Science.gov

Sample records for 16s ribosomal ribonucleic

  1. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  2. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  3. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  4. Tsukamurella tyrosinosolvens intravascular catheter infection identified using 16S ribosomal DNA sequencing.

    PubMed

    Sheridan, Elizabeth A S; Warwick, Simon; Chan, Anthony; Dall'Antonia, Martino; Koliou, Maria; Sefton, Armine

    2003-03-01

    Cultures of blood from a hemodialysis line repeatedly yielded a gram-positive rod. The organism was identified as Tsukamurella tyrosinosolvens by 16S ribosomal DNA sequencing, and the patient was treated successfully by removal of the line.

  5. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research.

    PubMed

    Jo, Jay-Hyun; Kennedy, Elizabeth A; Kong, Heidi H

    2016-03-01

    Skin serves as a protective barrier and also harbors numerous microorganisms collectively comprising the skin microbiome. As a result of recent advances in sequencing (next-generation sequencing), our understanding of microbial communities on skin has advanced substantially. In particular, the 16S ribosomal RNA gene sequencing technique has played an important role in efforts to identify the global communities of bacteria in healthy individuals and patients with various disorders in multiple topographical regions over the skin surface. Here, we describe basic principles, study design, and a workflow of 16S ribosomal RNA gene sequencing methodology, primarily for investigators who are not familiar with this approach. This article will also discuss some applications and challenges of 16S ribosomal RNA sequencing as well as directions for future development.

  6. Rates of synthesis and degradation of ribosomal ribonucleic acid during differentiation of Dictyostelium discoideum.

    PubMed

    Mangiarotti, G; Altruda, F; Lodish, H F

    1981-01-01

    Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells.

  7. Rates of synthesis and degradation of ribosomal ribonucleic acid during differentiation of Dictyostelium discoideum.

    PubMed Central

    Mangiarotti, G; Altruda, F; Lodish, H F

    1981-01-01

    Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells. PMID:6965093

  8. Use of 16S Ribosomal RNA Sequences to Infer Relationships among Archaebacteria.

    DTIC Science & Technology

    1987-04-16

    FIELD GROUP SUB-GROUP Archaebacteria; Eubacteria ; Eukaryotes; 16S Ribosomal RNA; 08 I Phylogeny; rRNA; RNA Sequencing; Molecular Clock; Urkingdoms; r...16S rRNA data were used to infer the relat onships among the archaebacteria, and of the archaebacteria to the eubacteria and eukaryotes. ur programs for...been published (1, 2, 16, 18). The analyses render untenable the suggestions of Lake and colleagues (Lake et al., 1985) that the eubacteria derive from

  9. Comparison of mammalian mitochondrial ribosomal ribonucleic acid from different species.

    PubMed

    Mitra, R S; Bartoov, B; Monahan, J; Freeman, K B

    1972-08-01

    Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.

  10. Probing the structure of 16 S ribosomal RNA from Bacillus brevis.

    PubMed

    Kop, J; Kopylov, A M; Magrum, L; Siegel, R; Gupta, R; Woese, C R; Noller, H F

    1984-12-25

    A majority (approximately 89%) of the nucleotide sequence of Bacillus brevis 16 S rRNA has been determined by a combination of RNA sequencing methods. Several experimental approaches have been used to probe its structure, including (a) partial RNase digestion of 30 S ribosomal subunits, followed by two-dimensional native/denatured gel electrophoresis, in which base-paired fragments were directly identified; (b) identification of positions susceptible to cleavage by RNase A and RNase T1 in 30 S subunits; (c) sites of attack by cobra venom RNase on naked 16 S rRNA; and (d) nucleotides susceptible to attack by bisulfite in 16 S rRNA. These data are discussed with respect to a secondary structure model for B. brevis 16 S rRNA derived by comparative sequence analysis.

  11. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid.

    PubMed

    Akutsu, Tomoko; Motani, Hisako; Watanabe, Ken; Iwase, Hirotaro; Sakurada, Koichi

    2012-05-01

    To preliminarily evaluate the applicability of bacterial DNA as a marker for the forensic identification of vaginal fluid, we developed and performed PCR-based detection of 16S ribosomal RNA genes of Lactobacillus spp. dominating the vagina and of bacterial vaginosis-related bacteria from DNA extracted from body fluids and stains. As a result, 16S ribosomal RNA genes of Lactobacillus crispatus, Lactobacillus jensenii and Atopobium vaginae were specifically detected in vaginal fluid and female urine samples. Bacterial genes detected in female urine might have originated from contaminated vaginal fluid. In addition, those of Lactobacillus iners, Lactobacillus gasseri and Gardnerella vaginalis were also detected in non-vaginal body fluids such as semen. Because bacterial genes were successfully amplified in DNA samples extracted by using the general procedure for animal tissues without any optional treatments, DNA samples prepared for the identification of vaginal fluid can also be used for personal identification. In conclusion, 16S ribosomal RNA genes of L. crispatus, L. jensenii and A. vaginae could be effective markers for forensic identification of vaginal fluid.

  12. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  13. Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing

    PubMed Central

    Angeletti, Silvia; Lorino, Giulia; Gherardi, Giovanni; Battistoni, Fabrizio; De Cesaris, Marina; Dicuonzo, Giordano

    2001-01-01

    For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddlE. faecalis and ddlE. faecium primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative. PMID:11158155

  14. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  15. Sequence of the 16S Ribosomal RNA from Halobacterium volcanii, an Archaebacterium.

    PubMed

    Gupta, R; Lanter, J M; Woese, C R

    1983-08-12

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  16. 16S ribosomal RNA sequencing and molecular serotyping of Avibacterium paragallinarum isolated from Indian field conditions.

    PubMed

    Patil, Vihang Vithalrao; Mishra, Debendranath; Mane, Dilip Vithalrao

    2017-08-01

    This study was aimed at identifying Indian field isolates of Avibacterium paragallinarum on both molecular as well as serological levels that cause infectious coryza in chickens. Species-specific polymerase chain reaction (HPG-2 PCR), and 16S ribosomal RNA (rRNA) sequencing were employed for molecular identification. Whereas, multiplex PCR technique was used for serological identification of Indian field isolates of A. paragallinarum. All three field isolates were identified as A. paragallinarum using HPG-2 PCR. The species-specific PCR results were validated using 16S rRNA sequencing. The partial 16S rRNA sequences obtained from all three isolates showed 96-99% homology with the NCBI database reference strains of A. paragallinarum. The aligned partial sequences of 16S rRNA were submitted to GenBank, and accession numbers were obtained. Multiplex PCR-based molecular serotyping showed that there are three serotypes of field isolates of A. paragallinarum, namely, strain IND101 is serovar A, strain IND102 is serovar B, and strain IND103 is serovar C. HPG-2 PCR, 16S rRNA sequencing, and multiplex PCR are proved to be more accurate, sensitive, and reliable diagnostic tools for molecular and serological identification of A. paragallinarum field isolates. These diagnostic methods can substitute conventional cultural characterization and would be much valuable to formulate quick and correct prevention and control measures against this detrimental poultry pathogen.

  17. Increased sensitivity and specificity of Borrelia burgdorferi 16S ribosomal DNA detection.

    PubMed

    Lee, Sin Hang; Vigliotti, Veronica S; Vigliotti, Jessica S; Jones, William; Pappu, Suri

    2010-04-01

    The DNA of Borrelia burgdorferi spirochetes extracted by ammonium hydroxide was used as the template for nested polymerase chain reaction (PCR) amplification of the species-specific 16S ribosomal DNA (rDNA). The primers were those well known to be specific for signature sequence amplification of the B burgdorferi sensu lato 16S ribosomal RNA gene. The positive 293-base-pair nested PCR amplicon was subjected to routine direct automated Sanger sequencing. A 50-base sequence excised randomly from the sequencing electrophoretogram between the 2 nested PCR primer binding sites was sufficient for the Basic Local Alignment Search Tool (BLAST) analysis to validate the B burgdorferi sensu lato 16S rDNA without a reasonable doubt. Nested PCR increased the sensitivity of DNA detection by 100- to 1,000-fold. DNA sequence validation based on BLAST algorithms using the GenBank database practically eliminates any possibility of false-positive results due to molecular misidentification. This technology may be a valuable supplement to the current serologic tests for Lyme disease.

  18. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association

    PubMed Central

    Pulk, Arto; Maiväli, Ülo; Remme, Jaanus

    2006-01-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts. PMID:16556933

  19. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.

    PubMed

    Pulk, Arto; Maiväli, Ulo; Remme, Jaanus

    2006-05-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.

  20. Abiotrophia defectiva bleb-associated endophthalmitis confirmed with 16s ribosomal RNA sequencing.

    PubMed

    Hugo Lee, Ming-Han; Lawlor, Mitchell; Lee, Anne J

    2015-01-01

    One recognized complication of trabeculectomy with visually devastating potential is blebitis. We present a case of a 74-year-old woman with a culture and polymerase chain reaction-positive Abiotrophia defectiva bleb-associated endophthalmitis. Abiotrophia defectiva is a rare but possible cause of endophthalmitis secondary to blebitis and should be considered in culture-negative cases. Prompt identification, hence directed eradication, of the causative organism in such visually threatening cases may be facilitated by requesting polymerase chain reaction and 16S ribosomal RNA sequencing.

  1. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    PubMed Central

    Elbrecht, Vasco; Taberlet, Pierre; Dejean, Tony; Valentini, Alice; Usseglio-Polatera, Philippe; Beisel, Jean-Nicolas; Coissac, Eric; Boyer, Frederic

    2016-01-01

    Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate. PMID:27114891

  2. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA.

    PubMed

    Allen, P N; Noller, H F

    1989-08-05

    We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS

  3. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

    PubMed

    Seligmann, Hervé

    2014-11-01

    Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.

  4. An unusual case of Streptococcus anginosus group pyomyositis diagnosed using direct 16S ribosomal DNA sequencing.

    PubMed

    Walkty, Andrew; Embil, John M; Nichol, Kim; Karlowsky, James

    2014-01-01

    Bacteria belonging to the Streptococcus anginosus group (Streptococcus intermedius, Streptococcus constellatus and Streptococcus anginosus) are capable of causing serious pyogenic infections, with a tendency for abscess formation. The present article reports a case of S anginosus group pyomyositis in a 47-year-old man. The pathogen was recovered from one of two blood cultures obtained from the patient, but speciation was initially not performed because the organism was considered to be a contaminant (viridans streptococci group). The diagnosis was ultimately confirmed using 16S ribosomal DNA sequencing of purulent fluid obtained from a muscle abscess aspirate. The present case serves to emphasize that finding even a single positive blood culture of an organism belonging to the S anginosus group should prompt careful evaluation of the patient for a pyogenic focus of infection. It also highlights the potential utility of 16S ribosomal DNA amplification and sequencing in direct pathogen detection from aspirated fluid in cases of pyomyositis in which antimicrobial therapy was initiated before specimen collection.

  5. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  6. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  7. Infectious Spondylitis in a Patient with Chronic Kidney Disease: Identification of Campylobacter fetus Subsp. testudinum by 16S Ribosomal RNA Sequencing.

    PubMed

    Choi, Hong Sang; Shin, Sung Un; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2016-11-22

    We report the first case of spondylitis with bacteremia caused by Campylobacter fetus subsp. testudinum identified by 16S ribosomal ribonucleic acid (rRNA) gene sequencing. An 81-year-old man presented with fever and general weakness. His medical history included end-stage renal disease, hypertension, and type 2 diabetes. Despite empirical antibiotic treatment, his fever and back pain persisted. Magnetic resonance imaging with gadolinium enhancement showed a low-signal-intensity lesion in T1-weighted imaging and a high-signal-intensity lesion in T2-weighted imaging at the L3 vertebral body. C. fetus grew on 1 pair of blood cultures. C. fetus subsp. testudinum was identified via 16S rRNA sequencing of the cultivated organisms. The patient recovered uneventfully after 6 weeks of optimal antibiotic treatment, selected using susceptibility tests. C. fetus spondylitis is a very rare disease. In this unique case involving end-stage renal disease, the underlying pathogen was identified by 16S rRNA sequencing.

  8. Concurrent Nucleation of 16S Folding and Induced Fit in 30S Ribosome Assembly

    SciTech Connect

    Adilakshmi, T.; Bellur, D; Woodson, S

    2008-01-01

    Rapidly growing cells produce thousands of new ribosomes each minute, in a tightly regulated process that is essential to cell growth. How the Escherichia coli 16S ribosomal RNA and the 20 proteins that make up the 30S ribosomal subunit can assemble correctly in a few minutes remains a challenging problem, partly because of the lack of real-time data on the earliest stages of assembly. By providing snapshots of individual RNA and protein interactions as they emerge in real time, here we show that 30S assembly nucleates concurrently from different points along the rRNA. Time-resolved hydroxyl radical footprinting3 was used to map changes in the structure of the rRNA within 20 milliseconds after the addition of total 30S proteins. Helical junctions in each domain fold within 100 ms. In contrast, interactions surrounding the decoding site and between the 5', the central and the 3' domains require 2-200 seconds to form. Unexpectedly, nucleotides contacted by the same protein are protected at different rates, indicating that initial RNA-protein encounter complexes refold during assembly. Although early steps in assembly are linked to intrinsically stable rRNA structure, later steps correspond to regions of induced fit between the proteins and the rRNA.

  9. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays.

    PubMed

    Warsen, Adelaide E; Krug, Melissa J; LaFrentz, Stacey; Stanek, Danielle R; Loge, Frank J; Call, Douglas R

    2004-07-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.

  10. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    NASA Technical Reports Server (NTRS)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  11. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes.

    PubMed

    Michel, Christian J

    2012-04-01

    In 1996, a common trinucleotide circular code, called X, is identified in genes of eukaryotes and prokaryotes (Arquès and Michel, 1996). This circular code X is a set of 20 trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons. This reading frame retrieval needs a window length l of 12 nucleotides (l ≥ 12). With a window length strictly less than 12 nucleotides (l < 12), some words of X, called ambiguous words, are found in the shifted frames (the reading frame shifted by one or two nucleotides) preventing the reading frame in genes to be retrieved. Since 1996, these ambiguous words of X were never studied. In the first part of this paper, we identify all the ambiguous words of the common trinucleotide circular code X. With a length l varying from 1 to 11 nucleotides, the type and the occurrence number (multiplicity) of ambiguous words of X are given in each shifted frame. Maximal ambiguous words of X, words which are not factors of another ambiguous words, are also determined. Two probability definitions based on these results show that the common trinucleotide circular code X retrieves the reading frame in genes with a probability of about 90% with a window length of 6 nucleotides, and a probability of 99.9% with a window length of 9 nucleotides (100% with a window length of 12 nucleotides, by definition of a circular code). In the second part of this paper, we identify X circular code motifs (shortly X motifs) in transfer RNA and 16S ribosomal RNA: a tRNA X motif of 26 nucleotides including the anticodon stem-loop and seven 16S rRNA X motifs of length greater or equal to 15 nucleotides. Window lengths of reading frame retrieval with each trinucleotide of these X motifs are also determined. Thanks to the crystal structure 3I8G (Jenner et al., 2010), a 3D visualization of X motifs in the ribosome shows several spatial configurations involving mRNA X motifs, A-tRNA and E-tRNA X

  12. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA.

    PubMed Central

    O'Connor, M; Göringer, H U; Dahlberg, A E

    1992-01-01

    A series of base substitution and deletion mutations were constructed in the highly conserved 530 stem and loop region of E. coli 16S rRNA involved in binding of tRNA to the ribosomal A site. Base substitution and deletion of G517 produced significant effects on cell growth rate and translational fidelity, permitting readthrough of UGA, UAG and UAA stop codons as well as stimulating +1 and -1 frameshifting in vivo. By contrast, mutations at position 534 had little or no effect on growth rate or translational fidelity. The results demonstrate the importance of G517 in maintaining translational fidelity but do not support a base pairing interaction between G517 and U534. PMID:1380697

  13. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  14. Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis.

    PubMed

    Kita-Tsukamoto, Kumiko; Wada, Minoru; Yao, Katomi; Kamiya, Akiko; Yoshizawa, Susumu; Uchiyama, Nami; Kogure, Kazuhiro

    2006-03-01

    To rapidly identify natural isolates of marine bioluminescent bacteria, we developed amplified ribosomal DNA restriction analysis (ARDRA) methods. ARDRA, which is based on the restriction patterns of 16S rRNA gene digested with five enzymes (EcoRI, DdeI, HhaI, HinfI, RsaI), clearly distinguished the 14 species of marine bioluminescent bacteria currently known, which belong to the genera Vibrio, Photobacterium, and Shewanella. When we applied ARDRA to 129 natural isolates from two cruises in Sagami Bay, Japan, 127 were grouped into six ARDRA types with distinctive restriction patterns; these isolates represented the bioluminescent species, P. angustum, P. leiognathi, P. phosphoreum, S. woodyi, V. fischeri, and V. harveyi. The other two isolates showing unexpected ARDRA patterns turned out to have 16S rRNA gene sequences similar to P. leiognathi and P. phosphoreum. Nevertheless, ARDRA provides a simple and fairly robust means for rapid identification of the natural isolates of marine bioluminescent bacteria, and is therefore useful in studying their diversity.

  15. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    NASA Astrophysics Data System (ADS)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  16. THE NATURE AND PROCESSING OF RIBOSOMAL RIBONUCLEIC ACID IN A DINOFLAGELLATE

    PubMed Central

    Rae, Peter M. M.

    1970-01-01

    Certain features of the dinoflagellate nucleus suggest that it represents a primitive form of eukaryotic nucleus. For this reason, it was of interest to characterize dinoflagellate ribosomal RNA (rRNA) and its mode of synthesis to determine if it also deviated from typical eukaryotic patterns. Gyrodinium cohnii was chosen for this examination. Gyrodinium ribosomal RNA species are 16 and 25s as judged by their sedimentation velocities in isokinetic sucrose gradients. These values are typical of higher plants. In addition, the RNA cosedimented precisely with rRNA from the ciliate Tetrahymena. Nucleotide ratio analyses revealed a GMP + CMP content of 46% for both species of rRNA. The kinetics of incorporation of a radioactive precursor into ribosomal RNA have also been studied, and it seems likely that the maturation of rRNA starts with the synthesis of a 38s molecule. This serves as precursor to the 16s species, and, after a 27s intermediate, the 25s ribosomal component. The process is similar to that in other eukaryotes. The structure of the nucleolus has also been examined, and is seen to be typically eukaryotic. PMID:5459003

  17. Characterization of hybrid plasmids carrying individual ribosomal ribonucleic acid transcription units of Escherichia coli.

    PubMed Central

    Kenerley, M E; Morgan, E A; Post, L; Lindahl, L; Nomura, M

    1977-01-01

    We have screened the strains with ColE1 hybrid plasmids constructed by Clarke and Carbon (Cell 9:91-99, 1976) for the presence of ribosomal ribonucleic acid (rRNA) genes on the plasmids and identified 16 strains whose plasmids carry rRNA genes. The structures of these 16 plasmids were compared by heteroduplex analysis, and the plasmids were classified into six groups on the basis of their chromosomal origins. Homology with known transducing-phage deoxyribonucleic acids and genetic mapping have assigned locations on the Escherichia coli chromosome to three of the six groups. These are rrnB near rif at 88 min, rrnC near ilvE at 83 min, and rrnD near aroE at 71 min. A fourth group is probably rrnA at 85 min (T. Ikemura and M. Nomura, Cell, 11:779-793, 1977). We conclude that the minimum number of rRNA transcription units per haploid chromosomes is seven, that is, the six groups identified in this work plus a known operon (rrnE near metA at 89 min) that we failed to find among the hybrid plasmids. This heteroduplex analysis also suggests that there are only two kinds of rRNA operons with respect to their spacer region; three of the six rRNA operon groups studied here have one kind, whereas the remaining three have the other kind. Images PMID:336613

  18. Molecular detection of bacteria in plant tissues, using universal 16S ribosomal DNA degenerated primers

    PubMed Central

    Tsoktouridis, Georgios; Tsiamis, George; Koutinas, Nikolaos; Mantell, Sinclair

    2014-01-01

    Highly specific, sensitive and rapid tests are required for the detection and identification of covert bacterial contaminations in plant tissue cultures. Current methods available for this purpose are tedious, time consuming, highly error prone, expensive, require advanced technical expertise and are sometimes ineffective. We report here the development of a sensitive polymerase chain reaction (PCR) based method for the rapid detection and identification of bacteria occurring in plant tissue cultures. A total of 121 16S ribosomal DNA (rDNA) coding regions from 14 different groups of bacteria, algae and plants, available in the Gene Bank/European Molecular Biology Laboratory databases, were aligned and several conserved DNA sequences of bacterial origin were identified. From those, five degenerated primers were designed in order to amplify only the bacterial DNA present in mixed plant/bacteria genomic DNA extracts. A known amount of bacterial suspension of either covert Pseudomonas or covert Bacillus were added to in vitro plant leaves and total plant/bacterial DNA extracted using three different methods to determine the lowest number of bacteria required to be present in order to allow their detection. The highest sensitivity of the bacterial cell detection was 2.5 × 106 cells of both Bacillus and Pseudomonas inoculums, using template DNA prepared by the MiniPrep method. Generation of PCR amplification fragments was achieved only for the 16S rDNA bacterial gene by using four combinations of degenerated primers. Successive sequence analysis of these amplified fragments led to the rapid detection and molecular identification of bacteria covertly associated with plants. PMID:26019546

  19. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences.

