Collections on wild Canidae were higher for A. aureolatum (23.3%) than for A. ovale (7.1%). On the other hand, collections of A. ovale adults on wild Felidae were higher (18.3%) than findings of A. aureolatum (9.2%). The contribution of other mammalian orders as hosts for adults of A. aureolatum and A. ovale was irrelevant, with the exception of Perissodactyla because Tapiridae contributed with 13.0% of the total number of A. ovale adults. Adults of both tick species have been found occasionally on domestic hosts (apart of the dog) and humans. Most immature stages of A. aureolatum were found on Passeriformes birds, while rodents and carnivores were the most common hosts for nymphs and larvae of A. ovale. A. aureolatum has been found restricted to the Neotropical region, covering the eastern area of South America from Uruguay to Surinam, including northeastern Argentina, eastern Paraguay, southeastern Brazil and French Guiana. A. ovale showed a distribution that covers the Neotropical region

  9. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection

    PubMed Central

    Moore, M. S.; McCarroll, M. G.; McCann, C. D.; May, L.; Younes, N.

    2015-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  10. Speciation of Bacillus spp. in honey produced in Northern Ireland by employment of 16S rDNA PCR and automated DNA sequencing techniques.

    PubMed

    Tolba, Ola; Earle, J A Philip; Millar, B Cherie; Rooney, Paul J; Moore, John E

    2007-12-01

    Phenotypic speciation of foodborne Bacillus spp. remains problematic in terms of obtaining a reliable identification. In this study, we wished to identify several bacterial isolates from honey produced in Northern Ireland, and which belonged to the genus Bacillus, through employment of a molecular identification scheme based on PCR amplification of universal regions of the 16S rRNA operon in combination with direct automated sequencing of the resulting amplicons. Seven samples of honey and related materials (propolis) were examined microbiologically and were demonstrated to have total viable counts (TVC) ranging from <100 to 1700 colony-forming units/g. No yeasts or filamentous fungi were isolated from the honey materials. Several bacterial isolates were identified using this method, yielding two different genera (Paenibacillus and Bacillus), as well as four Bacillus species, namely Bacillus pumilus, B. licheniformis, B. subtilis and B. fusiformis, with B. pumilus the most frequently identified species present. When the use of molecular identification methods is justified, employment of partial 16S rDNA PCR and sequencing provides a valuable and reliable method of identification of Bacillus spp. from foodstuffs and negates associated problems of conventional laboratory and phenotypic identification.

  11. [16S rDNA diversity analysis of 30 Streptomycetes isolates displaying significant cytotoxic activity against B16 cell from near-shore sediments of Hainan Island].

    PubMed

    Yan, Li-Ping; Hong, Kui; Hu, Shen-cai; Liu, Li-hua

    2005-04-01

    A total of 354 isolates of actinomycetes, of which 76 were detected cytotoxic activity was isolated from near-shore marine samples collected at Wenchang mangrove, DanZhou harbor and YanPu harbor. Four isolation methods were employed, which are SDS pretreatment, phenol pretreatment, heating pretreatment and potassium dichromate selection culture, and media such as'Yeast extract-Malt extract (YE), Glucose-Asprine (GA), Starch-Casin (SC), Starch-KNO3 (Gause) were used. It was showed that heating pretreatment and potassium dichromate selection culture were more considerable methods for extensive isolation of actinomycetes. Medium YE and Gause showed best results in both the total number of actinomycetes and the number of active isolates against tumor cell B16. The genotypic diversity of 30 strains of Streptomycetes possessing strong cytotoxic activity against B16 cell (ID50 > or =200) was analyzed by 16S ARDRA, which resulted in 17 RFLP types, and indicated relatively rich genotypic diversity among these Streptomycetes. 16S rDNA sequence analysis of three strains, 050642, 060386 and 060524 (ID50 > or = 1200) further confirmed that they all belong to Streptomyces genus and strain 050642 was suggested a novel Streptomyces. Spp with the highest similarity of 95% to Streptomyces cattleya.

  12. Shifts of microbial community structure in soils of a photovoltaic plant observed using tag-encoded pyrosequencing of 16S rRNA.

    PubMed

    Wu, Shijin; Li, Yuan; Wang, Penghua; Zhong, Li; Qiu, Lequan; Chen, Jianmeng

    2016-04-01

    The environmental risk of fluoride and chloride pollution is pronounced in soils adjacent to solar photovoltaic sites. The elevated levels of fluoride and chloride in these soils have had significant impacts on the population size and overall biological activity of the soil microbial communities. The microbial community also plays an essential role in remediation of these soils. Questions remain as to how the fluoride and chloride contamination and subsequent remediation at these sites have impacted the population structure of the soil microbial communities. We analyzed the microbial communities in soils collected from close to a solar photovoltaic enterprise by pyrosequencing of the 16S rRNA tag. In addition, we used multivariate statistics to identity the relationships shared between sequence diversity and heterogeneity in the soil environment. The overall microbial communities were surprisingly diverse, harboring a wide variety of taxa and sharing significant correlations with different degrees of fluoride and chloride contamination. The contaminated soils harbored abundant bacteria that were probably resistant to the high acidity, high fluoride and chloride concentration, and high osmotic pressure environment. The dominant genera were Sphingomonas, Subgroup_6_norank, Clostridium sensu stricto, Nitrospira, Rhizomicrobium, and Acidithiobacillus. The results of this study provide new information regarding a previously uncharacterized ecosystem and show the value of high-throughput sequencing in the study of complex ecosystems.

  13. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo.

    PubMed

    Paul, S S; Deb, S M; Dey, A; Somvanshi, S P S; Singh, D; Rathore, R; Stiverson, J

    2015-10-01

    The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance.

  14. DNA fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using PCR-amplified 16S-23S rDNA intergenic transcribed spacer (ITS) regions.

    PubMed

    Dingman, Douglas W

    2009-01-01

    Failure to identify correctly the milky disease bacteria, Paenibacillus popilliae and Paenibacillus lentimorbus, has resulted in published research errors and commercial production problems. A DNA fingerprinting procedure, using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS) regions, has been shown to easily and accurately identify isolates of milky disease bacteria. Using 34 P. popilliae and 15 P. lentimorbus strains, PCR amplification of different ITS regions produced three DNA fingerprints. For P. lentimorbus phylogenic group 2 strains and for all P. popilliae strains tested, electrophoresis of amplified DNA produced a migratory pattern (i.e., ITS-PCR fingerprint) exhibiting three DNA bands. P. lentimorbus group 1 strains also produced this ITS-PCR fingerprint. However, the fingerprint was phase-shifted toward larger DNA sizes. Alignment of the respective P. popilliae and P. lentimorbus group 1 ITS DNA sequences showed extensive homology, except for a 108bp insert in all P. lentimorbus ITS regions. This insert occurred at the same location relative to the 23S rDNA and accounted for the phase-shift difference in P. lentimorbus group 1 DNA fingerprints. At present, there is no explanation for this 108bp insert. The third ITS-PCR fingerprint, produced by P. lentimorbus group 3 strains, exhibited approximately eight DNA bands. Comparison of the three fingerprints of milky disease bacteria to the ITS-PCR fingerprints of other Paenibacillus species demonstrated uniqueness. ITS-PCR fingerprinting successfully identified eight unknown isolates as milky disease bacteria. Therefore, this procedure can serve as a standard protocol to identify P. popilliae and P. lentimorbus.

  15. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene

    PubMed Central

    Estruch, G.; Collado, M. C.; Peñaranda, D. S.; Tomás Vidal, A.; Jover Cerdá, M.; Pérez Martínez, G.; Martinez-Llorens, S.

    2015-01-01

    Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to

  16. Identification and Phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing.

    PubMed

    Leu, J Y; McGovern-Traa, C P; Porter, A J; Harris, W J; Hamilton, W A

    1998-06-01

    Thermophilic sulfate-reducing bacteria (SRB) have been recognized as an important source of hydrogen sulfide (H2S) in hydrocarbon reservoirs and in production systems. Four thermophilic SRB enrichment cultures from three different oil field samples (sandstone core, drilling mud, and production water) were investigated using 16S rDNA sequence comparative analysis. In total, 15 different clones were identified. We found spore-forming, low G+C content, thermophilic, sulfate-reducing Desulfotomaculum-related sequences present in all oil field samples, and additionally a clone originating from sandstone core which was assigned to the mesophilic Desulfomicrobium group. Furthermore, three clones related to Gram-positive, non-sulfate-reducing Thermoanaerobacter species and four clones close to Clostridium thermocopriae were found in enrichment cultures from sandstone core and from production water, respectively. In addition, the deeply rooted lineage of two of the clones suggested previously undescribed, Gram-positive, low G+C content, thermophilic, obligately anaerobic bacteria present in production water. Such thermophilic, non-sulfate-reducing microorganisms may play an important ecological role alongside SRB in oil field environments.

  17. Characterization of Lactobacillus from Algerian Goat’S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties

    PubMed Central

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez- Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat’s milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  18. Direct identification of Mycobacterium abscessus through 16S rDNA sequence analysis and a citrate utilization test: A case report.

    PubMed

    Zou, Ziying; Liu, Yuan; Zhu, Bing; Zeng, Ping

    2014-07-01

    A growing number of nontuberculous mycobacteria infection cases, especially those caused by rapidly growing mycobacteria (RGM), have been reported in the past decade. Conventional methods for mycobacteria diagnosis are inefficient and easily lead to misdiagnosis. New detection methods, such as gene sequencing, have been reported but are not widely used. The aim of the present case report was to provide a quick and exact method of identifying Myobacterium abscessus (M. abscessus) infections. The particular case reported in this study initially manifested as hyperglycemia and papules in the right leg. Routine cultures for fungus were repeatedly negative. However, cultures of the purulent material under aerobic cultivation for five days yielded a rapidly growing, nontuberculous mycobacterium. A Ziehl-Neelsen staining of this mycobacterium revealed the presence of acid-fast bacilli that were finally identified as M. abscessus through 16S rDNA sequence analysis and a citrate utilization test. The current report may help other clinicians to make a quick and accurate diagnosis of RGM infection.

  19. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-12-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.

  20. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing.

    PubMed

    Jordan, Jeanne A; Durso, Mary Beth; Butchko, Allyson R; Jones, Judith G; Brozanski, Beverly S

    2006-07-01

    Although the rate of early onset sepsis in the near-term neonate is low (one to eight of 1,000 cases), the rate of mortality and morbidity is high. As a result, infants receive multiple, broad-spectrum antibiotic therapy, many for up to 7 days despite blood cultures showing no growth. Maternal intrapartum antibiotic prophylaxis and small blood volume collections from infants are cited as reasons for the lack of confidence in negative culture results. Incorporating an additional, more rapid test could facilitate a more timely diagnosis in these infants. To this end, a 16S rDNA polymerase chain reaction (PCR) assay was compared to blood culturing for use as a tool in evaluating early onset sepsis. Of 1,751 neonatal intensive care unit admissions that were screened, 1,233 near-term infants met inclusion criteria. Compared to culture, PCR demonstrated excellent analytical specificity (1,186 of 1,216, 97.5%) and negative predictive value (1,186 of 1,196, 99.2%); however, PCR failed to detect a significant number of culture-proven cases. These findings underscore the cautionary stance that should be taken at this time when considering the use of a molecular amplification test for diagnosing neonatal sepsis. The experience gained from this study illustrates the need for changes in sample collection and preparation techniques so as to improve analytical sensitivity of the assay.

  1. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    PubMed Central

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-01-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371

  2. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis

    PubMed Central

    2012-01-01

    Background The nutrition and health of horses is closely tied to their gastrointestinal microflora. Gut bacteria break down plant structural carbohydrates and produce volatile fatty acids, which are a major source of energy for horses. Bacterial communities are also essential for maintaining gut homeostasis and have been hypothesized to contribute to various diseases including laminitis. We performed pyrosequencing of 16S rRNA bacterial genes isolated from fecal material to characterize hindgut bacterial communities in healthy horses and those with chronic laminitis. Results Fecal samples were collected from 10 normal horses and 8 horses with chronic laminitis. Genomic DNA was extracted and the V4-V5 segment of the 16S rRNA gene was PCR amplified and sequenced on the 454 platform generating a mean of 2,425 reads per sample after quality trimming. The bacterial communities were dominated by Firmicutes (69.21% control, 56.72% laminitis) and Verrucomicrobia (18.13% control, 27.63% laminitis), followed by Bacteroidetes, Proteobacteria, and Spirochaetes. We observed more OTUs per individual in the laminitis group than the control group (419.6 and 355.2, respectively, P = 0.019) along with a difference in the abundance of two unassigned Clostridiales genera (P = 0.03 and P = 0.01). The most abundant bacteria were Streptococcus spp., Clostridium spp., and Treponema spp.; along with unassigned genera from Subdivision 5 of Verrucomicrobia, Ruminococcaceae, and Clostridiaceae, which together constituted ~ 80% of all OTUs. There was a high level of individual variation across all taxonomic ranks. Conclusions Our exploration of the equine fecal microflora revealed higher bacterial diversity in horses with chronic laminitis and identification of two Clostridiales genera that differed in abundance from control horses. There was large individual variation in bacterial communities that was not explained in our study. The core hindgut microflora was dominated by Streptococcus spp

  3. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing.

    PubMed

    Laothanachareon, Thanaporn; Kanchanasuta, Suwimon; Mhuanthong, Wuttichai; Phalakornkule, Chantaraporn; Pisutpaisal, Nipon; Champreda, Verawat

    2014-11-01

    Dark fermentation is an attractive process for generation of biohydrogen, which involves complex microbial processes on decomposition of organic wastes and subsequent conversion of metabolic intermediates to hydrogen. The microbes present in an upflow anaerobic sludge blanket (UASB) reactor for waste water treatment were tested for application in batch dark fermentation of food waste at varying ratios of feedstock to heat-treated microbial inoculum (F/M) of 1-8 (g TVS/g TVS). Biohydrogen yields between 0.39 and 2.68 mol H2/mol hexose were obtained, indicating that the yields were highly dependent on the starting F/M ratio. The highest H2 purity of 66% was obtained from the first 8 h of fermentation at the F/M ratio of 2, whereas the highest H2 production was obtained after 35 h of fermentation at the F/M ratio of 5. Tagged 16S rRNA gene pyrosequencing showed that the seed culture comprised largely of uncultured bacteria with various Proteobacteria, Bacteroidetes, and Firmicutes, while the starting food waste contained mainly lactic acid bacteria. Enrichment of Firmicutes, particularly Clostridia and lactic acid bacteria occurred within 8 h of the dark fermentation and the H2 producing microcosm at 35 h was dominated >80% by Clostridium spp. The major H2 producer was identified as a Clostridial strain related to Clostridium frigidicarnis. This work demonstrated the adaption of the microbial community during the dark fermentation of complex food waste and revealed the major roles of Clostridia in both substrate degradation and biohydrogen production.

  4. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai

  5. Identification of rhesus macaque genital microbiota by 16S pyrosequencing shows similarities to human bacterial vaginosis: implications for use as an animal model for HIV vaginal infection.

    PubMed

    Spear, Gregory T; Gilbert, Douglas; Sikaroodi, Masoumeh; Doyle, Lara; Green, Linda; Gillevet, Patrick M; Landay, Alan L; Veazey, Ronald S

    2010-02-01

    The composition of the lower genital tract microbiota in women is believed to affect the risk of sexually acquiring HIV. Since macaque genital microbiota could similarly impact vaginal infection with SIV we identified microbiota in 11 rhesus macaques using multitag pyrosequencing of the 16S rRNA gene. The microbiota was polymicrobial with a median of nine distinct bacterial taxa per macaque (range 3-16 taxa, each constituting 1% or more of the sequences). Taxa frequently found included Peptoniphilus, Sneathia, Porphyromonas, Mobiluncus, Atopobacter, Dialister, Thioreductor, Prevotella, and Streptococcus, many of which are also frequently found in women with bacterial vaginosis. Lactobacillus sequences (mostly L. johnsonii) were found in only four macaques but were not predominant in any (median of 0% of sequences, range 0-39%). All macaques were resampled 6 months after the first time point to determine the stability of the microbiota. The microbiota remained polymicrobial with a median of 10 taxa (range 6-18). Microbial patterns remained similar for six of the macaques, changed substantially in two, and had a mixed pattern in three. Significant sialidase enzyme activity, a marker of bacteria vaginosis in women, was detected in genital fluid from 9/11 and 8/11 macaques from the first and second time points, respectively. These results show that the macaque lower genital microbiota resembled a bacteria vaginosis-type microbiota in women and suggest that the microbiota of macaques in captivity promote rather than protect against vaginal infection with SIV. These results also suggest macaques could be used as an animal model to study some aspects of bacterial vaginosis.

  6. Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing

    PubMed Central

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the

  7. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  8. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas.

  9. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing.

    PubMed

    Hong, Pei-Ying; Wheeler, Emily; Cann, Isaac K O; Mackie, Roderick I

    2011-09-01

    Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species--the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E-9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E-14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356-896 OTUs) was >2-fold higher than in the MI (112-567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that

  10. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy.

    PubMed

    Oberreuter, Helene; Charzinski, Joachim; Scherer, Siegfried

    2002-05-01

    The intraspecific diversity of 31 strains of Brevibacterium linens, 27 strains of Corynebacterium glutamicum and 29 strains of Rhodococcus erythropolis was determined by partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. As a prerequisite for the analyses, 27 strains derived from culture collections which had carried invalid or wrong species designations were reclassified in accordance with polyphasic taxonomical data. FT-IR spectroscopy proved to be a rapid and reliable method for screening for similar isolates and for identifying these actinomycetes at the species level. Two main conclusions emerged from the analyses. (1) Comparison of intraspecific 16S rDNA similarities suggested that R. erythropolis strains have a very low diversity, B. linens displays high diversity and C. glutamicum occupies an intermediate position. (2) No correlation of FT-IR spectral similarity and 16S rDNA sequence similarity below the species level (i.e. between strains of one species) was observed. Therefore, diversification of 16S rDNA sequences and microevolutionary change of the cellular components detected by FT-IR spectroscopy appear to be de-coupled.

  11. Long-Term Stability of Mercury-Reducing Microbial Biofilm Communities Analyzed by 16S-23S rDNA Interspacer Region Polymorphism.

    PubMed

    Canstein, H.F.; Li, Y.; Felske, A.; Wagner-Döbler, I.

    2001-12-01

    The composition of mercury-reducing communities in two bioreactors retaining Hg(II) from chloralkali electrolysis wastewater for 485 days was analyzed based on effluent community DNA. Packed bed bioreactors with lava chips as carrier of the biofilm were inoculated with nine Hg(II)-resistant isolates that belonged to the alpha and gamma subdivisions of the proteobacteria. A rapid DNA-fingerprinting method was applied, using the intergenic spacer region (ISR) of the 16S-23S rDNA for analysis of the community composition. This allowed discrimination of the inoculum strains down to subspecies level. A merA specific PCR permitted the discrimination of the community's merA genes. During the 485 days of operation, the bioreactors were exposed to various physical stresses (mixing, gas bubbles, temperature increase up to 41 degrees C, increased flow velocity) and repeated high mercury inflow concentrations, resulting in reduced bioreactor performance and decreased culturable cell numbers in the reactor effluent. Nevertheless, the composition of the microbial community remained rather stable throughout the investigated time period. Of the inoculum strains, two could be detected throughout, whereas three were sometimes present with varying periods of nondetection. Two inoculum strains were only detected within the first month. Two strains of gamma-proteobacteria that were able to reduce ionic mercury invaded the bioreactor community. They did not outcompete established strains and had no negative effect on the Hg(II)-retention activity of the bioreactors. The community comprised diverse merA genes. The abundance of merA genes matched the abundance of their respective strains as confirmed by ISR community analysis. The continuously high selection pressure for mercury resistance maintained a stable and highly active mercury-reducing microbial community within the bioreactors.

  12. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  13. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  14. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.

  15. Preliminary evaluation of the use of soil bacterial 16S rDNA DNA markers in sediment fingerprinting in two small endorheic lagoons in southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Landa del Castillo, Blanca; Guzman, Gema; Petticrew, Ellen L.; Owens, Phillip N.

    2016-04-01

    127 % in Dulce and from 80 to 117 % in Zóñar. These rangesare within values reported for other soil chemical and physical properties, although the higher values are above the most commonly reported CVs which tend to be in the range from 30 to 80 %. Some groups, that are relatively stable to the normalization process, can provide enough information for solving a mixing model, although the specific groups vary between the two catchments as expected from previous studies. Overall, all the models for Zóñar tended to provide similar results with low contributions from source areas 1 and 2, and a much larger contribution from source area 3. For this solution, the mixing model was able to replicate the values of all the OTUs included in the model. The predicted values for Dulce were not as stable. The model with 10 OTUs were similar with a very low contribution from source area 2, a moderate contribution from source area 3 and a maximum contribution from source area 1. However, these values differed from those with only three OTUs, and they also differed between themselves when the normalized and non-normalized values were used. This solution also seemed to replicate the averaged measured values of most of the OTÚs included in the model. These preliminary results demonstrate the potential of soil bacterial 16S rDNA in sediment fingerprinting studies, although some questions need to be addressed in more detail, including: the temporal evolution of the distribution of the bacterial markers with soil depth; the implications of selective transport by runoff; and the relatively large variability of counts among samples from the same area. We are currently repeating the sampling in one of the subcatchments to provide some insight into these issues. Key words: sediment, fingerprinting, soil, microbial, DNA, lagoon References Joe-Strack, J.A., Petticrew, E.L. 2012. Use of LH-PCR as a DNA fingerprint technique to trace sediment-associated microbial communities from various land

  16. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing.

    PubMed

    Fang, Ruo-si; Dong, Ya-chen; Chen, Feng; Chen, Qi-he

    2015-10-01

    Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry.

  17. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing.

    PubMed

    Zheng, Longyu; Crippen, Tawni L; Singh, Baneshwar; Tarone, Aaron M; Dowd, Scot; Yu, Ziniu; Wood, Thomas K; Tomberlin, Jeffery K

    2013-05-01

    Sustainable methods for managing waste associated with people and animals have been proposed in the past. Black soldier fly, Hermetia illucens (L.), larvae represent one of the more promising methods. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. Prepupae can be used as feedstuff for livestock. However, it is not known if such a method results in the proliferation of potential pathogens. Although some bacterial species have been cultured and identified from black soldier fly, a true appreciation of fly associated bacterial diversity is not known. Such information is needed to understand pathogen colonization on decomposing animal and plant waste in the presence of black soldier fly larvae as well as develop research strategies for maximizing the use of this fly to reduce waste without risking environmental harm. Using 454 sequencing, we surveyed bacterial diversity associated with successive life stages of the black soldier fly reared on plant material. Bacteria diversity classified (99.8%) across all life stages spanned six bacterial phyla with > or = 80% bootstrap support. Bacteroidetes and Proteobacteria were the most dominant phyla associated with the black soldier fly accounting for two-thirds of the fauna identified. Many of these bacteria would go undetected because of their inability to be cultured.

  18. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black soldier fly (BSF), Hermetia illucens (L.), larvae represent a sustainable method for reducing animal and plant wastes. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. The prepupae can be self-harvested and used as feedstuff for livestock and poultry. While som...

  19. Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes.

    PubMed

    Sánchez, Olga; Ferrera, Isabel; González, Jose M; Mas, Jordi

    2013-07-01

    The bacterial community composition of activated sludge from a wastewater treatment plant (Almería, Spain) with the particularity of using seawater was investigated by applying 454-pyrosequencing. The results showed that Deinococcus-Thermus, Proteobacteria, Chloroflexi and Bacteroidetes were the most abundant retrieved sequences, while other groups, such as Actinobacteria, Chlorobi, Deferribacteres, Firmicutes, Planctomycetes, Spirochaetes and Verrumicrobia were reported at lower proportions. Rarefaction analysis showed that very likely the diversity is higher than what could be described despite most of the unknown microorganisms probably correspond to rare diversity. Furthermore, the majority of taxa could not be classified at the genus level and likely represent novel members of these groups. Additionally, the nitrifiers in the sludge were characterized by pyrosequencing the amoA gene. In contrast, the nitrifying bacterial community, dominated by the genera Nitrosomonas, showed a low diversity and rarefaction curves exhibited saturation. These results suggest that only a few populations of low abundant but specialized bacteria are responsible for removal of ammonia in these saline wastewater systems.

  20. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the current study was to examine the effect of pasteurization of waste milk used to feed dairy calves on the bacterial diversity of their lower gut. Using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), fecal samples from dairy calves aging from 1 week to 6 mon...

  1. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae).

    PubMed

    Guernaoui, S; Garcia, D; Gazanion, E; Ouhdouch, Y; Boumezzough, A; Pesson, B; Fontenille, D; Sereno, D

    2011-03-01

    In this study, we tested the capacity of Temperature Gradient Gel Electrophoresis (TGGE)-based fingerprinting of 16S rDNA PCR fragments to assess bacterial composition in a single isolated sand fly gut. Bacterial content was studied in different life stages of a laboratory-reared colony of Phlebotomus duboscqi and in a wild-caught Phlebotomus papatasi population. Our study demonstrates that a major reorganization in the gut bacterial community occurs during metamorphosis of sand flies. Chloroflexi spp. was dominant in the guts of pre-imaginal stages, although Microbacterium spp. and another as yet unidentified bacteria were detected in the gut of the adult specimen. Interestingly, Microbacterium spp. was also found in all the adult guts of both species. We demonstrate that the analysis of bacterial diversity in an individualized sand fly gut is possible with fingerprinting of 16S rDNA. The use of such methodology, in conjunction with other culture-based methods, will be of great help in investigating the behavior of the Leishmania-bacterial community in an ecological context.