    PubMed

    Allsopp, M; Visser, E S; du Plessis, J L; Vogel, S W; Allsopp, B A

    1997-08-01

    Cowdria ruminantium is a rickettsial parasite which causes heartwater, a economically important disease of domestic and wild ruminants in tropical and subtropical Africa and parts of the Caribbean. Because existing diagnostic methods are unreliable, we investigated the small-subunit ribosomal RNA (srRNA) gene from heartwater-infected material to characterise the organisms present and to develop specific oligonucleotide probes for polymerase chain reaction (PCR) based diagnosis. DNA was obtained from ticks and ruminants from heartwater-free and heartwater-endemic areas from Cowdria in tissue culture. PCR was carried out using primers designed to amplify only rickettsial srRNA genes, the target region being the highly variable V1 loop. Amplicons were cloned and sequenced; 51% were C. ruminantium sequences corresponding to four genotypes, two of which were identical to previously reported C. ruminantium sequences while the other two were new. The four different Cowdria genotypes can be correlated with different phenotypes. Tissue-culture samples yielded only Cowdria genotype sequences, but an extraordinary heterogeneity of 16S sequences was obtained from field samples. In addition to Cowdria genotypes we found sequences from previously unknown Ehrlichia spp., sequences showing homology to other Rickettsiales and a variety of Pseudomonadaceae. One Ehrlichia sequence was phylogenetically closely related to Ehrlichia platys (Group II Ehrlichia) and one to Ehrlichia canis (Group III Ehrlichia). This latter sequence was from an isolate (Germishuys) made from a naturally infected sheep which, from brain smear examination and pathology, appeared to be suffering from heartwater; nevertheless no Cowdria genotype sequences were found in this isolate. In addition no Cowdria sequences were obtained from uninfected ticks. Complete 16S rRNA gene sequences were determined for two C. ruminantium genotypes and for two previously uncharacterised heartwater-associated Ehrlichia spp

  20. RBF1, a Plant Homolog of the Bacterial Ribosome-Binding Factor RbfA, Acts in Processing of the Chloroplast 16S Ribosomal RNA1[W

    PubMed Central

    Fristedt, Rikard; Scharff, Lars B.; Clarke, Cornelia A.; Wang, Qin; Lin, Chentao; Merchant, Sabeeha S.; Bock, Ralph

    2014-01-01

    Plastids (chloroplasts) possess 70S ribosomes that are very similar in structure and function to the ribosomes of their bacterial ancestors. While most components of the bacterial ribosome (ribosomal RNAs [rRNAs] and ribosomal proteins) are well conserved in the plastid ribosome, little is known about the factors mediating the biogenesis of plastid ribosomes. Here, we have investigated a putative homolog of the bacterial RbfA (for ribosome-binding factor A) protein that was identified as a cold-shock protein and an auxiliary factor acting in the 5′ maturation of the 16S rRNA. The unicellular green alga Chlamydomonas reinhardtii and the vascular plant Arabidopsis (Arabidopsis thaliana) both encode a single RbfA-like protein in their nuclear genomes. By generating specific antibodies against this protein, we show that the plant RbfA-like protein functions exclusively in the plastid, where it is associated with thylakoid membranes. Analysis of mutants for the corresponding gene (termed RBF1) reveals that the gene function is essential for photoautotrophic growth. Weak mutant alleles display reduced levels of plastid ribosomes, a specific depletion in 30S ribosomal subunits, and reduced activity of plastid protein biosynthesis. Our data suggest that, while the function in ribosome maturation and 16S rRNA 5′ end processing is conserved, the RBF1 protein has assumed an additional role in 3′ end processing. Together with the apparent absence of a homologous protein from plant mitochondria, our findings illustrate that the assembly process of the 70S ribosome is not strictly conserved and has undergone some modifications during organelle evolution. PMID:24214533

  1. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing

    PubMed Central

    Kvich, Lasse; Eickhardt, Steffen; Omland, Lars H.; Bjarnsholt, Thomas; Moser, Claus

    2015-01-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii-specific PCR and immunohistochemistry. The patient was later diagnosed with HIV/AIDS. PMID:25854484

  2. Development of Specific Nested Oligonucleotide PCR Primers for the Streptococcus iniae 16S-23S Ribosomal DNA Intergenic Spacer

    PubMed Central

    Berridge, Brian R.; Fuller, Jeffrey D.; de Azavedo, Joyce; Low, Donald E.; Bercovier, Herve; Frelier, Paul F.

    1998-01-01

    Streptococcus iniae is a cause of septicemia, meningoencephalitis, and death in farmed fish and of cellulitis in human beings. A set of nested oligonucleotide PCR primers that specifically amplified a 373-bp subunit from a variety of clinical isolates from farmed fish and human patients were constructed from a 524-bp consensus sequence of the S. iniae 16S-23S ribosomal DNA intergenic spacer. PMID:9705438

  3. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing.

    PubMed

    Kruse, Alexandra Y C; Kvich, Lasse; Eickhardt, Steffen; Omland, Lars H; Bjarnsholt, Thomas; Moser, Claus

    2015-06-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii-specific PCR and immunohistochemistry. The patient was later diagnosed with HIV/AIDS. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Asaia bogorensis peritonitis identified by 16S ribosomal RNA sequence analysis in a patient receiving peritoneal dialysis.

    PubMed

    Snyder, Richard W; Ruhe, Jorg; Kobrin, Sidney; Wasserstein, Alan; Doline, Christa; Nachamkin, Irving; Lipschutz, Joshua H

    2004-08-01

    Here the authors report a case of refractory peritonitis leading to multiple hospitalizations and the loss of peritoneal dialysis access in a patient on automated peritoneal dialysis, caused by Asaia bogorensis, a bacterium not previously described as a human pathogen. This organism was identified by sequence analysis of the 16S ribosomal RNA gene. Unusual microbial agents may cause peritonitis, and molecular microbiological techniques are important tools for identifying these agents.

  5. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    SciTech Connect

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  6. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  7. Magnesium ions and the structure of Escherichia coli ribosomal ribonucleic acid

    PubMed Central

    Rodgers, A.

    1966-01-01

    1. The effect of removing Mg2+ from a purified high-molecular-weight (1·07×106) fraction of Escherichia coli ribosomal RNA was examined by ultracentrifugation, thermal denaturation and optical rotation. 2. At moderate I (0·1m-sodium chloride), EDTA at 2–50mm has little effect on RNA; at low I, 0·01–0·04 (with tris as counter-ion), two boundaries appear. 3. The leading boundary, S20,w about 20s, is identified with the original material with counter-ion Mg2+ (`ionic atmosphere') removed, leading to an expanded form. 4. The slow boundary, 15–16s, is associated with a further loss of Mg2+ and a further expansion, sensitive to EDTA concentration: it is proposed that this Mg2+ is localized on the polynucleotide chain, i.e. `site-bound'. 5. I is important and the EDTA effect at low I is reversible if Na+ is added immediately after the EDTA: this Na+ reversibility is lost on standing at 0°. It is suggested that changes in the tertiary structure may be associated with this loss of reversibility. 6. Thermal-denaturation studies show that there is no loss of secondary structure associated with these changes: change in the optical-rotatory-dispersion spectrum in the region of the Cotton effect may be associated with this change in tertiary structure. PMID:4960869

  8. Magnesium ions and the structure of Escherichia coli ribosomal ribonucleic acid.

    PubMed

    Rodgers, A

    1966-07-01

    1. The effect of removing Mg(2+) from a purified high-molecular-weight (1.07x10(6)) fraction of Escherichia coli ribosomal RNA was examined by ultracentrifugation, thermal denaturation and optical rotation. 2. At moderate I (0.1m-sodium chloride), EDTA at 2-50mm has little effect on RNA; at low I, 0.01-0.04 (with tris as counter-ion), two boundaries appear. 3. The leading boundary, S(20,w) about 20s, is identified with the original material with counter-ion Mg(2+) (;ionic atmosphere') removed, leading to an expanded form. 4. The slow boundary, 15-16s, is associated with a further loss of Mg(2+) and a further expansion, sensitive to EDTA concentration: it is proposed that this Mg(2+) is localized on the polynucleotide chain, i.e. ;site-bound'. 5. I is important and the EDTA effect at low I is reversible if Na(+) is added immediately after the EDTA: this Na(+) reversibility is lost on standing at 0 degrees . It is suggested that changes in the tertiary structure may be associated with this loss of reversibility. 6. Thermal-denaturation studies show that there is no loss of secondary structure associated with these changes: change in the optical-rotatory-dispersion spectrum in the region of the Cotton effect may be associated with this change in tertiary structure.

  9. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies.

    PubMed

    Wang, Yong; Qian, Pei-Yuan

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969-983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies.

  10. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species.

  11. Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state.

    PubMed

    Fagan, Crystal E; Dunkle, Jack A; Maehigashi, Tatsuya; Dang, Mai N; Devaraj, Aishwarya; Miles, Stacey J; Qin, Daoming; Fredrick, Kurt; Dunham, Christine M

    2013-06-11

    After four decades of research aimed at understanding tRNA selection on the ribosome, the mechanism by which ribosomal ambiguity (ram) mutations promote miscoding remains unclear. Here, we present two X-ray crystal structures of the Thermus thermophilus 70S ribosome containing 16S rRNA ram mutations, G347U and G299A. Each of these mutations causes miscoding in vivo and stimulates elongation factor thermo unstable (EF-Tu)-dependent GTP hydrolysis in vitro. Mutation G299A is located near the interface of ribosomal proteins S4 and S5 on the solvent side of the subunit, whereas G347U is located 77 Å distant, at intersubunit bridge B8, close to where EF-Tu engages the ribosome. Despite these disparate locations, both mutations induce almost identical structural rearrangements that disrupt the B8 bridge--namely, the interaction of h8/h14 with L14 and L19. This conformation most closely resembles that seen upon EF-Tu-GTP-aminoacyl-tRNA binding to the 70S ribosome. These data provide evidence that disruption and/or distortion of B8 is an important aspect of GTPase activation. We propose that, by destabilizing B8, G299A and G347U reduce the energetic cost of attaining the GTPase-activated state and thereby decrease the stringency of decoding. This previously unappreciated role for B8 in controlling the decoding process may hold relevance for many other ribosomal mutations known to influence translational fidelity.

  12. A novel mutation 3090 G>A of the mitochondrial 16S ribosomal RNA associated with myopathy.

    PubMed

    Coulbault, L; Deslandes, B; Herlicoviez, D; Read, M H; Leporrier, N; Schaeffer, S; Mouadil, A; Lombès, A; Chapon, F; Jauzac, P; Allouche, S

    2007-10-26

    We describe a young woman who presented with a progressive myopathy since the age of 9. Spectrophotometric analysis of the respiratory chain in muscle tissue revealed combined and profound complex I, III, II+III, and IV deficiency ranging from 60% to 95% associated with morphological and histochemical abnormalities of the muscle. An exhaustive screening of mitochondrial transfer and ribosomal RNAs showed a novel G>A substitution at nucleotide position 3090 which was detected only in urine sediment and muscle of the patient and was not found in her mother's blood cells and urine sample. We suggest that this novel de novo mutation in the 16S ribosomal RNA, a nucleotide which is highly conserved in different species, would impair mitochondrial protein synthesis and would cause a severe myopathy.

  13. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

    PubMed Central

    Drancourt, Michel; Bollet, Claude; Carlioz, Antoine; Martelin, Rolland; Gayral, Jean-Pierre; Raoult, Didier

    2000-01-01

    Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter and Pantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides

  14. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  15. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  16. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum.

    PubMed

    Burggraf, S; Larsen, N; Woese, C R; Stetter, K O

    1993-03-15

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  17. Comparison of 16S ribosomal RNA genes in Clavibacter michiganensis subspecies with other coryneform bacteria.

    PubMed

    Li, X; De Boer, S H

    1995-10-01

    Nearly complete sequences (97-99%) of the 16S rRNA genes were determined for type strains of Clavibacter michiganensis subsp. michiganensis, Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. sepedonicus, and Clavibacter michiganensis subsp. nebraskensis. The four subspecies had less than 1% dissimilarity in their 16S rRNA genes. Comparative studies indicated that the C. michiganensis subsp. shared relatively high homology with the 16S rRNA gene of Clavibacter xyli. Further comparison with representatives of other Gram-positive coryneform and related bacteria with high G+C% values showed that this group of bacteria was subdivided into three clusters. One cluster consisted of the Clavibacter michiganensis subsp., Clavibacter xyli, Arthrobacter globiformis, Arthrobacter simplex, and Frankia sp.; another cluster consisted of members of the corynebacteria-mycobacteria-nocardia (CMN) group of Mycobacteriaceae including Tsukamurella paurometabolum; and Propionibacterium freudenreichii alone formed a unique cluster, which was remote from other coryneform bacteria analyzed. The three clusters may reflect a systematic rank higher than the genus level among these bacteria.

  18. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA.

    PubMed Central

    Tanaka, I; Nakagawa, A; Hosaka, H; Wakatsuki, S; Mueller, F; Brimacombe, R

    1998-01-01

    Two recently published but independently derived structures, namely the X-ray crystallographic structure of ribosomal protein S7 and the "binding pocket" for this protein in a three-dimensional model of the 16S rRNA, have been correlated with one another. The known rRNA-protein interactions for S7 include a minimum binding site, a number of footprint sites, and two RNA-protein crosslink sites on the 16S rRNA, all of which form a compact group in the published 16S rRNA model (despite the fact that these interactions were not used as primary modeling constraints in building that model). The amino acids in protein S7 that are involved in the two crosslinks to 16S rRNA have also been determined in previous studies, and here we have used these sites to orient the crystallographic structure of S7 relative to its rRNA binding pocket. Some minor alterations were made to the rRNA model to improve the fit. In the resulting structure, the principal positively charged surface of the protein is in contact with the 16S rRNA, and all of the RNA-protein interaction data are satisfied. The quality of the fit gives added confidence as to the validity of the 16S rRNA model. Protein S7 is furthermore known to be crosslinked both to P site-bound tRNA and to mRNA at positions upstream of the P site codon; the matched S7-16S rRNA structure makes a prediction as to the location of this crosslink site within the protein molecule. PMID:9582096

  19. Utility of 16S ribosomal DNA sequencing in the diagnosis of Staphylococcus lugdunensis native valve infective endocarditis: case report and literature review.

    PubMed

    Pada, Surinder; Lye, David C; Leo, Yee Sin; Barkham, Timothy

    2009-11-01

    We report a case of possible infective endocarditis without fever presenting with an acutely ischemic limb with prior antimicrobial therapy preventing identification by culture of a microorganism. 16S ribosomal DNA sequencing led to the identification of Staphylococcus lugdunensis from an embolus removed at surgery and subsequent successful antibiotic treatment. We review the utility of 16S ribosomal DNA sequencing in diagnosing infective endocarditis and other infectious conditions.

  20. Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient

    PubMed Central

    Woo, P C Y; Leung, P K L; Leung, K W; Yuen, K Y

    2000-01-01

    Aims—To ascertain the clinical relevance of a strain of Enterobacteriaceae isolated from the stool of a bone marrow transplant recipient with diarrhoea. The isolate could not be identified to the genus level by conventional phenotypic methods and required 16S ribosomal RNA (rRNA) gene sequencing for full identification. Methods—The isolate was investigated phenotypically by standard biochemical methods using conventional biochemical tests and two commercially available systems, the Vitek (GNI+) and API (20E) systems. Genotypically, the 16S bacterial rRNA gene was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR product was compared with known 16S rRNA gene sequences in the GenBank database by multiple sequence alignment. Results—Conventional biochemical tests did not reveal a pattern resembling any known member of the Enterobacteriaceae family. The isolate was identified as Salmonella arizonae (73%) and Escherichia coli (76%) by the Vitek (GNI+) and API (20E) systems, respectively. 16S rRNA sequencing showed that there was only one base difference between the isolate and E coli K-12, but 48 and 47 base differences between the isolate and S typhimurium (NCTC 8391) and S typhi (St111), respectively, showing that it was an E coli strain. The patient did not require any specific treatment and the diarrhoea subsided spontaneously. Conclusions—16S rRNA gene sequencing was useful in ascertaining the clinical relevance of the strain of Enterobacteriaceae isolated from the stool of the bone marrow transplant recipient with diarrhoea. PMID:11040945

  1. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    PubMed Central

    Naveed, Muhammad; Mubeen, Samavia; khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  2. Specific 16S ribosomal RNA targeted oligonucleotide probe against Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Mirza, M S; Rademaker, J L; Janse, J D; Akkermans, A D

    1993-11-01

    In this article we report on the polymerase chain reaction amplification of a partial 16S rRNA gene from the plant pathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. A partial sequence (about 400 base pairs) of the gene was determined that covered two variable regions important for oligonucleotide probe development. A specific 24mer oligonucleotide probe targeted against the V6 region of 16S rRNA was designed. Specificity of the probe was determined using dot blot hybridization. Under stringent conditions (60 degrees C), the probe hybridized with all 16 Cl. michiganensis subsp. sepedonicus strains tested. Hybridization did not occur with 32 plant pathogenic and saprophytic bacteria used as controls under the same conditions. Under less stringent conditions (55 degrees C) the related Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. nebraskensis, and Clavibacter michiganensis subsp. tesselarius also showed hybridization. At even lower stringency (40 degrees C), all Cl. michiganensis subspecies tested including Clavibacter michiganensis subsp. michiganensis showed hybridization signal, suggesting that under these conditions the probe may be used as a species-specific probe for Cl. michiganensis.

  3. The use of hydroxylamine cleavage to produce a fragment of ribosomal protein S4 which retains the capacity to specifically bind 16S ribosomal RNA.

    PubMed Central

    Changchien, L M; Craven, G R

    1986-01-01

    In previous reports we have described the isolation of fragments of 30S ribosomal protein S4 using a number of different enzymatic and chemical cleavage techniques. These experiments were designed to determine the region of the protein responsible for 16S RNA recognition. We report here the isolation of two fragments produced by the hydroxylamine cleavage of the asparaginyl-glycyl peptide bond between positions 124 and 125. The purified fragments were chemically identified and tested for RNA binding capacity. The fragment consisting of residues 1-124 retains RNA binding activity and the fragment 125-203 is totally without RNA binding function. These results and previous results strongly suggest that the domain of protein S4 responsible for 16S RNA specific association is within the region consisting of residues 46-124. Images PMID:3515315

  4. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    PubMed Central

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  5. 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril).

    PubMed

    Magalhães Cruz, L; de Souza, E M; Weber, O B; Baldani, J I; Döbereiner, J; Pedrosa, F de O

    2001-05-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria.

  6. Phylogenetic relationships among cirrate octopods (Mollusca: Cephalopoda) resolved using mitochondrial 16S ribosomal DNA sequences.

    PubMed

    Piertney, Stuart B; Hudelot, Cendrine; Hochberg, F G; Collins, Martin A

    2003-05-01

    PHYLOGENETIC RELATIONSHIPS AMONG THE CIRRATE OCTOPODS (MOLLUSCA: Cephalopoda) were investigated using partial sequences of the 16S rRNA mitochondrial gene. The derived phylogeny supports the traditional separation of cirrate families based on web form. Genera with a single web (Opisthoteuthis, Grimpoteuthis, Luteuthis, and Cirroctopus) are clearly distinct from those with an intermediate or secondary web (Cirroteuthis, Cirrothauma, and Stauroteuthis). The cirrates with a single web are separated into three groups. The first group is represented by Opisthoteuthis species, the second by Grimpoteuthis and Luteuthis, and the third by members of the genus Cirroctopus. There is no support for the isolation of Luteuthis in a separate family (Luteuthidae). There is, however, evidence of two groupings within the genus Opisthoteuthis. The data suggest the following revisions in the systematic classification of the cirrates: (1) Cirrothauma, Cirroteuthis, and Stauroteuthis be united in the Cirroteuthidae; (2) Grimpoteuthis and Luteuthis be placed in the Grimpoteuthidae; (3) Opisthoteuthis in the Opisthoteuthidae, and; (4) Cirroctopus be considered sufficiently distinct from both Opisthoteuthidae and Grimpoteuthidae to warrant placement in a new family.

  7. Development and Evaluation of a Quality-Controlled Ribosomal Sequence Database for 16S Ribosomal DNA-Based Identification of Staphylococcus Species

    PubMed Central

    Becker, Karsten; Harmsen, Dag; Mellmann, Alexander; Meier, Christian; Schumann, Peter; Peters, Georg; von Eiff, Christof

    2004-01-01

    To establish an improved ribosomal gene sequence database as part of the Ribosomal Differentiation of Microorganisms (RIDOM) project and to overcome the drawbacks of phenotypic identification systems and publicly accessible sequence databases, both strands of the 5′ end of the 16S ribosomal DNA (rDNA) of 81 type and reference strains comprising all validly described staphylococcal (sub)species were sequenced. Assuming a normal distribution for pairwise distances of all unique staphylococcal sequences and choosing a reporting criterion of ≥98.7% similarity for a “distinct species,” a statistical error probability of 1.0% was calculated. To evaluate this database, a 16S rDNA fragment (corresponding to Escherichia coli positions 54 to 510) of 55 clinical Staphylococcus isolates (including those of the small-colony variant phenotype) were sequenced and analyzed by the RIDOM approach. Of these isolates, 54 (98.2%) had a similarity score above the proposed threshold using RIDOM; 48 (87.3%) of the sequences gave a perfect match, whereas 83.6% were found by searching National Center for Biotechnology Information (NCBI) database entries. In contrast to RIDOM, which showed four ambiguities at the species level (mainly concerning Staphylococcus intermedius versus Staphylococcus delphini), the NCBI database search yielded 18 taxon-related ambiguities and showed numerous matches exhibiting redundant or unspecified entries. Comparing molecular results with those of biochemical procedures, ID 32 Staph (bioMérieux, Marcy I'Etoile, France) and VITEK 2 (bioMérieux) failed to identify 13 (23.6%) and 19 (34.5%) isolates, respectively, due to incorrect identification and/or categorization below acceptable values. In contrast to phenotypic methods and the NCBI database, the novel high-quality RIDOM sequence database provides excellent identification of staphylococci, including rarely isolated species and phenotypic variants. PMID:15528685

  8. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay.

    PubMed

    Liu, Cheng-Che; Yeung, Chun-Yan; Chen, Po-Hao; Yeh, Ming-Kung; Hou, Shao-Yi

    2013-12-01

    An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient.

  9. Use of quantitative 16S ribosomal DNA detection for diagnosis of central vascular catheter-associated bacterial infection.

    PubMed

    Warwick, S; Wilks, M; Hennessy, E; Powell-Tuck, J; Small, M; Sharp, J; Millar, M R

    2004-04-01

    Many central vascular catheters (CVCs) are removed unnecessarily because current diagnostic methods for CVC-associated infection are unreliable. A quantitative PCR assay using primers and probe targeted to bacterial 16S ribosomal DNA was used to measure the levels of bacterial DNA in blood samples drawn through the CVC in a population of patients receiving intravenous nutrition. Bacterial DNA concentrations were raised in 16 of 16 blood samples taken during episodes of probable bacterial CVC-associated infection. Bacterial DNA concentrations were raised in 4 of 29 episodes in which bacterial CVC-associated infection was unlikely. The use of this technique has the potential to substantially reduce the unnecessary removal of CVCs.

  10. Emergence of Tetracycline Resistance in Helicobacter pylori: Multiple Mutational Changes in 16S Ribosomal DNA and Other Genetic Loci

    PubMed Central

    Dailidiene, Daiva; Bertoli, M. Teresita; Miciuleviciene, Jolanta; Mukhopadhyay, Asish K.; Dailide, Giedrius; Pascasio, Mario Alberto; Kupcinskas, Limas; Berg, Douglas E.

    2002-01-01

    Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tetr) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tetr isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA965-967 [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA965-967; (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tetr phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tetr parents; (iii) each of 10 Tetr mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA965-967 sequence; and (iv) transformant derivatives of Ind75 and of one of the Tetr 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity. PMID:12435699

  11. PCR detection of colonization by Helicobacter pylori in conventional, euthymic mice based on the 16S ribosomal gene sequence.