  2. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children.

    PubMed

    Rosey, Anne-Laure; Abachin, Eric; Quesnes, Gilles; Cadilhac, Céline; Pejin, Zagorka; Glorion, Christophe; Berche, Patrick; Ferroni, Agnès

    2007-01-01

    The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.

  3. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    PubMed

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-03-31

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments.

  4. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  5. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes.

    PubMed

    Moreira, David; Rodríguez-Valera, Francisco; López-García, Purificación

    2004-09-01

    We have sequenced and analysed a 39.5 kbp genome fragment of a marine Group II euryarchaeote identified in a metagenomic library of 500 m deep plankton at the Antarctic Polar Front. The clone contains a 16S rRNA gene that is separated from the 23S rRNA gene in the genome. This appears to be a trait shared by Thermoplasmatales and Group II euryarchaeota. This genome fragment exhibits a compact organization, including a few overlapping genes in the canonical spectinomycin-like (spc) operon for ribosomal proteins that is immediately upstream the 16S rDNA. Most open reading frames (ORFs) encoded proteins involved in housekeeping processes and, as expected, exhibited a phylogenetic distribution congruent with that of the 16S rRNA. A considerable number of proteins with predicted transmembrane helices was identified. Among those, two proteins encoded by genes likely forming an operon appear to be part of a membrane terminal electron transport chain. One of these proteins has an unusual domain arrangement including ferredoxin, flavodoxin and one succinate dehydrogenase/fumarate reductase subunit. These proteins probably constitute a new succinate dehydrogenase-like oxidoreductase involved in what could be a novel pathway for energy metabolism in Group II euryarchaeota.

  6. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes.

    PubMed

    Kirchman, David L; Cottrell, Matthew T; Lovejoy, Connie

    2010-05-01

    Bacterial communities in the surface layer of the oceans consist of a few abundant phylotypes and many rare ones, most with unknown ecological functions and unclear roles in biogeochemical processes. To test hypotheses about relationships between abundant and rare phylotypes, we examined bacterial communities in the western Arctic Ocean using pyrosequence data of the V6 region of the 16S rRNA gene. Samples were collected from various locations in the Chukchi Sea, the Beaufort Sea and Franklin Bay in summer and winter. We found that bacterial communities differed between summer and winter at a few locations, but overall there was no significant difference between the two seasons in spite of large differences in biogeochemical properties. The sequence data suggested that abundant phylotypes remained abundant while rare phylotypes remained rare between the two seasons and among the Arctic regions examined here, arguing against the 'seed bank' hypothesis. Phylotype richness was calculated for various bacterial groups defined by sequence similarity or by phylogeny (phyla and proteobacterial classes). Abundant bacterial groups had higher within-group diversity than rare groups, suggesting that the ecological success of a bacterial lineage depends on diversity rather than on the dominance of a few phylotypes. In these Arctic waters, in spite of dramatic variation in several biogeochemical properties, bacterial community structure was remarkably stable over time and among regions, and any variation was due to the abundant phylotypes rather than rare ones.

  7. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing.

    PubMed

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers.

  8. [Numerical taxonomy and 16S rDNA PCR-rFLP analysis of rhizobial strains isolated from root nodules of cowpea and mung bean grown in different regions of China].

    PubMed

    Zhang, Yong-fa; Wang, Feng-qin; Chen, Wen-xin

    2006-12-01

    Seventy-nine rhizobial strains, isolated from root nodules of cowpea ( Vigna unguiculata ) and mung bean (Vigna radiata ) grown in different regions of China, were studied by a fuzzy cluster analysis of 128 phenotypic characteristics. The phenotypic characterization of these strains showed that most of these strains had high stress resistance. For instance, most of them could grow from pH 5.0 to pH 11.0. Over 85% of these strains could grow well on YMA plate at 37 degrees C and several of them even could grow after a 45 minutes hot shock at 60 degrees C. Some strains had a tolerance to high concentration of Bacitracin (400 microg/mL) . The result of the fuzzy cluster analysis showed that all the strains were clustered into 2 groups, slow growers and fast growers, at the similarity level of 63.5% . At the similarity level of 79 %, there were 7 subgroups further separated. Based upon the result of the numerical taxonomy, these strains together with 22 reference stains were analyzed by the 16S rDNA PCR-RFLP. Thirty-four genotype profiles were obtained from the fingerprinting of the 16S rDNA PCR-RFLP. These strains were analyzed by GelCompare II software and clustered into 7 groups at the similarity level of 91% , which were consonant with the 7 subgroups clustered at the similarity level of 79% in numerical taxonomy. The results of numerical taxonomy and 16S rDNA PCR-RFLP analysis showed that all of the seventy-nine rhizobial Bradyrhizobium, strains isolated from root nodules of cowpea and mung bean were clustered into four genera: Agrobacterium, Rhizobium and Sinorhizobium, respectively. An individual clade without any reference stains, which was composed of CCBAU 45071, CCBAU 45111-1 and CCBAU 45248, might be a new species of Rhizobium. Overall, the study results demonstrated a high phenotypic and phylogenetic diversity of rhizobial strains nodulating cowpea and mung bean grown in different geographic regions of China.

  9. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences.

    PubMed

    Mergaert, J; Verhelst, A; Cnockaert, M C; Tan, T L; Swings, J

    2001-04-01

    One hundred and seventy three bacterial strains, isolated previously after enrichment under oligotrophic, psychrophylic conditions from Arctic (98 strains) and Antarctic seawater (75 strains), were characterized by gas-liquid chromatographic analysis of their fatty acid compositions. By numerical analysis, 8 clusters, containing 2 to 59 strains, could be delineated, and 8 strains formed separate branches. Five clusters contained strains from both poles, two minor clusters were confined to Arctic isolates, and one cluster consisted of Antarctic isolates only. The 16S rRNA genes from 23 strains, representing the different fatty acid profile clusters and including the unclustered strains, were sequenced. The sequences grouped with the alpha and gamma Proteobacteria, the high percent G+C gram positives, and the Cytophaga-Flavobacterium-Bacteroides branch. The sequences of strains from 4 clusters and of 7 unclustered strains were closely related (sequence similarities above 97%) to reference sequences of Sulfitobacter mediterraneus, Halomonas variabilis, Alteromonas macleodii, Pseudoalteromonas species, Shewanella frigidimarina, and Rhodococcus fascians. Strains from the other four clusters and an unclustered strain showed sequence similarities below 97% with nearest named neighbours, including Rhizobium, Glaciecola, Pseudomonas, Alteromonas macleodii and Cytophaga marinoflava, indicating that the clusters which they represent form as yet unnamed taxa.

  10. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers. PMID:26444989

  11. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Lu, Xinxin; Mou, Xiaozhen; Ashbolt, Nicholas J

    2014-05-01

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P < 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P > 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.

  12. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  13. Rapid identification of veterinary-relevant Mycobacterium tuberculosis complex species using 16S rDNA, IS6110 and Regions of Difference-targeted dual-labelled hydrolysis probes.

    PubMed

    Costa, Pedro; Amaro, Ana; Ferreira, Ana S; Machado, Diana; Albuquerque, Teresa; Couto, Isabel; Botelho, Ana; Viveiros, Miguel; Inácio, João

    2014-12-01

    Members of the Mycobacterium tuberculosis complex (MTC) are causative agents of tuberculosis (TB) in both humans and animals. MTC species are genetically very similar but may differ in their epidemiology, namely geographic distribution and host preferences, virulence traits and antimicrobial susceptibility patterns. However, the conventional laboratory diagnosis does not routinely differentiate between the species of the MTC. In this work we describe a rapid and robust two-step five-target probe-based real-time PCR identification algorithm, based on genomic deletion analysis, to identify the MTC species most commonly associated with TB in livestock and other animals. The first step allows the confirmation of the cultures as MTC members, by targeting their IS6110 element, or as a mycobacterial species, if only a 16S rDNA product is detected in the duplex amplification reaction. If a MTC member is identified, the second amplification step allows the assessment of the presence or absence of the RD1, RD4 and RD9 genomic regions. The correspondent pattern allows us to infer the species of the isolate as M. tuberculosis (if all RDs are present), Mycobacterium caprae (if only RD1 and RD4 are present) and Mycobacterium bovis (if only RD1 is present). The identification algorithm developed presented an almost perfect agreement with the results of the routine bacteriological analysis, with a kappa coefficient of 0.970 (CI(P95%) 0.929-1.000). The assay is able to be adaptable to automation and implementation in the routine diagnostic framework of veterinary diagnostic laboratories, with a particular focus for reference laboratories.

  14. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA)

    PubMed Central

    2012-01-01

    Background La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest

  15. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates

    SciTech Connect

    Kunin, Victor; Engelbrektson, Anna; Ochman, Howard; Hugenholtz, Philip

    2009-08-01

    Massively parallel pyrosequencing of the small subunit (16S) ribosomal RNA gene has revealed that the extent of rare microbial populations in several environments, the 'rare biosphere', is orders of magnitude higher than previously thought. One important caveat with this method is that sequencing error could artificially inflate diversity estimates. Although the per-base error of 16S rDNA amplicon pyrosequencing has been shown to be as good as or lower than Sanger sequencing, no direct assessments of pyrosequencing errors on diversity estimates have been reported. Using only Escherichia coli MG1655 as a reference template, we find that 16S rDNA diversity is grossly overestimated unless relatively stringent read quality filtering and low clustering thresholds are applied. In particular, the common practice of removing reads with unresolved bases and anomalous read lengths is insufficient to ensure accurate estimates of microbial diversity. Furthermore, common and reproducible homopolymer length errors can result in relatively abundant spurious phylotypes further confounding data interpretation. We suggest that stringent quality-based trimming of 16S pyrotags and clustering thresholds no greater than 97% identity should be used to avoid overestimates of the rare biosphere.

  16. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods.

    PubMed

    Delgado, Susana; Cabrera-Rubio, Raúl; Mira, Alex; Suárez, Adolfo; Mayo, Baltasar

    2013-04-01

    Stomach mucosa biopsies and gastric juices samples of 12 healthy persons were analysed by culturing in selective- and non-selective-rich media. Microbial DNA from four mucosal samples was also amplified by nested PCR using universal bacterial primers, and the 16S rDNA amplicons pyrosequenced. The total number of cultivable microorganisms recovered from the samples ranged from 10(2) to 10(4) cfu/g or ml. The isolates were identified at the species level by PCR amplification and sequencing of the 16S rDNA. Isolates belonged mainly to four genera; Propionibacterium, Lactobacillus, Streptococcus and Staphylococcus. A total of 15,622 high-quality 16S rDNA sequence reads were obtained by pyrosequencing from the four mucosal samples. Sequence analysis grouped the reads into 59 families and 69 genera, revealing wide bacterial diversity. Considerable differences in the composition of the gastric microbiota were observed among the subjects, although in all samples the most abundant operational taxonomic units belonged to Streptococcus, Propionibacterium and Lactobacillus. Comparison of the stomach microbiota with that present in other parts of the human gastrointestinal tract revealed distinctive microbial communities. This is the first study in which a combination of culture and culture-independent techniques has been used to explore the bacterial diversity of the human stomach.

  17. Seasonal and geographical distribution of near-surface small photosynthetic eukaryotes in the western North Pacific determined by pyrosequencing of 18S rDNA.

    PubMed

    Kataoka, Takafumi; Yamaguchi, Haruyo; Sato, Mayumi; Watanabe, Tsuyoshi; Taniuchi, Yukiko; Kuwata, Akira; Kawachi, Masanobu

    2017-02-01

    In this study, we investigated the distribution of small photosynthetic eukaryotes in the near-surface layer of the western North Pacific at four stations, including two oceanic stations where the subarctic Oyashio and subtropical Kuroshio currents influence a transition region and the bay mouth and head of the Sendai Bay, from April 2012 to May 2013. Flow cytometry was applied to sort small photosynthetic eukaryotes (<5 μm), and high-throughput sequencing of 18S rDNA was performed. Our taxonomic analysis showed that 19/195 operational taxonomic units (OTUs) were frequently distributed among all sites. Composition analysis showed that the OTUs had characteristic patterns and were divided into four main groups. Two groups reflected the low-saline water and winter season, with the characteristic OTUs belonging to diatoms; Chaetoceros and Leptocylindrus were characteristic of low saline water, and two diatom genera (Minidiscus and Minutocellus) and Cryptomonadales-related OTUs were prevalent in the winter. Our results indicate that the community composition of small photosynthetic eukaryotes seasonally changes in a dynamic manner according to variations in water properties.

  18. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  19. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    EPA Science Inventory

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  20. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers.

    PubMed

    Vobis, M; D'Haese, J; Mehlhorn, H; Mencke, N; Blagburn, B L; Bond, R; Denholm, I; Dryden, M W; Payne, P; Rust, M K; Schroeder, I; Vaughn, M B; Bledsoe, D

    2004-10-01

    The phylogenetic relationships among 31 different flea isolates representing seven different species were studied by nucleotide sequence comparison of the internal transcribed spacer 1 (ITS1), internal transcribed spacer 2 (ITS2) and/or mitochondrial 16S ribosomal RNA gene (mt16S-rDNA) to examine the patterns of variation. Results show that all regions are useful in discriminating among flea species. In Ctenocephalides felis and Tunga penetrans, some differences in these gene regions occurred among different isolates within the same species. In the latter case, the differences are in the mt16S-rDNA region, with one isolate showing 48% divergence in nucleotide sequence. The taxonomic implications of this result are unclear at present. The gene regions revealed differences between C. felis isolates only after DNA sequencing the PCR products. Further differentiation among C. felis isolates was obtained using four different random binding primers (decamers) and primers for mammalian aldolase to amplify narrow differences in the genome. Using these primers we were able to discriminate between different C. felis isolates and determine that some of the genetic variation coincided with minor differences in response to the control agent imidacloprid. However, overall findings do not support the existence of subspecies of C. felis.

  1. C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.

    PubMed

    Ghosh, Tarini Shankar; Gajjalla, Purnachander; Mohammed, Monzoorul Haque; Mande, Sharmila S

    2012-04-01

    Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.

  2. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days

  3. Two different 16S rRNA genes in a mycobacterial strain.

    PubMed Central

    Ninet, B; Monod, M; Emler, S; Pawlowski, J; Metral, C; Rohner, P; Auckenthaler, R; Hirschel, B

    1996-01-01

    Sequencing of the gene coding for 16S rRNA (16S rDNA) is a well-established method used to identify bacteria, particularly mycobacteria. Unique sequences allow identification of a particular genus and species. If more than one 16S rDNA is present on one mycobacterial genome, their sequences are assumed to be strictly or almost identical. We have isolated a slowly growing Mycobacterium strain, "X", identified by conventional biochemical tests as Mycobacterium terrae. Identification by amplification and direct sequencing of 16S rDNA yielded ambiguous results in two variable regions, suggesting the presence of different copies of the sequenced gene. Total DNA was digested by restriction enzymes and hybridized after Southern blotting to a probe representing about two-thirds of the 16S rDNA. Two copies of 16S rDNA were identified and cloned. By sequencing, the clones were of two different types, A and B, differing in 18 positions. Oligonucleotides specific to each copy of the 16S rDNA were used to distinguish the positions of the two genes observed in the Southern blot. We conclude that Mycobacterium strain "X" has two different copies of 16S rDNA. Variations in the sequence between two copies of 16S rDNA gene have been described in archaeobacteria, but not in mycobacteria. When placed in a phylogenetic tree together with other slowly growing mycobacteria gene A shows a common root with M. terrae, whereas gene B is placed separately. PMID:8880515

  4. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds.

    PubMed

    Unno, Tatsuya; Jang, Jeonghwan; Han, Dukki; Kim, Joon Ha; Sadowsky, Michael J; Kim, Ok-Sun; Chun, Jongsik; Hur, Hor-Gil

    2010-10-15

    While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.

  5. Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing

    PubMed Central

    Angeletti, Silvia; Lorino, Giulia; Gherardi, Giovanni; Battistoni, Fabrizio; De Cesaris, Marina; Dicuonzo, Giordano

    2001-01-01

    For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddlE. faecalis and ddlE. faecium primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative. PMID:11158155

  6. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach

    PubMed Central

    2012-01-01

    Background Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction), host-symbiont interactions, and may provide a future basis for novel pest management strategy development. Here, we used a multitag 454 pyrosequencing approach to assess the bacterial endosymbiont diversity in larvae of four economically important Otiorhynchus species. Results High-throughput tag-encoded FLX amplicon pyrosequencing of a bacterial 16S rDNA fragment was used to characterise bacterial communities associated with different Otiorhynchus spp. larvae. By sequencing a total of ~48,000 PCR amplicons, we identified 49 different operational taxonomic units (OTUs) as bacterial endosymbionts in the four studied Otiorhynchus species. More than 90% of all sequence reads belonged either to the genus Rickettsia or showed homology to the phylogenetic group of “Candidatus Blochmannia” and to endosymbionts of the lice Pedicinus obtusus and P. badii. By using specific primers for the genera Rickettsia and “Candidatus Blochmannia”, we identified a new phylogenetic clade of Rickettsia as well as “Candidatus Nardonella” endosymbionts in Otiorhynchus spp. which are closely related to “Candidatus Blochmannia” bacteria. Conclusions Here, we used multitag 454 pyrosequencing for assessment of insect endosymbiotic communities in weevils. As 454 pyrosequencing generates only quite short sequences, results of such studies can be regarded as a first step towards identifying respective endosymbiotic species in insects. In the second step of our study, we analysed sequences of specific gene regions for a more detailed phylogeny of selected endosymbiont genera. As a result we identified

  7. Ovine pedomics: the first study of the ovine foot 16S rRNA-based microbiome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Ovine foot rot is an infectious, contagious disease of sheep that causes severe lameness and economic loss from decreased flock produc...

  8. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  9. Pyrosequencing of Bacterial Symbionts within Axinella corrugata Sponges: Diversity and Seasonal Variability

    PubMed Central

    White, James R.; Patel, Jignasa; Ottesen, Andrea; Arce, Gabriela; Blackwelder, Patricia; Lopez, Jose V.

    2012-01-01

    Background Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge “holobiont” system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance Slight shifts in several bacterial taxa were observed

  10. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women

    PubMed Central

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-01-01

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host–microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1–V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy. PMID:26846451

  11. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women.

    PubMed

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-02-05

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host-microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1-V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy.

  12. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

    PubMed Central

    Drancourt, Michel; Bollet, Claude; Carlioz, Antoine; Martelin, Rolland; Gayral, Jean-Pierre; Raoult, Didier

    2000-01-01

    Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter and Pantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides

  13. A Pyrosequencing Investigation of Differences in the Feline Subgingival Microbiota in Health, Gingivitis and Mild Periodontitis

    PubMed Central

    Harris, Stephen; Croft, Julie; O’Flynn, Ciaran; Deusch, Oliver; Colyer, Alison; Allsopp, Judi; Milella, Lisa; Davis, Ian J.

    2015-01-01

    Periodontitis is the most frequently diagnosed health problem in cats yet little is known about the bacterial species important for the disease. The objective of this study was to identify bacterial species associated with health, gingivitis or mild periodontitis (<25% attachment loss) in feline plaque. Knowledge of these species is a first step in understanding the potential for improving oral health of cats via dietary interventions that alter the proportions of influential species. Subgingival plaque samples were collected from 92 cats with healthy gingiva, gingivitis or mild periodontitis. Pyrosequencing of the V1-V3 region of the 16S rDNA from these plaque samples generated more than one million reads and identified a total of 267 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all gingival health categories, particularly in health along with Moraxella and Fusobacteria. The Peptostreptococcaceae were the most abundant family in gingivitis and mild periodontitis. Logistic regression analysis identified species from various genera that were significantly associated with health, gingivitis or mild periodontitis. The species identified were very similar to those observed in canine plaque in the corresponding health and disease states. Such similarities were not observed between cat and human at the bacterial species level but with disease progression similarities did emerge at the phylum level. This suggests that interventions targeted at human pathogenic species will not be effective for use in cats but there is more potential for commonalities in interventions for cats and dogs. PMID:26605793

  14. Pyrosequencing analysis of microbiota in Kaburazushi, a traditional medieval sushi in Japan.

    PubMed

    Koyanagi, Takashi; Nakagawa, Akira; Kiyohara, Masashi; Matsui, Hiroshi; Yamamoto, Keiko; Barla, Florin; Take, Harumi; Katsuyama, Yoko; Tsuji, Atsushi; Shijimaya, Masahisa; Nakamura, Shizuo; Minami, Hiromichi; Enomoto, Toshiki; Katayama, Takane; Kumagai, Hidehiko

    2013-01-01

    The processing of archetypal Japanese sushi involves microbial fermentation. The traditional sushi kaburazushi, introduced in the middle ages, is made by fermenting salted yellow tail, salted turnip, and malted rice, and is distinguished from the ancient sushi narezushi, made from fish and boiled rice. In this study, we examined changes in the microbial population during kaburazushi fermentation by pyrosequencing the 16S ribosomal RNA genes (rDNA) of the organisms in the fermentation medium. Ribosomal Database Project Classifier analysis identified 31 genera, among which Lactobacillus drastically increased during fermentation (150-fold increment over 8 d), while the relative populations of the other gram-positive bacteria (Staphylococcus and Bacillus) decreased. Basic Local Alignment Search Tool analysis revealed the dominant species to be L. sakei. This organism constituted approximately 90% of Lactobacillus and 79% of total microbiota. The taxonomic diversity and species richness (assayed by Shannon-Weiner Index and Chao 1, respectively) were not significantly different between middle-ages kaburazushi and ancient narezushi. Both types were characterized by the preferential growth of Lactobacillales.

  15. A Pyrosequencing Investigation of Differences in the Feline Subgingival Microbiota in Health, Gingivitis and Mild Periodontitis.

    PubMed

    Harris, Stephen; Croft, Julie; O'Flynn, Ciaran; Deusch, Oliver; Colyer, Alison; Allsopp, Judi; Milella, Lisa; Davis, Ian J

    2015-01-01

    Periodontitis is the most frequently diagnosed health problem in cats yet little is known about the bacterial species important for the disease. The objective of this study was to identify bacterial species associated with health, gingivitis or mild periodontitis (<25% attachment loss) in feline plaque. Knowledge of these species is a first step in understanding the potential for improving oral health of cats via dietary interventions that alter the proportions of influential species. Subgingival plaque samples were collected from 92 cats with healthy gingiva, gingivitis or mild periodontitis. Pyrosequencing of the V1-V3 region of the 16S rDNA from these plaque samples generated more than one million reads and identified a total of 267 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all gingival health categories, particularly in health along with Moraxella and Fusobacteria. The Peptostreptococcaceae were the most abundant family in gingivitis and mild periodontitis. Logistic regression analysis identified species from various genera that were significantly associated with health, gingivitis or mild periodontitis. The species identified were very similar to those observed in canine plaque in the corresponding health and disease states. Such similarities were not observed between cat and human at the bacterial species level but with disease progression similarities did emerge at the phylum level. This suggests that interventions targeted at human pathogenic species will not be effective for use in cats but there is more potential for commonalities in interventions for cats and dogs.

  16. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR.

    PubMed

    Ochsenreiter, Torsten; Selezi, Drazenka; Quaiser, Achim; Bonch-Osmolovskaya, Liza; Schleper, Christa

    2003-09-01

    Novel phylogenetic lineages of as yet uncultivated crenarchaeota have been frequently detected in low to moderate-temperature, marine and terrestrial environments. In order to gain a more comprehensive view on the distribution and diversity of Crenarchaeota in moderate habitats, we have studied 18 different terrestrial and freshwater samples by 16S rDNA-based phylogenetic surveys. In seven different soil samples of diverse geographic areas in Europe (forest, grassland, ruderal) and Asia (permafrost, ruderal) as well as in two microbial mats, we have consistently found one particular lineage of crenarchaeota. The diversity of Crenarchaeota in freshwater sediments was considerably higher with respresentative 16S rDNA sequences distributed over four different groups within the moderate crenarchaeota. Systematic analysis of a 16S rDNA universal library from a sandy ecosystem containing 800 clones exclusively revealed the presence of the soil-specific crenarchaeotal cluster. With primers specific for non-thermophilic crenarchaeota we established a rapid method to quantify archaeal 16S rDNA in real time PCR. The relative abundance of crenarchaeotal rDNA was 0.5-3% in the bulk soil sample and only 0.16% in the rhizosphere of the sandy ecosystem. A nearby agricultural setting yielded a relative abundance of 0.17% crenarchaeotal rDNA. In total our data suggest that soil crenarchaeota represent a stable and specific component of the microbiota in terrestrial habitats.

  17. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    PubMed

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries.

  18. PHYLOGENETIC AFFILIATION OF WATER DISTRIBUTION SYSTEM BACTERIAL ISOLATES USING 16S RDNA SEQUENCE ANALYSIS

    EPA Science Inventory

    In a previously described study, only 15% of the bacterial strains isolated from a water distribution system (WDS) grown on R2A agar were identifiable using fatty acid methyl esthers (FAME) profiling. The lack of success was attributed to the use of fatty acid databases of bacter...

  19. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  20. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  1. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.

    PubMed

    Tyx, Robert E; Stanfill, Stephen B; Keong, Lisa M; Rivera, Angel J; Satten, Glen A; Watson, Clifford H

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.

  2. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).

  3. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  4. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fe...

  5. Pyrosequencing-Based Analysis of the Microbiome Associated with the Horn Fly, Haematobia irritans

    PubMed Central

    Palavesam, Azhahianambi; Guerrero, Felix D.; Heekin, Andrew M.; Wang, Ju; Dowd, Scot E.; Sun, Yan; Foil, Lane D.; Pérez de León, Adalberto A.