    PubMed Central

    Smith, J G; Kong, L; Abruzzo, G K; Gill, C J; Flattery, A M; Scott, P M; Bramhill, D; Cioffe, C; Thompson, C M; Bartizal, K

    1996-01-01

    Many animal models of Helicobacter infection have been described, including infection in rhesus monkeys, ferrets, gnotobiotic piglets, and mice. These animal models utilize a combination of detection methods, including culture, urease testing, and histopathology, all of which may be unreliable, insensitive, or labor-intensive. Development of new animal models of Helicobacter pylori requires new methods of detection with increased sensitivity and specificity. We have developed sensitive and specific PCR primers based on the 16S ribosomal gene sequence of H. pylori. The primers detected single-copy 16S DNA representing 0.2 cell of pure H. pylori (2 cells in the presence of mouse stomach mucosal DNA) and did not cross-react with closely related bacteria. We were able to detect colonization by H. pylori in conventional, euthymic, outbred mice up to 4 weeks postinoculation with a high percentage of isolates tested. One isolate of H. pylori was detected by PCR in 100% of the mice at 6 months and 60% of the mice 1 year after inoculation. Approximately 10(3) to 10(4) H. pylori cells per stomach were detected by utilizing this PCR methodology semiquantitatively. These primers and PCR methodology have facilitated detection of H. pylori colonization in conventional, euthymic mice, colonization which may not have been detectable by other methods. PMID:8770506

  12. Native Valve Endocarditis due to Corynebacterium striatum confirmed by 16S Ribosomal RNA Sequencing: A Case Report and Literature Review

    PubMed Central

    2016-01-01

    Corynebacterium species are non-fermentous Gram-positive bacilli that are normal flora of human skin and mucous membranes and are commonly isolated in clinical specimens. Non-diphtheriae Corynebacterium are regarded as contaminants when found in blood culture. Currently, Corynebacterium striatum is considered one of the emerging nosocomial agents implicated in endocarditis and serious infections. We report a case of native-valve infective endocarditis caused by C. striatum, which was misidentified by automated identification system but identified accurately by 16S ribosomal RNA sequencing, in a 55-year-old male patient. The patient had two mobile vegetations on his mitral valve, both of which had high embolic risk. Through surgical valve replacement and an antibiotic regimen, the patient recovered completely. In unusual clinical scenarios, C. striatum should not be simply dismissed as a contaminant when isolated from clinical specimens. The possibility of C. striatum infection should be considered even in an immunocompetent patient, and we suggest a genotypic assay, such as 16S rRNA sequencing, to confirm species identity. PMID:27659439

  13. Heterogeneity within the gram-positive anaerobic cocci demonstrated by analysis of 16S-23S intergenic ribosomal RNA polymorphisms.

    PubMed

    Hill, K E; Davies, C E; Wilson, M J; Stephens, P; Lewis, M A O; Hall, V; Brazier, J; Thomas, D W

    2002-11-01

    Peptostreptococci are gram-positive, strictly anaerobic bacteria which, although regarded as members of the commensal human microflora, are also frequently isolated from sites of clinical infection. The study of this diverse group of opportunist pathogens has been hindered by an inadequate taxonomy and the lack of a valid identification scheme. Recent re-classification of the Peptostreptococcus family into five distinct genus groups has helped to clarify the situation. However, this has been on the basis of 16S rRNA sequence determinations, which are both time-consuming and expensive. The aim of the present study was to evaluate the use of PCR-amplified ribosomal DNA spacer polymorphisms for the rapid differentiation of the currently recognised taxa within the group of anaerobic gram-positive cocci. A collection comprising 19 reference strains with representatives of each of the 15 species, two close relatives and two of the well-characterised groups, together with 38 test strains was studied. All strains were identified to species group level by phenotypic means. Amplification of the 16S-23S intergenic spacer region (ISR) with universal primers produced distinct banding patterns for all the 19 reference strains and the patterns could be differentiated easily visually. However, of the 38 test strains, less than half could be speciated from ISR analysis alone. Only five groups produced correlating banding patterns for all members tested (Peptoniphilus lacrimalis, P. ivorii, Anaerococcus octavius, Peptostreptococcus anaerobius and Micromonas micros). For other species, either the type strain differed significantly from other species members (e.g., A. hydrogenalis) or there appeared to be considerable intra-species variation (e.g., A. vaginalis). Partial 16S rRNA gene sequences for the 'trisimilis' and 'betaGAL' groups showed that both are most closely related to the Anaerococcus group. This work highlights the heterogeneous nature of a number of Peptostreptococcus

  14. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  15. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  16. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  17. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3'-Terminal Fragment of 16S rRNA in E. coli.

    PubMed

    Golovin, A V; Khayrullina, G A; Kraal, B; Kopylov, Capital A Cyrillic М

    2012-10-01

    For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore, studying the RNA-protein interactions within binary complexes is obligatory for understanding ribosome biogenesis. The non-conventional RNA-protein contact within the binary complex of recombinant ribosomal protein S7 and its 16S rRNA binding site (236 nucleotides) was identified. UV-induced RNA-protein cross-links revealed that S7 cross-links to nucleotide U1321 of 16S rRNA. The careful consideration of the published RNA- protein cross-links for protein S7 within the 30S subunit and their correlation with the X-ray data for the 30S subunit have been performed. The RNA - protein cross-link within the binary complex identified in this study is not the same as the previously found cross-links for a subunit both in a solution, and in acrystal. The structure of the binary RNA-protein complex formed at the initial steps of self-assembly of the small subunit appears to be rearranged during the formation of the final structure of the subunit.

  18. 16S partial gene mitochondrial DNA and internal transcribed spacers ribosomal DNA as differential markers of Trichuris discolor populations.

    PubMed

    Callejón, R; Halajian, A; de Rojas, M; Marrugal, A; Guevara, D; Cutillas, C

    2012-05-25

    Comparative morphological, biometrical and molecular studies of Trichuris discolor isolated from Bos taurus from Spain and Iran was carried out. Furthermore, Trichuris ovis isolated from B. taurus and Capra hircus from Spain has been, molecularly, analyzed. Morphological studies revealed clear differences between T. ovis and T. discolor isolated from B. taurus but differences were not observed between populations of T. discolor isolated from different geographical regions. Nevertheless, the molecular studies based on the amplification and sequencing of the internal transcribed spacers 1 and 2 ribosomal DNA and 16S partial gene mitochondrial DNA showed clear differences between both populations of T. discolor from Spain and Iran suggesting two cryptic species. Phylogenetic studies corroborated these data. Thus, phylogenetic trees based on ITS1, ITS2 and 16S partial gene sequences showed that individuals of T. discolor from B. taurus from Iran clustered together and separated, with high bootstrap values, of T. discolor isolated from B. taurus from Spain, while populations of T. ovis from B. taurus and C. hircus from Spain clustered together but separated with high bootstrap values of both populations of T. discolor. Furthermore, a comparative phylogenetic study has been carried out with the ITS1and ITS2 sequences of Trichuris species from different hosts. Three clades were observed: the first clustered all the species of Trichuris parasitizing herbivores (T. discolor, T. ovis, Trichuris leporis and Trichuris skrjabini), the second clustered all the species of Trichuris parasitizing omnivores (Trichuris trichiura and Trichuris suis) and finally, the third clustered species of Trichuris parasitizing carnivores (Trichuris muris, Trichuris arvicolae and Trichuris vulpis). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Constraint satisfaction techniques for modeling large complexes: Application to the central domain of 16S ribosomal RNA

    SciTech Connect

    Altman, R.B.; Weiser, B.; Noller, H.F.

    1994-12-31

    Standard experimental techniques for determining the structure of small to moderately-sized molecules are difficult to apply to large macromolecular complexes. These complexes, consisting of multiple protein and/or nucleic acid components, can contain many thousands of atoms and the experimental techniques used to study them provide relatively sparse structural information with significant measurement uncertainty. Computational technologies are required to reduce the conformational search space and synthesize the data in order to produce the structures or (more usually) sets of structures compatible with the data. In this paper, we show that a method based on the constraint satisfaction paradigm produces a three-dimensional topology for the central domain of the 16S ribosomal RNA that is generally consistent with interactively built models, although differing in significant ways. The modeling incorporates information about secondary structure of the nucleic acid, neutron diffraction data about the relative positions and uncertainties of the proteins, and protection experiments indicating proximities of segments of RNA to specific protein subunits. Unlike previously proposed models, our model contains explicit information about the range of positions for each subunit that are compatible with the data. The system uses a grid search, checks distances in a direction-dependent manner, uses disjunctive distance constraints, and checks for volume overlap violations.

  20. Identification of bacteria recovered from animals using the 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing.

    PubMed

    Tewari, Deepanker; Cieply, Stephen; Livengood, Julia

    2011-11-01

    Bacterial identification using genetic sequencing is fast becoming a confirmatory tool for microbiologists. Its application in veterinary diagnostic laboratories is still growing. In addition to availability of Sanger sequencing, pyrosequencing has recently emerged as a unique method for short-read DNA sequencing for bacterial identifications. Its ease of use makes it possible to diagnose infections rapidly at a low cost even in smaller laboratories. In the current study, pyrosequencing was compared with Sanger sequencing for identification of the bacterial organisms. Fifty-four bacterial isolates spanning 23 different bacterial families encountered in veterinary diagnostic microbiology laboratories were sequenced using 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing. Pyrosequencing was able to identify 80% of isolates to the genus level, and 43% isolates to the species level. Sanger sequencing with approximately 500 bp performed better for both genus (100%) and species (87%) identification. Use of different sequence databases to identify bacteria isolated from animals showed relative importance of public databases compared to a validated commercial library. A time and limited cost comparison between pyrosequencing and genetic sequencing of 500 bp showed pyrosequencing was not only faster but also comparable in cost, making it a viable alternative for use in classifying bacteria isolated from animals.

  1. Conserved Bacterial RNase YbeY Plays Key Roles in 70S Ribosome Quality Control and 16S rRNA Maturation

    PubMed Central

    Jacob, Asha Ivy; Köhrer, Caroline; Davies, Bryan William; RajBhandary, Uttam Lal; Walker, Graham Charles

    2012-01-01

    Quality control of ribosomes is critical for cellular function since protein mistranslation leads to severe physiological consequences. We report the first evidence of a ribosome quality control system in bacteria that operates at the level of 70S to remove defective ribosomes. YbeY, a previously unidentified endoribonuclease, and the exonuclease RNase R act together by a process mediated specifically by the 30S ribosomal subunit, to degrade defective 70S ribosomes but not properly matured 70S ribosomes or individual subunits. Furthermore, there is essentially no fully matured 16S rRNA in a ΔybeY mutant at 45°C, making YbeY the first endoribonuclease to be implicated in the critically important processing of the 16S rRNA 3' terminus. These key roles in ribosome quality control and maturation indicate why YbeY is a member of the minimal bacterial gene set and suggest that it could be a potential target for antibacterial drugs. PMID:23273979

  2. Differential stability of 28s and 18s rat liver ribosomal ribonucleic acids.

    PubMed

    Venkov, P V; Hadjiolov, A A

    1969-10-01

    Rat liver ribosomal RNA (rRNA) free from nuclease contaminants was isolated by a modification of the phenol technique. The 28s and 18s rRNA species were separated by preparative agar-gel electrophoresis. The two rRNA species were heated at different temperatures under various conditions and the amount of undegraded rRNA was determined by analytical agar-gel electrophoresis. The 18s rRNA remained unaltered after heating for up to 10min. at 90 degrees in water, acetate buffer, pH5.0, or phosphate buffer, pH7.0. Under similar or milder conditions 28s rRNA was partially degraded, giving rise to a well-delimited 6s peak and a heterogeneous material located in the zone between 28s and 6s. The dependence of degradation of 28s rRNA on the temperature and the ionic strength of the medium was studied. The greatest extent of degradation of 28s rRNA was observed on heating at 90 degrees in water. It is suggested that the instability of rat liver 28s rRNA is due to two factors: the presence of hidden breaks in the polymer chain and a higher susceptibility of some phosphodiester bonds to thermal hydrolysis.

  3. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.

    PubMed

    Ghosh, Srikanta; Joseph, Simpson

    2005-05-01

    Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.

  4. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA.

    PubMed

    Moazed, D; Noller, H F

    1990-01-05

    Transfer RNA protects a characteristic set of bases in 16 S rRNA from chemical probes when it binds to ribosomes. We used several criteria, based on construction of well-characterized in vitro ribosome-tRNA complexes, to assign these proteins to A or P-site binding. All of these approaches lead to similar conclusions. In the A site, tRNA caused protection of G529, G530, A1492 and A1493 (strongly), and A1408 and G1494 (weakly). In the P site, the protected bases are G693, A794, C795, G926 and G1401 (strong), and A532, G966, G1338 and G1339 (weak). In contrast to what is observed for 23 S rRNA, blocking the release of EF-Tu.GDP from the ribosome by kirromycin has no detectable effect on the protection of bases in 16 S rRNA.

  5. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    PubMed

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  6. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  7. Septic arthritis and osteomyelitis in a 10-year-old boy, caused by Fusobacterium nucleatum, diagnosed with PCR/16S ribosomal bacterial DNA amplification

    PubMed Central

    Kroon, Elke; Arents, Niek A; Halbertsma, Feico Jan

    2012-01-01

    A 10-year-old boy presented with an atypical non-febrile septic arthritis/osteomyelitis. He was unresponsive to routine antibiotic treatment with flucloxacillin/gentamicin as the pain and fluid collection increased. Synovial fluid cultures are negative and gram stain remained negative. Only after PCR/16S ribosomal bacterial DNA amplification a Fusobacterium nucleatum could be detected, and antibiotic therapy switched to clindamycin with rapid response. Septic osteomyelitis and arthritis are relatively rare but important infections in children needing prompt treatment, and should be considered when a child complaints about joint or bone pain without prior recent trauma. Skin bacteria are the most prevalent causative organisms, whereas Fusobacteria or other anaerobic, Gram-negative microorganisms are very seldom encountered. If cultures remain negative and the patients responds insufficiently to empiric treatment, PCR/16S ribosomal bacterial DNA amplification can be useful to detect the causative microorganisms. PMID:22605875

  8. High-Resolution Melting Curve Analysis of the 16S Ribosomal Gene to Detect and Identify Pathogenic and Saprophytic Leptospira Species in Colombian Isolates.

    PubMed

    Peláez Sánchez, Ronald G; Quintero, Juan Álvaro López; Pereira, Martha María; Agudelo-Flórez, Piedad

    2017-05-01

    AbstractIt is important to identify the circulating Leptospira agent to enhance the performance of serodiagnostic tests by incorporating specific antigens of native species, develop vaccines that take into account the species/serovars circulating in different regions, and optimize prevention and control strategies. The objectives of this study were to develop a polymerase chain reaction (PCR)-high-resolution melting (HRM) assay for differentiating between species of the genus Leptospira and to verify its usefulness in identifying unknown samples to species level. A set of primers from the initial region of the 16S ribosomal gene was designed to detect and differentiate the 22 species of Leptospira. Eleven reference strains were used as controls to establish the reference species and differential melting curves. Twenty-five Colombian Leptospira isolates were studied to evaluate the usefulness of the PCR-HRM assay in identifying unknown samples to species level. This identification was confirmed by sequencing and phylogenetic analysis of the 16S ribosomal gene. Eleven Leptospira species were successfully identified, except for Leptospira meyeri/Leptospira yanagawae because the sequences were 100% identical. The 25 isolates from humans, animals, and environmental water sources were identified as Leptospira santarosai (twelve), Leptospira interrogans (nine), and L. meyeri/L. yanagawae (four). The species verification was 100% concordant between PCR-HRM and phylogenetic analysis of the 16S ribosomal gene. The PCR-HRM assay designed in this study is a useful tool for identifying Leptospira species from isolates.

  9. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  10. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  11. Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues.

    PubMed

    Prince, J B; Taylor, B H; Thurlow, D L; Ofengand, J; Zimmermann, R A

    1982-09-01

    N-Acetylvalyl-tRNA1Val (AcVal-tRNA1Val) was bound to the P site of uniformly 32P-labeled 70S ribosomes from Escherichia coli and crosslinked to 16S RNA in the 30S ribosomal subunit by irradiation with light of 300-400 nm. To identify the crosslinked nucleotide in 16S RNA. AcVal-tRNA1Val-16S [32P]RNA was digested completely with RNase T1 and the band containing the covalently attached oligonucleotides from tRNA and rRNA was isolated by polyacrylamide gel electrophoresis. The crosslinked oligonucleotide, and the 32P-labeled rRNA moiety released from it by photoreversal of the crosslink at 254 nm, were then analyzed by secondary hydrolysis with pancreatic RNase A and RNase U2. The oligonucleotide derived from 16S RNA was found to be the evolutionarily conserved sequence, U-A-C-A-C-A-C-C-G1401, and the nucleotide crosslinked to tRNA1Val, C1400. The identity of the covalently attached residue in the tRNA was established by using AcVal-tRNA1Val-16S RNA prepared from unlabeled ribosomes. This complex was digested to completion with RNase T1 and the resulting RNA fragments were labeled at the 3' end with [5'-32P]pCp. The crosslinked T1 oligonucleotide isolated from the mixture yielded one major end-labeled component upon photoreversal. Chemical sequence analysis demonstrated that this product was derived from the anticodon-containing pentadecanucleotide of tRNA1Val, C-A-C-C-U-C-C-C-U-cmo5U-A-C-m6A-A-G39(cmo5U, 5-carboxymethoxyuridine). A similar study of the crosslinked oligonucleotide revealed that the residue covalently bound to 16S was cmo5U34, the 5' or wobble base of the anticodon. The adduct is believed to result from formation of a cyclobutane dimer between cmo5U34 of tRNA1Val and C1400 of the 16S RNA.

  12. Seasonal shifts in population structure of Vibrio vulnificus in an estuarine environment as revealed by partial 16S ribosomal DNA sequencing.

    PubMed

    Lin, Meilan; Schwarz, John R

    2003-07-01

    Abstract The partial sequence (600 bp) containing the most variable region of Vibrio vulnificus 16S ribosomal DNA (rDNA) was determined for 208 randomly selected V. vulnificus strains isolated from Galveston Bay, TX, USA between June 2000 and June 2001. A comparative analysis of the determined partial 16S rDNA sequences revealed the existence of two different partial 16S rDNA sequences (type A and type B, 1.3% base substitutions) among the 208 V. vulnificus isolates. A higher proportion of 16S rDNA type A strains was isolated in June and July while a considerably higher proportion of type B strains was isolated in September. In addition, after no V. vulnificus strains were detected during the winter months (December-February), only type A strains were isolated during the following months (March-May). The results suggest that the relative abundance of type A and type B V. vulnificus strains in Galveston Bay varies with the season and that the differences between the two 16S rDNA types may affect the viability of these organisms in the natural environment.

  13. 16S ribosomal RNA tools identify an unexpected predominance of Paenibacillus-like bacteria in an industrial activated sludge system suffering from poor biosolids separation.

    PubMed

    Simpson, Joyce M; Stroot, Peter G; Gelman, Steve; Beydilli, Inan; Dudley, Sandra; Oerther, Daniel B

    2006-08-01

    Molecular biology tools targeting 16S ribosomal RNA (16S rRNA) were used to identify a predominant bacterial population in a full-scale dairy wastewater activated sludge system suffering from poor biosolids separation. Gram and acridine orange staining indicated that viable, Gram-positive microorganisms were present in samples removed from the influent waste stream and represented approximately 50% of total cell counts in samples removed from the mixed liquor. Subsequently, the "full-cycle 16S rRNA approach" showed that phylogenetic relatives of Paenibacillus spp., a low guanine-plus-cytosine percent DNA-content, Gram-positive microorganism, represented up to 30% of total 4,6-diamidino-2-phenylindole (DAPI)-stained cell counts in samples of mixed liquor. Although fluorescent in situ hybridizations with 16S rRNA-targeted oligonucleotide hybridization probes identified Paenibacillus-like spp. in samples removed from the influent waste stream, their abundance was less than 10% of total stained cell counts. Results of this study suggest that Paenibacillus-like spp. were present in low abundance in the influent waste stream, increased in relative abundance within the treatment system, and should be examined further as a candidate bacterial population responsible for poor biosolids separation. This study demonstrates that the full-cycle 16S rRNA approach can be used to identify candidate bacterial populations that may be responsible for operational upsets in full-scale activated sludge systems without prior information from cultivation or microscopic analyses.

  14. Comparison of the Biolog OmniLog Identification System and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin.

    PubMed

    Morgan, Megan C; Boyette, Marilyn; Goforth, Chris; Sperry, Katharine Volpe; Greene, Shermalyn R

    2009-12-01

    The Biolog OmniLog Identification System (Biolog) and the 16S ribosomal RNA (rRNA) gene sequencing methods were compared to conventional microbiological methods and evaluated for accuracy of bacterial identification. These methods were evaluated using 159 clinical isolates. Each isolate was initially identified by conventional biochemical tests and morphological characteristics and subsequently placed into one of seven categories: aerobic Actinomycetes, Bacillus, Coryneforms, fastidious Gram-negative rods (GNR), non-fermenting GNR, miscellaneous Gram-positive rods (GPR), and Vibrio/Aeromonas. After comparison to the conventional identification, the Biolog system and 16S rRNA gene sequence identifications were classified as follows: a) correct to the genus and species levels; b) correct to the genus level only; or c) neither (unacceptable) identification. Overall, 16S rRNA gene sequencing had the highest percent accuracy with 90.6% correct identifications, while the Biolog system identified 68.3% of the isolates correctly. For each category, 16S rRNA gene sequencing had a substantially higher percent accuracy compared to the conventional methods. It was determined that the Biolog system is deficient when identifying organisms in the fastidious GNR category (20.0%). The observed data suggest that 16S rRNA gene sequencing provides a more accurate identification of atypical bacteria than the Biolog system.

  15. Ribosomal gene polymorphism in small genomes: analysis of different 16S rRNA sequences expressed in the honeybee parasite Nosema ceranae (Microsporidia).