    2012-01-01

    The horn fly, Haematobia irritans, is one of the most economically important pests of cattle. Insecticides have been a major element of horn fly management programs. Growing concerns with insecticide resistance, insecticide residues on farm products, and non-availability of new generation insecticides, are serious issues for the livestock industry. Alternative horn fly control methods offer the promise to decrease the use of insecticides and reduce the amount of insecticide residues on livestock products and give an impetus to the organic livestock farming segment. The horn fly, an obligatory blood feeder, requires the help of microflora to supply additional nutrients and metabolize the blood meal. Recent advancements in DNA sequencing methodologies enable researchers to examine the microflora diversity independent of culture methods. We used the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) method to carry out the classification analysis of bacterial flora in adult female and male horn flies and horn fly eggs. The bTEFAP method identified 16S rDNA sequences in our samples which allowed the identification of various prokaryotic taxa associated with the life stage examined. This is the first comprehensive report of bacterial flora associated with the horn fly using a culture-independent method. Several rumen, environmental, symbiotic and pathogenic bacteria associated with the horn fly were identified and quantified. This is the first report of the presence of Wolbachia in horn flies of USA origin and is the first report of the presence of Rikenella in an obligatory blood feeding insect. PMID:23028533

  6. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

    PubMed Central

    Nelson, Michael C.; Morrison, Hilary G.; Benjamino, Jacquelynn; Grim, Sharon L.; Graf, Joerg

    2014-01-01

    The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity. PMID:24722003

  7. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays.

    PubMed

    Warsen, Adelaide E; Krug, Melissa J; LaFrentz, Stacey; Stanek, Danielle R; Loge, Frank J; Call, Douglas R

    2004-07-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.

  8. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats

    PubMed Central

    Camacho, H.; Tuero, A. D.; Bacardí, D.; Palenzuela, D. O.; Aguilera, A.; Silva, J. A.; Estrada, R.; Gell, O.; Suárez, J.; Ancizar, J.; Brown, E.; Colarte, A. B.; Castro, J.; Novoa, L. I.

    2016-01-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies. PMID:27382362

  9. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  10. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  11. Review of 16S and ITS Direct Sequencing Results for Clinical Specimens Submitted to a Reference Laboratory

    PubMed Central

    Payne, Michael; Azana, Robert; Hoang, Linda M. N.

    2016-01-01

    We evaluated the performance of 16S and internal transcribed spacer (ITS) region amplification and sequencing of rDNA from clinical specimens, for the respective detection and identification of bacterial and fungal pathogens. Direct rDNA amplification of 16S and ITS targets from clinical samples was performed over a 4-year period and reviewed. All specimens were from sterile sites and submitted to a reference laboratory for evaluation. Results of 16S and ITS were compared to histopathology, Gram and/or calcofluor stain microscopy results. A total of 277 16S tests were performed, with 64 (23%) positive for the presence of bacterial DNA. Identification of an organism was more likely in microscopy positive 16S samples 14/21 (67%), compared to 35/175 (20%) of microscopy negative samples. A total of 110 ITS tests were performed, with 14 (13%) positive. The yield of microscopy positive ITS samples, 9/44 (21%), was higher than microscopy negative samples 3/50 (6%). Given these findings, 16S and ITS are valuable options for culture negative specimens from sterile sites, particularly in the setting of positive microscopy findings. Where microscopy results are negative, the limited sensitivity of 16S and ITS in detecting and identifying an infectious agent needs to be considered. PMID:27366168

  12. Bacterial Communities in the Gut and Reproductive Organs of Bactrocera minax (Diptera: Tephritidae) Based on 454 Pyrosequencing

    PubMed Central

    Zheng, Weiwei; Zhang, Hongyu

    2014-01-01

    The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs). A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%–95%). Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices) and community structure (PCA analysis) varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands. PMID:25215866

  13. 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas.

    PubMed

    Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali

    2014-03-28

    Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.

  14. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms.

    PubMed Central

    Czajka, J; Bsat, N; Piani, M; Russ, W; Sultana, K; Wiedmann, M; Whitaker, R; Batt, C A

    1993-01-01

    Differences in the 16S rRNA genes (16S rDNA) which can be used to discriminate Listeria monocytogenes from Listeria innocua have been detected. The 16S rDNA were amplified by polymerase chain reaction with a set of oligonucleotide primers which flank a 1.5-kb fragment. Sequence differences were observed in the V2 region of the 16S rDNA both between L. monocytogenes Scott A and L. innocua and between different L. monocytogenes serotypes. Although L. monocytogenes SLCC2371 had the same V2 region sequence as L. innocua, the two species were different within the V9 region at nucleotides 1259 and 1292, in agreement with previous studies (R.-F. Wang, W.-W. Cao, and M.G. Johnson, Appl. Environ. Microbiol. 57:3666-3670, 1991). Intraspecies discrimination of L. monocytogenes strains was achieved by using the patterns generated by random amplified polymorphic DNA primers. Although some distinction can be made within the L. monocytogenes species by their 16S rDNA sequence, a far greater discrimination within species could be made by generating random amplified polymorphic DNA patterns from chromosomal DNA. By using a number of 10-bp primers, unique patterns for each isolate which in all cases examined differentiate between various L. monocytogenes serotypes, even though they may have the same 16S rRNA sequences, could be generated. Images PMID:8439157

  15. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife

    PubMed Central

    Razzauti, Maria; Galan, Maxime; Bernard, Maria; Maman, Sarah; Klopp, Christophe; Charbonnel, Nathalie; Vayssier-Taussat, Muriel; Eloit, Marc; Cosson, Jean-François

    2015-01-01

    Background Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. Methodology/Principal Findings We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. Conclusions/Significance We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each

  16. Pyrosequencing for SNPs

    NASA Astrophysics Data System (ADS)

    Ekstroem, Bjoern; Alderborn, Anders; Hammerling, Ulf

    2000-03-01

    With a large part of the Human Genome Project behind us and several smaller genomes already finished, we are facing new challenges. Until now most of the collective effort has been focused on sequencing genomes, but the activities to interpret and use this information are now rapidly accelerating. Technology developed for the long read lengths typically required for sequencing projects are not necessarily well suited for the emerging needs of applied genomics where identification of known genes or the study of Single Nucleotide Polymorphism, can be achieved with only a few bases of sequence information. Several new methods such as Taqman, Molecular Beacons, Invader Probes, Mini sequencing (single base extension) etc are being developed to meet these new needs but very few of these has the ability to read more than one base. This paper describes Pyrosequencing, a new way of sequencing DNA based on Sequencing By Synthesis and with the ability to sequence short to medium length stretches of DNA with high accuracy.

  17. [16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory].

    PubMed

    Matsumoto, Takehisa; Sugano, Mitsutoshi

    2013-12-01

    The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. For many years, sequencing of the 16S ribosomal RNA (rRNA) gene has served as an important tool for determining phylogenetic relationships between bacteria. The features of this molecular target that make it a useful phylogenetic tool also make it useful for bacterial detection and identification in the clinical laboratory. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, and can lead to the recognition of novel pathogens and noncultured bacteria. In clinical microbiology, molecular identification based on 16S rDNA sequencing is applied fundamentally to bacteria whose identification by means of other types of techniques is impossible or difficult. However, there are some cases in which 16S rRNA gene sequence analysis can not differentiate closely related bacteria such as Shigella spp. and Escherichia coli at the species level. Thus, it is important to understand the advantages and disadvantages of 16S rRNA gene sequence analysis.

  18. Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Yang, Guanpin; Wang, Hualei; Chen, Jixiang; Shi, Xianming; Zou, Guiwei; Wei, Qiwei; Sun, Xiuqin

    2006-04-01

    The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

  19. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  20. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis.

    PubMed

    Schuppler, M; Mertens, F; Schön, G; Göbel, U B

    1995-02-01

    The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

  1. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  2. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  3. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

    PubMed

    Seligmann, Hervé

    2014-11-01

    Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.

  4. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies

    PubMed Central

    Klindworth, Anna; Pruesse, Elmar; Schweer, Timmy; Peplies, Jörg; Quast, Christian; Horn, Matthias; Glöckner, Frank Oliver

    2013-01-01

    16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of ‘best available’ primer pairs for Bacteria and Archaea for three amplicon size classes (100–400, 400–1000, ≥1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies. PMID:22933715

  5. Characterization of chlorinated and chloraminated drinking water microbial communities in a distribution system simulator using pyrosequencing data analysis

    EPA Science Inventory

    The molecular analysis of drinking water microbial communities has focused primarily on 16S rRNA gene sequence analysis. Since this approach provides limited information on function potential of microbial communities, analysis of whole-metagenome pyrosequencing data was used to...

  6. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

    PubMed Central

    Vernon, Suzanne D; Shukla, Sanjay K; Conradt, Jennifer; Unger, Elizabeth R; Reeves, William C

    2002-01-01

    Background The association of an infectious agent with chronic fatigue syndrome (CFS) has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA) sequences. Results DNA was isolated from 81 (91%) of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng) and more CFS subjects (6/34, 18%) had no detectable plasma DNA than non-fatigued subjects (2/55, 4%), but these differences were not significant. Bacterial sequences were detected in 23 (26%) of 89. Only 4 (14%) CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32%) of the non-fatigued (P = 0.03). All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present. Conclusions CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects. PMID:12498618

  7. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing.

    PubMed

    Kreisinger, Jakub; Cížková, Dagmar; Vohánka, Jaroslav; Piálek, Jaroslav

    2014-10-01

    The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units - OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.

  8. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  9. Detection of 16S rDNA of Candidatus Liberibacter asiaticus by quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orange juice processed from Huanglongbing (HLB) infected fruit is often associated with bitter taste and/or off-flavor. The widely spread HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to diagnose HLB for citrus tr...

  10. MICROBIAL COMMUNITY DYNAMICS BASED ON 16S RDNA PROFILES IN A PACIFIC NORTHWEST ESTUARY AND ITS TRIBUTARIES. (R827639)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Phylogenetic analysis of the kenaf fiber microbial retting community by semiconductor sequencing of 16S rDNA amplicons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kenaf, hemp, and jute have been used for cordage and fiber production since prehistory. To obtain the fibers, harvested plants are soaked in ponds where indigenous microflora digests pectins and other heteropolysaccharides, releasing fibers in a process called retting. Renewed interest in “green” ...

  12. Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences.

    PubMed

    Kisand, Veljo; Wikner, Johan

    2003-08-01

    The phylogenetic affiliation of 91 operational taxonomic units, randomly sampled from three aquatic microcosm experiments, was investigated by two PCR based and one culture dependent method. The occurrence of multiple melting domains and poor coupling between Tm and DGGE retardation was demonstrated to cause poor resolution at the species level in PCR-DGGE analysis of microbial communities. We also showed that the problem of multiple melting domains was particularly prone for brackish water bacterioplankton in the Flavobacterium genus, providing characteristic band morphology for this genus. Banding patterns from DGGE analysis may therefore be misinterpreted in terms of the species richness in natural bacterial communities, when using commonly applied universal primers.

  13. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  14. Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences.

    PubMed

    Takeuchi, M; Yokota, A

    1994-11-15

    16S rRNA gene (rDNA) studies of the six species of the genus Microbacterium, M. lacticum, M. laevaniformans, M. dextranolyticum, M. imperiale, M. arborescens and M. aurum, were performed and the primary structures were compared with those of 29 representative actinobacteria and related organisms. Phylogenetic analysis indicated that six species of the genus Microbacterium and representative four species of the genus Aureobacterium appear to be phylogenetically coherent as was suggested by Rainey et al., although the peptidoglycan types of these two genera are different (peptidoglycan type B1 or B2). Thus, the phylogenetical analyses revealed that members of actinobacteria with group B-peptidoglycan do not cluster according to their peptidoglycan types, but form compact cluster different from actinobacteria or actinomycetes with group A-peptidoglycan.

  15. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  16. Flow Cytometric and 16S Sequencing Methodologies for Monitoring the Physiological Status of the Microbiome in Powdered Infant Formula Production

    PubMed Central

    Anvarian, Amir H. P.; Cao, Yu; Srikumar, Shabarinath; Fanning, Séamus; Jordan, Kieran

    2016-01-01

    The aim of this study was to develop appropriate protocols for flow cytometric (FCM) and 16S rDNA sequencing investigation of the microbiome in a powdered infant formula (PIF) production facility. Twenty swabs were collected from each of the three care zones of a PIF production facility and used for preparing composite samples. For FCM studies, the swabs were washed in 200 mL phosphate buffer saline (PBS). The cells were harvested by three-step centrifugation followed by a single stage filtration. Cells were dispersed in fresh PBS and analyzed with a flow cytometer for membrane integrity, metabolic activity, respiratory activity and Gram characteristics of the microbiome using various fluorophores. The samples were also plated on agar plates to determine the number of culturable cells. For 16S rDNA sequencing studies, the cells were harvested by centrifugation only. Genomic DNA was extracted using a chloroform-based method and used for 16S rDNA sequencing studies. Compared to the dry low and high care zones, the wet medium care zone contained a greater number of viable, culturable, and metabolically active cells. Viable but non-culturable cells were also detected in dry-care zones. In total, 243 genera were detected in the facility of which 42 were found in all three care zones. The greatest diversity in the microbiome was observed in low care. The genera present in low, medium and high care were mostly associated with soil, water, and humans, respectively. The most prevalent genera in low, medium and high care were Pseudomonas, Acinetobacter, and Streptococcus, respectively. The integration of FCM and metagenomic data provided further information on the density of different species in the facility. PMID:27446009

  17. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  18. Kanamycin-resistant alfalfa has a point mutation in the 16S plastid rRNA.

    PubMed

    Rosellini, D; LaFayette, P R; Barone, P; Veronesi, F; Parrott, W A

    2004-05-01

    Genes conferring resistance to kanamycin are frequently used to obtain transgenic plants as spontaneous resistance to kanamycin is not known to exist in higher plants. Nevertheless, mutations conferring kanamycin resistance have been identified in Chlamydomonas reinhardtii, raising the question as to why kanamycin-resistant mutants have not been found in higher plants. While attempting plastid transformation of alfalfa, we obtained non-transgenic but kanamycin-resistant somatic embryos following 2 months of culture in the presence of 50 mg l(-1) kanamycin. Sequencing of the plastid DNA region corresponding to the decoding site of the 16S rRNA in ten independent resistant events revealed an A to C transversion at position 1357 of the 16S plastid rDNA, the same site at which an A to G conversion confers kanamycin resistance to C. reinhardtii by reducing the ability of the antibiotic to bind to its target site. All plants derived from the resistant embryos through additional cycles of somatic embryogenesis in the absence of kanamycin retained the mutant phenotype, suggesting that the mutation was homoplastomic. Resistant plants produced 85% less biomass than controls; their leaves were chlorotic during early development and over time slowly turned green. The absence of kanamycin- resistant mutants in higher plants might be explained by the requirement for a regeneration system capable of resulting in homoplastomic individuals, or it may be the result of the detrimental effect of the mutation on the phenotype.

  19. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    NASA Astrophysics Data System (ADS)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  20. Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotizing enterocolitis.

    PubMed Central

    Millar, M R; Linton, C J; Cade, A; Glancy, D; Hall, M; Jalal, H

    1996-01-01

    The purpose of the present study was to determine the extent to which bacteria not detected by culture contribute to the microbial flora of the bowel of preterm infants with and without neonatal necrotizing enterocolitis (NEC). Fecal samples from 32 preterm infants in special care baby units including samples from 10 infants with NEC were examined by culture and PCR amplification of the 16S rRNA gene (rDNA). The 16S rDNA V3 region was amplified with eubacterial primers, and the amplification products derived from the fecal sample DNA were compared with the products from individual cultured isolates by PCR and denaturing gradient gel electrophoresis (PCR-DGGE), allowing the DNA from uncultured bacteria to be identified. For the 22 infants without NEC weekly samples were examined for a mean of 5.3 postnatal weeks. The total number of types detected by culture combined with PCR-DGGE was 10.1 per infant, of which PCR-DGGE contributed 10.4% of the types identified. Additional types detected by PCR-DGGE were found in 14 (63.6%) of the 22 infants. The majority of the sequences associated with uncultured bacteria showed > 90% 16S rDNA sequence identity with sequences from culturable human enteric flora, and all were found in single infants with the exception of sequences indistinguishable by DGGE from seven infants. These sequences showed > 90% sequence identity with the 16S rDNA of Streptococcus salivarius and may have been derived from upper gastrointestinal or respiratory tract flora. In the present study uncultured bacteria detected by PCR-DGGE were no more frequent in fecal samples from infants with NEC than in samples from infants without NEC, although these findings do not exclude the possibility of unrecognized bacteria associated with the mucosa of the small intestine of infants with NEC. PMID:8880510

  1. 454-Pyrosequencing survey of microbiota in adult Spotted Wing Drosophila (SWD) corroborates a core microbiome and additional symbiotic and entomopathogenic bacterial associates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete surveys of insect endosymbionts including species of economic importance have until recently been hampered by a lack of high-throughput genetic assays. We used 454-pyrosequencing of the 16S rRNA gene amplicon of adult spotted wing Drosophila (SWD) Drosophila suzukii (Matsumura) from souther...

  2. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids.

    PubMed

    Coolen, Marco J L; Abbas, Ben; van Bleijswijk, Judith; Hopmans, Ellen C; Kuypers, Marcel M M; Wakeham, Stuart G; Sinninghe Damsté, Jaap S

    2007-04-01

    Within the upper 400 m at western, central and eastern stations in the world's largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alpha-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 microM including layers where previously anammox bacteria were described. Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared with the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 microM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared with the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.

  3. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    USGS Publications Warehouse

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  4. 16S rDNA-based probes for two polycyclic aromatic hydrocarbon (PAH)-degrading soil Mycobacteria

    SciTech Connect

    Govindaswami, M.; Feldhake, D.J.; Loper, J.C.

    1994-12-31

    PAHs are a class of widespread pollutants, some of which have been shown to be genotoxic, hence the fate of these compounds in the environment is of considerable interest. Research on the biodegradation of 4 and 5 ring PAHs has been limited by the general lack of microbial isolates or consortia which can completely degrade these toxicants. Heitkamp and Cerniglia have described an oxidative soil Mycobacterium-strain PYR-1 that metabolizes pyrene and fluoranthene more rapidly than the 2 and 3 ring naphthalene and phenanthrene; although some metabolites of benzo-(a)-pyrene (BaP) were detected, no mineralization of BaP was observed. In 1991 Grosser et al. reported the isolation of a Mycobacterium sp. which mineralizes pyrene and also causing some mineralization of BaP. Their study describes a comparative analysis of these two strains, which show very similar colony morphology, growth rate and yellow-orange pigmentation. Genetic differences were shown by DNA amplification fingerprinting (DAF) using two arbitrary GC-rich octanucleotide primers, and by sequence comparison of PCR amplified 16S rDNA, although both strains show similarity closest to that of the genus Mycobacteria. These 16S rDNA sequences are in use for the construction of strain-specific DNA probes to monitor the presence, survival and growth of these isolates in PAH-contaminated soils in studies of biodegradation.

  5. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    PubMed Central

    Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-01-01

    Background Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. PMID:26927306

  6. Primer and platform effects on 16S rRNA tag sequencing

    DOE PAGES

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; ...

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  7. Primer and platform effects on 16S rRNA tag sequencing

    SciTech Connect

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.

  8. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor

    PubMed Central

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-01-01

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3–V4 and the other targeting the V4–V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results. PMID:28260999

  9. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor.

    PubMed

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-02-28

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3-V4 and the other targeting the V4-V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results.

  10. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  11. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  12. Prevalence of the Rhizobium etli-Like Allele in Genes Coding for 16S rRNA among the Indigenous Rhizobial Populations Found Associated with Wild Beans from the Southern Andes in Argentina

    PubMed Central

    Aguilar, O. Mario; López, María Verónica; Riccillo, Pablo M.; González, Ramón A.; Pagano, Marcela; Grasso, Daniel H.; Pühler, Alfred; Favelukes, Gabriel

    1998-01-01

    A collection of rhizobial isolates from nodules of wild beans, Phaseolus vulgaris var. aborigineus, found growing in virgin lands in 17 geographically separate sites in northwest Argentina was characterized on the basis of host range, growth, hybridization to a nifH probe, analysis of genes coding for 16S rRNA (16S rDNA), DNA fingerprinting, and plasmid profiles. Nodules in field-collected wild bean plants were largely dominated by rhizobia carrying the 16S rDNA allele of Rhizobium etli. A similar prevalence of the R. etli allele was observed among rhizobia trapped from nearby soil. Intragroup diversity of wild bean isolates with either R. etli-like or Rhizobium leguminosarum bv. phaseoli-like alleles was generally found across northwest Argentina. The predominance of the R. etli allele suggests that in this center of origin of P. vulgaris the coevolution of Rhizobium spp. and primitive beans has resulted in this preferential symbiotic association. PMID:9726909

  13. Pyrosequencing for Microbial Identification and Characterization

    PubMed Central

    Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.

    2013-01-01

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536

  14. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  15. Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue.

    PubMed

    Kimura, Hiroyuki; Sato, Makoto; Sasayama, Yuichi; Naganuma, Takeshi

    2003-01-01

    Gutless pogonophorans are generally thought to live in symbiosis with methane-oxidizing bacteria (methanotrophs). We identified a 16S ribosomal RNA gene (rDNA) and a ribulose-1,5-bisphosphate carboxlase/oxygenase (RuBisCO, E.C.4.1.1.39) gene that encode the form I large subunit ( cbbL) from symbiont-bearing tissue of the pogonophoran Oligobrachia mashikoi. Phylogenetic analysis of the 16S rDNA sequence suggested that the pogonophoran endosymbiont belonged to the gamma-subdivision of Proteobacteria. The endosymbiont was most closely related to an uncultured bacterium from a hydrocarbon seep, forming a unique clade adjacent to the known methanotrophic 16S rDNA cluster. The RuBisCO gene from the pogonophoran tissue was closely related to those of the chemoautotrophic genera Thiobacillus and Hydrogenovibrio. Presence of the RuBisCO gene suggested a methanotrophic symbiosis because some methanotrophic bacteria are known to be capable of autotrophy via the Calvin cycle. In contrast, particulate and soluble methane monooxygenase genes ( pmoA and mmoX) and the methanol dehydrogenase gene ( mxaF), which are indicators for methanotrophs or methylotrophs, were not detected by repeated trial of polymerase chain reaction. For 16S rRNA and RuBisCO genes, endosymbiotic localizations were confirmed by in situ hybridization. These results support the possibilities that the pogonophoran host has a novel endosymbiont which belongs to the gamma-subdivision of Proteobacteria, and that the endosymbiont has the gene of the autotrophic enzyme RuBisCO.

  16. Screening, Isolation and Identification of Probiotic Producing Lactobacillus acidophilus Strains EMBS081 & EMBS082 by 16S rRNA Gene Sequencing.

    PubMed

    Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj

    2015-09-01

    16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

  17. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045.

  18. CLUSTOM: A Novel Method for Clustering 16S rRNA Next Generation Sequences by Overlap Minimization

    PubMed Central

    Kim, Byung Kwon; Yu, Dong Su; Hou, Bo Kyeng; Caetano-Anollés, Gustavo; Hong, Soon Gyu; Kim, Kyung Mo

    2013-01-01

    The recent nucleic acid sequencing revolution driven by shotgun and high-throughput technologies has led to a rapid increase in the number of sequences for microbial communities. The availability of 16S ribosomal RNA (rRNA) gene sequences from a multitude of natural environments now offers a unique opportunity to study microbial diversity and community structure. The large volume of sequencing data however makes it time consuming to assign individual sequences to phylotypes by searching them against public databases. Since ribosomal sequences have diverged across prokaryotic species, they can be grouped into clusters that represent operational taxonomic units. However, available clustering programs suffer from overlap of sequence spaces in adjacent clusters. In natural environments, gene sequences are homogenous within species but divergent between species. This evolutionary constraint results in an uneven distribution of genetic distances of genes in sequence space. To cluster 16S rRNA sequences more accurately, it is therefore essential to select core sequences that are located at the centers of the distributions represented by the genetic distance of sequences in taxonomic units. Based on this idea, we here describe a novel sequence clustering algorithm named CLUSTOM that minimizes the overlaps between adjacent clusters. The performance of this algorithm was evaluated in a comparative exercise with existing programs, using the reference sequences of the SILVA database as well as published pyrosequencing datasets. The test revealed that our algorithm achieves higher accuracy than ESPRIT-Tree and mothur, few of the best clustering algorithms. Results indicate that the concept of an uneven distribution of sequence distances can effectively and successfully cluster 16S rRNA gene sequences. The algorithm of CLUSTOM has been implemented both as a web and as a standalone command line application, which are available at http://clustom.kribb.re.kr. PMID:23650520

  19. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A.

    PubMed

    Peng, Xingxing; Zhang, Zaili; Zhao, Ziling; Jia, Xiaoshan

    2012-05-01

    Microorganisms able to rapidly degrade tetrabromobisphenol A (TBBPA) were domesticated in an anaerobic reactor and added to gradually increased concentrations of TBBPA. After 240 days of domestication, the degradation rate reached 96.0% in cultivated batch experiments lasting 20 days. The optimum cultivating temperature and pH were 30°C and 7.0. The bacterial community's composition and diversity in the reactor was studied by comparative analysis with 16S ribosomal DNA clone libraries. Amplified rDNA restriction analysis of 200 clones from the library indicate that the rDNA richness was high (Coverage C 99.5%) and that evenness was not high (Shannon-Weaver index 2.42). Phylogenetic analysis of 63 bacterial sequences from the reactor libraries demonstrated the presence of Betaproteobacteria (33.1%), Gammaproteobacteria (18.7%), Bacteroidetes (13.9%), Firmicutes (11.4%), Chloroflexi (3.6%), Actinobacteria (0.6%), the candidate division TM7 (4.2%) and other unknown, uncultured bacterial groups (14.5%). Comamonas, Achromobacter, Pseudomonas and Flavobacterium were the dominant types.

  20. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    PubMed

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

  1. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Köhrer, Karl; Gougoula, Christina; Sager, Martin

    2014-10-01

    Correct identification of bacteria is crucial for the management of rodent colonies. Some bacteria are difficult to identify phenotypically outside reference laboratories. In this study, we evaluated the utility of 16S ribosomal DNA (rDNA) sequencing as a means of identifying a collection of 30 isolates of rodent origin which are conventionally difficult to identify. Sequence analysis of the first approximate 720 to 880 bp of the 5'- end of 16S rDNA identified 25 isolates (83.33%) with ≥ 99% similarity to a sequence of a type strain, whereas three isolates (10%) displayed a sequence similarity ≥ 97% but <99% to the type strain sequences. These similarity scores were used to define identification to species and genus levels, respectively. Two of the 30 isolates (6.67%) displayed a sequence similarity of ≥ 95 but <97% to the reference strains and were thus allocated to a family. This technique allowed us to document the association of mice with bacteria relevant for the colonies management such as Pasteurellaceae, Bordetella hinzii or Streptococcus danieliae. In addition, human potential pathogens such as Acinetobacter spp., Ochrobactrum anthropi and Paracoccus yeei or others not yet reported in mouse bacterial species such as Leucobacter chironomi, Neisseria perflava and Pantoea dispersa were observed. In conclusion, the sequence analysis of 16S rDNA proved to be a useful diagnostic tool, with higher performance characteristics than the classical phenotypic methods, for identification of laboratory animal bacteria. For the first time this method allowed us to document the association of certain bacterial species with the laboratory mouse.

  2. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Song, Shuqun; Chen, Tiantian; Li, Caiwen

    2017-04-01

    Pyrosequencing of the 18S rRNA gene has been widely adopted to study the eukaryotic diversity in various types of environments, and has an advantage over traditional morphology methods in exploring unknown microbial communities. To comprehensively assess the diversity and community composition of marine protists in the coastal waters of China, we applied both morphological observations and high-throughput sequencing of the V2 and V3 regions of 18S rDNA simultaneously to analyze samples collected from the surface layer of the Yellow and East China Seas. Dinoflagellates, diatoms and ciliates were the three dominant protistan groups as revealed by the two methods. Diatoms were the first dominant protistan group in the microscopic observations, with Skeletonema mainly distributed in the nearshore eutrophic waters and Chaetoceros in higher temperature and higher pH waters. The mixotrophic dinoflagellates, Gymnodinium and Gyrodinium, were more competitive in the oligotrophic waters. The pyrosequencing method revealed an extensive diversity of dinoflagellates. Chaetoceros was the only dominant diatom group in the pyrosequencing dataset. Gyrodinium represented the most abundant reads and dominated the offshore oligotrophic protistan community as they were in the microscopic observations. The dominance of parasitic dinoflagellates in the pyrosequencing dataset, which were overlooked in the morphological observations, indicates more attention should be paid to explore the potential role of this group. Both methods provide coherent clustering of samples. Nutrient levels, salinity and pH were the main factors influencing the distribution of protists. This study demonstrates that different primer pairs used in the pyrosequencing will indicate different protistan community structures. A suitable marker may reveal more comprehensive composition of protists and provide valuable information on environmental drivers.

  3. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library.

    PubMed

    Rastogi, Gurdeep; Osman, Shariff; Vaishampayan, Parag A; Andersen, Gary L; Stetler, Larry D; Sani, Rajesh K

    2010-01-01

    Microbial diversity was characterized in mining-impacted soils collected from two abandoned uranium mine sites, the Edgemont and the North Cave Hills, South Dakota, using a high-density 16S microarray (PhyloChip) and clone libraries. Characterization of the elemental compositions of soils by X-ray fluorescence spectroscopy revealed higher metal contamination including uranium at the Edgemont than at the North Cave Hills mine site. Microarray data demonstrated extensive phylogenetic diversity in soils and confirmed nearly all clone-detected taxonomic levels. Additionally, the microarray exhibited greater diversity than clone libraries at each taxonomic level at both the mine sites. Interestingly, the PhyloChip detected the largest number of taxa in Proteobacteria phylum for both the mine sites. However, clone libraries detected Acidobacteria and Bacteroidetes as the most numerically abundant phyla in the Edgemont and North Cave Hills mine sites, respectively. Several 16S rDNA signatures found in both the microarrays and clone libraries displayed sequence similarities with yet-uncultured bacteria representing a hitherto unidentified diversity. Results from this study demonstrated that highly diverse microbial populations were present in these uranium mine sites. Diversity indices indicated that microbial communities at the North Cave Hills mine site were much more diverse than those at the Edgemont mine site.

  4. Bacterial Diversity Assessment in Antarctic Terrestrial and Aquatic Microbial Mats: A Comparison between Bidirectional Pyrosequencing and Cultivation

    PubMed Central

    Tytgat, Bjorn; Verleyen, Elie; Obbels, Dagmar; Peeters, Karolien; De Wever, Aaike; D’hondt, Sofie; De Meyer, Tim; Van Criekinge, Wim; Vyverman, Wim; Willems, Anne

    2014-01-01

    The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1–22.2%) and OTU (3.5–3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1–V2 and V3–V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number

  5. Differentiation of Micromonospora Isolates from a Coastal Sediment in Wales on the Basis of Fourier Transform Infrared Spectroscopy, 16S rRNA Sequence Analysis, and the Amplified Fragment Length Polymorphism Technique

    PubMed Central

    Zhao, Hongjuan; Kassama, Yankuba; Young, Michael; Kell, Douglas B.; Goodacre, Royston

    2004-01-01

    A number of actinomycetes isolates were recovered from coastal sediments in Aberystwyth (Wales, United Kingdom) with standard isolation techniques. Most of them were putatively assigned to the genera Streptomyces and Micromonospora on the basis of their morphological characteristics, and there appeared to be no difference whether the isolation media contained distilled water or seawater. A group of 20 Micromonospora isolates was selected to undergo further polyphasic taxonomic investigation. Three approaches were used to analyze the diversity of these isolates, 16S rDNA sequencing, fluorescent amplified fragment length polymorphism (AFLP), and Fourier transform infrared spectroscopy (FT-IR). The 16S rDNA sequence analysis confirmed that all of these isolates should be classified to the genus Micromonospora, and they were analyzed with a group of other Micromonospora 16S rDNA sequences available from the Ribosomal Database Project. The relationships of the 20 isolates were observed after hierarchical clustering, and almost identical clusters were obtained with these three techniques. This has obvious implications for high-throughput screening for novel actinomycetes because FT-IR spectroscopy, which is a rapid and reliable whole-organism fingerprinting method, can be applied as a very useful dereplication tool to indicate which environmental isolates have been cultured previously. PMID:15528526

  6. Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.

    2015-08-01

    Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.

  7. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA.

    PubMed

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  8. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  9. Pyrosequencing reveals the influence of elevated atmospheric CO2 on the composition of archaeal communities in the rhizosphere of C3 and C4 crops

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Cann, I. K.; Mackie, R. I.

    2008-12-01

    The projected increase in atmospheric CO2 concentrations throughout the 21st century is likely to increase aboveground and belowground plant productivity and cause changes in the quantity and quality of plant root exudates, although plants using C4 photosynthesis are likely to be only affected during times of drought (Leakey et al., 2006, Plant Physiology, 140, 779). Evidence is emerging from molecular tools that these changes may influence the abundance and composition of soil microbial communities that regulate key soil processes, such as nitrogen cycling (Lesaulnier et al., 2008, Environmental Microbiology, 10, 926). However, most molecular tools are not well-suited for comparing multiple samples at great sequencing depth, which is critical when considering soil microbial communities of high diversity. To overcome these limitations we used pyrosequencing and quantitative PCR (qPCR) of two genes (the V3 region of 16S rDNA and the amoA gene) to examine intra- and inter-treatment variability in the abundance and composition of microbial communities in the rhizosphere of soybean (C3) and maize (C4) grown in field conditions under ambient (~380 ppm) and elevated (~550 ppm) CO2 using FACE (free-air concentration enrichment) technology during the 2006 growing season in central Illinois. We specifically focused on archaeal communities because of their key role in nitrification (Leininger et al., 2006, Nature, 442, 806). The majority (>97%) of recovered sequences were from members of the phylum Crenarchaeota. Principle component analysis of sequence results from the V3 and amoA genes indicated significant (p<0.05) differences in the composition of rhizosphere archaeal communities between ambient and elevated CO2 beneath soybean, but not maize. qPCR suggested no significant difference in the abundance of archaea between treatments for soybean and maize. The lack of response of archaeal community composition beneath maize to elevated CO2 is consistent with relatively high

  10. Wolbachia Sequence Typing in Butterflies Using Pyrosequencing.

    PubMed

    Choi, Sungmi; Shin, Su-Kyoung; Jeong, Gilsang; Yi, Hana

    2015-09-01

    Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

  11. Aggressive assembly of pyrosequencing reads with mates

    PubMed Central

    Miller, Jason R.; Delcher, Arthur L.; Koren, Sergey; Venter, Eli; Walenz, Brian P.; Brownley, Anushka; Johnson, Justin; Li, Kelvin; Mobarry, Clark; Sutton, Granger

    2008-01-01

    Motivation: DNA sequence reads from Sanger and pyrosequencing platforms differ in cost, accuracy, typical coverage, average read length and the variety of available paired-end protocols. Both read types can complement one another in a ‘hybrid’ approach to whole-genome shotgun sequencing projects, but assembly software must be modified to accommodate their different characteristics. This is true even of pyrosequencing mated and unmated read combinations. Without special modifications, assemblers tuned for homogeneous sequence data may perform poorly on hybrid data. Results: Celera Assembler was modified for combinations of ABI 3730 and 454 FLX reads. The revised pipeline called CABOG (Celera Assembler with the Best Overlap Graph) is robust to homopolymer run length uncertainty, high read coverage and heterogeneous read lengths. In tests on four genomes, it generated the longest contigs among all assemblers tested. It exploited the mate constraints provided by paired-end reads from either platform to build larger contigs and scaffolds, which were validated by comparison to a finished reference sequence. A low rate of contig mis-assembly was detected in some CABOG assemblies, but this was reduced in the presence of sufficient mate pair data. Availability: The software is freely available as open-source from http://wgs-assembler.sf.net under the GNU Public License. Contact: jmiller@jcvi.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18952627

  12. Filtering duplicate reads from 454 pyrosequencing data

    PubMed Central

    Balzer, Susanne; Malde, Ketil; Grohme, Markus A.; Jonassen, Inge

    2013-01-01

    Motivation: Throughout the recent years, 454 pyrosequencing has emerged as an efficient alternative to traditional Sanger sequencing and is widely used in both de novo whole-genome sequencing and metagenomics. Especially the latter application is extremely sensitive to sequencing errors and artificially duplicated reads. Both are common in 454 pyrosequencing and can create a strong bias in the estimation of diversity and composition of a sample. To date, there are several tools that aim to remove both sequencing noise and duplicates. Nevertheless, duplicate removal is often based on nucleotide sequences rather than on the underlying flow values, which contain additional information. Results: With the novel tool JATAC, we present an approach towards a more accurate duplicate removal by analysing flow values directly. Making use of previous findings on 454 flow data characteristics, we combine read clustering with Bayesian distance measures. Finally, we provide a benchmark with an existing algorithm. Availability: JATAC is freely available under the General Public License from http://malde.org/ketil/jatac/. Contact: Ketil.Malde@imr.no Supplementary information: Supplementary data are available at Bioinformatics online PMID:23376350

  13. Droplet-based pyrosequencing using digital microfluidics.

    PubMed

    Boles, Deborah J; Benton, Jonathan L; Siew, Germaine J; Levy, Miriam H; Thwar, Prasanna K; Sandahl, Melissa A; Rouse, Jeremy L; Perkins, Lisa C; Sudarsan, Arjun P; Jalili, Roxana; Pamula, Vamsee K; Srinivasan, Vijay; Fair, Richard B; Griffin, Peter B; Eckhardt, Allen E; Pollack, Michael G

    2011-11-15

    The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.

  14. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  15. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring

    PubMed Central

    Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.

    2016-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  16. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring.

    PubMed

    Vierheilig, J; Savio, D; Ley, R E; Mach, R L; Farnleitner, A H; Reischer, G H

    2015-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems.

  17. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  18. Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing.

    PubMed

    Etchebehere, Claudia; Castelló, Elena; Wenzel, Jorge; del Pilar Anzola-Rojas, Mélida; Borzacconi, Liliana; Buitrón, Germán; Cabrol, Lea; Carminato, Vivian María; Carrillo-Reyes, Julian; Cisneros-Pérez, Crhistian; Fuentes, Laura; Moreno-Andrade, Iván; Razo-Flores, Elías; Filippi, Gonzalo Ruiz; Tapia-Venegas, Estela; Toledo-Alarcón, Javiera; Zaiat, Marcelo

    2016-04-01

    To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.

  19. Potential Human Pathogenic Bacteria in a Mixed Urban Watershed as Revealed by Pyrosequencing

    PubMed Central

    Ibekwe, A. Mark; Leddy, Menu; Murinda, Shelton E.

    2013-01-01

    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP), Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%), agricultural runoff sediment (6.52%), and Prado Park sediment (6.00%), respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78–4.08%). Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health. PMID:24278139

  20. 16S rRNA Gene Pyrosequencing of Reference and Clinical Samples and Investigation of the Temperature Stability of MicroBiome Profiles

    DTIC Science & Technology

    2014-09-16

    transient dwellers, or even opportunistic pathogens capable of causing acute or chronic infections [1-10]. The importance of healthy microbiota for human...Project (HMP) funded by the National Institutes of Health has produced critical baseline information on healthy human microbiota and has also added a...Table S2) are consistent with the assess- ments of human microbiota [46]; deteriorated accuracy and uncertainty in quantitation of low abundant microbes

  1. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R.; Peacock, Joseph P.; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A.; Hedlund, Brian P.; Zhang, Chuanlun; Hartnett, Hilairy E.; Dijkstra, Paul; Hungate, Bruce A.

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world. PMID:23326417

  2. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing

    PubMed Central

    Lenchi, Nesrine; İnceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species. PMID:23805243

  3. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing.

    PubMed

    Lenchi, Nesrine; Inceoğlu, Ozgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species.

  4. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    PubMed

    Hou, Weiguo; Wang, Shang; Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R; Peacock, Joseph P; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A; Hedlund, Brian P; Zhang, Chuanlun; Hartnett, Hilairy E; Dijkstra, Paul; Hungate, Bruce A

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6), high temperature (85.1-89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8) and cooler temperature (55.1-64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.

  5. Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis

    PubMed Central

    Wang, Jin; Fan, Huan; Han, Ye; Zhao, Jinzhao; Zhou, Zhijiang

    2017-01-01

    Objective The gastrointestinal tract of sheep contain complex microbial communities that influence numerous aspects of the sheep’s health and development. The objective of this study was to analyze the composition and diversity of the microbiota in the gastrointestinal tract sections (rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum) of sheep. Methods This analysis was performed by 454 pyrosequencing using the V3-V6 region of the 16S rRNA genes. Samples were collected from five healthy, small tailed Han sheep aged 10 months, obtained at market. The bacterial composition of sheep gastrointestinal microbiota was investigated at the phylum, class, order, family, genus, and species levels. Results The dominant bacterial phyla in the entire gastrointestinal sections were Firmicutes, Bacteroidetes, and Proteobacteria. In the stomach, the three most dominant genera in the sheep were Prevotella, unclassified Lachnospiraceae, and Butyrivibrio. In the small intestine, the three most dominant genera in the sheep were Escherichia, unclassified Lachnospiraceae, and Ruminococcus. In the large intestine, the three most dominant genera in the sheep were Ruminococcus, unclassified Ruminococcaceae, and Prevotella. R. flavefaciens, B. fibrisolvens, and S. ruminantium were three most dominant species in the sheep gastrointestinal tract. Principal Coordinates Analysis showed that the microbial communities from each gastrointestinal section could be separated into three groups according to similarity of community composition: stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). Conclusion This is the first study to characterize the entire gastrointestinal microbiota in sheep by use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the gastrointestinal bacterial community of sheep. PMID:27383798

  6. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  7. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  8. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-07-01

    Tito Bustillo cave (Ribadesella, Spain) contains valuable Palaeolithic paintings, which date back 15 000-20 000 years. Since 1969, the cave has been open to the public. Rock wall surfaces, spelaeothems and soils are covered by apparent biofilms of phototrophic microorganisms, which develop under artificial lighting. In addition, rock surfaces present conspicuous bacterial growth in the form of round colonies of different colours and about 1-2 mm in diameter. Even the famous Paintings Panel shows some evident microbial growth. In the present study, bacterial communities on the paintings and on the rock surfaces near the paintings were analysed by culture-independent techniques, including polymerase chain reaction (PCR) amplification of bacterial 16S rRNA genes (16S rDNA), phylogenetic sequence analyses and genetic community fingerprinting by denaturing gradient gel electrophoresis (DGGE). DGGE fingerprints showed complex bacterial community patterns. Forty-one clones matching DGGE bands of the community fingerprints were sequenced, representing about 39% of DNA fragments in the DGGE patterns. Phylogenetic sequence analyses revealed a high number of phylogenetically novel 16S rDNA sequence types and a high diversity of putatively chemotrophic and heterotrophic bacteria. Sequences were phylogenetically most closely related to the Proteobacteria (20 clones), green non-sulphur bacteria (three clones), Planctomycetales order (one clone), Cytophaga-Flexibacter- Bacteroides division (one clone) and the Actinobacteria (four clones). Furthermore, we report the presence of members of the Acidobacterium division (12 clones) in a karstic hypogean environment. Members of this phylum have not so far been detected in these particular environments.

  9. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes.

    PubMed

    Mori, Hiroshi; Maruyama, Fumito; Kato, Hiromi; Toyoda, Atsushi; Dozono, Ayumi; Ohtsubo, Yoshiyuki; Nagata, Yuji; Fujiyama, Asao; Tsuda, Masataka; Kurokawa, Ken

    2014-01-01

    The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.

  10. Analyses of methanogenic archaea populations in swine feces and stored swine manure using 16S rDNA and mcrA PCR and pure culture isolation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Storage of swine manure is associated with the microbial production of odorous compounds and gaseous emissions which result from anaerobic microbial digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to...

  11. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  12. Analysis of 16S rDNA and Metagenomic Sequences Revealed Microbial Community and Host-Specific Sequences of Canadian Geese Feces

    EPA Science Inventory

    There is an increasing concern regarding the public health risks associated with waterfowl fecal pollution as a result of the increase in geese populations (Branta canadensis) in or near U.S. and Canadian recreational waters. Currently, there are no methods that can be used to de...

  13. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing.

  14. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    PubMed

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water.

  15. Evaluation of real-time PCR and pyrosequencing for screening incubating blood culture bottles from adults with suspected bloodstream infection.

    PubMed

    McCann, Chase D; Moore, Miranda S; May, Larissa S; McCarroll, Matthew G; Jordan, Jeanne A

    2015-03-01

    Several molecular platforms can identify bacteria associated with bloodstream infections but require positive culture bottles as starting material. Here, we describe results of screening 1140 blood cultures at 8h postinoculation, from 918 eligible adults being evaluated for bloodstream infection. DNA was extracted and analyzed by 16S and/or 23S rRNA real-time PCR/pyrosequencing. Compared to culture, PCR/pyrosequencing displayed 90.9% sensitivity, 99.6% specificity, 95.7% positive predictive value, and 99.1% negative predictive value. Overall concordance rate was 98.9% (1127/1140). In 4 cases with molecular-positive/culture-negative results, medical chart reviews provided evidence of identical bacteria from subsequent blood or concomitant urine/sputum cultures. Nine culture-positive/molecular-negative cases were associated with either polymicrobial growth, grew only in the anaerobic bottle of the clinical pair, and/or were detected by PCR/pyrosequencing after 8h. In summary, this approach accurately detected and identified bacteria in ~91% of culture-confirmed cases significantly sooner than the phenotypic identification was available, having the potential to improve antibiotic stewardship.

  16. Microbial Diversity Analysis of Fermented Mung Beans (Lu-Doh-Huang) by Using Pyrosequencing and Culture Methods

    PubMed Central

    Chao, Shiou-Huei; Huang, Hui-Yu; Chang, Chuan-Hsiung; Yang, Chih-Hsien; Cheng, Wei-Shen; Kang, Ya-Huei; Watanabe, Koichi; Tsai, Ying-Chieh

    2013-01-01

    In Taiwanese alternative medicine Lu-doh-huang (also called Pracparatum mungo), mung beans are mixed with various herbal medicines and undergo a 4-stage process of anaerobic fermentation. Here we used high-throughput sequencing of the 16S rRNA gene to profile the bacterial community structure of Lu-doh-huang samples. Pyrosequencing of samples obtained at 7 points during fermentation revealed 9 phyla, 264 genera, and 586 species of bacteria. While mung beans were inside bamboo sections (stages 1 and 2 of the fermentation process), family Lactobacillaceae and genus Lactobacillus emerged in highest abundance; Lactobacillus plantarum was broadly distributed among these samples. During stage 3, the bacterial distribution shifted to family Porphyromonadaceae, and Butyricimonas virosa became the predominant microbial component. Thereafter, bacterial counts decreased dramatically, and organisms were too few to be detected during stage 4. In addition, the microbial compositions of the liquids used for soaking bamboo sections were dramatically different: Exiguobacterium mexicanum predominated in the fermented soybean solution whereas B. virosa was predominant in running spring water. Furthermore, our results from pyrosequencing paralleled those we obtained by using the traditional culture method, which targets lactic acid bacteria. In conclusion, the microbial communities during Lu-doh-huang fermentation were markedly diverse, and pyrosequencing revealed a complete picture of the microbial consortium. PMID:23700436

  17. Evaluation of Real-time PCR and Pyrosequencing for Screening Incubating Blood Culture Bottles from Adults with Suspected Bloodstream Infection

    PubMed Central

    McCann, Chase D.; Moore, Miranda S.; May, Larissa S.; McCarroll, Matthew; Jordan, Jeanne A.

    2015-01-01

    Several molecular platforms can identify bacteria associated with bloodstream infections, but require positive culture bottles as starting material. Here we describe results of screening 1140 blood cultures at 8 hours post-inoculation, from 918 eligible adults being evaluated for bloodstream infection. DNA was extracted and analyzed by 16S and/or 23S rRNA real-time PCR/Pyrosequencing. Compared to culture, PCR/Pyrosequencing displayed 90.9% sensitivity, 99.6% specificity, 95.7% PPV, and 99.1% NPV. Overall concordance rate was 98.9% (1127/1140). In four cases with molecular-positive/culture-negative results, medical chart reviews provided evidence of identical bacteria from subsequent blood or concomitant urine/sputum cultures. Nine culture-positive/molecular-negative cases were associated with either polymicrobial growth, grew only in the anaerobic bottle of the clinical pair, and/or were detected by PCR/Pyrosequencing after 8 hours. In summary, this approach accurately detected and identified bacteria in ~91% of culture-confirmed cases significantly sooner than the phenotypic identification was available, having the potential to improve antibiotic stewardship. PMID:25534615

  18. Contraception for the under 16s: better safe than sorry.

    PubMed

    Cook, A

    1981-09-16

    acceptible if the couple was engaged, and 5.4% were totally against it, 9) 62% felt abortion was the right of every woman and 31.1% felt it was acceptible if the physical or mental well being of the mother was at risk, 10) 40.9% agreed with the British Medical Association policy on teenage contraception which advises doctors to encourage under 16's to tell their parents, but if they refuse, the doctor can still prescribe the pill, 11) 22.7% wanted contraception unconditionally available, 18.2% felt it should be dependent on parental knowledge, and 17% said it should not be available, 12) there was a trend for opinions to become less liberal as age increased, and 13) young girls appear to be less conscientious in using contraception than older women.

  19. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns.

    PubMed

    Cook, Andrew E; Meyers, Paul R

    2003-11-01

    A rapid method for identifying filamentous actinomycete genera was developed based on 16S rRNA gene restriction fragment patterns. The patterns were generated by using specific restriction endonucleases to perform in silico digestions on the 16S rRNA gene sequences of all validly published filamentous actinomycete species. The method was applied to identifying actinomycete isolates from soil. Amplified 16S rDNA of soil actinomycetes was restricted with selected endonucleases and electrophoresed on agarose gels. The restriction fragment patterns of the unknown isolates were easily compared to the established patterns. Significantly, the genus Streptomyces could be differentiated from all other actinomycete genera by using only four restriction endonucleases, Sau3AI, AsnI, KpnI and SphI. This could be achieved in a time period of as little as a week, following PCR-template DNA isolation by a simple method. The identification method allowed unknown, non-Streptomyces soil isolates to be identified to a genus or small subgroup of genera. The genera in these subgroups could, in some cases, be distinguished by virtue of colony-morphology differences.

  20. [Phylogenetic characterization of endosymbionts of the hydrothermal vent mussel Bathymodiolus azoricus by analysis of the 16S rRNA, pmoL, and cbbA genes].

    PubMed

    Spiridonova, E M; Kuznetsov, B B; Pimenov, N V; Turova, T P

    2006-01-01

    In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine shellfish Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of Mytilidae thiotrophic symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.