    PubMed

    Sagastume, Soledad; Martín-Hernández, Raquel; Higes, Mariano; Henriques-Gil, Nuno

    2014-01-01

    To date, few organisms have been shown to possess variable ribosomal RNA, otherwise considered a classic example of uniformity by concerted evolution. The polymorphism for the 16S rRNA in Nosema ceranae analysed here is striking as Microsporidia are intracellular parasites which have suffered a strong reduction in their genomes and cellular organization. Moreover, N. ceranae infects the honeybee Apis mellifera, and has been associated with the colony-loss phenomenon during the last decade. The variants of 16S rRNA include single nucleotide substitutions, one base insertion-deletion, plus a tetranucleotide indel. We show that different gene variants are expressed. The polymorphic sites tend to be located in particular regions of the rRNA molecule, and the comparison to the Escherichia coli 16S rRNA secondary structure indicates that most variations probably do not preclude ribosomal activity. The fact that the polymorphisms in such a minimal organism as N. ceranae are maintained in samples collected worldwide suggest that the existence of differently expressed rRNA may play an adaptive role in the microsporidian. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  16. Usefulness of the MicroSeq 500 16S Ribosomal DNA-Based Bacterial Identification System for Identification of Clinically Significant Bacterial Isolates with Ambiguous Biochemical Profiles

    PubMed Central

    Woo, Patrick C. Y.; Ng, Kenneth H. L.; Lau, Susanna K. P.; Yip, Kam-tong; Fung, Ami M. Y.; Leung, Kit-wah; Tam, Dorothy M. W.; Que, Tak-lun; Yuen, Kwok-yung

    2003-01-01

    Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the “gold standard,” we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S r

  17. Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Rogers, G. B.; Hart, C. A.; Mason, J. R.; Hughes, M.; Walshaw, M. J.; Bruce, K. D.

    2003-01-01

    The leading cause of morbidity and mortality in cystic fibrosis (CF) patients stems from repeated bacterial respiratory infections. Many bacterial species have been cultured from CF specimens and so are associated with lung disease. Despite this, much remains to be determined. In the present study, we characterized without prior cultivation the total bacterial community present in specimens taken from adult CF patients, extracting DNA directly from 14 bronchoscopy or sputum samples. Bacterial 16S ribosomal DNA (rRNA) gene PCR products were amplified from extracted nucleic acids, with analyses by terminal restriction fragment length polymorphism (T-RFLP), length heterogeneity PCR (LH-PCR), and sequencing of individual cloned PCR products to characterize these communities. Using the same loading of PCR products, 12 distinct T-RFLP profiles were identified that had between 3 and 32 T-RFLP bands. Nine distinct LH-PCR profiles were identified containing between one and four bands. T-RFLP bands were detected in certain samples at positions that corresponded to pathogens cultured from CF samples, e.g., Burkholderia cepacia and Haemophilus influenzae. In every sample studied, one T-RFLP band was identified that corresponded to that produced by Pseudomonas aeruginosa. A total of 103 16S rRNA gene clones were examined from five patients. P. aeruginosa was the most commonly identified species (59% of clones). Stenotrophomonas species were also common, with eight other (typically anaerobic) bacterial species identified within the remaining 17 clones. In conclusion, T-RFLP analysis coupled with 16S rRNA gene sequencing is a powerful means of analyzing the composition and diversity of the bacterial community in specimens sampled from CF patients. PMID:12904354

  18. [A case of culture-negative brain abscess caused by Streptococcus intermedius infection diagnosed by broad-range PCR of 16S ribosomal RNA].

    PubMed

    Ohara, Nobuyuki; Asai, Katsunori; Ohkusu, Kiyofumi; Wakayama, Akatsuki

    2013-10-01

    A 50-year-old man presented with altered mental status during hospitalization for pneumonia. MRI showed multifocal ring-enhanced lesions, which consisted of multiple cerebral abscesses. We started empirical antibiotic therapy, but the following morning, his condition rapidly deteriorated and a CT scan revealed acute hydrocephalus, which required ventricular drainage. Gram staining of cerebro-spinal fluid from the ventricular drainage showed gram-positive cocci in chains, but culture results were negative. 16S ribosomal RNA sequencing with broad-range PCR of the cerebro-spinal fluid identified Streptococcus intermedius. On the basis of this identification, the antibiotic regimen was changed to ampicillin monotherapy. After 1 year of antibiotic therapy, all the abscesses had disappeared and the patient was discharged without any sequelae. Bacterial 16S rRNA gene analysis with broad-range PCR is a very useful method for facilitating the etiological diagnosis and selection of appropriate treatment for culture-negative infections.

  19. Short report: variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae).

    PubMed

    García, Beatriz A; Manfredi, Candela; Fichera, Laura; Segura, Elsa L

    2003-06-01

    Mitochondrial DNA sequences of the 12S and 16S ribosomal RNA genes were analyzed in five natural populations of the Chagas' disease vector Triatoma infestans from Argentina. DNA sequence comparisons of 878 basepairs (12S plus 16S) revealed 13 haplotypes. A total of 10 private haplotypes were found in four of the populations analyzed, suggesting low current levels of genetic exchange. The levels of genetic differentiation between the population of Chancaní (Córdoba) and other two of the populations analyzed indicated significant deviation from a pattern of unrestricted gene flow. The haplotypic diversity and the private haplotypes found in the geographically closest localities of Chancaní and El Jardín (La Rioja) suggest that the reduction in the population size by insecticide treatment did not avoid the recovery of the populations apparently from survivors of the same area.

  20. A Case of Sepsis in a 92-Year-Old Korean Woman Caused by Aerococcus urinae and Identified by Sequencing the 16S Ribosomal RNA Gene.

    PubMed

    Lee, Min Young; Kim, Myeong Hee; Lee, Woo In; Kang, So Young; Jeon, You La

    2016-05-01

    Aerococcus urinae is an uncommon pathogen that was first identified in 1992. Herein, we report a case of bloodstream infection caused by A. urinae, which occurred in a 92-year-old Korean female patient with an underlying urologic infection who had altered consciousness. The blood culture yielded positive results for A. urinae; however, identifying A. urinae was challenging. Ultimately, we used 16S ribosomal RNA (rRNA) gene sequencing to identify the organism. The patient recovered after being treated with ertapenem and meropenem. To our knowledge, this is the first report of a case of A. urinae sepsis in South Korea.

  1. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    PubMed

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  2. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

    PubMed Central

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities. PMID:24594623

  3. Flow Cytometry-assisted Cloning of Specific Sequence Motifs fromComplex 16S ribosomal RNA Gene Libraries.

    SciTech Connect

    Nielsen, J.L.; Schramm, A.; Bernhard, A.E.; van den Engh, G.J.; Stahl, D.A.

    2004-07-21

    A flow cytometry method was developed for rapid screeningand recovery of cloned DNA containing common sequence motifs. Thisapproach, termed fluorescence-activated cell sorting-assisted cloning,was used to recover sequences affiliated with a unique lineage within theBacteroidetes not abundant in a clone library of environmental 16S rRNAgenes. Retrieval and sequence analysis of phylogenetically informativegenes has become a standard cultivation-independent technique toinvestigate microbial diversity in nature (7, 18). Genes encoding the 16SrRNA, because of the relative ease of their selective amplification, havebeen most frequently employed for general diversity surveys (16).Environmental studies have also focused on specific subpopulationsaffiliated with a phylogenetic group or identified by genes encodingspecific metabolic functions (e.g., ammonia oxidation, sulfaterespiration, and nitrate reduction) (8,15,20). However, specificpopulations may be of low abundance (1,23), or the genes encodingspecific metabolic functions may be insufficiently conserved to providepriming sites for general PCR amplification. Three general approacheshave been used to obtain 16S rRNA sequence information from low-abundancepopulations: screening hundreds to thousands of clones in a general 16SrRNA gene library (21), flow cytometric sorting of a subpopulation ofenvironmentally derived cells labeled by fluorescent in situhybridization (FISH) (27), or selective PCR amplification using primersspecific for the subpopulation (2,23). While the first approach is simplytime-consuming and tedious, the second has been restricted to fairlylarge and strongly fluorescent cells from aquatic samples (5, 27). Thethird approach often generates fragments of only a few hundred bases dueto the limited number of specific priming sites. Partial sequenceinformation often degrades analysis, obscuring or distorting thephylogenetic placement of the new sequences (11, 20). A more robustcharacterization of environ

  4. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA.

    PubMed

    Bauer, Gesine; Berens, Christian; Projan, Steven J; Hillen, Wolfgang

    2004-04-01

    The new antibiotic tigecycline (9-t-butylglycylamido-minocycline; GAR-936) overcomes most of the known tetracycline resistance mechanisms. Here we analyse its mode of antibiotic action by probing 70S ribosomes of Escherichia coli with dimethylsulphate (DMS) and Fe(2+)-mediated cleavage to identify binding sites of tetracycline and tigecycline. Fe(2+)-mediated cleavage makes use of the ability of Fe2+ to replace the Mg2+ ion complexed with tetracyclines. After addition of H2O2, Fe2+ generates short-lived, highly reactive hydroxyl radicals that can cleave RNA close to the tetracycline binding sites. We identified three prominent Fe(2+)-mediated cleavage sites in helices 29 and 34, and in the internal loop of helix 31 of 16S rRNA in the presence of tetracycline or tigecycline. Qualitatively, these sites are modified identically by both antibiotics, but quantitative differences observed in the cleavage intensities indicate that the drugs bind in slightly different orientations. These results are supported by DMS modification, mutational analysis of 16S rRNA and structural modelling of tigecycline at a tetracycline-binding site in the 30S ribosomal subunit. Both derivatives bind to identical or overlapping sites and probably share the same mode of antibiotic action. The fact that tigecycline overcomes most of the known tetracycline resistance mechanisms is interpreted as a result of steric hindrance due to the large substituent at position 9.

  5. Molecular Evolution of Aromatic Polyketides and Comparative Sequence Analysis of Polyketide Ketosynthase and 16S Ribosomal DNA Genes from Various Streptomyces Species

    PubMed Central

    Metsä-Ketelä, Mikko; Halo, Laura; Munukka, Eveliina; Hakala, Juha; Mäntsälä, Pekka; Ylihonko, Kristiina

    2002-01-01

    A 613-bp fragment of an essential ketosynthase gene from the biosynthetic pathway of aromatic polyketide antibiotics was sequenced from 99 actinomycetes isolated from soil. Phylogenetic analysis showed that the isolates clustered into clades that correspond to the various classes of aromatic polyketides. Additionally, sequencing of a 120-bp fragment from the γ-variable region of 16S ribosomal DNA (rDNA) and subsequent comparative sequence analysis revealed incongruity between the ketosynthase and 16S rDNA phylogenetic trees, which strongly suggests that there has been horizontal transfer of aromatic polyketide biosynthesis genes. The results show that the ketosynthase tree could be used for DNA fingerprinting of secondary metabolites and for screening interesting aromatic polyketide biosynthesis genes. Furthermore, the movement of the ketosynthase genes suggests that traditional marker molecules like 16S rDNA give misleading information about the biosynthesis potential of aromatic polyketides, and thus only molecules that are directly involved in the biosynthesis of secondary metabolites can be used to gain information about the biodiversity of antibiotic production in different actinomycetes. PMID:12200302

  6. 16S ribosomal RNA and phylograms: Characterizing student reasoning to learning outcomes from the American Society for Microbiology Curriculum

    NASA Astrophysics Data System (ADS)

    Grassie, Chelsey Lee

    The American Society for Microbiology (ASM) has established a suggested curriculum for introductory microbiology courses that includes a focus on evolution. However, no data is published to describe how proficiently students address the learning outcomes, in part because validated assessments do not exist. Thus, the goal of this project was to develop assessment prompts that capture student understanding about fundamental statement five under the core concept of evolution. In total, 167 written responses were collected from upper-division microbiology courses, with pre-pharmacy and microbiology majors comprising the majority of students (74.6%). Two coders coded all written responses, and five student interviews were conducted. Results indicate that students have not retained instruction on 16S rRNA, or have not been exposed to it in their classes. Additionally, most students have not been exposed to phylograms, and are unfamiliar with genetic distance being represented on a phylogenetic tree. Emergent reasoning techniques are described.

  7. Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, tuf, and SodA gene sequencing.

    PubMed

    Shin, Jeong Hwan; Kim, Si Hyun; Jeong, Haeng Soon; Oh, Seung Hwan; Kim, Hye Ran; Lee, Jeong Nyeo; Yoon, Young Chul; Kim, Yang Wook; Kim, Yeong Hoon

    2011-01-01

    Coagulase-negative staphylococcus (CoNS) is the most common pathogen in continuous ambulatory peritoneal dialysis (CAPD)-associated peritonitis. There is no well-organized, standardized database for CoNS, and few studies have used gene sequencing in reporting species distribution in CAPD peritonitis. In the present study, we used 3 housekeeping genes to evaluate the prevalence of CoNS isolated from CAPD peritonitis episodes and to estimate the accuracy of, and the characteristic differences between, these genes for species identification. All 51 non-duplicated CoNS isolates obtained from CAPD peritonitis between April 2006 and May 2008 were used. The strains were identified by polymerase chain reaction and by direct sequencing using the 16S ribosomal RNA (rRNA), tuf, and sodA genes. We determined species distribution, and using selected databases, we analyzed the characteristics and diagnostic utility of the individual genes for species identification. In GenBank (National Institutes of Health, Bethesda, MD, USA), we found 49 type or reference strains for CoNS 16S rRNA, 17 for tuf, and 46 for sodA, and we used those data for sequence-similarity comparisons with CAPD isolates. Among our 51 strains, S. epidermidis (66.7%) was the most common, followed by S. haemolyticus (11.8%), S. warneri (7.8%), S. caprae (5.9%), S. capitis (3.9%), and S. pasteuri (2.0%). For 1 strain, different species results were obtained with each gene. The identification rates with 16S rRNA, sodA, and tuf gene sequencing were 84.0%, 96.0%, and 92.2% respectively. The discrimination capability of 16S rRNA gene was lower in a few individual species, and for the sodA gene, the percentage similarity to sequences from reference strains was also lower. The tuf gene had excellent identification capacity, but relatively few type strains are available in public databases. The 16S rRNA gene did not discriminate between S. caprae and S. capitis. The sodA gene showed a similarity rate that was lower than

  8. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  9. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA.

    PubMed

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  10. STUDIES ON THE FORMATION OF TRANSFER RIBONUCLEIC ACID-RIBOSOME COMPLEXES, XI. ANTIBIOTIC EFFECTS ON PHENYLALANYL-OLIGONUCLEOTIDE BINDING TO RIBOSOMES

    PubMed Central

    Pestka, Sidney

    1969-01-01

    The effect of antibiotics on the binding of phenylalanyl-oligonucleotide to ribosomes has been examined. The results show that many classes of antibiotics can interfere with binding of the aminoacyl-oligonucleotide terminus of tRNA to ribosomes: chloramphenicol, sparsomycin, D-WIN-5094, vernamycin A, PA114A, streptogramin, amicetin, gougerotin, tylosin, and spiramycin III. The results are consistent with the hypothesis that these antibiotics inhibit protein synthesis by interfering with the binding of the aminoacyl-end of aminoacyl-tRNA to ribosomes. PMID:5261043

  11. Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue.

    PubMed

    Kimura, Hiroyuki; Sato, Makoto; Sasayama, Yuichi; Naganuma, Takeshi

    2003-01-01

    Gutless pogonophorans are generally thought to live in symbiosis with methane-oxidizing bacteria (methanotrophs). We identified a 16S ribosomal RNA gene (rDNA) and a ribulose-1,5-bisphosphate carboxlase/oxygenase (RuBisCO, E.C.4.1.1.39) gene that encode the form I large subunit ( cbbL) from symbiont-bearing tissue of the pogonophoran Oligobrachia mashikoi. Phylogenetic analysis of the 16S rDNA sequence suggested that the pogonophoran endosymbiont belonged to the gamma-subdivision of Proteobacteria. The endosymbiont was most closely related to an uncultured bacterium from a hydrocarbon seep, forming a unique clade adjacent to the known methanotrophic 16S rDNA cluster. The RuBisCO gene from the pogonophoran tissue was closely related to those of the chemoautotrophic genera Thiobacillus and Hydrogenovibrio. Presence of the RuBisCO gene suggested a methanotrophic symbiosis because some methanotrophic bacteria are known to be capable of autotrophy via the Calvin cycle. In contrast, particulate and soluble methane monooxygenase genes ( pmoA and mmoX) and the methanol dehydrogenase gene ( mxaF), which are indicators for methanotrophs or methylotrophs, were not detected by repeated trial of polymerase chain reaction. For 16S rRNA and RuBisCO genes, endosymbiotic localizations were confirmed by in situ hybridization. These results support the possibilities that the pogonophoran host has a novel endosymbiont which belongs to the gamma-subdivision of Proteobacteria, and that the endosymbiont has the gene of the autotrophic enzyme RuBisCO.

  12. Cell-free synthesis of tryptophanase from Escherichia coli. Use of ribonucleic acid isolated from induced cells and a comparison of the product from a system employing ribosomes with that from one employing ribosomes and exogenous ribonucleic acid

    PubMed Central

    Parish, J. H.; Bashar, S. A. M. Khairul; Brown, N. L.; Brown, Marjorie

    1971-01-01

    1. Polyribosomes and RNA were isolated from cultures in which tryptophanase (EC 4.2.1.–) was induced. The polyribosomes were incubated under conditions of protein synthesis, in the presence of a radioactive amino acid and a post-ribosomal supernatant fraction obtained from repressed cells. The RNA preparations were incubated under conditions of protein synthesis in the presence of a radioactive amino acid and a supernatant fraction containing ribosomes from repressed cells. 2. The system was characterized and the synthesis of a radioactive protein with the same chromatographic properties as tryptophanase was demonstrated. This synthesis was shown to be time-dependent and required the presence of RNA from induced cultures, ribosomes and an energy supply; it was inhibited by chloramphenicol. 3. The maximum activity for the synthesis of this protein was found to be associated with 23S rRNA isolated from sucrose gradients. 4. The N-terminal amino acid of tryptophanase was labelled in the protein synthesized in this system but not in the protein synthesized by polyribosomes (without added RNA). Conversely, the C-terminal amino acid of tryptophanase was labelled in the polyribosome system but not in the RNA-containing system. 5. Tryptic digests of protein labelled in vitro were compared with those of tryptophanase. No labelled tryptic peptides were identified other than tryptophanase tryptic peptides. An analysis of the results implied that in the polyribosome system almost the complete tryptophanase subunit chain was labelled but that in the RNA-containing system these chains were incompletely synthesized. 6. Sucrose-gradient analysis of protein synthesized in the RNA-containing system suggested that it cannot be converted into structures with the same sedimentation properties as native tryptophanase. 7. The significance of these results for the assay of tryptophanase mRNA and for an understanding of the control of the translation of this mRNA in vivo is discussed

  13. Specific Detection of Bradyrhizobium and Rhizobium Strains Colonizing Rice (Oryza sativa) Roots by 16S-23S Ribosomal DNA Intergenic Spacer-Targeted PCR

    PubMed Central

    Tan, Zhiyuan; Hurek, Thomas; Vinuesa, Pablo; Müller, Peter; Ladha, Jagdish K.; Reinhold-Hurek, Barbara

    2001-01-01

    In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial

  14. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Köhrer, Karl; Gougoula, Christina; Sager, Martin

    2014-10-01

    Correct identification of bacteria is crucial for the management of rodent colonies. Some bacteria are difficult to identify phenotypically outside reference laboratories. In this study, we evaluated the utility of 16S ribosomal DNA (rDNA) sequencing as a means of identifying a collection of 30 isolates of rodent origin which are conventionally difficult to identify. Sequence analysis of the first approximate 720 to 880 bp of the 5'- end of 16S rDNA identified 25 isolates (83.33%) with ≥ 99% similarity to a sequence of a type strain, whereas three isolates (10%) displayed a sequence similarity ≥ 97% but <99% to the type strain sequences. These similarity scores were used to define identification to species and genus levels, respectively. Two of the 30 isolates (6.67%) displayed a sequence similarity of ≥ 95 but <97% to the reference strains and were thus allocated to a family. This technique allowed us to document the association of mice with bacteria relevant for the colonies management such as Pasteurellaceae, Bordetella hinzii or Streptococcus danieliae. In addition, human potential pathogens such as Acinetobacter spp., Ochrobactrum anthropi and Paracoccus yeei or others not yet reported in mouse bacterial species such as Leucobacter chironomi, Neisseria perflava and Pantoea dispersa were observed. In conclusion, the sequence analysis of 16S rDNA proved to be a useful diagnostic tool, with higher performance characteristics than the classical phenotypic methods, for identification of laboratory animal bacteria. For the first time this method allowed us to document the association of certain bacterial species with the laboratory mouse.

  15. Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3'-termini of rabbit reticulocyte ribosomal RNA.

    PubMed

    Hunt, J A

    1970-11-01

    Sequences of the polynucleotide chains of RNA found in the large and small ribosomal subunits of rabbit reticulocytes have been determined from the 3'-end by use of periodate oxidation and condensation with [(3)H]isoniazid and by stepwise degradation. By these methods the hexanucleotide sequences have been found as -pGpUpUpUpGpU for the 28S RNA and -pGpUpCpGpCpU for the 6S RNA of the large ribosomal subunit and the octanucleotide sequence -pGpApUpCpApUpUpA for the 18S rRNA of the small ribosomal subunit. These sequences are present in at least 70% of all the RNA molecules and are discussed in relation to the specific cleavage of rRNA from its precursors and the role of multiple cistrons for rRNA in the DNA of higher organisms. The feasibility of using the method for longer sequence determinations is discussed.

  16. [Study of the binding of the S7 protein with 16S rRNA fragment 926-986/1219-1393 as a key step in the assembly of the small subunit of prokaryotic ribosomes].

    PubMed

    Rassokhin, T I; Golovin, A V; Petrova, E B; Spiridonova, V A; Karginova, O A; Rozhdestvenskiĭ, T S; Brosius, J; Kopylov, A M

    2001-01-01

    Both structural and thermodynamic studies are necessary to understand the ribosome assembly. An initial step was made in studying the interaction between a 16S rRNA fragment and S7, a key protein in assembling the prokaryotic ribosome small subunit. The apparent dissociation constant was obtained for complexes of recombinant Escherichia coli and Thermus thermophilus S7 with a fragment of the 3' domain of the E. coli 16S rRNA. Both proteins showed a high rRNA-binding activity, which was not observed earlier. Since RNA and proteins are conformationally labile, their folding must be considered to correctly describe the RNA-protein interactions.

  17. A new technique for the characterization of long-range tertiary contacts in large RNA molecules: insertion of a photolabel at a selected position in 16S rRNA within the Escherichia coli ribosome.