  1. Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes

    PubMed Central

    Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza

    2017-01-01

    Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826

  2. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases

    PubMed Central

    Roth, Andreas; Reischl, Udo; Streubel, Anna; Naumann, Ludmila; Kroppenstedt, Reiner M.; Habicht, Marion; Fischer, Marga; Mauch, Harald

    2000-01-01

    A novel genus-specific PCR for mycobacteria with simple identification to the species level by restriction fragment length polymorphism (RFLP) was established using the 16S-23S ribosomal RNA gene (rDNA) spacer as a target. Panspecificity of primers was demonstrated on the genus level by testing 811 bacterial strains (122 species in 37 genera from 286 reference strains and 525 clinical isolates). All mycobacterial isolates (678 strains among 48 defined species and 5 indeterminate taxons) were amplified by the new primers. Among nonmycobacterial isolates, only Gordonia terrae was amplified. The RFLP scheme devised involves estimation of variable PCR product sizes together with HaeIII and CfoI restriction analysis. It yielded 58 HaeIII patterns, of which 49 (84%) were unique on the species level. Hence, HaeIII digestion together with CfoI results was sufficient for correct identification of 39 of 54 mycobacterial taxons and one of three or four of seven RFLP genotypes found in Mycobacterium intracellulare and Mycobacterium kansasii, respectively. Following a clearly laid out diagnostic algorithm, the remaining unidentified organisms fell into five clusters of closely related species (i.e., the Mycobacterium avium complex or Mycobacterium chelonae-Mycobacterium abscessus) that were successfully separated using additional enzymes (TaqI, MspI, DdeI, or AvaII). Thus, next to slowly growing mycobacteria, all rapidly growing species studied, including M. abscessus, M. chelonae, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium peregrinum, and Mycobacterium senegalense (with a very high 16S rDNA sequence similarity) were correctly identified. A high intraspecies sequence stability and the good discriminative power of patterns indicate that this method is very suitable for rapid and cost-effective identification of a wide variety of mycobacterial species without the need for sequencing. Phylogenetically, spacer sequence data stand in good agreement with 16S rDNA

  3. Molecular identification of Paragonimus species by DNA pyrosequencing technology.

    PubMed

    Tantrawatpan, Chairat; Intapan, Pewpan M; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Srichantaratsamee, Chutatip; Anamnart, Witthaya; Maleewong, Wanchai

    2013-06-01

    DNA pyrosequencing for PCR amplicons is an attractive strategy for the identification of microorganisms because of its short time performance for large number of samples. In this study, the primers targeting the fragment of ITS2 region of nuclear ribosomal RNA gene were newly developed for pyrosequencing-based identification of 6 Paragonimus species, Paragonimus bangkokensis, Paragonimus harinasutai, Paragonimus heterotremus, Paragonimus macrorchis, Paragonimus siamensis and Paragonimus westermani. Pyrosequencing determination of 39 nucleotides of partial ITS2 region could discriminate 6 Paragonimus species, and could also detect intra-species genetic variation of P. macrorchis. This DNA pyrosequencing-based identification can be a valuable tool to improve species-level identification of Paragonimus in the endemic areas.

  4. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    SciTech Connect

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in host

  5. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  6. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  7. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform.

    PubMed

    Jeon, Yoon-Seong; Park, Sang-Cheol; Lim, Jeongmin; Chun, Jongsik; Kim, Bong-Soo

    2015-01-01

    The cost of DNA sequencing has decreased due to advancements in Next Generation Sequencing. The number of sequences obtained from the Illumina platform is large, use of this platform can reduce costs more than the 454 pyrosequencer. However, the Illumina platform has other challenges, including bioinformatics analysis of large numbers of sequences and the need to reduce erroneous nucleotides generated at the 3'-ends of the sequences. These erroneous sequences can lead to errors in analysis of microbial communities. Therefore, correction of these erroneous sequences is necessary for accurate taxonomic identification. Several studies that have used the Illumina platform to perform metagenomic analyses proposed curating pipelines to increase accuracy. In this study, we evaluated the likelihood of obtaining an erroneous microbial composition using the MiSeq 250 bp paired sequence platform and improved the pipeline to reduce erroneous identifications. We compared different sequencing conditions by varying the percentage of control phiX added, the concentration of the sequencing library, and the 16S rRNA gene target region using a mock community sample composed of known sequences. Our recommended method corrected erroneous nucleotides and improved identification accuracy. Overall, 99.5% of the total reads shared 95% similarity with the corresponding template sequences and 93.6% of the total reads shared over 97% similarity. This indicated that the MiSeq platform can be used to analyze microbial communities at the genus level with high accuracy. The improved analysis method recommended in this study can be applied to amplicon studies in various environments using high-throughput reads generated on the MiSeq platform.

  8. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    PubMed Central

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  9. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  10. Comparative 16S rRNA Analysis of Lake Bacterioplankton Reveals Globally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria

    PubMed Central

    Glöckner, Frank Oliver; Zaichikov, Evgeny; Belkova, Natalia; Denissova, Ludmilla; Pernthaler, Jakob; Pernthaler, Annelie; Amann, Rudolf

    2000-01-01

    In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the α, four were affiliated with the β, and one was affiliated with the γ subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 × 105 cells ml−1 in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems. PMID:11055963

  11. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase

    SciTech Connect

    Henckel, T.; Friedrich, M.; Conrad, R.

    1999-05-01

    Rice field soil with a nonsaturated water content induced CH{sub 4} consumption activity when it was supplemented with 5% CH{sub 4}. After a lag phase of 3 days, CH{sub 4} was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH{sub 4} mixing ratios. The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type 1 methylotrophs and type 2 methylotrophs were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH{sub 4} was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH{sub 4}.

  12. Pyrosequencing-Derived Bacterial, Archaeal, and Fungal Diversity of Spacecraft Hardware Destined for Mars

    PubMed Central

    Vaishampayan, Parag; Nilsson, Henrik R.; Torok, Tamas; Venkateswaran, Kasthuri

    2012-01-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m2 in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m2) than colocated spacecraft hardware (187 OTU; 162 m2). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space. PMID:22729532

  13. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars.

    PubMed

    La Duc, Myron T; Vaishampayan, Parag; Nilsson, Henrik R; Torok, Tamas; Venkateswaran, Kasthuri

    2012-08-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.

  14. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance.

    PubMed

    Kembel, Steven W; Wu, Martin; Eisen, Jonathan A; Green, Jessica L

    2012-01-01

    The abundance of different SSU rRNA ("16S") gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly - from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data.

  15. Ralstonia paucula (Formerly CDC Group IV c-2): Unsuccessful Strain Differentiation with PCR-Based Methods, Study of the 16S-23S Spacer of the rRNA Operon, and Comparison with Other Ralstonia Species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum)

    PubMed Central

    Moissenet, Didier; Bidet, Philippe; Garbarg-Chenon, Antoine; Arlet, Guillaume; Vu-Thien, Hoang

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNAIle and tRNAAla genes, which are identical to genes described for R. pickettii and R. solanacearum. PMID:11136807

  16. Ralstonia paucula (Formerly CDC group IV c-2): unsuccessful strain differentiation with PCR-based methods, study of the 16S-23S spacer of the rRNA operon, and comparison with other Ralstonia species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum).

    PubMed

    Moissenet, D; Bidet, P; Garbarg-Chenon, A; Arlet, G; Vu-Thien, H

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNA(Ile) and tRNA(Ala) genes, which are identical to genes described for R. pickettii and R. solanacearum.

  17. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes.

    PubMed

    Sessitsch, Angela; Reiter, Birgit; Pfeifer, Ulrike; Wilhelm, Eva

    2002-01-01

    Abstract Endophytic bacteria are ubiquitous in most plants and colonise plants without exhibiting pathogenicity. Studies on the diversity of bacterial endophytes have been mainly approached by characterisation of isolates obtained from internal tissues. Despite the broad application of culture-independent techniques for the analysis of microbial communities in a wide range of natural habitats, little information is available on the species diversity of endophytes. In this study, microbial communities inhabiting stems, roots and tubers of three potato varieties were analysed by 16S rRNA-based techniques such as terminal restriction fragment length polymorphism analysis, denaturing gradient gel electrophoresis as well as 16S rDNA cloning and sequencing. Two individual plant experiments were conducted. In the first experiment plants suffered from light deficiency, whereas healthy and robust plants were obtained in the second experiment. Plants obtained from both experiments showed comparable endophytic populations, but healthy potato plants possessed a significantly higher diversity of endophytes than stressed plants. In addition, plant tissue and variety specific endophytes were detected. Sequence analysis of 16S rRNA genes indicated that a broad phylogenetic spectrum of bacteria is able to colonise plants internally including alpha-, beta-, and gamma-Proteobacteria, high-GC Gram-positives, microbes belonging to the Flexibacter/Cytophaga/Bacteroides group and Planctomycetales. Group-specific analysis of Actinomycetes indicated a higher abundance and diversity of Streptomyces scabiei-related species in the variety Mehlige Mühlviertler, which is known for its resistance against potato common scab caused by S. scabiei.

  18. Use of 16S Ribosomal RNA Sequences to Infer Relationships among Archaebacteria.

    DTIC Science & Technology

    1987-04-16

    FIELD GROUP SUB-GROUP Archaebacteria; Eubacteria ; Eukaryotes; 16S Ribosomal RNA; 08 I Phylogeny; rRNA; RNA Sequencing; Molecular Clock; Urkingdoms; r...16S rRNA data were used to infer the relat onships among the archaebacteria, and of the archaebacteria to the eubacteria and eukaryotes. ur programs for...been published (1, 2, 16, 18). The analyses render untenable the suggestions of Lake and colleagues (Lake et al., 1985) that the eubacteria derive from

  19. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  20. Pyrosequencing: Applicability for Studying DNA Damage-induced Mutagenesis

    PubMed Central

    Minko, Irina G.; Earley, Lauriel F.; Larlee, Kimberly E.; Lin, Ying-Chih; Lloyd, R. Stephen

    2014-01-01

    Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a predetermined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively-labeled probes, and verification of mutations by Sanger sequencing. In search for an alternative procedure that would allow direct quantification of sequence variants in a mixed population of DNA molecules, we evaluated the applicability of pyrosequencing to site-specific mutagenesis assays. The progeny DNAs were analyzed that originated from replication of N6-(deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG)-containing vectors in primate cells, with the lesion being positioned in the 5′-GCNGG-3′ sequence context. Pyrosequencing detected ~8% G to T transversions and ~3.5% G to A transitions, a result that was in excellent agreement with frequencies previously measured by the standard procedure [Earley et al., 2013]. However, ~3.5% G to C transversions and ~2.0% deletions could not be detected by pyrosequencing. Consistent with these observations, the sensitivity of pyrosequencing for measuring the single deoxynucleotide variants differed depending on the deoxynucleotide identity, and in the given sequence contexts, was determined to be ~1-2% for A and T and ~5% for C. Pyrosequencing of other DNA isolates that were obtained following replication of MeFapy-dG-containing vectors in primate cells or Escherichia coli, identified several additional limitations. Collectively, our data demonstrated that pyrosequencing can be used for studying DNA damage-induced mutagenesis as an effective complementary experimental approach to current protocols. PMID:24962778

  1. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing.

    PubMed

    Wang, Liping; Liu, Lusan; Zheng, Binghui; Zhu, Yanzhong; Wang, Xing

    2013-07-15

    For full understanding of the bacterial community in the intertidal zones of Bohai Bay, China, we used pyrosequencing-based approach to analyze the 16S rRNA gene of bacteria in the sediments from the two typically intertidal zones - Qikou (Qi) and Gaoshaling (Ga). Results showed that, at a 0.03 distance, the sequences from the Qi sediment were assigned to 3252 operational taxonomic units (OTUs) which belong to 34 phyla, 69 classes and 119 genera, while the 3740 OTUs from the Ga sediment were affiliated with 33 phyla, 66 classes and 146 genera. Comparing the bacterial communities inhabiting in the two intertidal sediments, we observed significant difference in the dominant composition and distribution at phylum, class and genus levels. Canonical correspondence analysis (CCA) showed that the median grain size and DO were the most important factors regulating the bacterial abundance and diversity, while the other environmental factors have effects with different degree.

  2. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing.

    PubMed

    Wang, Neng Fei; Zhang, Tao; Zhang, Fang; Wang, En Tao; He, Jian Feng; Ding, Hui; Zhang, Bo Tao; Liu, Jie; Ran, Xiang Bin; Zang, Jia Ye

    2015-01-01

    This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil) in the Fildes Region (King George Island, Antarctica) using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas, and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01), phosphate phosphorus (p < 0.01), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.

  3. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature.

    PubMed

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  4. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing.

    PubMed

    Reyes, Carolina; Dellwig, Olaf; Dähnke, Kirstin; Gehre, Matthias; Noriega-Ortega, Beatriz E; Böttcher, Michael E; Meister, Patrick; Friedrich, Michael W

    2016-04-01

    To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing. Several bacterial families, including Desulfobulbaceae, Desulfuromonadaceae and Pelobacteraceae and genera, includingDesulfobacterandGeobacter, known to reduce Fe were detected and showed highest abundance near the Fe(III)/Fe(II) redox boundary. Additional genera with microorganisms capable of coupling fermentation to Fe-reduction, includingClostridiumandBacillus, were observed. Also, the Fe-oxidizing families Mariprofundaceae and Gallionellaceae occurred at the SK and BB sites, respectively, supporting Fe-cycling. In contrast, the sulphate (SO4 (2-)) reducing bacteriaDesulfococcusandDesulfobacteriumwere more abundant at greater depths concurring with a decrease in Fe-reducing activity. The communities revealed by pyrosequencing, thus, match the redox stratification indicated by the geochemistry, with the known Fe-reducers coinciding with the zone of Fe-reduction. Not the intensely studied model organisms, such asGeobacterspp., but rather versatile microorganisms, including sulphate reducers and possibly unknown groups appear to be important for Fe-reduction in these marine suboxic sediments.

  5. Microbial Diversity of Source and Point-of-Use Water in Rural Haiti – A Pyrosequencing-Based Metagenomic Survey

    PubMed Central

    Mukherjee, Nabanita; Bartelli, Debra; Patra, Cyril; Chauhan, Bhavin V.; Dowd, Scot E.

    2016-01-01

    Haiti endures the poorest water and sanitation infrastructure in the Western Hemisphere, where waterborne diseases cause significant morbidity and mortality. Most of these diseases are reported to be caused by waterborne pathogens. In this study, we examined the overall bacterial diversity of selected source and point-of-use water from rural areas in Central Plateau, Haiti using pyrosequencing of 16s rRNA genes. Taxonomic composition of water samples revealed an abundance of Firmicutes phyla, followed by Proteobacteria and Bacteroidetes. A total of 38 bacterial families and 60 genera were identified. The presence of several Klebsiella spp. (tentatively, K. pneumoniae, K. variicola and other Klebsiella spp.) was detected in most water samples. Several other human pathogens such as Aeromonas, Bacillus, Clostridium, and Yersinia constituted significantly higher proportion of bacterial communities in the point-of-use water samples compared to source water. Bacterial genera traditionally associated with biofilm formation, such as Chryseobacterium, Fusobacterium, Prevotella, Pseudomonas were found in the point-of-use waters obtained from water filters or domestic water storage containers. Although the pyrosequencing method utilized in this study did not reveal the viability status of these pathogens, the abundance of genetic footprints of the pathogens in water samples indicate the probable risk of bacterial transmission to humans. Therefore, the importance of appropriate handling, purification, and treatment of the source water needed to be clearly communicated to the communities in rural Haiti to ensure the water is safe for their daily use and intake. PMID:27936055

  6. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Zhang, Fang; Wang, En Tao; He, Jian Feng; Ding, Hui; Zhang, Bo Tao; Liu, Jie; Ran, Xiang Bin; Zang, Jia Ye

    2015-01-01

    This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil) in the Fildes Region (King George Island, Antarctica) using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas, and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01), phosphate phosphorus (p < 0.01), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing. PMID:26579095

  7. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.

    PubMed

    Zhang, Bingchang; Li, Renhui; Xiao, Peng; Su, Yangui; Zhang, Yuanming

    2016-03-01

    Cyanobacteria are the primary colonizers and form a dominant component of soil photosynthetic communities in biological soil crusts. They are crucial in improving soil environments, namely accumulating soil carbon and nitrogen. Many classical studies have examined cyanobacterial diversity in desert crusts, but relatively few comprehensive molecular surveys have been conducted. We used 454 pyrosequencing of 16S rRNA to investigate cyanobacterial composition and distribution on regional scales in the Gurbantunggut Desert. The relationship between cyanobacterial distribution and environmental factors was also explored. A total of 24,973 cyanobacteria partial 16S rRNA gene sequences were obtained, and 507OTUs were selected, as most OTUs had very few reads. Among these, 347 OTU sequences were of cyanobacteria origin, belonging to Oscillatoriales, Nostocales, Chroococcales, and uncultured cyanobacterium clone, respectively. Microcoleus vaginatus, Chroococcidiopsis spp. and M. steenstrupii were the dominant species in most areas of the Gurbantunggut Desert. Compared with other desert, the Gurbantunggut Desert differed in the prominence of Chroococcidiopsis spp. and lack of Pseudanabaenales. Species composition and abundance of cyanobacteria also showed distinct variations. Soil texture, precipitation, and nutrients and salt levels affected cyanobacterial distribution. Increased precipitation was helpful in improving cyanobacterial diversity. A higher content of coarse sand promoted the colonization and growth of Oscillatoriales and some phylotypes of Chroococcales. The fine-textured soil with higher nutrients and salts supported more varied populations of cyanobacteria, namely some heterocystous cyanobacteria. The results suggested that the Gurbantunggut Desert was rich in cyanobacteria and that precipitation was a primary regulating factor for cyanobacterial composition on a regional scale.

  8. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  9. Characterization of fecal microbiota from a Salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes.

    PubMed

    Patton, Toni G; Scupham, Alexandra J; Bearson, Shawn M D; Carlson, Steve A

    2009-05-12

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. The objective of the current work was to examine inter-individual diversity of cattle fecal microbiota and determine whether Salmonella shedding status correlated with community richness or evenness parameters. Using a ribosomal gene array-based approach, oligonucleotide fingerprinting of ribosomal genes (OFRG), we analyzed 1440 16S genes from 19 fecal samples obtained from a cattle herd with a history of salmonellosis. Identified bacteria belonged to the phyla Firmicutes (53%), Bacteroidetes (17%), and Proteobacteria (17%). Sequence analysis of 16S rDNA gene clones revealed that Spirochaetes and Verrucomicrobia were also present in the feces. The majority of Firmicutes present in the feces belonged to the order Clostridiales, which was verified via dot blot analysis. beta-Proteobacteria represented 1.5% of the bacterial community as determined by real-time PCR. Statistical analysis of the 16S libraries from the 19 animals indicated very high levels of species richness and evenness, such that individual libraries represented unique populations. Finally, this study did not identify species that prevented Salmonella colonization or resulted from Salmonella colonization.

  10. rDNA Loci Evolution in the Genus Glechoma (Lamiaceae)

    PubMed Central

    Jang, Tae-Soo; McCann, Jamie; Parker, John S.; Takayama, Koji; Hong, Suk-Pyo; Schneeweiss, Gerald M.

    2016-01-01

    Glechoma L. (Lamiaceae) is distributed in eastern Asia and Europe. Understanding chromosome evolution in Glechoma has been strongly hampered by its small chromosomes, constant karyotype and polyploidy. Here phylogenetic patterns and chromosomal variation in Glechoma species are considered, using genome sizes, chromosome mapping of 5S and 35S rDNAs by fluorescence in situ hybridisation (FISH), and phylogenetic analyses of internal transcribed spacers (nrITS) of 35S rDNA and 5S rDNA NTS sequences. Species and populations of Glechoma are tetraploid (2n = 36) with base chromosome number of x = 9. Four chromosomes carry pericentric 5S rDNA sites in their short arms in all the species. Two to four of these chromosomes also carry 35S rDNA in subterminal regions of the same arms. Two to four other chromosomes have 35S rDNA sites, all located subterminally within short arms; one individual possessed additional weak pericentric 35S rDNA signals on three other chromosomes. Five types of rDNA locus distribution have been defined on the basis of 35S rDNA variation, but none is species-specific, and most species have more than one type. Glechoma hederacea has four types. Genome size in Glechoma ranges from 0.80 to 0.94 pg (1C), with low levels of intrapopulational variation in all species. Phylogenetic analyses of ITS and NTS sequences distinguish three main clades coinciding with geographical distribution: European (G. hederacea–G. hirsuta), Chinese and Korean (G. longituba), and Japanese (G. grandis). The paper presents the first comparative cytogenetic analyses of Glechoma species including karyotype structure, rDNA location and number, and genome size interpreted in a phylogenetic context. The observed variation suggests that the genus is still in genomic flux. Genome size, but not rDNA loci number and distribution, provides a character for species delimitation which allows better inferences of interspecific relationships to be made, in the absence of well

  11. Rapid pathotyping of Newcastle Disease Virus by pyrosequencing.

    PubMed

    De Battisti, Cristian; Salomoni, Angela; Ormelli, Silvia; Monne, Isabella; Capua, Ilaria; Cattoli, Giovanni

    2013-03-01

    Newcastle Disease Virus (NDV) is the only member of serotype 1 avian paramyxoviruses (APMV-1) that causes respiratory and neurological disease in chickens and other species of birds and can cause severe economic losses in the poultry sector. Due to the relevant variability of the genome and the pathogenicity of NDV isolates, their detection in a specimen is not sufficient to provide and confirm an exact diagnosis, and so the assessment of virus pathotype is required. To diagnose rapidly and pathotype NDV directly in clinical specimens, a method based on RT-PCR and pyrosequencing analysis has been developed and is reported in the present study. A pair of degenerated primers was designed to amplify a portion of the fusion (F) gene responsible for virulence and used to test 315 specimens collected from 2006 to 2011. The subsequent pyrosequencing reaction identified a 30-bp region encompassing the cleavage site. A total of 213 out of 315 samples were pyrosequenced and results were compared and confirmed by the Sanger sequencing procedure, which is traditionally performed for NDV pathotyping. The pyrosequencing reaction provided high quality results in real time and proved to be more rapid and cost-efficient than the classical sequencing procedure, indicating it as a possible valid alternative to the currently used diagnostic assays for NDV.

  12. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing.

    PubMed

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  13. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing.

    PubMed

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O(6)-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  14. Pyrosequencing reveals bacteria carried in different wind eroded sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. A novel technique, pyrosequencing, promises to expand our understanding of the vast microbial diversity of soils and eroded sediments as it can sequence between 10-10...

  15. Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing

    PubMed Central

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2016-01-01

    The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas. PMID:27853295

  16. Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing.

    PubMed

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M; Sanpool, Oranuch; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2016-11-17

    The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas.

  17. Identification of medically important fungi by the Pyrosequencing technology.

    PubMed

    Gharizadeh, B; Norberg, E; Löffler, J; Jalal, S; Tollemar, J; Einsele, H; Klingspor, L; Nyrén, P

    2004-02-01

    The Pyrosequencing technology was used for identification of different clinically relevant fungi. The tests were performed on amplicons derived from the 18S rRNA gene using polymerase chain reaction (PCR) universal primers for amplification. Sequencing was performed up to 40 bases in a variable region with a designed general sequencing primer and the Pyrosequence data were analyzed by BLAST sequence search in the GenBank database. DNA from a total of 21 fungal specimens consisting of nine strains of clinically relevant fungi and 12 clinical specimens from patients suffering from proven invasive fungal infections were PCR-amplified and analyzed by gel electrophoresis, PCR-enzyme-linked immunosorbent assay (ELISA) and the Pyrosequencing technology. All data obtained by the Pyrosequencing technology were in agreement with the results obtained by PCR-ELISA using species/genus-specific oligonucleotides and were as well in accordance with the culture results. The results demonstrate that the Pyrosequencing method is a reproducible and reliable technique for identification of fungal pathogens.

  18. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  19. Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing.

    PubMed

    Gulino, Lisa-Maree; Ouwerkerk, Diane; Kang, Alicia Y H; Maguire, Anita J; Kienzle, Marco; Klieve, Athol V

    2013-01-01

    Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as 'shared' OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.

  20. Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing.

    PubMed

    Ferrari, Belinda; Winsley, Tristrom; Ji, Mukan; Neilan, Brett

    2014-02-04

    The phylum candidatus Saccharibacteria formerly known as Candidate Division TM7 is a highly ubiquitous phylum with 16S rRNA gene sequences reported in soils, sediments, wastewater and animals, as well as a host of clinical environments. Here, the application of two taxon-specific primers on environmental and human-associated samples using bar-coded tag pyrosequencing revealed two new clades for this phylum to exist and we propose that the division consists of 2 monophyletic and 2 polyphyletic clades. Investigation into TM7 ecology revealed that a high proportion (58%) of phylotypes were sample specific, few were widely distributed and of those most widely distributed all belonged to subdivision 3. Additionally, 50% of the most relatively abundant phylotypes observed were also subdivision 3 members. Community analysis showed that despite the presence of a high proportion of unique phylotypes, specific groups of samples still harbor similar TM7 communities with samples clustering together. The lack of relatively abundant phylotypes from subdivisions 1, 2 and 4 and the presence of very few cosmopolitan members' highlights not only the site specific nature of this phylum but provides insight into why the majority of studies into TM7 have been biased towards subdivision 3.

  1. Pyrosequencing Reveals the Influence of Organic and Conventional Farming Systems on Bacterial Communities

    PubMed Central

    Li, Ru; Khafipour, Ehsan; Krause, Denis O.; Entz, Martin H.; de Kievit, Teresa R.; Fernando, W. G. Dilantha

    2012-01-01

    It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada’s oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation. PMID:23284808

  2. Pyrosequencing demonstrated complex microbial communities in a membrane filtration system for a drinking water treatment plant.