    PubMed Central

    Baranov, P V; Dokudovskaya, S S; Oretskaya, T S; Dontsova, O A; Bogdanov, A A; Brimacombe, R

    1997-01-01

    A new approach for inserting a photo-label at a selected position within the long ribosomal RNA molecules has been developed. The Escherichia coli 16S rRNA was cleaved at a single internucleotide bond, 1141-1142, with RNase H in the presence of a complementary chimeric oligonucleotide. 4-Thiouridine 5', 3'-diphosphate was ligated to the 3'-end of the 5'fragment at the cleavage site with T4 RNA ligase. The 16S rRNA fragments containing this added photo-reactive nucleotide were assembled together with total 30S ribosomal proteins into small ribosomal subunits. The ability of such 30S particles containing fragmented rRNA to form 70S ribosomes has been demonstrated previously. Crosslinks were induced within the 30S subunits by mild UV irradiation. The sites of crosslinking within the 16S rRNA were then analyzed using RNase H digestion and reverse transcription. Two crosslinks from the thio-nucleotide attached to nt C1141 of 16S rRNA were observed, namely to nt U1295 and G1272. These results are in agreement with the established proximity of helix 39 and 41 in the 3D structure of the 30S ribosomal subunit, as shown by other intra RNA crosslinking data. These data furthermore allow us to refine the structural arrangement of helices 41 and 39 relative to one another. PMID:9171076

  18. 16S ribosomal DNA sequence analysis distinguishes biotypes of Streptococcus bovis: Streptococcus bovis Biotype II/2 is a separate genospecies and the predominant clinical isolate in adult males.

    PubMed

    Clarridge, J E; Attorri, S M; Zhang, Q; Bartell, J

    2001-04-01

    We characterized 22 human clinical strains of Streptococcus bovis by genotypic (16S rRNA gene sequence analysis [MicroSeq]; Applied Biosystems, Foster City, Calif.) and phenotypic (API 20 Strep and Rapid ID32 Strep systems (bioMerieux Vitek, Hazelton, Mo.) methods. The strains, isolated from blood, cerebrospinal fluid (CSF), and urine, formed two distinct 16S ribosomal DNA sequence clusters. Three strains which were associated with endocarditis urinary tract infection (UTI), and sepsis clustered with the S. bovis type strain ATCC 33317 (cluster 1); other closely related type strains were S. equinus and S. infantarius. Nineteen strains clustered at a distance of about 2.5% dissimilarity to the S. bovis type strain (cluster 2) and were associated with central nervous system (CNS) disease in addition to endocarditis, UTI, and sepsis. All strains were distinct from S. gallolyticus. Within cluster 2, a single strain grouped with ATCC strain 43143 (cluster 2a) and may be phenotypically distinct. All the other strains formed a second subgroup (cluster 2b) that was biochemically similar to S. bovis biotype II/2 (mannitol negative and beta galactosidase, alpha galactosidase, beta glucuronidase, and trehalose positive). The API 20 Strep system identified isolates of cluster 2b as S. bovis biotype II/2, those of cluster 1 as S. bovis biotype II/1, and that of cluster 2a as S. bovis biotype I. There was an excellent correlation of biotype and genotype: S. bovis biotype II/2 isolates form a separate genospecies distinct from the S. bovis, S. gallolyticus, and S. infantarius type strains and are the most common isolates in adult males.

  19. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis

    PubMed Central

    Wise, Mark G.; McArthur, J Vaun; Shimkets, Lawrence J.

    1999-01-01

    The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4.8 versus 6.8), air/CH4/CO2 headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1× nitrate minimal salts [NMS] versus 0.2× NMS). Screening of the isolates showed that the nutrient-rich 1× NMS selected for type I methanotrophs, while the nutrient-poor 0.2× NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase

  20. Effect of Ethylenediaminetetraacetic Acid-Tris(hydroxymethyl)aminomethane on Release of the Acid-soluble Nucleotide Pool and on Breakdown of Ribosomal Ribonucleic Acid in Escherichia coli

    PubMed Central

    Neu, Harold C.; Ashman, Donald F.; Price, T. Duane

    1967-01-01

    Brief treatment of Escherichia coli with 2 × 10−4m ethylenediaminetetraacetic acid (EDTA)-0.12 m tris(hydroxymethyl)aminomethane (Tris), pH 8.0, or 0.12 m Tris alone resulted in the release of the acid-soluble nucleotide pool at 3 or 23 C. Exposure to EDTA-Tris for up to 90 min at 3 C did not result in the release of increasing amounts of 260-mμ-absorbing material. At 23 and 37 C, EDTA-Tris resulted in a steady increase in acid-soluble 260-mμ-absorbing material. Previous growth environment did not alter the release. There appeared to be degradation of 23S ribonucleic acid (RNA) after 10 min of exposure at 23 C. In addition, there was degradation of nucleotides to nucleosides and bases. This occured either within the cells with altered permeability or in the periplasmic space. This occurred in the presence of EDTA and Tris but was not seen with EDTA-phosphate. The mechanism of this degradation is unclear, since it occurs in ribonuclease I-deficient strains. Exposure to Tris buffer for long periods of time at 23 C resulted in release of the nucleotide pool and in degradation of RNA and nucleotides. These studies point out that the EDTA-Tris effect on E. coli must be divided into two parts, an early (4 to 5 min) change in permeability and a later phase of actual RNA breakdown and nucleotide degradation. Studies utilizing EDTA and Tris as agents altering permeability must thus be viewed with caution. Although the cells are viable, they have lost their acid-soluble nucleotide pool and have undergone degradation of some ribosomal RNA. PMID:4962058

  1. DIVERSITY OF BAT-ASSOCIATED LEPTOSPIRA IN THE PERUVIAN AMAZON INFERRED BY BAYESIAN PHYLOGENETIC ANALYSIS OF 16S RIBOSOMAL DNA SEQUENCES

    PubMed Central

    MATTHIAS, MICHAEL A.; DÍAZ, M. MÓNICA; CAMPOS, KALINA J.; CALDERON, MARITZA; WILLIG, MICHAEL R.; PACHECO, VICTOR; GOTUZZO, EDUARDO; GILMAN, ROBERT H.; VINETZ, JOSEPH M.

    2008-01-01

    The role of bats as potential sources of transmission to humans or as maintenance hosts of leptospires is poorly understood. We quantified the prevalence of leptospiral colonization in bats in the Peruvian Amazon in the vicinity of Iquitos, an area of high biologic diversity. Of 589 analyzed bats, culture (3 of 589) and molecular evidence (20 of 589) of leptospiral colonization was found in the kidneys, yielding an overall colonization rate of 3.4%. Infection rates differed with habitat and location, and among different bat species. Bayesian analysis was used to infer phylogenic relationships of leptospiral 16S ribosomal DNA sequences. Tree topologies were consistent with groupings based on DNA-DNA hybridization studies. A diverse group of leptospires was found in peri-Iquitos bat populations including Leptospira interrogans (5 clones), L. kirschneri (1), L. borgpetersenii (4), L. fainei (1), and two previously undescribed leptospiral species (8). Although L. kirschenri and L. interrogans have been previously isolated from bats, this report is the first to describe L. borgpetersenii and L. fainei infection of bats. A wild animal reservoir of L. fainei has not been previously described. The detection in bats of the L. interrogans serovar Icterohemorrhagiae, a leptospire typically maintained by peridomestic rats, suggests a rodent-bat infection cycle. Bats in Iquitos maintain a genetically diverse group of leptospires. These results provide a solid basis for pursuing molecular epidemiologic studies of bat-associated Leptospira, a potentially new epidemiologic reservoir of transmission of leptospirosis to humans. PMID:16282313

  2. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    USDA-ARS?s Scientific Manuscript database

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  3. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    USDA-ARS?s Scientific Manuscript database

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  4. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments.

    PubMed

    Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G

    2015-06-01

    Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis

  5. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    PubMed Central

    Edgcomb, Virginia P.; McDonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments. PMID:10103245

  6. Bacteriological incidence in pneumonia patients with pulmonary emphysema: a bacterial floral analysis using the 16S ribosomal RNA gene in bronchoalveolar lavage fluid

    PubMed Central

    Naito, Keisuke; Yamasaki, Kei; Yatera, Kazuhiro; Akata, Kentaro; Noguchi, Shingo; Kawanami, Toshinori; Fukuda, Kazumasa; Kido, Takashi; Ishimoto, Hiroshi; Mukae, Hiroshi

    2017-01-01

    Pulmonary emphysema is an important radiological finding in chronic obstructive pulmonary disease patients, but bacteriological differences in pneumonia patients according to the severity of emphysematous changes have not been reported. Therefore, we evaluated the bacteriological incidence in the bronchoalveolar lavage fluid (BALF) of pneumonia patients using cultivation and a culture-independent molecular method. Japanese patients with community-acquired pneumonia (83) and healthcare-associated pneumonia (94) between April 2010 and February 2014 were evaluated. The BALF obtained from pneumonia lesions was evaluated by both cultivation and a molecular method. In the molecular method, ~600 base pairs of bacterial 16S ribosomal RNA genes in the BALF were amplified by polymerase chain reaction, and clone libraries were constructed. The nucleotide sequences of 96 randomly selected colonies were determined, and a homology search was performed to identify the bacterial species. A qualitative radiological evaluation of pulmonary emphysema based on chest computed tomography (CT) images was performed using the Goddard classification. The severity of pulmonary emphysema based on the Goddard classification was none in 47.4% (84/177), mild in 36.2% (64/177), moderate in 10.2% (18/177), and severe in 6.2% (11/177). Using the culture-independent molecular method, Moraxella catarrhalis was significantly more frequently detected in moderate or severe emphysema patients than in patients with no or mild emphysematous changes. The detection rates of Haemophilus influenzae and Pseudomonas aeruginosa were unrelated to the severity of pulmonary emphysematous changes, and Streptococcus species – except for the S. anginosus group and S. pneumoniae – were detected more frequently using the molecular method we used for the BALF of patients with pneumonia than using culture methods. Our findings suggest that M. catarrhalis is more frequently detected in pneumonia patients with moderate

  7. Bacteriological incidence in pneumonia patients with pulmonary emphysema: a bacterial floral analysis using the 16S ribosomal RNA gene in bronchoalveolar lavage fluid.

    PubMed

    Naito, Keisuke; Yamasaki, Kei; Yatera, Kazuhiro; Akata, Kentaro; Noguchi, Shingo; Kawanami, Toshinori; Fukuda, Kazumasa; Kido, Takashi; Ishimoto, Hiroshi; Mukae, Hiroshi

    2017-01-01

    Pulmonary emphysema is an important radiological finding in chronic obstructive pulmonary disease patients, but bacteriological differences in pneumonia patients according to the severity of emphysematous changes have not been reported. Therefore, we evaluated the bacteriological incidence in the bronchoalveolar lavage fluid (BALF) of pneumonia patients using cultivation and a culture-independent molecular method. Japanese patients with community-acquired pneumonia (83) and healthcare-associated pneumonia (94) between April 2010 and February 2014 were evaluated. The BALF obtained from pneumonia lesions was evaluated by both cultivation and a molecular method. In the molecular method, ~600 base pairs of bacterial 16S ribosomal RNA genes in the BALF were amplified by polymerase chain reaction, and clone libraries were constructed. The nucleotide sequences of 96 randomly selected colonies were determined, and a homology search was performed to identify the bacterial species. A qualitative radiological evaluation of pulmonary emphysema based on chest computed tomography (CT) images was performed using the Goddard classification. The severity of pulmonary emphysema based on the Goddard classification was none in 47.4% (84/177), mild in 36.2% (64/177), moderate in 10.2% (18/177), and severe in 6.2% (11/177). Using the culture-independent molecular method, Moraxella catarrhalis was significantly more frequently detected in moderate or severe emphysema patients than in patients with no or mild emphysematous changes. The detection rates of Haemophilus influenzae and Pseudomonas aeruginosa were unrelated to the severity of pulmonary emphysematous changes, and Streptococcus species - except for the S. anginosus group and S. pneumoniae - were detected more frequently using the molecular method we used for the BALF of patients with pneumonia than using culture methods. Our findings suggest that M. catarrhalis is more frequently detected in pneumonia patients with moderate or

  8. Clinical impact of methicillin-resistant staphylococcus aureus on bacterial pneumonia: cultivation and 16S ribosomal RNA gene analysis of bronchoalveolar lavage fluid.

    PubMed

    Kawanami, Toshinori; Yatera, Kazuhiro; Yamasaki, Kei; Noguchi, Shingo; Fukuda, Kazumasa; Akata, Kentarou; Naito, Keisuke; Kido, Takashi; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2016-04-16

    Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia. We evaluated the bacterial microbiota in bronchoalveolar lavage fluid (BALF) using the clone library method with a 16S ribosomal RNA (rRNA) gene analysis in 42 patients from a pneumonia registry who had MRSA cultured from their sputum or BALF samples. Patients were divided into two groups: those treated with (Group A) or without (Group B) anti-MRSA agents, and their clinical features were compared. Among 248 patients with pneumonia, 42 patients who had MRSA cultured from the respiratory tract were analyzed (Group A: 13 patients, Group B: 29 patients). No clones of S. aureus were detected in the BALF of 20 out of 42 patients. Twenty-eight of 29 patients in Group B showed favorable clinical outcomes, indicating that these patients had non-MRSA pneumonia. Using a microflora analysis of the BALF, the S. aureus phylotype was predominant in 5 of 28 (17.9%) patients among the detected bacterial phylotypes, but a minor population (the percentage of clones ≤ 10%) in 19 (67.9%) of 28 patients. A statistical analysis revealed no positive relationship between the percentage of clones of the S. aureus phylotype and risk factors of MRSA pneumonia. The molecular method using BALF specimens suggests that conventional cultivation method results may mislead true causative pathogens, especially in patients with MRSA pneumonia. Further studies are necessary to elucidate these clinically important issues.

  9. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  10. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3’-Terminal Fragment of 16S rRNA in E. coli

    PubMed Central

    Golovin, A.V.; Khayrullina, G.A.; Kraal, B.; Kopylov, А.М.

    2012-01-01

    For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore, studying the RNA–protein interactions within binary complexes is obligatory for understanding ribosome biogenesis. The non-conventional RNA–protein contact within the binary complex of recombinant ribosomal protein S7 and its 16S rRNA binding site (236 nucleotides) was identified. UV–induced RNA–protein cross-links revealed that S7 cross-links to nucleotide U1321 of 16S rRNA. The careful consideration of the published RNA– protein cross-links for protein S7 within the 30S subunit and their correlation with the X-ray data for the 30S subunit have been performed. The RNA – protein cross–link within the binary complex identified in this study is not the same as the previously found cross-links for a subunit both in a solution, and in acrystal. The structure of the binary RNA–protein complex formed at the initial steps of self-assembly of the small subunit appears to be rearranged during the formation of the final structure of the subunit. PMID:23346381

  11. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  12. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  13. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.

    PubMed

    Frischer, M E; Floriani, P J; Nierzwicki-Bauer, S A

    1996-10-01

    The use of 16S rRNA targeted gene probes for the direct analysis of microbial communities has revolutionized the field of microbial ecology, yet a comprehensive approach for the design of such probes does not exist. The development of 16S rRNA targeted oligonucleotide probes for use with fluorescence in situ hybridization (FISH) procedures has been especially difficult as a result of the complex nature of the rRNA target molecule. In this study a systematic comparison of 16S rRNA targeted oligonucleotide gene probes was conducted to determine if target location influences the hybridization efficiency of oligonucleotide probes when used with in situ hybridization protocols for the detection of whole microbial cells. Five unique universal 12-mer oligonucleotide sequences, located at different regions of the 16S rRNA molecule, were identified by a computer-aided sequence analysis of over 1000 partial and complete 16S rRNA sequences. The complements of these oligomeric sequences were chemically synthesized for use as probes and end labeled with either [gamma-32P]ATP or the fluorescent molecule tetramethylrhodamine-5/-6. Hybridization sensitivity for each of the probes was determined by hybridization to heat-denatured RNA immobilized on blots or to formaldehyde fixed whole cells. All of the probes hybridized with equal efficiency to denatured RNA. However, the probes exhibited a wide range of sensitivity (from none to very strong) when hybridized with whole cells using a previously developed FISH procedure. Differential hybridization efficiencies against whole cells could not be attributed to cell wall type, since the relative probe efficiency was preserved when either Gram-negative or -positive cells were used. These studies represent one of the first attempts to systematically define criteria for 16S rRNA targeted probe design for use against whole cells and establish target site location as a critical parameter in probe design.

  14. Culture-negative brain abscess with Streptococcus intermedius infection with diagnosis established by direct nucleotide sequence analysis of the 16s ribosomal RNA gene.

    PubMed

    Saito, Naoko; Hida, Ayumi; Koide, Yuri; Ooka, Tadasuke; Ichikawa, Yaeko; Shimizu, Jun; Mukasa, Akitake; Nakatomi, Hirofumi; Hatakeyama, Shuji; Hayashi, Tetsuya; Tsuji, Shoji

    2012-01-01

    A 70-year-old woman developed a headache for a month followed by right upper limb weakness. CT scan and MRI showed multiple ring-enhancing lesions. An intracerebral aspiration of an abscess was performed, but culture results were negative. The nucleotide sequence analysis of the 16S rRNA gene from the specimens identified Streptococcus intermedius. Given this result, S. intermedius was cultured by enrichment culture, and its sensitivities to antibiotics were determined. The patient exhibited complete remission. Thus, 16S rRNA gene analysis was highly useful not only for pathogen identification with negative culture results but also for the appropriate selection of antibiotics.

  15. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  16. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  17. Graft placement with an omental flap for ruptured infective common iliac aneurysm in a patient with a continuous flow left ventricular assist device: alternative surgical approach avoiding driveline injury and pathogen identification by 16S ribosomal DNA gene analysis.

    PubMed

    Akiyama, Masatoshi; Hayatsu, Yukihiro; Sakatsume, Ko; Fujiwara, Hidenori; Shimizu, Takuya; Akamatsu, Daijirou; Kakuta, Risako; Gu, Yoshiaki; Kaku, Mitsuo; Kumagai, Kiichiro; Kawamoto, Shunsuke; Goto, Hitoshi; Ohuchi, Noriaki; Saiki, Yoshikatsu

    2016-12-01

    Patients supported by mechanical circulatory support have to wait for longer periods for heart transplantation in Japan. Infective events are a major complication and influence survival. Here, we present the case of a patient with an implantable left ventricular assist device for 6 months who had the complication of ruptured infective common iliac aneurysm. Graft placement with an omental flap was successfully performed via the alternative surgical approach to avoid percutaneous driveline injury. In samples of aortic specimens, 16S ribosomal DNA gene analysis identified Helicobacter cinaedi. Complete removal of the infected tissue and correct pathogen identification may have been relevant to the good clinical course.

  18. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation

    PubMed Central

    Mathy, Nathalie; Pellegrini, Olivier; Serganov, Alexander; Patel, Dinshaw J.; Ehresmann, Chantal; Portier, Claude

    2015-01-01

    Summary The ribosomal protein S15 binds to 16S rRNA, during ribosome assembly, and to its own mRNA (rpsO mRNA), affecting autocontrol of its expression. In both cases, the RNA binding site is bipartite with a common subsite consisting of a G•U/G-C motif. The second subsite is located in a three-way junction in 16S rRNA and in the distal part of a stem forming a pseudoknot in Escherichia coli rpsO mRNA. To determine the extent of mimicry between these two RNA targets, we determined which amino acids interact with rpsO mRNA. A plasmid carrying rpsO (the S15 gene) was mutagenized and introduced into a strain lacking S15 and harbouring an rpsO–lacZ translational fusion. Analysis of deregulated mutants shows that each subsite of rpsO mRNA is recognized by a set of amino acids known to interact with 16S rRNA. In addition to the G•U/G-C motif, which is recognized by the same amino acids in both targets, the other subsite interacts with amino acids also involved in contacts with helix H22 of 16S rRNA, in the region adjacent to the three-way junction. However, specific S15–rpsO mRNA interactions can also be found, probably with A(−46) in loop L1 of the pseudoknot, demonstrating that mimicry between the two targets is limited. PMID:15101974

  19. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids.

    PubMed

    Coolen, Marco J L; Abbas, Ben; van Bleijswijk, Judith; Hopmans, Ellen C; Kuypers, Marcel M M; Wakeham, Stuart G; Sinninghe Damsté, Jaap S

    2007-04-01

    Within the upper 400 m at western, central and eastern stations in the world's largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alpha-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 microM including layers where previously anammox bacteria were described. Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared with the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 microM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared with the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.

  20. Characterization of Bacterial Community Diversity in Cystic Fibrosis Lung Infections by Use of 16S Ribosomal DNA Terminal Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Rogers, G. B.; Carroll, M. P.; Serisier, D. J.; Hockey, P. M.; Jones, G.; Bruce, K. D.

    2004-01-01

    Progressive loss of lung function resulting from the inflammatory response to bacterial colonization is the leading cause of mortality in cystic fibrosis (CF) patients. A greater understanding of these bacterial infections is needed to improve lung disease management. As culture-based diagnoses are associated with fundamental drawbacks, we used terminal restriction fragment (T-RF) length polymorphism profiling and 16S rRNA clone data to characterize, without prior cultivation, the bacterial community in 71 sputa from 34 adult CF patients. Nineteen species from 15 genera were identified in 53 16S rRNA clones from three patients. Of these, 15 species have not previously been reported in CF lung infections and many were species requiring strict anaerobic conditions for growth. The species richness and evenness were determined from the T-RF length and volume for the 71 profiles. Species richness was on average 13.3 ± 7.9 per sample and 13.4 ± 6.7 per patient. On average, the T-RF bands of the lowest and highest volumes represented 0.6 and 59.2% of the total volume in each profile, respectively. The second through fifth most dominant T-RF bands represented 15.3, 7.5, 4.7, and 2.8% of the total profile volume, respectively. On average, the remaining T-RF bands represented 10.2% of the total profile volume. The T-RF band corresponding to Pseudomonas aeruginosa had the highest volume in 61.1% of the samples. However, 18 other T-RF band lengths were dominant in at least one sample. In conclusion, this reveals the enormous complexity of bacteria within the CF lung. Although their significance is yet to be determined, these findings alter our perception of CF lung infections. PMID:15528712

  1. Studies on the 3'-terminal sequences of the large ribosomal ribonucleic acid of different eukaryotes and those associated with "hidden" breaks in heart-dissociable insects 26S ribonucleic acid.

    PubMed

    Shine, J; Hunt, J A; Dalgarno, L

    1974-09-01

    The 3'-terminal sequences associated with the large rRNA complex from a range of eukaryotes were determined after pancreatic or T(1)-ribonuclease digestion of RNA terminally labelled with [(3)H]isoniazid. In all higher eukaryotes examined except Drosophila melanogaster, the 3'-terminal sequences Y-G-U(OH) and G-C-U(OH) were demonstrated for the large RNA component(s) and for 6S RNA respectively. The 3'-terminal sequence of Saccharomyces cerevisiae 26S RNA was Y-G-U(OH) and that of 6S RNA Y-A-U-U-U(OH). Three 3'-terminal sequences were found in equimolar amounts in the heat-dissociable 26S rRNA characteristic of insect ribosomes. These were Y-G-U-G-U(OH), Y-C-G-U(OH) and G-C-U(OH) for cultured Antheraea eucalypti cells, Y-G-U(OH), Y-G-U(OH) and G-C-U(OH) for Galleria mellonella larvae and Y-C-G-A(OH), Y-G-U-A(OH) and G-Y-U-G(OH) for Drosophila melanogaster flies. Thus the introduction of the central scission in insect 26S rRNA results in the generation of a unique 3'-terminus and does not arise from random cleavage of the polynucleotide chain.

  2. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: a comparison of breast-fed and formula-fed infants

    PubMed Central

    Al-Shehri, S. S.; Sweeney, E. L.; Cowley, D. M.; Liley, H. G.; Ranasinghe, P. D.; Charles, B. G.; Shaw, P. N.; Vagenas, D.; Duley, J. A.; Knox, C. L.

    2016-01-01

    In utero and upon delivery, neonates are exposed to a wide array of microorganisms from various sources, including maternal bacteria. Prior studies have proposed that the mode of feeding shapes the gut microbiota and, subsequently the child’s health. However, the effect of the mode of feeding and its influence on the development of the neonatal oral microbiota in early infancy has not yet been reported. The aim of this study was to compare the oral microbiota of healthy infants that were exclusively breast-fed or formula-fed using 16S-rRNA gene sequencing. We demonstrated that the oral bacterial communities were dominated by the phylum Firmicutes, in both groups. There was a higher prevalence of the phylum Bacteroidetes in the mouths of formula-fed infants than in breast-fed infants (p = 0.01), but in contrast Actinobacteria were more prevalent in breast-fed babies; Proteobacteria was more prevalent in saliva of breast-fed babies than in formula-fed neonates (p = 0.04). We also found evidence suggesting that the oral microbiota composition changed over time, particularly Streptococcus species, which had an increasing trend between 4–8 weeks in both groups. This study findings confirmed that the mode of feeding influences the development of oral microbiota, and this may have implications for long-term human health. PMID:27922070

  3. Homoduplex and Heteroduplex Polymorphisms of the Amplified Ribosomal 16S-23S Internal Transcribed Spacers Describe Genetic Relationships in the “Bacillus cereus Group”

    PubMed Central

    Daffonchio, Daniele; Cherif, Ameur; Borin, Sara

    2000-01-01

    Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides, Bacillus thuringiensis, and Bacillus weihenstephanensis are closely related in phenotype and genotype, and their genetic relationship is still open to debate. The present work uses amplified 16S-23S internal transcribed spacers (ITS) to discriminate between the strains and species and to describe the genetic relationships within the “B. cereus group,” advantage being taken of homoduplex-heteroduplex polymorphisms (HHP) resolved by polyacrylamide gel electrophoresis and silver staining. One hundred forty-one strains belonging to the six species were investigated, and 73 ITS-HHP pattern types were distinguished by MDE, a polyacrylamide matrix specifically designed to resolve heteroduplex and single-strand conformation polymorphisms. The discriminating bands were confirmed as ITS by Southern hybridization, and the homoduplex or heteroduplex nature was identified by single-stranded DNA mung bean nuclease digestion. Several of the ITS-HHP types corresponded to specific phenotypes such as B. anthracis or serotypes of B. thuringiensis. Unweighted pair group method arithmetic average cluster analysis revealed two main groups. One included B. mycoides, B. weihenstephanensis, and B. pseudomycoides. The second included B. cereus and B. thuringiensis, B. anthracis appeared as a lineage of B. cereus. PMID:11097928

  4. The Gut Bacterial Community Composition of Wild Cervus albirostris (White-Lipped Deer) Detected by the 16S Ribosomal RNA Gene Sequencing.

    PubMed

    Li, Jun-Gang; Wang, Chuan-Dong; Tang, Zhong-Hai; Guo, Ying-Qiu; Zheng, Tian-Cai; Li, Yue-Zhong; You, Zhang-Qiang

    2017-09-01

    Cervus albirostris (white-lipped deer) is an endemic species in China. As the name implies, C. albirostris has a characteristic pure white marking around their mouth and on the underside of the throat. The animal is a typical alpine species normally living at the height of 3500-4300 m. In this study, by pyrosequencing the 16S rRNA gene sequences, we for the first time analyzed the gut bacterial community composition in eight feces samples of wild C. albirostris. From a total of 243,634 high-quality sequences, we identified 186 genera, included in 17 prokaryotic phyla in the feces. The relative proportions of Firmicutes and Bacteroidetes were highly consistent in each individual sample. The most frequently detected genus was Ruminococcaceae UCG-005, ranging from 6.70 to 21.00%, displaying positively connections with the Rikenellaceae RC9 gut group. The bacterial communities associated with C. albirostris provide the basic knowledge for further microbiological studies and facilitates the conservation efforts of this vulnerable deer species.

  5. A search for O-polypeptidyl-ribonucleic acids in rabbit-reticulocyte ribosomes by electrophoresis in phenol–acetic acid–water systems

    PubMed Central

    Brattsten, Inger; Synge, R. L. M.; Watt, W. B.

    1965-01-01

    1. When solutions of `soluble' or transfer RNA (s-RNA) and of cytochrome c in phenol–acetic acid–water were mixed, intractable coacervates were formed. The addition to the solutions of various strong electrolytes prevented coacervation and allowed electrophoretic separation on filter paper. Protein migrates cationically, leaving RNA at or near the origin. The separation is aided by adsorption of RNA to the paper. Special arrangements were necessary to prevent contamination of the paper by ultraviolet-absorbing electrode-reaction products. 2. Binding of alkali-metal cations to RNA and some other associations were observed in such solvent systems. Possible effects of ionic association on mobilities are discussed. 3. Rabbit-reticulocyte ribosomes were subjected to electrophoresis as above, after their nascent-protein moiety had been labelled with [14C]valine in the intact cell. Most of the radioactivity migrated with the ribosomal protein; such protein as remained near the origin with the RNA had valine of lower specific radioactivity. 4. Molecular-sieve chromatography in phenol–acetic acid–water indicated that the nascent-protein moiety was not of markedly lower molecular weight than the average for the ribosomal proteins. 5. These results are very tentatively taken to mean that the nascent-protein moiety of ribosomes so prepared is not O-polypeptidyl-s-RNA. It is postulated that, in the course of adding each amino acid residue, the growing polypeptide chain is transferred from ester linkage with s-RNA to linkage with ribosomal protein through its carboxyl group, perhaps by ester linkage to an alcoholic group. The two types of intermediate, O-polypeptidyl-s-RNA and polypeptidyl-protein, would be found in different proportions, depending on the isolation procedure used. Some implications and possible tests of this hypothesis are discussed. ImagesFig. 2.Fig. 3.Fig. 4. PMID:5881657

  6. Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis.

    PubMed

    Pang, Huili; Qin, Guangyong; Tan, Zhongfang; Li, Zongwei; Wang, Yanping; Cai, Yimin

    2011-05-01

    One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction.

    PubMed Central

    Wu, H; Jiang, L; Zimmermann, R A

    1994-01-01

    Through specific interactions with rRNA and mRNA, ribosomal protein S8 of Escherichia coli plays a central role in both assembly of the 30S ribosomal subunit and translational regulation of spc operon expression. To better understand S8-RNA association, we have measured the affinity of S8 for a number of variants of its rRNA and mRNA binding sites prepared by in vitro transcription or chemical synthesis. With the aid of site-directed deletions, we demonstrate that an imperfect, 33-nucleotide helical stem encompassing nucleotides 588-603 and 635-651 possesses all of the structural information necessary for specific binding of S8 to the 16S rRNA. This segment consists of two short duplexes that enclose a conserved, asymmetric internal loop which contains features crucial for protein recognition. The S8 binding site in spc operon mRNA is very similar in both primary and secondary structure to that in 16S rRNA except for the presence of two single bulged bases in one of the duplex segments. In addition, the apparent association constant for the S8-mRNA interaction is approximately fivefold less than that for the S8-rRNA interaction. We show that the difference in affinity can be attributed to the effects of the bulged bases. Deletion of the bulged bases from the mRNA site increases its affinity for S8 to a level similar to that of the rRNA, whereas insertion of single-base bulges at equivalent positions within the rRNA site reduces its affinity for S8 to a value typical of the mRNA. Single-base bulges in the proximity of essential recognition features are therefore capable of modulating the strength of protein-RNA interactions. PMID:7515489

  8. Synthesis of thiol-containing analogues of puromycin and a study of their interaction with N-acetylphenylalanyl-transfer ribonucleic acid on ribosomes to form thioesters

    PubMed Central

    Gooch, John; Hawtrey, Arthur O.

    1975-01-01

    1. The thiol-containing analogue of puromycin, 6-dimethylamino-9-{1′-[3′-(2″-mercapto-3″-phenylpropionamido)-3′-deoxy-β-d-ribofuranosyl]}purine (XVII) in which the primary amino group of the antibiotic is replaced with a thiol grouping, was synthesized chemically (compound XVII is abbreviated to thiopuromycin). 2. Thiopuromycin (XVII) was found to be active in releasing N-[3H]acetylphenylalanine from its tRNA carrier as the thioester, N-acetylphenylalanylthiopuromycin (XIX) in the Escherichia coli ribosomal system. The reaction product (XIX) was synthesized chemically from thiopuromycin and N-acetylphenylalanine and found to be stable to hydrolysis in the standard incubation medium at pH7.6. dl-Phenyl-lactylpuromycin (XXI), the hydroxy analogue of puromycin, was also synthesized chemically and shown to release N-acetylphenylalanine from its tRNA carrier in the E. coli ribosomal system, thus confirming the previous results of Fahnestock et al. [Biochemistry (1970) 9, 2477–2483]. 3. In marked contrast with the results obtained in the E. coli system, both thiopuromycin (XVII) and hydroxypuromycin (XXI) were found to be inactive in releasing N-acetylphenylalanine from its tRNA carrier in the rat liver ribosomal system. PMID:1103886

  9. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  10. Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation

    PubMed Central

    Ellis, Collin L.; Ma, Zhong-Min; Mann, Surinder K.; Li, Chin-Shang; Wu, Jian; Knight, Thomas H.; Yotter, Tammy; Hayes, Timothy L.; Maniar, Archana H.; Troia-Cancio, Paolo V.; Overman, Heather A; Torok, Natalie J.; Albanese, Anthony; Rutledge, John C.; Miller, Christopher J.; Pollard, Richard B.; Asmuth, David M.

    2011-01-01

    Background The relationship between gut microbial community composition at the higher-taxonomic order-level and local and systemic immunologic abnormalities in HIV disease may provide insight into how bacterial translocation impacts HIV disease. Methods Antiretroviral (ART)-naive HIV patients underwent upper endoscopy before and nine months after starting ART. Duodenal tissue was paraffin-embedded for immunohistochemical analysis (IHC) and digested for FACS for T-cell subsets and immune activation (CD38+/HLA-DR+) enumeration. Stool samples were provided from patients and controls for comparison. Metagenomic microbial DNA was extracted from feces for optimized 16S ribosomal RNA gene (rDNA) real-time qPCR assays designed to quantify panbacterial loads and the relative abundances of proinflammatory Enterobacteriales order, and the dominant Bacteroidales and Clostridiales orders. Results Samples from 10 HIV-subjects prior to initiating, and from 6 subjects receiving, ART were available for analysis. There was a trend for a greater proportion of Enterobacteriales in HIV-positive subjects compared to controls (p=0.099). There were significant negative correlations between total bacterial load and duodenal CD4+ and CD8+ T-cell activation levels (r= −0.74, p= 0.004 and r= −0.67, p=0.013, respectively). The proportions of Enterobacteriales and Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. Conclusions These data represent the first report of quantitative molecular and cellular correlations between total/universal and order-level gut bacterial populations and GALT levels of immune activation in HIV-infected subjects. The correlations between lower overall 16S rDNA levels and tissue immune activation suggest that the gut microbiome may contribute to immune activation and influence HIV progression. PMID:21436711

  11. Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere.

    PubMed

    Rudi, Knut; Flateland, Signe L; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde

    2002-03-01

    There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets 16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4 degrees C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10 degrees C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10 degrees C. In that batch, the Enterobacteriaceae also were abundant after storage at 4 degrees C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be

  12. Loop-Mediated Isothermal Amplification for Detection of the 5.8S Ribosomal Ribonucleic Acid Internal Transcribed Spacer 2 Gene Found in Trypanosoma brucei gambiense.

    PubMed

    Nikolskaia, Olga V; Thekisoe, Oriel M M; Dumler, J Stephen; Grab, Dennis J

    2017-02-08

    The loop-mediated isothermal amplification (LAMP) assay with its advantages of cost effectiveness, rapidity, and simplicity, has evolved as a sensitive and specific method for the detection of African trypanosomes. Highly sensitive LAMP reactions specific for Trypanosoma brucei rhodesiense or that recognize but do not discriminate between Trypanosoma brucei brucei, T. b. rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma evansi have been developed. A sensitive LAMP assay targeting the T. b. gambiense 5.8S ribosomal RNA internal transcribed spacer 2 (5.8S-ITS2) gene is also available but this assay does not target binding sites that span the CCCA (C3A) (557-560 bps) insertion site that further differentiates T. b. gambiense from T. b. brucei Here we describe 5.8S-ITS2-targeted LAMP assay that fit these criteria. The LAMP primer sets containing the T. b. gambiense-specific C3A tetranucleotide at the start of the outer forward primer sequences showed high specificity and sensitivity down to at least 0.1 fg T. b. gambiense genomic DNA. © The American Society of Tropical Medicine and Hygiene.

  13. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  14. Development and Evaluation of a 16S Ribosomal DNA Array-Based Approach for Describing Complex Microbial Communities in Ready-To-Eat Vegetable Salads Packed in a Modified Atmosphere

    PubMed Central

    Rudi, Knut; Flateland, Signe L.; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde

    2002-01-01

    There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4°C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10°C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10°C. In that batch, the Enterobacteriaceae also were abundant after storage at 4°C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be diverse and that microbial

  15. A comparison of two real-time polymerase chain reaction assays using hybridization probes targeting either 16S ribosomal RNA or a subsurface lipoprotein gene for detecting leptospires in canine urine.

    PubMed

    Gentilini, Fabio; Zanoni, Renato Giulio; Zambon, Elisa; Turba, Maria Elena

    2015-11-01

    Leptospires are excreted in the urine of infected animals, and the prompt detection of leptospiral DNA using polymerase chain reaction (PCR) is increasingly being used. However, contradictory data has emerged concerning the diagnostic accuracy of the most popular PCR assays that target either the 16S ribosomal RNA (rrs) or the subsurface lipoprotein (LipL32) genes. In order to clarify the effect of the gene target, a novel hydrolysis probe-based, quantitative real-time PCR (qPCR) assay targeting the LipL32 gene was developed, validated, and then compared directly to the previously described rrs hydrolysis probe-based qPCR using a convenience collection of canine urine samples. The novel LipL32 qPCR assay was linear from 5.9 × 10(6) to 59 genome equivalents per reaction. Both the LipL32 and the rrs qPCR assays showed a limit of detection of 10 target copies per reaction indicating an approximately equivalent analytical sensitivity. Both assays amplified all 20 pathogenic leptospiral strains tested but did not amplify a representative collection of bacteria commonly found in voided canine urine. When the field samples were assayed, 1 and 5 out of 184 samples yielded an amplification signal in the LipL32 and rrs assays, respectively. Nevertheless, when the limit of detection was considered as the cutoff for interpreting findings, the 4 discordant cases were judged as negative. In conclusion, our study confirmed that both LipL32 and rrs are suitable targets for qPCR for the detection of leptospiral DNA in canine urine. However, the rrs target requires the mandatory use of a cutoff value in order to correctly interpret spurious amplifications.

  16. Combined assay for two-hour identification of Streptococcus pneumoniae and Neisseria meningitidis and concomitant detection of 16S ribosomal DNA in cerebrospinal fluid by real-time PCR.

    PubMed

    Deutch, Susanna; Møller, Jens K; Ostergaard, Lars

    2008-01-01

    The main object was to examine the diagnostic performance of a novel combination of a specific real-time PCR (combined real-time PCR) for immediate and simultaneous detection of Streptococcus pneumoniae and Neisseria meningitidis and of a real-time PCR of the 16S rRNA gene (16S DNA). During 12 months, 1015 routine CSF samples were consecutively collected from patients in the County of Aarhus, Denmark. The samples were cultured, examined by microscopy, and, in parallel, CSF DNA was automatically purified and subjected to real-time PCR. Melting curve analysis discriminated between the 2 specific pathogens and 16S DNA positive samples were sequenced. Clinical data were extracted from patients having positive samples. Clinically, 35 of 46 (76%) patients with positive samples had bacterial meningitis. 18 of these 35 patients had a concomitant culture and real-time PCR-positive sample. The remaining 17 patients were either culture positive (n =7) or real-time PCR-positive (n = 10). The aetiology of bacterial meningitis was revealed by microscopy in 18/35 (51.4%), culture in 24/35 (68.6%) and combined real-time PCR in 27/35 (77.1%) patients, respectively. In conclusion, the combined real-time PCR strategy is superior to microscopy and a valuable supplement to routine culture to establish the aetiology of bacterial meningitis.

  17. SYNTHESIS OF RIBONUCLEIC ACID BY X-IRRADIATED BACTERIA1

    PubMed Central

    Frampton, E. W.

    1964-01-01

    Frampton, E. W. (The University of Texas M. D. Anderson Hospital and Tumor Institute, Houston). Synthesis of ribonucleic acid by X-irradiated bacteria. J. Bacteriol. 87:1369–1376. 1964.—Postirradiation synthesis of total ribonucleic acid (RNA) and of RNA components was measured after exposure of Escherichia coli B/r to X rays. Net synthesis of RNA measured by the orcinol reaction and by the incorporation of uridine-2-C14 was depressed in irradiated cells, but paralleled the period of postirradiation growth (30 to 40 min). Incorporation of uridine-2-C14, added after net synthesis of RNA had ceased, detected an apparent turnover in a portion of the RNA. Irradiated cells retained their ability to adjust RNA synthesis to growth rate. After a shift-down in growth rate, irradiated cells incorporated radioactive uridine, while the net synthesis of RNA ceased—presumptive evidence for a continued synthesis of messenger RNA. Chloramphenicol addition (100 μg/ml) did not influence the total amount of RNA synthesized. Synthesis of ribosomes and transfer RNA preceded by 0, 5, 10, and 15 min of postirradiation incubation was observed by the resolution of cell-free extracts on sucrose density gradients. Little immediate influence of irradiation could be detected on the synthesis of 50S and 30S ribosomes. A decline was observed in the synthesis of 50S ribosomes with continued postirradiation incubation; 30S ribosomes, ribosomal precursors, and 4S RNA continued to be synthesized. PMID:14188715

  18. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.

    PubMed Central

    Kowalchuk, G A; Stephen, J R; De Boer, W; Prosser, J I; Embley, T M; Woldendorp, J W

    1997-01-01

    Denaturing gradient gel electrophoresis (DGGE) is a powerful and convenient tool for analyzing the sequence diversity of complex natural microbial populations. DGGE was evaluated for the identification of ammonia oxidizers of the beta subdivision of the Proteobacteria based on the mobility of PCR-amplified 16S rDNA fragments and for the analysis of mixtures of PCR products from this group generated by selective PCR of DNA extracted from coastal sand dunes. Degenerate PCR primers, CTO189f-GC and CTO654r, incorporating a 5' GC clamp, were designed to amplify a 465-bp 16S rDNA region spanning the V-2 and V-3 variable domains. The primers were tested against a representative selection of clones and cultures encompassing the currently recognized beta-subdivision ammonia oxidizer 16S rDNA sequence diversity. Analysis of these products by DGGE revealed that while many of the sequences could be separated, some which were known to be different migrated similarly in the denaturant system used. The CTO primer pair was used to amplify 16S rDNA sequences from DNA extracted from soil sampled from Dutch coastal dune locations of differing in pH and distance from the beach. The derived DGGE patterns were reproducible across multiple DNA isolations and PCRs. Ammonia oxidizer-like sequences from different phylogenetic groupings isolated from gene libraries made from the same sand dune DNA samples but prepared with different primers gave DGGE bands which comigrated with most of the bands detected from the sand dune samples. Bands from the DGGE gels of environmental samples were excised, reamplified, and directly sequenced, revealing strong similarity or identity of the recovered products to the corresponding regions of library clones. Six of the seven sequenced clusters of beta-subdivision ammonia oxidizers were detected in the dune systems, and differences in community structure between some sample sites were demonstrated. The most seaward dune site contained sequences showing

  19. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  20. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling.

    PubMed

    Horz, H P; Yimga, M T; Liesack, W

    2001-09-01

    The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the alpha subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.

  1. Detection of Methanotroph Diversity on Roots of Submerged Rice Plants by Molecular Retrieval of pmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, Including pmoA-Based Terminal Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Horz, Hans-Peter; Yimga, Merlin Tchawa; Liesack, Werner

    2001-01-01

    The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA. PMID:11526021

  2. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.

    PubMed

    Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik

    2011-10-01

    The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.

  3. The Ribosome Shape Directs mRNA Translocation through Entrance and Exit Dynamics

    USDA-ARS?s Scientific Manuscript database

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs (transfer ribonucleic acids) and mRNA (messenger ribonucleic acid); here the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal struc...

  4. Differential assembly of 16S rRNA domains during 30S subunit formation.

    PubMed

    Xu, Zhili; Culver, Gloria M

    2010-10-01

    Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.

  5. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  6. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  7. Reconstructing 16S rRNA genes in metagenomic data.

    PubMed

    Yuan, Cheng; Lei, Jikai; Cole, James; Sun, Yanni

    2015-06-15

    Metagenomic data, which contains sequenced DNA reads of uncultured microbial species from environmental samples, provide a unique opportunity to thoroughly analyze microbial species that have never been identified before. Reconstructing 16S ribosomal RNA, a phylogenetic marker gene, is usually required to analyze the composition of the metagenomic data. However, massive volume of dataset, high sequence similarity between related species, skewed microbial abundance and lack of reference genes make 16S rRNA reconstruction difficult. Generic de novo assembly tools are not optimized for assembling 16S rRNA genes. In this work, we introduce a targeted rRNA assembly tool, REAGO (REconstruct 16S ribosomal RNA Genes from metagenOmic data). It addresses the above challenges by combining secondary structure-aware homology search, zproperties of rRNA genes and de novo assembly. Our experimental results show that our tool can correctly recover more rRNA genes than several popular generic metagenomic assembly tools and specially designed rRNA construction tools. The source code of REAGO is freely available at https://github.com/chengyuan/reago. © The Author 2015. Published by Oxford University Press.