    PubMed

    Kwon, Soondong; Moon, Eunjeong; Kim, Taek-Seung; Hong, Seungkwan; Park, Hee-Deung

    2011-01-01

    Microbial community composition in a pilot-scale microfiltration plant for drinking water treatment was investigated using high-throughput pyrosequencing technology. Sequences of 16S rRNA gene fragments were recovered from raw water, membrane tank particulate matter, and membrane biofilm, and used for taxonomic assignments, estimations of diversity, and the identification of potential pathogens. Greater bacterial diversity was observed in each sample (1,133-1,731 operational taxonomic units) than studies using conventional methods, primarily due to the large number (8,164-22,275) of sequences available for analysis and the identification of rare species. Betaproteobacteria predominated in the raw water (61.1%), while Alphaproteobacteria were predominant in the membrane tank particulate matter (42.4%) and membrane biofilm (32.8%). The bacterial community structure clearly differed for each sample at both the genus and species levels, suggesting that different environmental and growth conditions were generated during membrane filtration. Moreover, signatures of potential pathogens including Legionella, Pseudomonas, Aeromonas, and Chromobacterium were identified, and the proportions of Legionella and Chromobacterium were elevated in the membrane tank particulate matter, suggesting a potential threat to drinking water treated by membrane filtration.

  3. Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing

    PubMed Central

    Ferrari, Belinda; Winsley, Tristrom; Ji, Mukan; Neilan, Brett

    2014-01-01

    The phylum candidatus Saccharibacteria formerly known as Candidate Division TM7 is a highly ubiquitous phylum with 16S rRNA gene sequences reported in soils, sediments, wastewater and animals, as well as a host of clinical environments. Here, the application of two taxon-specific primers on environmental and human-associated samples using bar-coded tag pyrosequencing revealed two new clades for this phylum to exist and we propose that the division consists of 2 monophyletic and 2 polyphyletic clades. Investigation into TM7 ecology revealed that a high proportion (58%) of phylotypes were sample specific, few were widely distributed and of those most widely distributed all belonged to subdivision 3. Additionally, 50% of the most relatively abundant phylotypes observed were also subdivision 3 members. Community analysis showed that despite the presence of a high proportion of unique phylotypes, specific groups of samples still harbor similar TM7 communities with samples clustering together. The lack of relatively abundant phylotypes from subdivisions 1, 2 and 4 and the presence of very few cosmopolitan members' highlights not only the site specific nature of this phylum but provides insight into why the majority of studies into TM7 have been biased towards subdivision 3. PMID:24492458

  4. Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing.

    PubMed

    Garcia, A; Polonio, J C; Polli, A D; Santos, C M; Rhoden, S A; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-11-03

    Sapindus saponaria L. of Sapindaceae family is popularly known as soldier soap and is found in Central and South America. A study of such medicinal plants might reveal a more complex diversity of microorganisms as compared to non-medicinal plants, considering their metabolic potential and the chemical communication between their natural microbiota. Rhizosphere is a highly diverse microbial habitat with respect to both the diversity of species and the size of the community. Rhizosphere bacteriome associated with medicinal plant S. saponaria is still poorly known. The objective of this study was to assess the rhizosphere microbiome of the medicinal plant S. saponaria using pyrosequencing, a culture-independent approach that is increasingly being used to estimate the number of bacterial species present in different environments. In their rhizosphere microbiome, 26 phyla were identified from 5089 sequences of 16S rRNA gene, with a predominance of Actinobacteria (33.54%), Acidobacteria (22.62%), and Proteobacteria (24.72%). The rarefaction curve showed a linear increase, with 2660 operational taxonomic units at 3% distance sequence dissimilarity, indicating that the rhizosphere microbiome associated with S. saponaria was highly diverse with groups of bacteria important for soil management, which could be further exploited for agricultural and biotechnological purposes.

  5. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.

    PubMed

    Li, Ru; Khafipour, Ehsan; Krause, Denis O; Entz, Martin H; de Kievit, Teresa R; Fernando, W G Dilantha

    2012-01-01

    It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

  6. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing.

    PubMed

    Park, Eun-Jin; Chun, Jongsik; Cha, Chang-Jun; Park, Wan-Soo; Jeon, Che Ok; Bae, Jin-Woo

    2012-05-01

    Kimchi, a food made of fermented vegetables, is densely populated by indigenous microorganisms that originate from the raw ingredients under normal conditions. Most microbiological studies on kimchi have been on the most popular dish, baechu-kimchi (Chinese cabbage kimchi). Therefore, relatively little is known about the various other kinds of kimchi (depending on the region, season, main ingredient, starter culture inoculation and recipe). In this study, we collected 100 samples periodically during the fermentation of ten representative kinds of kimchi (including starter-inoculated kimchi) that were stored in the refrigerator (4 °C) during the 30-35 days fermentation period. The multiplex barcoded pyrosequencing of a hypervariable V1-V3 region of the 16S ribosomal RNA (rRNA) gene tagged with sample-specific barcodes for multiplex identifiers was employed for bacterial community profiling. We found that bacterial communities differed between starter-inoculated and non-inoculated kimchi at the early stages of fermentation, but overall there were no significant differences in the late phases. Also, the diversity and richness of bacterial communities varied depending on the various types of kimchi, and these differences could largely be explained by the major ingredients and the manufacture processes of each types of kimchi. This study provides the comprehensive understanding of the factors influencing the biodiversity of the kimchi ecosystem.

  7. Shedding Light on the Microbial Community of the Macropod Foregut Using 454-Amplicon Pyrosequencing

    PubMed Central

    Gulino, Lisa-Maree; Ouwerkerk, Diane; Kang, Alicia Y. H.; Maguire, Anita J.; Kienzle, Marco; Klieve, Athol V.

    2013-01-01

    Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as ‘shared’ OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry. PMID:23626688

  8. Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets.

    PubMed

    Carda-Diéguez, Miguel; Mira, Alex; Fouz, Belén

    2014-02-01

    The routine use of chemotherapy to control bacterial diseases in aquatic populations has resulted in the development and spread of antibiotic resistance. The inclusion of immunostimulants in fish diets (functional diets) is one of the main strategies to solve this threat. This study aimed to analyse the intestinal microbiota of cultured European sea bass (Dicentrarchus labrax) fed two functional diets applying pyrosequencing of PCR-amplified 16S rRNA gene. Quality-filtered reads were assigned to family and genus taxonomic levels using the Ribosomal Database Project classifier. The autochthonous intestinal microbiota of sea bass consisted of two dominant bacterial genera: Dysgonomonas (Bacteroidetes) and Ralstonia (Betaproteobacteria), but effects of diet on this dominance were observed. In fact, the genus Dysgonomonas significantly decreased in samples from fish fed functional diets, recovering control levels at the end of the study. However, Ralstonia proportion significantly raised in samples from fish fed diet C and maintained this high level along the study period. The developed protocol could be used to study the composition of bacterial communities in the fish intestine under different nutritional and environmental conditions and its impact on infection, immune system and general fitness of fish.

  9. Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China

    PubMed Central

    Wang, Xiaohui; Hu, Man; Xia, Yu; Ding, Kun

    2012-01-01

    To determine if there is a core microbial community in the microbial populations of different wastewater treatment plants (WWTPs) and to investigate the effects of wastewater characteristics, operational parameters, and geographic locations on microbial communities, activated sludge samples were collected from 14 wastewater treatment systems located in 4 cities in China. High-throughput pyrosequencing was used to examine the 16S rRNA genes of bacteria in the wastewater treatment systems. Our results showed that there were 60 genera of bacterial populations commonly shared by all 14 samples, including Ferruginibacter, Prosthecobacter, Zoogloea, Subdivision 3 genera incertae sedis, Gp4, Gp6, etc., indicating that there is a core microbial community in the microbial populations of WWTPs at different geographic locations. The canonical correspondence analysis (CCA) results showed that the bacterial community variance correlated most strongly with water temperature, conductivity, pH, and dissolved oxygen (DO) content. Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 25.7% of the variance of bacterial communities independently, followed by operational parameters (23.9%) and geographic location (14.7%). Results of this study provided insights into the bacterial community structure and diversity in geographically distributed WWTPs and discerned the relationships between bacterial community and environmental variables in WWTPs. PMID:22843531

  10. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species.

  11. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research.

    PubMed

    Jo, Jay-Hyun; Kennedy, Elizabeth A; Kong, Heidi H

    2016-03-01

    Skin serves as a protective barrier and also harbors numerous microorganisms collectively comprising the skin microbiome. As a result of recent advances in sequencing (next-generation sequencing), our understanding of microbial communities on skin has advanced substantially. In particular, the 16S ribosomal RNA gene sequencing technique has played an important role in efforts to identify the global communities of bacteria in healthy individuals and patients with various disorders in multiple topographical regions over the skin surface. Here, we describe basic principles, study design, and a workflow of 16S ribosomal RNA gene sequencing methodology, primarily for investigators who are not familiar with this approach. This article will also discuss some applications and challenges of 16S ribosomal RNA sequencing as well as directions for future development.

  12. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  13. Processing pathway of Escherichia coli 16S precursor rRNA.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA. Images PMID:2646597

  14. Phylogenetic diversity of rhizobia associated with horsegram [Macrotyloma uniflorum (Lam.) Verdc.] grown in South India based on glnII, recA and 16S-23S intergenic sequence analyses.

    PubMed

    Appunu, Chinnaswamy; Ganesan, Govindan; Kalita, Michał; Kaushik, Raghavan; Saranya, Balamurugan; Prabavathy, Vaiyapuri Ramalingam; Sudha, Nair

    2011-04-01

    Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I-V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.

  15. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies.

    PubMed

    Rössler, D; Ludwig, W; Schleifer, K H; Lin, C; McGill, T J; Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  16. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  17. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  18. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods.

    PubMed

    Kim, Yi-Seul; Kim, Min-Cheol; Kwon, Soon-Wo; Kim, Soo-Jin; Park, In-Cheol; Ka, Jong-Ok; Weon, Hang-Yeon

    2011-06-01

    Despite the importance of meju as a raw material used to make Korean soy sauce (ganjang) and soybean paste (doenjang), little is known about the bacterial diversity of Korean meju. In this study, the bacterial communities in meju were examined using both culture-dependent and independent methods in order to evaluate the diversity of the bacterial population. Analyses of the 16S rRNA gene sequences of the bacterial strains isolated from meju samples showed that the dominant species were related to members of the genera Bacillus, Enterococcus, and Pediococcus. The community DNAs extracted from nine different meju samples were analyzed by barcoded pyrosequencing method targeting of the V1 to V3 hypervariable regions of the 16S rRNA gene. In total, 132,374 sequences, with an average read length of 468 bp, were assigned to several phyla, with Firmicutes (93.6%) representing the predominant phylum, followed by Proteobacteria (4.5%) and Bacteroidetes (0.8%). Other phyla accounted for less than 1% of the total bacterial sequences. Most of the Firmicutes were Bacillus and lactic acid bacteria, mainly represented by members of the genera Enterococcus, Lactococcus, and Leuconostoc, whose ratio varied among different samples. In conclusion, this study indicated that the bacterial communities in meju were very diverse and a complex microbial consortium containing various microorganisms got involved in meju fermentation than we expected before.

  19. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea.

    PubMed

    Ahn, Jae-Hyung; Hong, In-Pyo; Bok, Jeung-Im; Kim, Byung-Yong; Song, Jaekyeong; Weon, Hang-Yeon

    2012-10-01

    The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.

  20. Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine.

    PubMed

    Kumar, Dileep; Rub, Malik Abdul; Akram, Mohd; Kabir-ud-Din

    2014-11-11

    The effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium(III) complex of glycylphenylalanine ([Cr(III)-Gly-Phe]2+) has been investigated using UV-visible spectrophotometer at different temperatures. The order of reaction with respect to [Cr(III)-Gly-Phe]2+ is unity while it is fractional with respect to ninhydrin. Whereas, the values of rate constant (kψ) increase and leveling-off regions, like conventional single chain cetyltrimethylammonium bromide (CTAB) surfactant, were observed with geminis, later produces a third region of increasing kψ at higher gemini surfactant concentrations. This unusual third-region effect of the gemini micelles is assigned to changes in their micellar morphologies. The results obtained in micellar media were treated in terms of pseudo-phase model. The values of thermodynamic parameters (Ea, ΔH# and ΔS#) and binding constants (KA and KNin) have been evaluated.

  1. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing

    PubMed Central

    Kostovcik, Martin; Bateman, Craig C; Kolarik, Miroslav; Stelinski, Lukasz L; Jordal, Bjarte H; Hulcr, Jiri

    2015-01-01

    Symbioses are increasingly seen as dynamic ecosystems with multiple associates and varying fidelity. Symbiont specificity remains elusive in one of the most ecologically successful and economically damaging eukaryotic symbioses: the ambrosia symbiosis of wood-boring beetles and fungi. We used multiplexed pyrosequencing of amplified internal transcribed spacer II (ITS2) ribosomal DNA (rDNA) libraries to document the communities of fungal associates and symbionts inside the mycangia (fungus transfer organ) of three ambrosia beetle species, Xyleborus affinis, Xyleborus ferrugineus and Xylosandrus crassiusculus. We processed 93 beetle samples from 5 locations across Florida, including reference communities. Fungal communities within mycangia included 14–20 fungus species, many more than reported by culture-based studies. We recovered previously known nutritional symbionts as members of the core community. We also detected several other fungal taxa that are equally frequent but whose function is unknown and many other transient species. The composition of fungal assemblages was significantly correlated with beetle species but not with locality. The type of mycangium appears to determine specificity: two Xyleborus with mandibular mycangia had multiple dominant associates with even abundances; Xylosandrus crassiusculus (mesonotal mycangium) communities were dominated by a single symbiont, Ambrosiella sp. Beetle mycangia also carried many fungi from the environment, including plant pathogens and endophytes. The ITS2 marker proved useful for ecological analyses, but the taxonomic resolution was limited to fungal genus or family, particularly in Ophiostomatales, which are under-represented in our amplicons as well as in public databases. This initial analysis of three beetle species suggests that each clade of ambrosia beetles and each mycangium type may support a functionally and taxonomically distinct symbiosis. PMID:25083930

  2. Direct Detection of 16S rRNA in Soil Extracts by Using Oligonucleotide Microarrays

    PubMed Central

    Small, Jack; Call, Douglas R.; Brockman, Fred J.; Straub, Timothy M.; Chandler, Darrell P.

    2001-01-01

    We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 μg of total RNA, representing approximately 7.5 × 106 Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR. PMID:11571176

  3. 16S rRNA Phylogeny of Sponge-Associated Cyanobacteria

    PubMed Central

    Steindler, Laura; Huchon, Dorothée; Avni, Adi; Ilan, Micha

    2005-01-01

    Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales. PMID:16000832

  4. Molecular Diagnosis of Actinomadura madurae Infection by 16S rRNA Deep Sequencing

    PubMed Central

    SenGupta, Dhruba J.; Hoogestraat, Daniel R.; Cummings, Lisa A.; Bryant, Bronwyn H.; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W.; Chau, Mimosa; Barbee, Lindley A.; Rosenthal, Christopher; Cookson, Brad T.; Hoffman, Noah G.

    2013-01-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms. PMID:24108607

  5. Molecular diagnosis of Actinomadura madurae infection by 16S rRNA deep sequencing.

    PubMed

    Salipante, Stephen J; Sengupta, Dhruba J; Hoogestraat, Daniel R; Cummings, Lisa A; Bryant, Bronwyn H; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W; Chau, Mimosa; Barbee, Lindley A; Rosenthal, Christopher; Cookson, Brad T; Hoffman, Noah G

    2013-12-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms.

  6. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra.

    PubMed

    Ota-Tsuzuki, C; Brunheira, A T P; Mayer, M P A

    2008-10-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes.

  7. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    PubMed Central

    Elbrecht, Vasco; Taberlet, Pierre; Dejean, Tony; Valentini, Alice; Usseglio-Polatera, Philippe; Beisel, Jean-Nicolas; Coissac, Eric; Boyer, Frederic

    2016-01-01

    Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate. PMID:27114891

  8. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra

    PubMed Central

    Ota-Tsuzuki, C.; Brunheira, A.T.P.; Mayer, M.P.A.

    2008-01-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes. PMID:24031274

  9. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  10. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  11. Rapid identification of bacteria from positive blood cultures by terminal restriction fragment length polymorphism profile analysis of the 16S rRNA gene.

    PubMed

    Christensen, Jeffrey E; Stencil, Jennifer A; Reed, Kurt D

    2003-08-01

    Bacteremia results in significant morbidity and mortality, especially among patient populations that are immunocompromised. Broad-spectrum antibiotics are administered to patients suspected to have bloodstream infections that are awaiting diagnosis that depends on blood culture analysis. Significant delays in identification of pathogens can result, primarily due to the dependence on growth-based identification systems. To address these limitations, we took advantage of terminal restriction fragment (TRF) length polymorphisms (T-RFLP) due to 16S ribosomal DNA (rDNA) sequence diversity to rapidly identify bacterial pathogens directly from positive blood culture. TRF profiles for each organism were determined by sizing fragments from restriction digests of PCR products derived from two sets of 16S rDNA-specific fluorescent dye-labeled primers. In addition, we created a TRF profile database (TRFPD) with 5899 predicted TRF profiles from sequence information representing 2860 different bacterial species. TRF profiles were experimentally determined for 69 reference organisms and 32 clinical isolates and then compared against the predicted profiles in the TRFPD. The predictive value of the profiles was found to be accurate to the species level with most organisms tested. In addition, identification of 10 different genera was possible with profiles comprising two or three TRFs. Although it was possible to identify Enterobacteriaceae by using a profile of three TRFs, the similarity of the TRF profiles of these organisms makes differentiation of species less reliable with the current method. The ability to rapidly (i.e., within approximately 8 h) identify bacteria from blood cultures has potential for reducing unnecessary use of broad-spectrum antibiotics and promoting more timely prescription of appropriate antibiotics.

  12. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  13. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing

    PubMed Central

    2011-01-01

    Background Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas. Results Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum, and Finegoldia magna. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include Wolbachia, Coxiella, and Borrelia. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with R. microplus. Conclusions This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with R. microplus. Additional reports on the identification of new bacterial species maintained in nature by R. microplus that may be pathogenic to its vertebrate hosts

  14. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis.

    PubMed

    Coelho, Marcia Reed Rodrigues; von der Weid, Irene; Zahner, Viviane; Seldin, Lucy

    2003-05-28

    Forty-two strains representing the eight recognized nitrogen-fixing Paenibacillus species and 12 non-identified strains were examined by restriction fragment length polymorphism (RFLP) analysis of part of 16S and 23S rRNA genes amplified by polymerase chain reaction (PCR). Eleven different 16S rDNA genotypes were obtained from the combined data of RFLP analysis with four endonucleases and they were in agreement with the established taxonomic classification. Only one group of unclassified strains (Group I) was assigned in a separate genotype, suggesting they belong to a new species. Using the 23S PCR-RFLP method only six genotypes were detected, showing that this method is less discriminative than the 16S PCR-RFLP. Using the multilocus enzyme electrophoresis (MLEE) assay, the 48 strains tested could be classified into 35 zymovars. The seven enzymatic loci tested were polymorphic and the different profiles obtained among strains allowed the grouping of strains into 10 clusters. The PCR-RFLP methods together with the MLEE assay provide a rapid tool for the characterization and the establishment of the taxonomic position of isolates belonging to this nitrogen-fixing group, which shows a great potentiality in promoting plant growth.

  15. 16S rRNA beacons for bacterial monitoring during human space missions.

    PubMed

    Larios-Sanz, Maia; Kourentzi, Katerina D; Warmflash, David; Jones, Jeffrey; Pierson, Duane L; Willson, Richard C; Fox, George E

    2007-04-01

    Microorganisms are unavoidable in space environments and their presence has, at times, been a source of problems. Concerns about disease during human space missions are particularly important considering the significant changes the immune system incurs during spaceflight and the history of microbial contamination aboard the Mir space station. Additionally, these contaminants may have adverse effects on instrumentation and life-support systems. A sensitive, highly specific system to detect, characterize, and monitor these microbial populations is essential. Herein we describe a monitoring approach that uses 16S rRNA targeted molecular beacons to successfully detect several specific bacterial groupings. This methodology will greatly simplify in-flight monitoring by minimizing sample handling and processing. We also address and provide solutions to target accessibility problems encountered in hybridizations that target 16S rRNA.

  16. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  17. A renaissance for the pioneering 16S rRNA gene

    SciTech Connect

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  18. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

    PubMed

    Ward, B B; Martino, D P; Diaz, M C; Joye, S B

    2000-07-01

    Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.

  19. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  20. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    NASA Technical Reports Server (NTRS)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  1. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    SciTech Connect

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  2. Phenotypic characterisation and 16S rRNA sequence analysis of veterinary isolates of Streptococcus pluranimalium.

    PubMed

    Twomey, D F; Carson, T; Foster, G; Koylass, M S; Whatmore, A M

    2012-05-01

    Forty-two isolates of Streptococcus pluranimalium were identified from cattle (n=38), sheep (n=2), an alpaca (n=1) and a pheasant (n=1) in the United Kingdom. The isolates were confirmed as S. pluranimalium by 16S rRNA sequence analysis but could not be differentiated reliably from Streptococcus acidominimus by phenotypic characterisation using commercial kits routinely used in veterinary laboratories. The alanyl-phenylalanyl-proline arylamidase reaction could be used to differentiate S. pluranimalium (positive) from Aerococcus urinae (negative).

  3. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  4. How conserved are the conserved 16S-rRNA regions?

    PubMed Central

    Ortiz Suarez, Luis Enrique

    2017-01-01

    The 16S rRNA gene has been used as master key for studying prokaryotic diversity in almost every environment. Despite the claim of several researchers to have the best universal primers, the reality is that no primer has been demonstrated to be truly universal. This suggests that conserved regions of the gene may not be as conserved as expected. The aim of this study was to evaluate the conservation degree of the so-called conserved regions flanking the hypervariable regions of the 16S rRNA gene. Data contained in SILVA database (release 123) were used for the study. Primers reported as matches of each conserved region were assembled to form contigs; sequences sizing 12 nucleotides (12-mers) were extracted from these contigs and searched into the entire set of SILVA sequences. Frequency analysis shown that extreme regions, 1 and 10, registered the lowest frequencies. 12-mer frequencies revealed segments of contigs that were not as conserved as expected (≤90%). Fragments corresponding to the primer contigs 3, 4, 5b and 6a were recovered from all sequences in SILVA database. Nucleotide frequency analysis in each consensus demonstrated that only a small fraction of these so-called conserved regions is truly conserved in non-redundant sequences. It could be concluded that conserved regions of the 16S rRNA gene exhibit considerable variation that has to be considered when using this gene as biomarker. PMID:28265511

  5. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing.

    PubMed

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S; Perkins, David L

    2016-01-22

    The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 10(6) reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.

  6. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid.

    PubMed

    Akutsu, Tomoko; Motani, Hisako; Watanabe, Ken; Iwase, Hirotaro; Sakurada, Koichi

    2012-05-01

    To preliminarily evaluate the applicability of bacterial DNA as a marker for the forensic identification of vaginal fluid, we developed and performed PCR-based detection of 16S ribosomal RNA genes of Lactobacillus spp. dominating the vagina and of bacterial vaginosis-related bacteria from DNA extracted from body fluids and stains. As a result, 16S ribosomal RNA genes of Lactobacillus crispatus, Lactobacillus jensenii and Atopobium vaginae were specifically detected in vaginal fluid and female urine samples. Bacterial genes detected in female urine might have originated from contaminated vaginal fluid. In addition, those of Lactobacillus iners, Lactobacillus gasseri and Gardnerella vaginalis were also detected in non-vaginal body fluids such as semen. Because bacterial genes were successfully amplified in DNA samples extracted by using the general procedure for animal tissues without any optional treatments, DNA samples prepared for the identification of vaginal fluid can also be used for personal identification. In conclusion, 16S ribosomal RNA genes of L. crispatus, L. jensenii and A. vaginae could be effective markers for forensic identification of vaginal fluid.

  7. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis

    PubMed Central

    El Gawhary, Somaia; El-Anany, Mervat; Ali, Doaa; El Gameel, El Qassem

    2016-01-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen. PMID:26494728

  8. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing

    PubMed Central

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S.; Perkins, David L.

    2016-01-01

    The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. PMID:26718401

  9. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis.

    PubMed

    El Gawhary, Somaia; El-Anany, Mervat; Hassan, Reem; Ali, Doaa; El Gameel, El Qassem

    2016-02-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen.

  10. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  11. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  12. Processing of Escherichia coli 16S rRNA with bacteriophage lambda leader sequences.

    PubMed Central

    Krych, M; Sirdeshmukh, R; Gourse, R; Schlessinger, D

    1987-01-01

    To test whether any specific 5' precursor sequences are required for the processing of pre-16S rRNA, constructs were studied in which large parts of the 5' leader sequence were replaced by the coliphage lambda pL promoter and adjacent sequences. Unexpectedly, few full-length transcripts of the rRNA were detected after the pL promoter was induced, implying that either transcription was poor or most of the rRNA chains with lambda leader sequences were unstable. Nevertheless, sufficient transcription occurred to permit the detection of processing by S1 nuclease analysis. RNA transcripts in which 2/3 of the normal rRNA leader was deleted (from the promoter up to the normal RNase III cleavage site) were processed to form the normal 5' terminus. Thus, most of the double-stranded stem that forms from sequences bracketing wild-type 16S pre-rRNA is apparently not required for proper processing; the expression of such modified transcripts, however, must be increased before the efficiency of processing of the 16S rRNA formed can be assessed. Images PMID:2445728

  13. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    PubMed Central

    Tikhonov, Mikhail; Leach, Robert W; Wingreen, Ned S

    2015-01-01

    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina data sets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as one nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly. PMID:25012900

  14. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient.