  8. The molecular integrity of chloroplast ribosomal ribonucleic acid.

    PubMed

    Leaver, C J; Ingle, J

    1971-06-01

    Instability of chloroplast rRNA has been observed with essentially all chloroplast RNA preparations. This paper describes experiments that show that, under normal conditions of preparation and fractionation, only the heavy chloroplast component (mol.wt. 1.1x10(6)) is unstable, the light chloroplast rRNA (mol.wt. 0.56x10(6)) and the cytoplasmic rRNA species (mol.wt. 1.3x10(6) and 0.70x10(6)) being stable. The stability of the 1.1x10(6)-mol. wt. molecule varies with different plant species, as also does the size and the number of fragments produced. Cleavages in three particular regions of the molecule are very frequent within the range of tissues studied. The 1.1x10(6)-mol.wt. rRNA is, however, stabilized by the presence of Mg(2+) during the preparation and fractionation of the RNA.

  9. Messenger Ribonucleic Acid Synthesis and Degradation in Escherichia coli During Inhibition of Translation

    PubMed Central

    Pato, Martin L.; Bennett, Peter M.; Von Meyenburg, Kaspar

    1973-01-01

    Various aspects of the coupling between the movement of ribosomes along messenger ribonucleic acids (mRNA) and the synthesis and degradation of mRNA have been investigated. Decreasing the rate of movement of ribosomes along an mRNA does not affect the rate of movement of some, and possibly most, of the RNA polymerases transcribing the gene coding for that mRNA. Inhibiting translation with antibiotics such as chloramphenicol, tetracycline, or fusidic acid protects extant mRNA from degradation, presumably by immobilizing ribosomes, whereas puromycin exposes mRNA to more rapid degradation than normal. The promoter distal (3′) portion of mRNA, synthesized after ribosomes have been immobilized by chloramphenicol on the promoter proximal (5′) portion of the mRNA, is subsequently degraded. PMID:4583248

  10. Novel essential gene Involved in 16S rRNA processing in Escherichia coli.

    PubMed

    Kurata, Tatsuaki; Nakanishi, Shinobu; Hashimoto, Masayuki; Taoka, Masato; Yamazaki, Yukiko; Isobe, Toshiaki; Kato, Jun-ichi

    2015-02-27

    Biogenesis of ribosomes is a complex process mediated by many factors. While its transcription proceeds, ribosomal RNA (rRNA) folds itself into a characteristic three-dimensional structure through interaction with ribosomal proteins, during which its ends are processed. Here, we show that the essential protein YqgF, a RuvC family protein with an RNase-H-like motif, is involved in the processing of pre-16S rRNA during ribosome maturation. Indeed, pre-16S rRNA accumulated in cells of a temperature-sensitive yqgF mutant (yqgF(ts)) cultured at a non-permissive temperature. In addition, purified YqgF was shown to process the 5' end of pre-16S rRNA within 70S ribosomes in vitro. Mass spectrometry analysis of the total proteins in the yqgF(ts) mutant cells showed that the expression of genes containing multiple Shine-Dalgarno-like sequences was observed to be lower than in wild type. These results are interpreted to indicate that YqgF is involved in a novel enzymic activity necessary for the processing of pre-16S rRNA, thereby affecting elongation of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  12. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest.

    PubMed

    Wragg, P; Randall, L; Whatmore, A M

    2014-10-01

    Recent advances in phenotypic and chemotaxonomic methods have improved the ability of systems to resolve bacterial identities at the species level. Key to the effective use of these systems is the ability to draw upon databases which can be augmented with new data gleaned from atypical or novel isolates. In this study we compared the performance of the Biolog GEN III identification system (hereafter, GEN III) with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing in the identification of isolates of veterinary interest. The use of strains that had proven more difficult to identify by routine methods was designed to test the systems' abilities at the extremes of their performance range. Over an 18month period, 100 strains were analysed by all three methods. To highlight the importance of identification to species level, a weighted scoring system was devised to differentiate the capacity to identify at genus and species levels. The overall relative weighted scores were 0.869:0.781:0.769, achieved by 16S rRNA gene sequencing, GEN III and MALDI-TOF MS respectively, when compared to the 'gold standard'. Performance to the genus level was significantly better using 16S rRNA gene sequencing; however, performance to the species level was similar for all three systems. Copyright © 2014. Published by Elsevier B.V.

  13. Role of Ribonucleic Acid Synthesis in Replication of Deoxyribonucleic Acid

    PubMed Central

    Pato, Martin L.

    1975-01-01

    An experiment previously interpreted to show a ribonucleic acid requirement for propagation of deoxyribonucleic replication is reexamined and the earlier interpretation is shown to be incorrect. PMID:1090599

  14. Diversity of 16S rRNA Genes within Individual Prokaryotic Genomes▿ †

    PubMed Central

    Pei, Anna Y.; Oberdorf, William E.; Nossa, Carlos W.; Agarwal, Ankush; Chokshi, Pooja; Gerz, Erika A.; Jin, Zhida; Lee, Peng; Yang, Liying; Poles, Michael; Brown, Stuart M.; Sotero, Steven; DeSantis, Todd; Brodie, Eoin; Nelson, Karen; Pei, Zhiheng

    2010-01-01

    Analysis of intragenomic variation of 16S rRNA genes is a unique approach to examining the concept of ribosomal constraints on rRNA genes; the degree of variation is an important parameter to consider for estimation of the diversity of a complex microbiome in the recently initiated Human Microbiome Project (http://nihroadmap.nih.gov/hmp). The current GenBank database has a collection of 883 prokaryotic genomes representing 568 unique species, of which 425 species contained 2 to 15 copies of 16S rRNA genes per genome (2.22 ± 0.81). Sequence diversity among the 16S rRNA genes in a genome was found in 235 species (from 0.06% to 20.38%; 0.55% ± 1.46%). Compared with the 16S rRNA-based threshold for operational definition of species (1 to 1.3% diversity), the diversity was borderline (between 1% and 1.3%) in 10 species and >1.3% in 14 species. The diversified 16S rRNA genes in Haloarcula marismortui (diversity, 5.63%) and Thermoanaerobacter tengcongensis (6.70%) were highly conserved at the 2° structure level, while the diversified gene in B. afzelii (20.38%) appears to be a pseudogene. The diversified genes in the remaining 21 species were also conserved, except for a truncated 16S rRNA gene in “Candidatus Protochlamydia amoebophila.” Thus, this survey of intragenomic diversity of 16S rRNA genes provides strong evidence supporting the theory of ribosomal constraint. Taxonomic classification using the 16S rRNA-based operational threshold could misclassify a number of species into more than one species, leading to an overestimation of the diversity of a complex microbiome. This phenomenon is especially seen in 7 bacterial species associated with the human microbiome or diseases. PMID:20418441

  15. Diversity of 16S rRNA genes within individual prokaryotic genomes.

    PubMed

    Pei, Anna Y; Oberdorf, William E; Nossa, Carlos W; Agarwal, Ankush; Chokshi, Pooja; Gerz, Erika A; Jin, Zhida; Lee, Peng; Yang, Liying; Poles, Michael; Brown, Stuart M; Sotero, Steven; Desantis, Todd; Brodie, Eoin; Nelson, Karen; Pei, Zhiheng

    2010-06-01

    Analysis of intragenomic variation of 16S rRNA genes is a unique approach to examining the concept of ribosomal constraints on rRNA genes; the degree of variation is an important parameter to consider for estimation of the diversity of a complex microbiome in the recently initiated Human Microbiome Project (http://nihroadmap.nih.gov/hmp). The current GenBank database has a collection of 883 prokaryotic genomes representing 568 unique species, of which 425 species contained 2 to 15 copies of 16S rRNA genes per genome (2.22 +/- 0.81). Sequence diversity among the 16S rRNA genes in a genome was found in 235 species (from 0.06% to 20.38%; 0.55% +/- 1.46%). Compared with the 16S rRNA-based threshold for operational definition of species (1 to 1.3% diversity), the diversity was borderline (between 1% and 1.3%) in 10 species and >1.3% in 14 species. The diversified 16S rRNA genes in Haloarcula marismortui (diversity, 5.63%) and Thermoanaerobacter tengcongensis (6.70%) were highly conserved at the 2 degrees structure level, while the diversified gene in B. afzelii (20.38%) appears to be a pseudogene. The diversified genes in the remaining 21 species were also conserved, except for a truncated 16S rRNA gene in "Candidatus Protochlamydia amoebophila." Thus, this survey of intragenomic diversity of 16S rRNA genes provides strong evidence supporting the theory of ribosomal constraint. Taxonomic classification using the 16S rRNA-based operational threshold could misclassify a number of species into more than one species, leading to an overestimation of the diversity of a complex microbiome. This phenomenon is especially seen in 7 bacterial species associated with the human microbiome or diseases.

  16. Ribosome engineering to promote new crystal forms

    SciTech Connect

    Selmer, Maria; Gao, Yong-Gui; Weixlbaumer, Albert; Ramakrishnan, V.

    2012-05-01

    Truncation of ribosomal protein L9 in T. thermophilus allows the generation of new crystal forms and the crystallization of ribosome–GTPase complexes. Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.

  17. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  18. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies.

    PubMed

    Rössler, D; Ludwig, W; Schleifer, K H; Lin, C; McGill, T J; Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  19. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  20. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  1. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  2. Timing of ribosome synthesis during ascosporogenesis of yeast cells: evidence for early function of haploid daughter genomes.

    PubMed Central

    Emanuel, J R; Magee, P T

    1981-01-01

    During meiosis and sporulation in Saccharomyces cerevisiae, the recessive genetic marker for cycloheximide resistance, believed to be due to an altered ribosomal protein (C. S. McLaughlin, p. 815-827, in M. Nomura et al., ed., Ribosomes, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.), is expressed as early as meiosis II. Ribosomal ribonucleic acid synthesis peaks near the time that cycloheximide resistance begins to appear. Less than 25% of the 17S and 25S ribonucleic acid of the vegetative cells persists in spores, but pulse-labeling studies indicate that greater than 90% of the stable ribonucleic acid made after 6 h survives in spores. These results indicate that the haploid daughter genomes begin to function near the time of meiosis II. PMID:7009580

  3. Ribonuclease Sensitivity of Escherichia coli Ribosomes

    PubMed Central

    Santer, Melvin; Smith, Josephine R.

    1966-01-01

    Santer, Melvin (Haverford College, Haverford, Pa.), and Josephine R. Smith. Ribonuclease sensitivity of Escherichia coli ribosomes. J. Bacteriol. 92:1099–1110. 1966.—The ribonucleic acid (RNA) contained in 70S ribosomes and in 50S and 30S subunits was hydrolyzed by pancreatic ribonuclease. A 7% amount of the RNA was removed from the 70S particle; at 10−4m magnesium concentration, a maximum of 24 and 30% of the RNA in the 50S and the 30S fractions, respectively, was removed by ribonuclease. At the two lower magnesium ion concentrations, 50S ribosomes did not lose any protein, whereas 30S ribosomes lost protein as a result of ribonuclease treatment. A number of proteins were removed from the 30S particles by ribonuclease, and these proteins were antigenically related to proteins present in 50S ribosomes. The differential effect of ribonuclease on 50S and 30S ribosomes suggested that they have structural dissimilarities. Images PMID:5332866

  4. 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA

    SciTech Connect

    Weller, R.; Ward, D.M. ); Weller, J.W. )

    1991-04-01

    Cloning and analysis of cDNAs synthesized from rRNAs is one approach to assess the species composition of natural microbial communities. In some earlier attempts to synthesize cDNA from 16S rRNA (16S rcDNA) from the Octopus Spring cyanobacterial mat, a dominance of short 16S rcDNAs was observed, which appear to have originated only from certain organisms. Priming of cDNA synthesis from small ribosomal subunit RNA with random deoxyhexanucleotides can retrieve longer sequences, more suitable for phylogenetic analysis. Here we report the retrieval of 16S rRNA sequences form three formerly uncultured community members. One sequence type, which was retrieved three times from a total of five sequences analyzed, can be placed in the cyanobacterial phylum. A second sequence type is related to 16S rRNAs from green nonsulfur bacteria. The third sequence type may represent a novel phylogenetic type.

  5. Ribonucleic acid interference (RNAi) and control of citrus pests

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...

  6. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  7. [16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory].

    PubMed

    Matsumoto, Takehisa; Sugano, Mitsutoshi

    2013-12-01

    The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. For many years, sequencing of the 16S ribosomal RNA (rRNA) gene has served as an important tool for determining phylogenetic relationships between bacteria. The features of this molecular target that make it a useful phylogenetic tool also make it useful for bacterial detection and identification in the clinical laboratory. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, and can lead to the recognition of novel pathogens and noncultured bacteria. In clinical microbiology, molecular identification based on 16S rDNA sequencing is applied fundamentally to bacteria whose identification by means of other types of techniques is impossible or difficult. However, there are some cases in which 16S rRNA gene sequence analysis can not differentiate closely related bacteria such as Shigella spp. and Escherichia coli at the species level. Thus, it is important to understand the advantages and disadvantages of 16S rRNA gene sequence analysis.

  8. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

    PubMed Central

    Liu, Zongzhi; DeSantis, Todd Z.; Andersen, Gary L.; Knight, Rob

    2008-01-01

    The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517. PMID:18723574

  9. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife.

    PubMed

    Razzauti, Maria; Galan, Maxime; Bernard, Maria; Maman, Sarah; Klopp, Christophe; Charbonnel, Nathalie; Vayssier-Taussat, Muriel; Eloit, Marc; Cosson, Jean-François

    2015-01-01

    Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of bacterial prevalence

  10. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife

    PubMed Central

    Razzauti, Maria; Galan, Maxime; Bernard, Maria; Maman, Sarah; Klopp, Christophe; Charbonnel, Nathalie; Vayssier-Taussat, Muriel; Eloit, Marc; Cosson, Jean-François

    2015-01-01

    Background Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. Methodology/Principal Findings We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. Conclusions/Significance We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each

  11. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  12. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.

    PubMed

    Yarza, Pablo; Yilmaz, Pelin; Pruesse, Elmar; Glöckner, Frank Oliver; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Whitman, William B; Euzéby, Jean; Amann, Rudolf; Rosselló-Móra, Ramon

    2014-09-01

    Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.

  13. A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis.

    PubMed

    Watanabe, Shinya; Matsumura, Kazunori; Iwai, Hiroki; Funatogawa, Keiji; Haishima, Yuji; Fukui, Chie; Okumura, Kayo; Kato-Miyazawa, Masako; Hashimoto, Masahito; Teramoto, Kanae; Kirikae, Fumiko; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2016-08-01

    Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% (n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes.

  14. A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis

    PubMed Central

    Watanabe, Shinya; Matsumura, Kazunori; Iwai, Hiroki; Funatogawa, Keiji; Haishima, Yuji; Fukui, Chie; Okumura, Kayo; Kato-Miyazawa, Masako; Hashimoto, Masahito; Teramoto, Kanae; Kirikae, Fumiko; Miyoshi-Akiyama, Tohru

    2016-01-01

    Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% (n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes. PMID:27245411

  15. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus.

    PubMed

    Kyuma, Tatsuhiko; Kizaki, Hayato; Ryuno, Hiroki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-12-01

    We previously reported that the rRNA methyltransferases RsmI and RsmH, which are responsible for cytidine dimethylation at position 1402 of 16S rRNA in the decoding center of the ribosome, contribute to Staphylococcus aureus virulence. Here we evaluated other 16S rRNA methyltransferases, including KsgA (RsmA), RsmB/F, RsmC, RsmD, RsmE, and RsmG. Knockout of KsgA, which methylates two adjacent adenosines at positions 1518 and 1519 of 16S rRNA in the intersubunit bridge of the ribosome, attenuated the S. aureus killing ability against silkworms. The ksgA knockout strain was sensitive to oxidative stress and had a lower survival rate in murine macrophages than the parent strain. The ksgA knockout strain exhibited decreased translational fidelity in oxidative stress conditions. Administration of N-acetyl-l-cysteine, a free-radical scavenger, restored the killing ability of the ksgA knockout strain against silkworms. These findings suggest that the methyl-modifications of 16S rRNA by KsgA contribute to maintain ribosome function under oxidative conditions and thus to S. aureus virulence. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  17. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood.

    PubMed

    Moriyama, Kosei; Ando, Chie; Tashiro, Kosuke; Kuhara, Satoru; Okamura, Seiichi; Nakano, Shuji; Takagi, Yasumitsu; Miki, Takeyoshi; Nakashima, Yoshiyuki; Hirakawa, Hideki

    2008-07-01

    Bacterial 16S ribosomal RNA genes (rDNA) were detected in blood samples from two healthy individuals by PCR under conditions involving 30 cycles that did not produce any visible products from negative control saline. Even from control samples, PCR involving 35-40 cycles yielded visible bands. Major clones detected in the blood samples, but not in control, were the Aquabacterium subgroup, Stenotrophomonas subgroup, Budvicia subgroup, Serratia subgroup, Bacillus subgroup and Flavobacteria subgroup. No clone was located within the bacteroides-clostridium-lactobacillus cluster, which is indigenous to gastrointestinal flora.

  18. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis.

    PubMed

    Yang, Bo; Wang, Yong; Qian, Pei-Yuan

    2016-03-22

    Prokaryotic 16S ribosomal RNA (rRNA) sequences are widely used in environmental microbiology and molecular evolution as reliable markers for the taxonomic classification and phylogenetic analysis of microbes. Restricted by current sequencing techniques, the massive sequencing of 16S rRNA gene amplicons encompassing the full length of genes is not yet feasible. Thus, the selection of the most efficient hypervariable regions for phylogenetic analysis and taxonomic classification is still debated. In the present study, several bioinformatics tools were integrated to build an in silico pipeline to evaluate the phylogenetic sensitivity of the hypervariable regions compared with the corresponding full-length sequences. The correlation of seven sub-regions was inferred from the geodesic distance, a parameter that is applied to quantitatively compare the topology of different phylogenetic trees constructed using the sequences from different sub-regions. The relationship between different sub-regions based on the geodesic distance indicated that V4-V6 were the most reliable regions for representing the full-length 16S rRNA sequences in the phylogenetic analysis of most bacterial phyla, while V2 and V8 were the least reliable regions. Our results suggest that V4-V6 might be optimal sub-regions for the design of universal primers with superior phylogenetic resolution for bacterial phyla. A potential relationship between function and the evolution of 16S rRNA is also discussed.

  19. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes

    PubMed Central

    Zhang, Yanming; Ji, Peifeng; Wang, Jinfeng; Zhao, Fangqing

    2016-01-01

    16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities. PMID:26984526

  20. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  1. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  2. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics.

    PubMed

    Wisotzkey, J D; Jurtshuk, P; Fox, G E

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  3. RmtC introduces G1405 methylation in 16S rRNA and confers high-level aminoglycoside resistance on Gram-positive microorganisms.

    PubMed

    Wachino, Jun-Ichi; Shibayama, Keigo; Kimura, Kouji; Yamane, Kunikazu; Suzuki, Satowa; Arakawa, Yoshichika

    2010-10-01

    Seven plasmid-mediated 16S rRNA methyltransferases (MTases), RmtA, RmtB, RmtC, RmtD, RmtE, ArmA, and NpmA, conferring aminoglycoside resistance have so far been found in Gram-negative pathogenic microorganisms. In the present study, by performing an RNase protection assay, primer extension, and HPLC, we confirmed that RmtC indeed methylates at the N7 position of nucleotide G1405 in 16S rRNA as found in ArmA and RmtB. RmtC has an MTase activity specific for the bacterial 30S ribosomal subunit consisting of 16S rRNA and several ribosomal proteins, but not for the naked 16S rRNA, as seen in ArmA, RmtB, and NpmA. All seven 16S rRNA MTases have been found exclusively in Gram-negative bacilli to date, and no plasmid-mediated 16S rRNA MTase has been reported in Gram-positive pathogenic microorganisms. Thus, we checked whether or not the RmtC could function in Gram-positive bacilli, and found that RmtC could indeed confer high-level resistance to gentamicin and kanamycin in Bacillus subtilis and Staphylococcus aureus. 16S rRNA MTases seemed to be functional to some extent in any bacterial species, regardless of the provenance of the 16S rRNA MTase gene responsible for aminoglycoside resistance.

  4. C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.

    PubMed

    Ghosh, Tarini Shankar; Gajjalla, Purnachander; Mohammed, Monzoorul Haque; Mande, Sharmila S

    2012-04-01

    Recent advances in high throughput sequencing technologies and concurrent refinements in 16S rDNA isolation techniques have facilitated the rapid extraction and sequencing of 16S rDNA content of microbial communities. The taxonomic affiliation of these 16S rDNA fragments is subsequently obtained using either BLAST-based or word frequency based approaches. However, the classification accuracy of such methods is observed to be limited in typical metagenomic scenarios, wherein a majority of organisms are hitherto unknown. In this study, we present a 16S rDNA classification algorithm, called C16S, that uses genus-specific Hidden Markov Models for taxonomic classification of 16S rDNA sequences. Results obtained using C16S have been compared with the widely used RDP classifier. The performance of C16S algorithm was observed to be consistently higher than the RDP classifier. In some scenarios, this increase in accuracy is as high as 34%. A web-server for the C16S algorithm is available at http://metagenomics.atc.tcs.com/C16S/.

  5. Towards the elements of successful insect Ribonucleic acid interference (RNAi)

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...

  6. Saliva of Lygus lineolaris digests double stranded ribonucleic acids

    USDA-ARS?s Scientific Manuscript database

    The prospects for development of highly specific pesticides based on double stranded ribonucleic acid have been a recent focus of scientific research. Creative applications have been proposed and demonstrated. However, not all insects are sensitive to double stranded RNA (dsRNA) gene knockdown effec...

  7. Multi-site-specific 16S rRNA Methyltransferase RsmF from Thermus thermophilus

    SciTech Connect

    Demirci, H.; Larsen, L; Hansen, T; Rasmussen, A; Cadambi, A; Gregory, S; Kirpekar, F; Jogl, G

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m{sup 5}C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m{sup 5}C967. In contrast to E. coli RsmF, which introduces a single m{sup 5}C1407 modification, T. thermophilus RsmF modifies three positions, generating m{sup 5}C1400 and m{sup 5}C1404 in addition to m{sup 5}C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 {angstrom} resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.

  8. Analysis of conformational changes in 16 S rRNA during the course of 30 S subunit assembly.

    PubMed

    Holmes, Kristi L; Culver, Gloria M

    2005-11-25

    Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.

  9. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K‐t; Fung, A M Y; Woo, G K S; Chan, K‐m; Que, T‐l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non‐duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  10. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing.