    PubMed

    Davey, Marie L; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael

    2013-01-01

    Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low-alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.

  15. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing.

    PubMed

    Davey, Marie L; Heegaard, Einar; Halvorsen, Rune; Ohlson, Mikael; Kauserud, Håvard

    2012-09-01

    Bryophytes are a dominant vegetation component of the boreal forest, but little is known about their associated fungal communities, including seasonal variation within them. Seasonal variation in the fungal biomass and composition of fungal communities associated with three widespread boreal bryophytes was investigated using HPLC assays of ergosterol and amplicon pyrosequencing of the internal transcribed spacer 2 (ITS2) region of rDNA. The bryophyte phyllosphere community was dominated by Ascomycota. Fungal biomass did not decline appreciably in winter (P=0.272). Significant host-specific patterns in seasonal variation of biomass were detected (P=0.003). Although seasonal effects were not the primary factors structuring community composition, collection date significantly explained (P=0.001) variation not attributed to locality, host, and tissue. Community homogenization and a reduction in turnover occurred with the onset of frost events and subzero air and soil temperatures. Fluctuations in the relative abundance of particular fungal groups seem to reflect the nature of their association with mosses, although conclusions are drawn with caution because of potential methodological bias. The moss-associated fungal community is dynamic, exhibiting seasonal turnover in composition and relative abundance of different fungal groups, and significant fungal biomass is present year-round, suggesting a winter-active fungal community.

  16. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing

    PubMed Central

    Tzanetakis, Giorgos N.; Azcarate-Peril, Andrea M.; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G.; Madianos, Phoebus N.; Divaris, Kimon

    2015-01-01

    Introduction Elucidating the microbial ecology of endodontic infections (EI) is a necessary step in developing effective intra-canal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population, using high throughput sequencing methods. Methods 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted and sequencing data were analyzed using an oral microbiome-specific (HOMD) and a generic (Greengenes; GG) database. Bacterial abundance and diversity were examined by EI type (primary or persistent) and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Results Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (ANOSIM R=0.087, P=0.005) and symptoms (ANOSIM R=0.055, P=0.047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes as compared to primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less-abundant phyla were identified using the GG database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher Phylogenetic Diversity (asymptomatic: PD=9.2, [standard error (se)=1.3]; symptomatic: PD=8.2, se=0.7) compared to primary infections (asymptomatic: PD=5.9, se=0.8; symptomatic: PD=7.4 se=1.0). Conclusions The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. PMID:25906920

  17. Pyrosequencing Reveals Changes in Soil Bacterial Communities after Conversion of Yungas Forests to Agriculture

    PubMed Central

    Montecchia, Marcela S.; Tosi, Micaela; Soria, Marcelo A.; Vogrig, Jimena A.; Sydorenko, Oksana; Correa, Olga S.

    2015-01-01

    The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands. PMID:25793893

  18. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  19. Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics.

    PubMed

    Dubourg, Grégory; Lagier, Jean Christophe; Robert, Catherine; Armougom, Fabrice; Hugon, Perrine; Metidji, Sarah; Dione, Niokhor; Dangui, Nicole Prisca Makaya; Pfleiderer, Anne; Abrahao, Joñatas; Musso, Didier; Papazian, Laurent; Brouqui, Philippe; Bibi, Fehmida; Yasir, Muhammad; Vialettes, Bernard; Raoult, Didier

    2014-08-01

    The human gut flora is currently widely characterised using molecular techniques. Microbial culturomics (large-scale culture conditions with identification of colonies using MALDI-TOF or 16S rRNA) is part of the rebirth of bacterial culture that was initiated by environmental microbiologists for the design of axenic culture for intracellular bacteria in clinical microbiology. Culturomics was performed on four stool samples from patients treated with large-scale antibiotics to assess the diversity of their gut flora in comparison with other culture-dependent studies. Pyrosequencing of the V6 region was also performed and was compared with a control group. Gut richness was also estimated by bacterial counting after microscopic observation. In total, 77 culture conditions were tested and 32,000 different colonies were generated; 190 bacterial species were identified, with 9 species that had not been isolated from the human gut before this study, 7 newly described in humans and 8 completely new species. A dramatic reduction in diversity was observed for two of the four stool samples for which antibiotic treatment was prolonged and uninterrupted. The total number of bacteria was generally preserved, suggesting that the original population was replaced but was sustained in size. Discordances between culture and pyrosequencing biodiversity biomarkers highlight the depth of bias of molecular studies. Stool samples studied showed a dramatic reduction in bacterial diversity. Considering the variable antibiotic concentration in the gut, this reduction in the number of species is possibly linked to the production of bacteriocin in the upper digestive tract by specific bacteria, such as Lactobacillus spp.

  20. Pyrosequencing analysis of a bacterial community associated with lava-formed soil from the Gotjawal forest in Jeju, Korea

    PubMed Central

    Kim, Jong-Shik; Lee, Keun Chul; Kim, Dae-Shin; Ko, Suk-Hyung; Jung, Man-Young; Rhee, Sung-Keun; Lee, Jung-Sook

    2015-01-01

    In this study, we analyzed the bacterial diversity in soils collected from Gyorae Gotjawal forest, where globally unique topography, geology, and ecological features support a forest grown on basalt flows from 110,000 to 120,000 years ago and 40,000 to 50,000 years ago. The soils at the site are fertile, with rocky areas, and are home to endangered species of plants and animals. Rainwater penetrates to the groundwater aquifer, which is composed of 34% organic matter containing rare types of soil and no soil profile. We determined the bacterial community composition using 116,475 reads from a 454-pyrosequencing analysis. This dataset included 12,621 operational taxonomic units at 3% dissimilarity, distributed among the following groups: Proteobacteria (56.2%) with 45.7% of α-Proteobacteria, Actinobacteria (25%), Acidobacteria (10.9%), Chloroflexi (2.4%), and Bacteroidetes (0.9%). In addition, 16S rRNA gene sequences were amplified using polymerase chain reaction and domain-specific primers to construct a clone library based on 142 bacterial clones. These clones were affiliated with the following groups: Proteobacteria (56%) with 51% of α-Proteobacteria, Acidobacteria (7.8%), Actinobacteria (17.6%), Chloroflexi (2.1%), Bacilli (1.4%), Cyanobacteria (2.8%), and Planctomycetes (1.4%). Within the phylum Proteobacteria, 56 of 80 clones were tentatively identified as 12 unclassified genera. Several new genera and a new family were discovered within the Actinobacteria clones. Results from 454-pyrosequencing revealed that 57% and 34% of the sequences belonged to undescribed genera and families, respectively. The characteristics of Gotjawal soil, which are determined by lava morphology, vegetation, and groundwater penetration, might be reflected in the bacterial community composition. PMID:25604185

  1. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters.

    PubMed

    Jackson, Stephen A; Kennedy, Jonathan; Morrissey, John P; O'Gara, Fergal; Dobson, Alan D W

    2012-07-01

    Marine sponges are host to numerically vast and phylogenetically diverse bacterial communities, with 26 major phyla to date having been found in close association with sponge species worldwide. Analyses of these microbial communities have revealed many sponge-specific novel genera and species. These endosymbiotic microbes are believed to play significant roles in sponge physiology including the production of an array of bioactive secondary metabolites. Here, we report on the use of culture-based and culture-independent (pyrosequencing) techniques to elucidate the bacterial community profiles associated with the marine sponges Raspailia ramosa and Stelligera stuposa sampled from a single geographical location in Irish waters and with ambient seawater. To date, little is known about the microbial ecology of sponges of these genera. Culture isolation grossly underestimated sponge-associated bacterial diversity. Four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 isolates, compared with ten phyla found using pyrosequencing. Long average read lengths of ~430 bp (V1-V3 region of 16S rRNA gene) allowed for robust resolution of sequences to genus level. Bacterial OTUs (2,109 total), at 95% sequence similarity, from ten bacterial phyla were recovered from R. ramosa, 349 OTUs were identified in S. stuposa representing eight phyla, while 533 OTUs from six phyla were found in surrounding seawater. Bacterial communities differed significantly between sponge species and the seawater. Analysis of the data for sponge-specific taxa revealed that 2.8% of classified reads from the sponge R. ramosa can be defined as sponge-specific, while 26% of S. stuposa sequences represent sponge-specific bacteria. Novel sponge-specific clusters were identified, whereas the majority of previously reported sponge-specific clusters (e.g. Poribacteria) were absent from these sponge species. This deep and robust analysis provides further

  2. Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH.

    PubMed

    Abirached-Darmency, Mona; Prado-Vivant, Emilce; Chelysheva, Liudmila; Pouthier, Thomas

    2005-06-01

    Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed.

  3. BRAF Pyrosequencing Analysis Aided by a Lookup Table

    PubMed Central

    Olson, Matthew T.; Harrington, Colleen; Beierl, Katie; Chen, Guoli; Thiess, Michele; O'Neill, Alan; Taube, Janis M.; Zeiger, Martha A.; Lin, Ming-Tseh; Eshleman, James R.

    2015-01-01

    Objectives BRAF mutations have substantial therapeutic, diagnostic, and prognostic significance, so detecting and specifying them is an important part of the workload of molecular pathology laboratories. Pyrosequencing assays are well suited for this analysis but can produce complex results. Therefore, we introduce a pyrosequencing lookup table based on Pyromaker that assists the user in generating hypotheses for solving complex pyrosequencing results. Methods The lookup table contains all known mutations in the sequenced region and the positions in the dispensation sequence at which changes would occur with those mutations. We demonstrate the lookup table using a homebrew dispensation sequence for BRAF codons 596 to 605 as well as a commercially available kit-based dispensation sequence for codons 599 to 600. Results These results demonstrate that the homebrew dispensation sequence unambiguously identifies all known BRAF mutations in this region, whereas the kit-based dispensation sequence has one unresolvable degeneracy that could be solved with the addition of two injections. Conclusions Using the lookup table and confirmatory virtual pyrogram, we unambiguously solved clinical pyrograms of the complex mutations V600K (c.1798_1799delGTinsAA), V600R (c.1798_1799delGTinsAG), V600D (c.1799_1800delTGinsAT), V600E (c.1799_1800delTGinsAA), and V600_K601delinsE (c.1799_1801delTGA). In addition, we used the approach to hypothesize and confirm a new mutation in human melanoma, V600_K601delinsEI (c.1799_1802delTGAAinsAAAT). PMID:24713734

  4. Application of Pyrosequencing® in Food Biodefense.

    PubMed

    Amoako, Kingsley Kwaku

    2015-01-01

    The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.

  5. Amelogenin sex determination by pyrosequencing of short PCR products.

    PubMed

    Tschentscher, Frank; Frey, Ulrich H; Bajanowski, Thomas

    2008-07-01

    We developed an assay, which allows the sex determination of human DNA samples by pyrosequencing of short PCR products. A 48/45-bp stretch including primers of the amelogenin gene with a 3-bp insertion on the Y chromosome was chosen for analysis. In an initial study, we correctly typed 50 male and 50 female DNA samples from unrelated donors. First experiments with forensic samples, which failed in conventional analyses, indicate that this approach might be an advantage when dealing with degraded DNA.

  6. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.

    PubMed

    Naganowska, Barbara; Zielińska, Anna

    2002-01-01

    Double-target fluorescent in situ hybridization (FISH) was used to determine the genomic distribution of ribosomal RNA genes in five Lupinus species: L. cosentinii (2n=32), L. pilosus (2n=42), L. angustifolius (2n=40), L. luteus (2n=52) and L. mutabilis (2n=48). 18S-25S rDNA and 5S rDNA were used as probes. Some interspecific variation was observed in the number and size of the 18S-25S rDNA loci. All the studied species had one chromosome pair carrying 5S rDNA.

  7. [Expression of thermostable recombiant Luciola lateralis luciferase and development of heat-stable pyrosequencing system].

    PubMed

    Xu, Shu; Zou, Bingjie; Wang, Jianping; Wu, Haiping; Zhou, Guohua

    2012-06-01

    Pyrosequencing is a tool based on bioluminescence reaction for real-time analyzing DNA sequences. The sensitivity of pyrosequencing mainly depends on luciferase in reaction mixture. However, the instability of pyrosequencing reagents caused by fragile wild Photinus pyralis luciferase (PpL) in conventional pyrosequencing usually leads to unsatisfied results, which limits the application of pyrosequencing. In order to improve the stability of pyrosequencing reagents, the coding sequences of mutant thermostable Luciola lateralis luciferase (rt-LlL) was synthesized, and inserted into the plasmid of pET28a(+) to express the thermostable rt-LlL with a 6 x His-tag in the N terminal. The purified rt-LlL with the molecular mass of 60 kDa was obtained by Ni-affinity chromatography. The specific activity of rt-LlL was determined as 4.29 x 10(10) RLU/mg. Moreover, the thermostability of rt-LlL was investigated, and the results showed that rt-LlL had activity at 50 degrees C, and remained 90% of activity after incubated at 40 degrees C for 25 min. Finally, rt-LlL was used to substitute commercial Photinus pyralis luciferase in conventional pyrosequencing reagent to get thermostable pyrosequencing reagent. Comparing with conventional pyrosequencing reagent, the thermostable pyrosequencing reagent is more stable, and it's activity would not lose when incubated at 37 degrees C for 1 h. This study laid foundation of establishing reliable and stable pyrosequencing system which would be applied in Point-of-Care Testing.

  8. Greengenes, a Chimera-checked 16S rRNA gene database and workbenchcompatible with ARB

    SciTech Connect

    DeSantis, Todd Z.; Hugenholtz, Philip; Larsen, Neils; Rojas,Mark; Brodie, Eoin L.; Keller, Keith; Huber, Thomas; Dalevi, Daniel; Hu,Ping; Andersen, Gary L.

    2006-04-10

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that in congruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3 percent of environmental sequences and 0.2 percent of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  9. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes.

    PubMed

    Michel, Christian J

    2012-04-01

    In 1996, a common trinucleotide circular code, called X, is identified in genes of eukaryotes and prokaryotes (Arquès and Michel, 1996). This circular code X is a set of 20 trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons. This reading frame retrieval needs a window length l of 12 nucleotides (l ≥ 12). With a window length strictly less than 12 nucleotides (l < 12), some words of X, called ambiguous words, are found in the shifted frames (the reading frame shifted by one or two nucleotides) preventing the reading frame in genes to be retrieved. Since 1996, these ambiguous words of X were never studied. In the first part of this paper, we identify all the ambiguous words of the common trinucleotide circular code X. With a length l varying from 1 to 11 nucleotides, the type and the occurrence number (multiplicity) of ambiguous words of X are given in each shifted frame. Maximal ambiguous words of X, words which are not factors of another ambiguous words, are also determined. Two probability definitions based on these results show that the common trinucleotide circular code X retrieves the reading frame in genes with a probability of about 90% with a window length of 6 nucleotides, and a probability of 99.9% with a window length of 9 nucleotides (100% with a window length of 12 nucleotides, by definition of a circular code). In the second part of this paper, we identify X circular code motifs (shortly X motifs) in transfer RNA and 16S ribosomal RNA: a tRNA X motif of 26 nucleotides including the anticodon stem-loop and seven 16S rRNA X motifs of length greater or equal to 15 nucleotides. Window lengths of reading frame retrieval with each trinucleotide of these X motifs are also determined. Thanks to the crystal structure 3I8G (Jenner et al., 2010), a 3D visualization of X motifs in the ribosome shows several spatial configurations involving mRNA X motifs, A-tRNA and E-tRNA X

  10. Abiotrophia defectiva bleb-associated endophthalmitis confirmed with 16s ribosomal RNA sequencing.

    PubMed

    Hugo Lee, Ming-Han; Lawlor, Mitchell; Lee, Anne J

    2015-01-01

    One recognized complication of trabeculectomy with visually devastating potential is blebitis. We present a case of a 74-year-old woman with a culture and polymerase chain reaction-positive Abiotrophia defectiva bleb-associated endophthalmitis. Abiotrophia defectiva is a rare but possible cause of endophthalmitis secondary to blebitis and should be considered in culture-negative cases. Prompt identification, hence directed eradication, of the causative organism in such visually threatening cases may be facilitated by requesting polymerase chain reaction and 16S ribosomal RNA sequencing.

  11. Pyrosequencing assay for rapid identification of Mycobacterium tuberculosis complex species

    PubMed Central

    2011-01-01

    Background Identification of the Mycobacterium tuberculosis complex organisms to the species level is important for diagnostic, therapeutic and epidemiologic perspectives. Indeed, isolates are routinely identified as belonging to the M. tuberculosis complex without further discrimination in agreement with the high genomic similarity of the M. tuberculosis complex members and the resulting complex available identification tools. Findings We herein develop a pyrosequencing assay analyzing polymorphisms within glpK, pykA and gyrB genes to identify members of the M. tuberculosis complex at the species level. The assay was evaluated with 22 M. tuberculosis, 21 M. bovis, 3 M. caprae, 3 M. microti, 2 M. bovis BCG, 2 M. pinnipedii, 1 M. canettii and 1 M. africanum type I isolates. The resulted pyrograms were consistent with conventional DNA sequencing data and successfully identified all isolates. Additionally, 127 clinical M. tuberculosis complex isolates were analyzed and were unambiguously identified as M. tuberculosis. Conclusion We proposed a pyrosequencing-based scheme for the rapid identification of M. tuberculosis complex isolates at the species level. The assay is robust, specific, rapid and can be easily introduced in the routine activity. PMID:22011383

  12. Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach

    PubMed Central

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530

  13. Rapid SNP Detection and Genotyping of Bacterial Pathogens by Pyrosequencing.

    PubMed

    Amoako, Kingsley K; Thomas, Matthew C; Janzen, Timothy W; Goji, Noriko

    2017-01-01

    Bacterial identification and typing are fixtures of microbiology laboratories and are vital aspects of our response mechanisms in the event of foodborne outbreaks and bioterrorist events. Whole genome sequencing (WGS) is leading the way in terms of expanding our ability to identify and characterize bacteria through the identification of subtle differences between genomes (e.g. single nucleotide polymorphisms (SNPs) and insertions/deletions). Modern high-throughput technologies such as pyrosequencing can facilitate the typing of bacteria by generating short-read sequence data of informative regions identified by WGS analyses, at a fraction of the cost of WGS. Thus, pyrosequencing systems remain a valuable asset in the laboratory today. Presented in this chapter are two methods developed in the Amoako laboratory that detail the identification and genotyping of bacterial pathogens. The first targets canonical single nucleotide polymorphisms (canSNPs) of evolutionary importance in Bacillus anthracis, the causative agent of Anthrax. The second assay detects Shiga-toxin (stx) genes, which are associated with virulence in Escherichia coli and Shigella spp., and differentiates the subtypes of stx-1 and stx-2 based on SNP loci. These rapid methods provide end users with important information regarding virulence traits as well as the evolutionary and biogeographic origin of isolates.

  14. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    PubMed

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  15. An unusual case of Streptococcus anginosus group pyomyositis diagnosed using direct 16S ribosomal DNA sequencing.

    PubMed

    Walkty, Andrew; Embil, John M; Nichol, Kim; Karlowsky, James

    2014-01-01

    Bacteria belonging to the Streptococcus anginosus group (Streptococcus intermedius, Streptococcus constellatus and Streptococcus anginosus) are capable of causing serious pyogenic infections, with a tendency for abscess formation. The present article reports a case of S anginosus group pyomyositis in a 47-year-old man. The pathogen was recovered from one of two blood cultures obtained from the patient, but speciation was initially not performed because the organism was considered to be a contaminant (viridans streptococci group). The diagnosis was ultimately confirmed using 16S ribosomal DNA sequencing of purulent fluid obtained from a muscle abscess aspirate. The present case serves to emphasize that finding even a single positive blood culture of an organism belonging to the S anginosus group should prompt careful evaluation of the patient for a pyogenic focus of infection. It also highlights the potential utility of 16S ribosomal DNA amplification and sequencing in direct pathogen detection from aspirated fluid in cases of pyomyositis in which antimicrobial therapy was initiated before specimen collection.

  16. Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt.

    PubMed

    Radax, C; Gruber, C; Stan-Lotter, H

    2001-08-01

    Prokaryotic diversity in Alpine salt sediments was investigated by polymerase chain reaction (PCR) amplification of 16S rRNA genes, sequencing of cloned products, and comparisons with culturable strains. DNA was extracted from the residue following filtration of dissolved Permo-Triassic rock salt. Fifty-four haloarchaeal sequences were obtained, which could be grouped into at least five distinct clusters. Similarity values of three clusters to known 16S rRNA genes were less than 90%-95%, suggesting the presence of uncultured novel taxa; two clusters were 98% and 99% similar to isolates from Permo-Triassic or Miocene salt from England and Poland, and to Halobacterium salinarum, respectively. Some rock salt samples, including drilling cores, yielded no amplifiable DNA and no cells or only a few culturable cells. This result suggested a variable distribution of haloarchaea within different strata, probably consistent with the known geologic heterogeneity of Alpine salt deposits. We recently reported identical culturable Halococcus salifodinae strains in Permo-Triassic salt sediments from England, Germany, and Austria; together with the data presented here, those results suggest one plausible scenario to be an ancient continuous hypersaline ocean (Zechstein sea) populated by haloarchaea, whose descendants are found today in the salt sediments. The novelty of the sequences also suggested avoidance of haloarchaeal contaminants during our isolation of strains, preparation of DNA, and PCR reactions.

  17. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  18. Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis.

    PubMed

    Kita-Tsukamoto, Kumiko; Wada, Minoru; Yao, Katomi; Kamiya, Akiko; Yoshizawa, Susumu; Uchiyama, Nami; Kogure, Kazuhiro

    2006-03-01

    To rapidly identify natural isolates of marine bioluminescent bacteria, we developed amplified ribosomal DNA restriction analysis (ARDRA) methods. ARDRA, which is based on the restriction patterns of 16S rRNA gene digested with five enzymes (EcoRI, DdeI, HhaI, HinfI, RsaI), clearly distinguished the 14 species of marine bioluminescent bacteria currently known, which belong to the genera Vibrio, Photobacterium, and Shewanella. When we applied ARDRA to 129 natural isolates from two cruises in Sagami Bay, Japan, 127 were grouped into six ARDRA types with distinctive restriction patterns; these isolates represented the bioluminescent species, P. angustum, P. leiognathi, P. phosphoreum, S. woodyi, V. fischeri, and V. harveyi. The other two isolates showing unexpected ARDRA patterns turned out to have 16S rRNA gene sequences similar to P. leiognathi and P. phosphoreum. Nevertheless, ARDRA provides a simple and fairly robust means for rapid identification of the natural isolates of marine bioluminescent bacteria, and is therefore useful in studying their diversity.

  19. Two Distinct Mechanisms Cause Heterogeneity of 16S rRNA

    PubMed Central

    Ueda, Kumiko; Seki, Tatsuji; Kudo, Takuji; Yoshida, Toshiomi; Kataoka, Masakazu

    1999-01-01

    To investigate the frequency of heterogeneity among the multiple 16S rRNA genes within a single microorganism, we determined directly the 120-bp nucleotide sequences containing the hypervariable α region of the 16S rRNA gene from 475 Streptomyces strains. Display of the direct sequencing patterns revealed the existence of 136 heterogeneous loci among a total of 33 strains. The heterogeneous loci were detected only in the stem region designated helix 10. All of the substitutions conserved the relevant secondary structure. The 33 strains were divided into two groups: one group, including 22 strains, had less than two heterogeneous bases; the other group, including 11 strains, had five or more heterogeneous bases. The two groups were different in their combinations of heterogeneous bases. The former mainly contained transitional substitutions, and the latter was mainly composed of transversional substitutions, suggesting that at least two mechanisms, possibly misincorporation during DNA replication and horizontal gene transfer, cause rRNA heterogeneity. PMID:9864315

  20. Greengenes: 16S rRNA Database and Workbench Compatible with ARB

    DOE Data Explorer

    DeSantis, T. Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E. L.; Keller, K.; Huber, T.; Dalevi, D. Hu, P. Andersen, G. L.

    Greengenes was developed, as the abstract of an AEM reprint states, to "addresse limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria....Greengenes is also a functional workbench to assist in analysis of user-generated 16S rRNA gene sequences. Batches of sequencing reads can be uploaded for quality-based trimming and creation of multiple-sequence alignments (9). Three types of non-MSA similarity searches are also available, seed extension by BLAST (1), similarity based on shared 7-mers by a tool called Simrank, and a direct degenerative pattern match for probe/primer evaluation. Results are displayed using user-preferred taxonomic nomenclature and can be saved between sessions. [Taken from DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol 72:5069-72, pages 1 and 3] (Specialized Interface)

  1. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    PubMed Central

    Naveed, Muhammad; Mubeen, Samavia; khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  2. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics

    PubMed Central

    Jovel, Juan; Patterson, Jordan; Wang, Weiwei; Hotte, Naomi; O'Keefe, Sandra; Mitchel, Troy; Perry, Troy; Kao, Dina; Mason, Andrew L.; Madsen, Karen L.; Wong, Gane K.-S.

    2016-01-01

    The advent of next generation sequencing (NGS) has enabled investigations of the gut microbiome with unprecedented resolution and throughput. This has stimulated the development of sophisticated bioinformatics tools to analyze the massive amounts of data generated. Researchers therefore need a clear understanding of the key concepts required for the design, execution and interpretation of NGS experiments on microbiomes. We conducted a literature review and used our own data to determine which approaches work best. The two main approaches for analyzing the microbiome, 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics, are illustrated with analyses of libraries designed to highlight their strengths and weaknesses. Several methods for taxonomic classification of bacterial sequences are discussed. We present simulations to assess the number of sequences that are required to perform reliable appraisals of bacterial community structure. To the extent that fluctuations in the diversity of gut bacterial populations correlate with health and disease, we emphasize various techniques for the analysis of bacterial communities within samples (α-diversity) and between samples (β-diversity). Finally, we demonstrate techniques to infer the metabolic capabilities of a bacteria community from these 16S and shotgun data. PMID:27148170

  3. Changes in 16s RNA Gene Microbial Community Profiling by Concentration of Prokaryotic DNA.

    PubMed

    Glassing, Angela; Dowd, Scot E; Galandiuk, Susan; Davis, Brian; Jorden, Jeffrey R; Chiodini, Rodrick J

    2015-12-01

    Microbial metagenomics are hindered in clinical tissue samples as a result of the large relative amount of human DNA in relation to microbial DNA acting as competitive inhibitors of downstream applications. We evaluated the LOOXSTER® Enrichment Kit to separate eukaryotic and prokaryotic DNA in submucosal intestinal tissue samples having a low microbial biomass and to determine the effects of enrichment on 16s rRNA microbiota sequencing. The enrichment kit reduced the amount of human DNA in the samples 40-70% resulting in a 3.5-fold increase in the number of 16s bacterial gene sequences detected on the Illumina MiSeq platform. This increase was accompanied by the detection of 41 additional bacterial genera and 94 tentative species. The additional bacterial taxa detected accounted for as much as 25% of the total bacterial population that significantly altered the relative prevalence and composition of the intestinal microbiota. The ability to reduce the competitive inhibition created by human DNA and the concentration of bacterial DNA may allow metagenomics to be performed on complex tissues containing a low bacterial biomass.

  4. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  5. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.

  6. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator(®) DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator(®) DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications.

  7. 454 Pyrosequencing Analysis on Faecal Samples from a Randomized DBPC Trial of Colicky Infants Treated with Lactobacillus reuteri DSM 17938

    PubMed Central

    Roos, Stefan; Dicksved, Johan; Tarasco, Valentina; Locatelli, Emanuela; Ricceri, Fulvio; Grandin, Ulf; Savino, Francesco

    2013-01-01

    Objective To analyze the global microbial composition, using large-scale DNA sequencing of 16 S rRNA genes, in faecal samples from colicky infants given L. reuteri DSM 17938 or placebo. Methods Twenty-nine colicky infants (age 10–60 days) were enrolled and randomly assigned to receive either Lactobacillus reuteri (108 cfu) or a placebo once daily for 21 days. Responders were defined as subjects with a decrease of 50% in daily crying time at day 21 compared with the starting point. The microbiota of faecal samples from day 1 and 21 were analyzed using 454 pyrosequencing. The primers: Bakt_341F and Bakt_805R, complemented with 454 adapters and sample specific barcodes were used for PCR amplification of the 16 S rRNA genes. The structure of the data was explored by using permutational multivariate analysis of variance and effects of different variables were visualized with ordination analysis. Results The infants’ faecal microbiota were composed of Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the four main phyla. The composition of the microbiota in infants with colic had very high inter-individual variability with Firmicutes/Bacteroidetes ratios varying from 4000 to 0.025. On an individual basis, the microbiota was, however, relatively stable over time. Treatment with L. reuteri DSM 17938 did not change the global composition of the microbiota, but when comparing responders with non-responders the group responders had an increased relative abundance of the phyla Bacteroidetes and genus Bacteroides at day 21 compared with day 0. Furthermore, the phyla composition of the infants at day 21 could be divided into three enterotype groups, dominated by Firmicutes, Bacteroidetes, and Actinobacteria, respectively. Conclusion L. reuteri DSM 17938 did not affect the global composition of the microbiota. However, the increase of Bacteroidetes in the responder infants indicated that a decrease in colicky symptoms was linked to changes of the microbiota

  8. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences.

    PubMed

    Allsopp, M; Visser, E S; du Plessis, J L; Vogel, S W; Allsopp, B A

    1997-08-01

    Cowdria ruminantium is a rickettsial parasite which causes heartwater, a economically important disease of domestic and wild ruminants in tropical and subtropical Africa and parts of the Caribbean. Because existing diagnostic methods are unreliable, we investigated the small-subunit ribosomal RNA (srRNA) gene from heartwater-infected material to characterise the organisms present and to develop specific oligonucleotide probes for polymerase chain reaction (PCR) based diagnosis. DNA was obtained from ticks and ruminants from heartwater-free and heartwater-endemic areas from Cowdria in tissue culture. PCR was carried out using primers designed to amplify only rickettsial srRNA genes, the target region being the highly variable V1 loop. Amplicons were cloned and sequenced; 51% were C. ruminantium sequences corresponding to four genotypes, two of which were identical to previously reported C. ruminantium sequences while the other two were new. The four different Cowdria genotypes can be correlated with different phenotypes. Tissue-culture samples yielded only Cowdria genotype sequences, but an extraordinary heterogeneity of 16S sequences was obtained from field samples. In addition to Cowdria genotypes we found sequences from previously unknown Ehrlichia spp., sequences showing homology to other Rickettsiales and a variety of Pseudomonadaceae. One Ehrlichia sequence was phylogenetically closely related to Ehrlichia platys (Group II Ehrlichia) and one to Ehrlichia canis (Group III Ehrlichia). This latter sequence was from an isolate (Germishuys) made from a naturally infected sheep which, from brain smear examination and pathology, appeared to be suffering from heartwater; nevertheless no Cowdria genotype sequences were found in this isolate. In addition no Cowdria sequences were obtained from uninfected ticks. Complete 16S rRNA gene sequences were determined for two C. ruminantium genotypes and for two previously uncharacterised heartwater-associated Ehrlichia spp

  9. A tRNA gene mapping within the chloroplast rDNA cluster is differentially expressed during the development of Daucus carota.

    PubMed Central

    Manna, F; Massardo, D R; Wolf, K; Luccarini, G; Carlomagno, M S; Rivellini, F; Alifano, P; Del Giudice, L

    1994-01-01

    In vivo analysis of expression of the chloroplast rDNA cluster during somatic embryogenesis of Daucus carota (D.carota) was performed by Northern-blot analysis with different DNA probes, spanning both the 16S rRNA gene, the 16S-23S rRNA spacer, which contains the two mosaic tRNA genes tRNA(Ile) and tRNA(Ala), and the region upstream of the 16S rRNA gene, where a tRNA(Val) maps. We show that expression both of the spacer tRNAs tRNA(Ile) and tRNA(Ala) is not significantly regulated during development whereas the amount of the transcript corresponding to tRNA(Val) is not detectable during early embryonic stages and progressively accumulates during late phases. Multiple transcription start sites have been identified upstream of the tRNA(Val) gene by S1 mapping analysis, which are activated late during the embryogenesis. These data indicate that developmental control mechanisms act on plastid gene expression during embryogenesis in carrot. Images PMID:8202376

  10. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    SciTech Connect

    Thompson, J.F.; Hearst, J.E.

    1983-04-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T/sub 1/ RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes.

  11. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.

    PubMed

    Christner, B C; Mosley-Thompson, E; Thompson, L G; Reeve, J N

    2001-09-01

    Lake Vostok, the largest subglacial lake in Antarctica, is separated from the surface by approximately 4 km of glacial ice. It has been isolated from direct surface input for at least 420 000 years, and the possibility of a novel environment and ecosystem therefore exists. Lake Vostok water has not been sampled, but an ice core has been recovered that extends into the ice accreted below glacial ice by freezing of Lake Vostok water. Here, we report the recovery of bacterial isolates belonging to the Brachybacteria, Methylobacterium, Paenibacillus and Sphingomonas lineages from a sample of melt water from this accretion ice that originated 3593 m below the surface. We have also amplified small-subunit ribosomal RNA-encoding DNA molecules (16S rDNAs) directly from this melt water that originated from alpha- and beta-proteobacteria, low- and high-G+C Gram-positive bacteria and a member of the Cytophaga/Flavobacterium/Bacteroides lineage.

  12. An unusual case of seronegative, 16S PCR positive Brucella infection

    PubMed Central

    Backhouse, Lucy; Rawat, David; Naik, Sandhia; Millar, Michael

    2016-01-01

    Introduction: Brucella is a zoonotic infection commonly diagnosed by isolation of the organism from blood culture or positive serological testing. It is an uncommon cause of a pyrexia of unknown origin in the United Kingdom. Case presentation: We describe the case of a 14-year-old girl with no history of travel who presented with pyrexia, weight loss, arthralgia, multiple splenic abscesses and a subsequent pleural effusion, the latter of which isolated a Brucella species on 16S rRNA PCR. The patient responded well to initiation of treatment for brucellosis and on repeat imaging, after 3 months, the splenic abscesses had resolved. Conclusion: This unique case demonstrates uncommon complications of brucellosis and the challenges of diagnosing the organism, the latter of which can be alleviated by the utilization of molecularbased technologies. This patient had a negative serology result for brucellosis, which highlights the need to interpret serology results with caution in non-endemic regions for brucellosis. PMID:28348782

  13. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences.

    PubMed

    Dorsch, M; Lane, D; Stackebrandt, E

    1992-01-01

    The inter- and intrageneric relationships of the genus Vibrio were investigated by performing a comparative analysis of the 16S rRNAs of 10 species, including four pathogenic representatives. The results of immunological and 5S rRNA studies were confirmed in that the genus is a neighboring taxon of the family Enterobacteriaceae. With regard to the intrageneric structure, Vibrio alginolyticus, Vibrio campbellii, Vibrio natriegens, Vibrio harveyi, Vibrio proteolyticus, Vibrio parahaemolyticus, and Vibrio vulnificus form the core of the genus, while Vibrio (Listonella) anguillarum, Vibrio diazotrophicus, and Vibrio hollisae are placed on the outskirts of the genus. Variable regions around positions 80, 180, and 450 could be used as target sites for genus- and species-specific oligonucleotide probes and polymerase chain reaction primers to be used in molecular identification.

  14. Influence of bacterial communities based on 454-pyrosequencing on the survival of Escherichia coli O157:H7 in soils.

    PubMed

    Ma, Jincai; Ibekwe, Abasiofiok M; Yang, Ching-Hong; Crowley, David E

    2013-06-01

    Shiga toxin-producing Escherichia coli O157:H7 has been implicated in many foodborne illnesses. In this study, survival of E. coli O157:H7 in 32 soils from California (CA) and Arizona (AZ) was investigated. Our goal was to correlate the survival time of E. coli O157:H7 in soils with 16S rRNA pyrosequencing based bacterial community composition. Kohonen self-organizing map of survival and associated soil chemical, physical and biological variables using artificial neural network analysis showed that survival of E. coli O157:H7 in soils was negatively correlated with salinity (EC), but positively correlated with total nitrogen (TN) and water soluble organic carbon (WSOC). Bacterial diversity as determined by the Shannon diversity index had no significant (P = 0.635) effect on ttd, but individual bacterial phyla had different effects. The survival of E. coli O157:H7 was positively correlated with the abundances of Actinobacteria (P < 0.001) and Acidobacteria (P < 0.05), and negatively correlated with those of Proteobacteria and Bacteroidetes (P < 0.05). Our data showed that specific groups of bacteria correlate with the persistence of E. coli O157:H7 in soils thus opening new ways to study the influence of certain bacterial phyla on persistence of this pathogen and other related pathogens in complex environments.

  15. Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing.

    PubMed

    Gonzalez-Silva, Blanca M; Rønning, Are J; Andreassen, Ingrid K; Bakke, Ingrid; Cervantes, Francisco J; Østgaard, Kjetill; Vadstein, Olav

    2017-03-09

    The anammox activity of a freshwater anammox consortium was strongly inhibited at low-salinity level. Stepwise adaptation from 0 to 3 g NaCl L(-1) took 153 days. Further adaptation to high-salinity concentration (from 3 to 30 g L(-1)) took only 40 days, and no inhibition was observed. A comprehensive insight into the salinity-induced successions of the total and the anammox communities was obtained by 454 pyrosequencing of 16S rRNA gene amplicons and statistical analysis. A major succession in the anammox community was observed at 3 g L(-1) where the dominating population shifted from Candidatus Brocadia fulgida to Ca. Kuenenia stuttgartiensis. The latter dominated at high salinity and seemed to be essential for the high (˃96%) ammonium and nitrite removal efficiencies achieved. SIMPER analysis indicated that these two dominating anammox species explained most to the differences in community structure among samples and helped in identifying other important members at different salinities.

  16. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing.

    PubMed

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system.

  17. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China.

    PubMed

    Zhang, Lei; Gao, Guang; Tang, Xiangming; Shao, Keqiang; Gong, Yi

    2016-06-01

    The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater-brackish water gradient and (ii) oligotrophic-mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes.

  18. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets.

    PubMed

    Zened, Asma; Combes, Sylvie; Cauquil, Laurent; Mariette, Jérôme; Klopp, Christophe; Bouchez, Olivier; Troegeler-Meynadier, Annabelle; Enjalbert, Francis

    2013-02-01

    To provide a comprehensive examination of the bacterial diversity in the rumen content of cows fed different diets, high-throughput 16S rRNA gene-based pyrosequencing was used. Four rumen fistulated nonlactating Holstein cows received 12 kg of dry matter per day of four diets based on maize silage during four periods: the low-starch diet (22% starch, 3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, 3% fat); the low-starch plus oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% fat) and the high-starch plus oil diet (33% starch, 7.3% fat). Samples were taken after 12 days of adaptation, 5 h postfeeding. Whatever the diet, bacterial community of sieved rumen contents was dominated by Firmicutes and Bacteroidetes. Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae families were highly present and were clearly affected by cow diet. The highest abundance of Prevotellaceae and the lowest abundance of Ruminococcaceae and Rikenellaceae were found with the high-starch plus oil diet. Dietary starch increased the relative abundance of only three genera: Barnesiella, Oribacterium and Olsenella, but decreased the relative abundances of several genera, with very significant effects for Rikenellaceae_RC9 and Butyrivibrio-Pseudobutyrivibrio. Oil alone had a limited effect, but interestingly, starch plus oil addition differently affected the bacterial populations compared to starch addition without oil.

  19. Pyrosequencing analysis of microbial communities reveals dominant cosmopolitan phylotypes in deep-sea sediments of the eastern Mediterranean Sea.

    PubMed

    Polymenakou, Paraskevi N; Christakis, Christos A; Mandalakis, Manolis; Oulas, Anastasis

    2015-06-01

    The deep eastern basin of the Mediterranean Sea is considered to be one of the world's most oligotrophic areas in the world. Here we performed pyrosequenicng analysis of bacterial and archaeal communities in oxic nutrient-poor sediments collected from the eastern Mediterranean at 1025-4393 m depth. Microbial communities were surveyed by targeting the hypervariable V5-V6 regions of the 16S ribosomal RNA gene using bar-coded pyrosequencing. With a total of 13,194 operational taxonomic units (OTUs) or phylotypes at 97% sequence similarities, the phylogenetic affiliation of microbes was assigned to 23 bacterial and 2 archaeal known phyla, 23 candidate divisions at the phylum level and distributed into 186 families. It was further revealed that the microbial consortia inhabiting all sampling sites were highly diverse, but dominated by phylotypes closely related to members of the genus Pseudomonas and Marine Group I archaea. Such pronounced and widespread enrichment probably manifests the cosmopolitan character of these species and raises questions about their metabolic adaptation to the physical stressors and low nutrient availability of the deep eastern Mediterranean Sea.

  20. FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas

    PubMed Central

    An, Choa; Yazaki, Takahiro; Takahashi, Hajime; Kimura, Bon

    2013-01-01

    Edible brown algae are used as major food material in Far East Asian countries, particularly in South Korea and Japan. They contain fermentable dietary fibers, alginic acid (uronic acid polymer) and laminaran (β-1,3-glucan), that are fermented into organic acids by intestinal bacteria. To clarify the effect of edible algae on the intestinal environment, the cecal microbiotas of rats fed diets containing no dietary fiber (control) or 2% (wt/wt) sodium alginate or laminaran for 2 weeks were analyzed using FLX amplicon pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. The most abundant phylum in all groups was Firmicutes. Specifically, Allobaculum was dominant in all diet groups. In addition, Bacteroides capillosus (37.1%) was abundant in the alginate group, while Clostridium ramosum (3.14%) and Parabacteroides distasonis (1.36%) were only detected in the laminaran group. Furthermore, rats fed alginate showed simplified microbiota phylotypes compared with others. With respect to cecal chemical compounds, laminaran increased cecal organic acid levels, particularly propionic acid. Alginate increased total cecal organic acids. Cecal putrefactive compounds, such as indole, H2S, and phenol, were decreased by both alginate and laminaran. These results indicate that edible brown algae can alter the intestinal environment, with fermentation by intestinal microbiota. PMID:23183985

  1. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing

    PubMed Central

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas. PMID:26020967

  2. The Microbial Community in the Feces of the White Rhinoceros (Ceratotherium simum) as Determined by Barcoded Pyrosequencing Analysis

    PubMed Central

    Bian, Gaorui; Ma, Li; Su, Yong; Zhu, Weiyun

    2013-01-01

    As a non-ruminant herbivore, the white rhinoceros has the ability to utilize fibrous plant matter through microbial fermentation in the hindgut. So far, there has been no report using molecular techniques to study the gut microbiota of the white rhinoceros. We used barcoded pyrosequencing to characterize 105,651 sequences of 16S rRNA genes obtained from fecal samples from five white rhinoceroses. Results showed that Firmicutes and Bacteroidetes were the predominant phyla in the samples, which were comprised largely of unclassified bacteria. The microbiota of one animal treated with drug therapy differed from those in other healthy animals, and was dominated by Aerococcus -related bacteria. The core microbiota in the healthy rhinoceros were dominated by phyla Firmicutes and Bacteroidetes, represented by the Ruminococcaceae, Lachnospiraceae, Rikenellaceae and Prevotellaceae families. The present work provides a phylogenetic framework for understanding the complex microbial community of the rhinoceros; however, further studies are required to link the distinctive microbiota with their digestive role in the hindgut of the white rhinoceros. PMID:23922920

  3. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian; Zhang, Liangbo

    2015-12-01

    This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.

  4. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    PubMed

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.

  5. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    PubMed Central

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  6. Fully stereocontrolled total syntheses of the prostacyclin analogues 16S-iloprost and 16S-3-oxa-iloprost by a common route, using alkenylcopper-azoalkene conjugate addition, asymmetric olefination, and allylic alkylation.

    PubMed

    Kramp, Guido J; Kim, Mikhail; Gais, Hans-Joachim; Vermeeren, Cornelia

    2005-12-21

    In this article we describe fully stereocontrolled total syntheses of 16S-iloprost (16S-2), the most active component of the drugs Ilomedin and Ventavis, and of 16S-3-oxa-iloprost (16S-3), a close analogue of 16S-2 having the potential for a high oral activity, by a new and common route. The key steps of this route are (1) the establishment of the complete C13-C20 omega side chain of the target molecules through a stereoselective conjugate addition of the alkenylcopper derivative 9 to the bicyclic C6-C12 azoalkene 10 with formation of hydrazone 8, (2) the diastereoselective olefination of ketone 7 with the chiral phosphoryl acetate 39, and (3) the regio- and stereoselective alkylation of the allylic acetate 43 with cuprate 42. These measures allowed the 5E,15S,16S-stereoselective synthesis of 16S-2 and 16S-3, a goal which had previously not been achieved. Azoalkene 10 was obtained from the achiral bicyclic C6-C12 ketone 11 as previously described by using as key step an enantioselective deprotonation. The configuration at C16 of omega-side chain building block 9 has been installed with high stereoselectivity by the oxazolidinone method and that at C15 by a diastereoselective oxazaborolidine-catalyzed reduction of the C13-C20 ketone 23 with catecholborane. Surprisingly, a high diastereoselectivity in the reduction of 23 was only obtained by using 2 equiv of oxazaborolidine 24. Application of substoichiometric amounts of 24 resulted in irreproducible diastereoselectivities ranging from very high to nil.

  7. [Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species].

    PubMed

    Xu, Yan-Hao; Yang, Fei; Cheng, You-Lin; Ma, Lu; Wang, Jian-Bo; Li, Li-Jia

    2007-05-01

    Fluorescence in situ hybridization (FISH) and double FISH experiments were carried out to ascertain the chromosomal distribution patterns of the 45S and 5S ribosomal DNAs in the three species of Cucurbitaceae. Five pairs of 45S rDNA loci and two pairs of 5S rDNA signals were detected on chromosomes of Cucurbita moschata Duch. Luffa cylindrical Roem. contained five pairs of 45S rDNA loci and one pair of 5S rDNA loci. In Benincasa hispida Cogn., two pairs of 45S rDNA sites and one pair of 5S rDNA site were detected. In this species, 5S rDNA and one pair of the 45S loci were collocated closely in chromosome 7S. 45S rDNA chromosomal distribution patterns were highly conserved among the three species, althoufh their number varied markedly. The 5S rDNA sites on chromosomes among the three species were highly polymorphic. We further discussed differentially evolutionary processes of 45S and 5S rDNA in plant genomes.

  8. Multi-site-specific 16S rRNA Methyltransferase RsmF from Thermus thermophilus

    SciTech Connect

    Demirci, H.; Larsen, L; Hansen, T; Rasmussen, A; Cadambi, A; Gregory, S; Kirpekar, F; Jogl, G

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m{sup 5}C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m{sup 5}C967. In contrast to E. coli RsmF, which introduces a single m{sup 5}C1407 modification, T. thermophilus RsmF modifies three positions, generating m{sup 5}C1400 and m{sup 5}C1404 in addition to m{sup 5}C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 {angstrom} resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.

  9. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  10. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    PubMed Central

    Edgcomb, Virginia P.; McDonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments. PMID:10103245

  11. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.

    PubMed

    Yarza, Pablo; Yilmaz, Pelin; Pruesse, Elmar; Glöckner, Frank Oliver; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Whitman, William B; Euzéby, Jean; Amann, Rudolf; Rosselló-Móra, Ramon

    2014-09-01

    Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.

  12. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  13. Abiotrophia defectiva infection of a total hip arthroplasty diagnosed by 16S rRNA gene sequencing.

    PubMed

    Rozemeijer, Wouter; Jiya, Timothy U; Rijnsburger, Martine; Heddema, Edou; Savelkoul, Paul; Ang, Wim

    2011-05-01

    We describe a case of a total hip arthroplasty infection caused by Abiotrophia defectiva, identified by 16S rRNA gene sequencing. Removal of the prosthesis followed by antibiotic treatment resulted in a good clinical outcome. 16S rRNA gene sequencing can be a useful tool in diagnosing infection with this fastidious microorganism that can easily be misidentified using phenotypic identification methods.

  14. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type.

  15. Ribosomal DNA (rDNA) identification of the culturable bacterial flora on monetary coinage from 17 currencies.

    PubMed

    Xu, Jiru; Moore, John E; Millar, B Cherie

    2005-03-01

    The aim of the investigation reported in this paper was to identify the bacterial microflora on monetary coinage from 17 countries by employment of polymerase chain reaction (PCR) sequenced-based molecular identification of rDNA from bacterial cultures. Silver, bronze, and other alloy coins (approximately 300 g) from 17 currencies were enriched individually by aerobic culturing in tryptone soya broth for 72 hours at 30 degrees C. Next, 20 microL of broth was inoculated onto Columbia blood agar supplemented with 5 percent volume-pervolume (v/v) defibrinated horse blood for 72 hours at 30 degrees C, and resulting colonies were purified by further subculture, as detailed above, for a further 72 hours. All colonies were identified by initial PCR amplification of a partial region of the 16S rDNA gene locus, which was then sequenced, and the sequence was aligned according to the BLASTn algorithm. Twenty-five isolates were obtained from the coinage; of these, 25 (100 percent) were Gram positive, and the most prevalent genus observed was Bacillus (B. megaterium, B. lentus, B. litoralis, B. subtilis, B. circulans and other Bacillus spp.), which accounted for 10 of 25 isolates (40 percent) and was isolated from 10 of 17 countries (58.8 percent). It was followed in prevalence by Staphylococcus spp. (Staph. aureus, Staph. epidermidis, Staph. hominis, Staph. schleiferi), which accounted for 7 of 25 isolates (28 percent) and were isolated from 7 of 17 countries (41.2 percent). Given the organisms identified in this study, it is not believed that monetary coinage presents any particular risk to public health. The authors support the principles of basic hygiene, however, in terms of proper handwashing and the avoidance of handling money when working with food or dressing wounds and skin lesions, In conclusion, the study demonstrated that money from 17 countries was contaminated by environmental Gram-positive flora, in particular Bacillus spp., and that the universal 16S r

  16. 16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife

    PubMed Central

    Razzauti, Maria; Bard, Emilie; Bernard, Maria; Brouat, Carine; Charbonnel, Nathalie; Dehne-Garcia, Alexandre; Loiseau, Anne; Tatard, Caroline; Tamisier, Lucie; Vayssier-Taussat, Muriel; Vignes, Helene

    2016-01-01

    ABSTRACT The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial

  17. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Fernández-González, Antonio J; Fernández-López, Manuel; Arone, Gregorio J

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize

  18. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Fernández-González, Antonio J.; Fernández-López, Manuel; Arone, Gregorio J.

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize

  19. Pyrosequencing Reveals the Predominance of Pseudomonadaceae in Gut Micro