    PubMed

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S; Perkins, David L

    2016-01-22

    The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 10(6) reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.

  11. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing

    PubMed Central

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S.; Perkins, David L.

    2016-01-01

    The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. PMID:26718401

  12. 16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria.

    PubMed

    Watts, George S; Youens-Clark, Ken; Slepian, Marvin J; Wolk, Donna M; Oshiro, Marc M; Metzger, Gregory S; Dhingra, Dalia; Cranmer, Lee D; Hurwitz, Bonnie L

    2017-09-20

    Test the choice of 16S rRNA gene amplicon and data analysis method on the accuracy of identification of clinically important bacteria utilizing a benchtop sequencer. Nine 16S rRNA amplicons were tested on an Ion Torrent PGM to identify 41 strains of clinical importance. The V1-V2 region identified 40 of 41 isolates to the species level. Three data analysis methods were tested, finding that the Ribosomal Database Project's SequenceMatch outperformed BLAST and the Ion Reporter Metagenomics analysis pipeline. Lastly, 16S rRNA gene sequencing mixtures of four species through a six log range of dilution showed species were identifiable even when present as 0. 1% of the mixture. Sequencing the V1-V2 16S rRNA gene region, made possible by the increased read length Ion Torrent PGM sequencer's 400 base pair chemistry, may be a better choice over other commonly used regions for identifying clinically important bacteria. In addition, the SequenceMatch algorithm, freely available from the Ribosomal Database Project, is a good choice for matching filtered reads to organisms. Lastly, 16S rRNA gene sequencing's sensitivity to the presence of a bacterial species at 0.1% of a mixture, suggests it has sufficient sensitivity for samples in which important bacteria may be rare. We have validated 16S rRNA gene sequencing on a benchtop sequencer including simple mixtures of organisms; however, our results highlight deficits for clinical application in place of current identification methods. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Microbiome characterization using SMRT sequencing on 16S rRNA genes across a range of amplicon sizes and variable region content

    USDA-ARS?s Scientific Manuscript database

    The sequence of variable regions along the 16S ribosomal RNA gene is often used to conduct metagenomic surveys of bacterial populations in specific habitats, because of the inter-species variability in these regions and because it is possible to design amplification primers in sections of the gene t...

  14. Thermolability of 28S ribosomal ribonucleic acid from the liver of Crotalus durissus terrificus (Ophidia, Reptilia)

    PubMed Central

    Giorgini, J. F.; De Lucca, F. L.

    1973-01-01

    Instability of 28S rRNA of Crotalus durissus terrificus liver was observed during hotphenol extraction: purified 28S rRNA is converted into an 18S RNA component by heat treatment. It was also found that `6S' and `8S' low-molecular-weight RNA species were released during the thermal conversion. This conversion and the release of the low-molecular-weight species were also induced by 8m-urea and 80% (v/v) dimethyl sulphoxide at 0°C. Evidence is presented that this phenomenon is an irreversible process and results from the rupture of hydrogen bonds. The 18S RNA product was shown to be homogeneous by polyacrylamide-gel electrophoresis and by sucrose-density-gradient centrifugation. The base composition of the 18S RNA products obtained by heat, urea or dimethyl sulphoxide treatments was similar. The C+G content of the 18S RNA product was different from that of the native 18S rRNA, but similar to that of 28S rRNA. PMID:4776876

  15. Thermolability of 28S ribosomal ribonucleic acid from the liver of Crotalus durissus terrificus (Ophidia, Reptilia).

    PubMed

    Giorgini, J F; De Lucca, F L

    1973-09-01

    Instability of 28S rRNA of Crotalus durissus terrificus liver was observed during hotphenol extraction: purified 28S rRNA is converted into an 18S RNA component by heat treatment. It was also found that ;6S' and ;8S' low-molecular-weight RNA species were released during the thermal conversion. This conversion and the release of the low-molecular-weight species were also induced by 8m-urea and 80% (v/v) dimethyl sulphoxide at 0 degrees C. Evidence is presented that this phenomenon is an irreversible process and results from the rupture of hydrogen bonds. The 18S RNA product was shown to be homogeneous by polyacrylamide-gel electrophoresis and by sucrose-density-gradient centrifugation. The base composition of the 18S RNA products obtained by heat, urea or dimethyl sulphoxide treatments was similar. The C+G content of the 18S RNA product was different from that of the native 18S rRNA, but similar to that of 28S rRNA.

  16. Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants.

    PubMed Central

    Dyer, T A; Bowman, C M

    1979-01-01

    Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed. Images Fig. 2. Fig. 4. PMID:540034

  17. Artifacts in the centrifugation of ribosomal and heterogenous ribonucleic acid in "99%-dimethyl sulphoxide" gradients.

    PubMed Central

    Maxwell, I H

    1976-01-01

    Increasing the total quantity of RNA located on 99%-dimethyl sulphoxide gradients profoundly altered the sedimentation pattern of heterogenous RNA and (to a smaller extent) that of rRNA. Aggregation of small quantities of rRNA with fast-sedimenting heterogenous RNA was also found to occur in these gradients. PMID:1275901

  18. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC–UV–MS

    PubMed Central

    Russell, Susan P.; Limbach, Patrick A.

    2013-01-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less. PMID:23500350

  19. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC-UV-MS.

    PubMed

    Russell, Susan P; Limbach, Patrick A

    2013-04-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less.

  20. Ribonucleic Acid and Protein Synthesis During Germination of Myxococcus xanthus Myxospores

    PubMed Central

    Juengst, Fredrick W.; Dworkin, Martin

    1973-01-01

    Ribonucleic acid (RNA) and protein synthesis during myxospore germination were examined. When RNA synthesis was inhibited more than 90% by either actinomycin D (Act D) or rifampin, germination was prevented. The data were consistent with the interpretation that rifampin did not interfere with protein synthesis in any way other than by inhibition of messenger RNA formation. Act D concentrations as high as 20 μg/ml did not totally inhibit RNA synthesis. In the presence of 8 μg of Act D/ml, germinating myxospores synthesized transfer RNA, 16S RNA, and 23S RNA. Evidence was presented which indicated that messenger RNA was also synthesized early in the germination period both in the presence and absence of 8 μg of Act D/ml. One explanation for the escape synthesis of RNA in germinating myxospores is that Act D exerts a differential effect on the transcription of larger versus smaller cistrons, the latter having a lower probability of binding Act D. We have found that in the presence of 8 μg of Act D/ml, escape RNA synthesis in myxospores was 25% for 23S RNA, 55% for 16S RNA, and more than 90% for 4S RNA. We have shown that germination of myxospores requires both RNA and protein synthesis during the first 25 to 35 min in germination medium. This finding does not support the earlier suggestion by Ramsey and Dworkin that a stable germination messenger RNA is required for germination of the myxospores of Myxococcus xanthus. PMID:4690965

  1. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6

    SciTech Connect

    Allison E. Ray; Stephanie A. Connon; Peter P. Sheridan; Jeremy Gilbreath; Malcolm S. Shields; Deborah T. Newby; Yoshiko Fujita; Timothy S. Magnuson

    2010-06-01

    The determination of variation in 16S rRNA gene sequences is perhaps the most common method for assessing microbial community diversity. However, the occurrence of multiple copies of 16S rRNA genes within some organisms can bias estimates of microbial diversity. During phylogenetic characterization of a metal-transforming, fermentative bacterium (strain UFO1) isolated from the Field Research Center (FRC) in Oak Ridge, TN, we detected an apparent 16S rRNA pseudogene. The putative 16S rRNA pseudogene was first detected in clone libraries constructed with 16S rRNA genes amplified from UFO1 genomic DNA. Sequencing revealed two distinct 16S rRNA genes, with one differing from the other by a 100 bp insert near the 5’ end. Ribosomal RNA was extracted from strain UFO1 and analyzed by RT-qPCR with insert and non-insert specific primers; however, only the non-insert 16S rRNA sequence was expressed. Reverse-transcribed rRNA from strain UFO1 was also used to construct a cDNA library. Of 190 clones screened by PCR, none contained the 16S rRNA gene with the 100 bp insert. Examination of GenBank 16S rRNA gene sequences revealed that the same insert sequence was present in other clones, including those from an environmental library constructed from FRC enrichments. These findings demonstrate the existence of widely disparate copies of the 16S rRNA gene in the same species and a putative 16S rRNA pseudogene, which may confound 16S rRNA-based methods for assessments of microbial diversity in environmental samples.

  2. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.

    PubMed

    Christner, B C; Mosley-Thompson, E; Thompson, L G; Reeve, J N

    2001-09-01

    Lake Vostok, the largest subglacial lake in Antarctica, is separated from the surface by approximately 4 km of glacial ice. It has been isolated from direct surface input for at least 420 000 years, and the possibility of a novel environment and ecosystem therefore exists. Lake Vostok water has not been sampled, but an ice core has been recovered that extends into the ice accreted below glacial ice by freezing of Lake Vostok water. Here, we report the recovery of bacterial isolates belonging to the Brachybacteria, Methylobacterium, Paenibacillus and Sphingomonas lineages from a sample of melt water from this accretion ice that originated 3593 m below the surface. We have also amplified small-subunit ribosomal RNA-encoding DNA molecules (16S rDNAs) directly from this melt water that originated from alpha- and beta-proteobacteria, low- and high-G+C Gram-positive bacteria and a member of the Cytophaga/Flavobacterium/Bacteroides lineage.

  3. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  4. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    PubMed

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  5. Atomic mutagenesis at the ribosomal decoding site.

    PubMed

    Schrode, Pius; Huter, Paul; Clementi, Nina; Erlacher, Matthias

    2017-01-02

    Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding.

  6. Atomic mutagenesis at the ribosomal decoding site

    PubMed Central

    Schrode, Pius; Huter, Paul; Clementi, Nina; Erlacher, Matthias

    2017-01-01

    ABSTRACT Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding. PMID:27841727

  7. A recent intermezzo at the Ribosome Club.

    PubMed

    Pavlov, Michael Y; Liljas, Anders; Ehrenberg, Måns

    2017-03-19

    Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg(2+) ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account.This article is part of the themed issue 'Perspectives on the ribosome'.

  8. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates

    PubMed Central

    Bar-Yaacov, Dan; Frumkin, Idan; Yashiro, Yuka; Schlesinger, Orr; Bieri, Philipp; Greber, Basil; Ban, Nenad; Zarivach, Raz; Alfonta, Lital; Pilpel, Yitzhak; Suzuki, Tsutomu; Mishmar, Dan

    2016-01-01

    The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function. PMID:27631568

  9. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences

    PubMed Central

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-01-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences. PMID:26943621

  10. Higher order structure in ribosomal RNA.

    PubMed

    Gutell, R R; Noller, H F; Woese, C R

    1986-05-01

    The only reliable general method currently available for determining precise higher order structure in the large ribosomal RNAs is comparative sequence analysis. The method is here applied to reveal 'tertiary' structure in the 16S-like rRNAs, i.e. structure more complex than simple double-helical, secondary structure. From a list of computer-generated potential higher order interactions within 16S rRNA one such interaction considered likely was selected for experimental test. The putative interaction involves a Watson-Crick one to one correspondence between positions 570 and 866 in the molecule (E. coli numbering). Using existing oligonucleotide catalog information several organisms were selected whose 16S rRNA sequences might test the proposed co-variation. In all of the (phylogenetically independent) cases selected, full sequence evidence confirms the predicted one to one (Watson-Crick) correspondence. An interaction between positions 570 and 866 is, therefore, considered proven phylogenetically.

  11. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome.

    PubMed

    Nossa, Carlos W; Oberdorf, William E; Yang, Liying; Aas, Jørn A; Paster, Bruce J; Desantis, Todd Z; Brodie, Eoin L; Malamud, Daniel; Poles, Michael A; Pei, Zhiheng

    2010-09-07

    To design and validate broad-range 16S rRNA primers for use in high throughput sequencing to classify bacteria isolated from the human foregut microbiome. A foregut microbiome dataset was constructed using 16S rRNA gene sequences obtained from oral, esophageal, and gastric microbiomes produced by Sanger sequencing in previous studies represented by 219 bacterial species. Candidate primers evaluated were from the European rRNA database. To assess the effect of sequence length on accuracy of classification, 16S rRNA genes of various lengths were created by trimming the full length sequences. Sequences spanning various hypervariable regions were selected to simulate the amplicons that would be obtained using possible primer pairs. The sequences were compared with full length 16S rRNA genes for accuracy in taxonomic classification using online software at the Ribosomal Database Project (RDP). The universality of the primer set was evaluated using the RDP 16S rRNA database which is comprised of 433 306 16S rRNA genes, represented by 36 phyla. Truncation to 100 nucleotides (nt) downstream from the position corresponding to base 28 in the Escherichia coli 16S rRNA gene caused misclassification of 87 (39.7%) of the 219 sequences, compared with misclassification of only 29 (13.2%) sequences with truncation to 350 nt. Among 350-nt sequence reads within various regions of the 16S rRNA gene, the reverse read of an amplicon generated using the 343F/798R primers had the least (8.2%) effect on classification. In comparison, truncation to 900 nt mimicking single pass Sanger reads misclassified 5.0% of the 219 sequences. The 343F/798R amplicon accurately assigned 91.8% of the 219 sequences at the species level. Weighted by abundance of the species in the esophageal dataset, the 343F/798R amplicon yielded similar classification accuracy without a significant loss in species coverage (92%). Modification of the 343F/798R primers to 347F/803R increased their universality among foregut

  12. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome

    PubMed Central

    Nossa, Carlos W; Oberdorf, William E; Yang, Liying; Aas, Jørn A; Paster, Bruce J; DeSantis, Todd Z; Brodie, Eoin L; Malamud, Daniel; Poles, Michael A; Pei, Zhiheng

    2010-01-01

    AIM: To design and validate broad-range 16S rRNA primers for use in high throughput sequencing to classify bacteria isolated from the human foregut microbiome. METHODS: A foregut microbiome dataset was constructed using 16S rRNA gene sequences obtained from oral, esophageal, and gastric microbiomes produced by Sanger sequencing in previous studies represented by 219 bacterial species. Candidate primers evaluated were from the European rRNA database. To assess the effect of sequence length on accuracy of classification, 16S rRNA genes of various lengths were created by trimming the full length sequences. Sequences spanning various hypervariable regions were selected to simulate the amplicons that would be obtained using possible primer pairs. The sequences were compared with full length 16S rRNA genes for accuracy in taxonomic classification using online software at the Ribosomal Database Project (RDP). The universality of the primer set was evaluated using the RDP 16S rRNA database which is comprised of 433 306 16S rRNA genes, represented by 36 phyla. RESULTS: Truncation to 100 nucleotides (nt) downstream from the position corresponding to base 28 in the Escherichia coli 16S rRNA gene caused misclassification of 87 (39.7%) of the 219 sequences, compared with misclassification of only 29 (13.2%) sequences with truncation to 350 nt. Among 350-nt sequence reads within various regions of the 16S rRNA gene, the reverse read of an amplicon generated using the 343F/798R primers had the least (8.2%) effect on classification. In comparison, truncation to 900 nt mimicking single pass Sanger reads misclassified 5.0% of the 219 sequences. The 343F/798R amplicon accurately assigned 91.8% of the 219 sequences at the species level. Weighted by abundance of the species in the esophageal dataset, the 343F/798R amplicon yielded similar classification accuracy without a significant loss in species coverage (92%). Modification of the 343F/798R primers to 347F/803R increased their

  13. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach.

    PubMed

    Decuypere, Saskia; Meehan, Conor J; Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-02-01

    Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3-V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination.

  14. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    PubMed Central

    Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-01-01

    Background Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. PMID:26927306

  15. Functional Specialization of Domains Tandemly Duplicated Witin 16S rRNA Methyltransferase RsmC

    SciTech Connect

    Sunita,S.; Purta, E.; Durawa, M.; Tkaczuk, K.; Swaathi, J.; Bujnicki, J.; Sivaraman, J.

    2007-01-01

    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Angstroms resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.

  16. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics

    PubMed Central

    Jovel, Juan; Patterson, Jordan; Wang, Weiwei; Hotte, Naomi; O'Keefe, Sandra; Mitchel, Troy; Perry, Troy; Kao, Dina; Mason, Andrew L.; Madsen, Karen L.; Wong, Gane K.-S.

    2016-01-01

    The advent of next generation sequencing (NGS) has enabled investigations of the gut microbiome with unprecedented resolution and throughput. This has stimulated the development of sophisticated bioinformatics tools to analyze the massive amounts of data generated. Researchers therefore need a clear understanding of the key concepts required for the design, execution and interpretation of NGS experiments on microbiomes. We conducted a literature review and used our own data to determine which approaches work best. The two main approaches for analyzing the microbiome, 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics, are illustrated with analyses of libraries designed to highlight their strengths and weaknesses. Several methods for taxonomic classification of bacterial sequences are discussed. We present simulations to assess the number of sequences that are required to perform reliable appraisals of bacterial community structure. To the extent that fluctuations in the diversity of gut bacterial populations correlate with health and disease, we emphasize various techniques for the analysis of bacterial communities within samples (α-diversity) and between samples (β-diversity). Finally, we demonstrate techniques to infer the metabolic capabilities of a bacteria community from these 16S and shotgun data. PMID:27148170

  17. Nuclear Fraction of Bacillus subtilis as a Template for Ribonucleic Acid Synthesis

    PubMed Central

    Mizuno, S.; Whiteley, H. R.

    1968-01-01

    A “nuclear fraction” prepared from Bacillus subtilis was a more efficient template than purified deoxyribonucleic acid for the synthesis of ribonucleic acid by exogenously added ribonucleic acid polymerase isolated from B. subtilis. The initial rate of synthesis with the nuclear fraction was higher and synthesis continued for several hours, yielding an amount of ribonucleic acid greater than the amount of deoxyribonucleic acid used as the template. The product was heterogenous in size, with a large portion exceeding 23S. When purified deoxyribonucleic acid was the template, a more limited synthesis was observed with a predominantly 7S product. However, the ribonucleic acids produced in vitro from these templates were very similar to each other and to in vivo synthesized ribonucleic acid as determined by the competition of ribonucleic acid from whole cells in the annealing of in vitro synthesized ribonucleic acids to deoxyribonucleic acid. Treatment of the nuclear fraction with heat (60 C for 15 min) or trypsin reduced the capacity of the nuclear fraction to synthesize ribonucleic acid to the level observed with purified deoxyribonucleic acid. PMID:4296512

  18. Ribonucleic Acid Polymerase Activity in Sendai Virions and Nucleocapsid

    PubMed Central

    Robinson, William S.

    1971-01-01

    After dissociation of purified Sendai virus with the neutral detergent Nonidet P-40 and 2-mercaptoethanol, it catalyzed the incorporation of ribonucleoside triphosphates into an acid-insoluble product. The enzyme activity was associated with viral nucleocapsid as well as whole virions. The reaction product was ribonucleic acid (RNA) which annealed specifically with virion RNA. Sedimentation of the 3H-RNA reaction product revealed two components, a 45S component with properties of double-stranded RNA and 4 to 6S component which appeared to be mostly single-stranded RNA. PMID:4328418

  19. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs).

    PubMed

    Wicker-Planquart, Catherine; Jault, Jean-Michel

    2015-04-13

    YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. RIBOSOME-MEMBRANE INTERACTION

    PubMed Central

    Adelman, M. R.; Sabatini, David D.; Blobel, Günter

    1973-01-01

    In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (∼15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear. PMID:4682341

  1. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli.

    PubMed

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the "central pseudoknot" and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A-916U and betaproteobacterial 19C-916G) and the non-native 19A-916G pair retained function, whereas the non-native 19C-916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A-916U or 19C-916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts.

  2. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli

    PubMed Central

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the “central pseudoknot” and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A–916U and betaproteobacterial 19C–916G) and the non-native 19A–916G pair retained function, whereas the non-native 19C–916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A–916U or 19C–916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts. PMID:28293553

  3. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling

    DOE PAGES

    Podar, Mircea; Shakya, Migun; D'Amore, Rosalinda; ...

    2016-01-14

    In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. Here, the most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions aremore » interrogated.« less

  4. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling

    SciTech Connect

    Podar, Mircea; Shakya, Migun; D'Amore, Rosalinda; Ijaz, Umer Zeeshan; Schirmer, Melanie; Kenny, John G.; Gregory, Richard; Darby, Alistair C.; Quince, Christopher; Hall, Neil

    2016-01-14

    In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. Here, the most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated.

  5. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities

    PubMed Central

    Hanshew, Alissa S.; Mason, Charles J.; Raffa, Kenneth F.; Currie, Cameron R.

    2014-01-01

    Chloroplast sequence contamination in 16S ribosomal RNA gene (16S) analyses can be particularly problematic when sampling microbial communities in plants and folivorous arthropods. We previously encountered high levels of plastid contamination in herbivorous insect samples when we used the predominant 454 pyrosequencing 16S methodologies described in the literature. 799F, a primer previously found to exclude chloroplast sequences, was modified to enhance its efficacy, and we describe, in detail, our methodology throughout amplicon pyrosequencing. Thirteen versions of 799F were assessed for the exclusion of chloroplast sequences from our samples. We found that a shift in the mismatch between 799F and chloroplast 16S resulted in significant reduction of chloroplast reads. Our results also indicate that amplifying sequences from environmental samples in a two-step PCR process, with the addition of the multiplex identifiers and 454 adapters in a second round of PCR, further improved primer specificity. Primers that included 3′ phosphorothioate bonds, which were designed to block primer degradation, did not amplify consistently across samples. The different forward primers do not appear to bias the bacterial communities detected. We provide a methodological framework for reducing chloroplast reads in high-throughput sequencing data sets that can be applied to a number of environmental samples and sequencing techniques. PMID:23968645

  6. Temperature Sensitivity Caused by Mutant Release Factor 1 Is Suppressed by Mutations That Affect 16S rRNA Maturation

    PubMed Central

    Kaczanowska, Magdalena; Rydén-Aulin, Monica

    2004-01-01

    To study the effect of slow termination on the protein synthesizing machinery, we isolated suppressors to a temperature-sensitive release factor 1 (RF1). Of 26 independent clones, five complementation groups have been identified, two of which are presented here. The first mutation disrupts a base pair in the transcription terminator stem for the rplM-rpsI operon, which encodes ribosomal proteins L13 and S9. We have found that this leads to readthrough of the terminator and that lower levels of transcript (compared to the results seen with the wild type) are found in the cell. This probably leads to decreased expression of the two proteins. The second mutation is a small deletion of the yrdC open reading frame start site, and it is not likely that the protein is expressed. Both mutant strains show an increased accumulation of 17S rRNA (immature 16S rRNA). Maturation of 16S rRNA is dependent on proper assembly of the ribosomal proteins, a process that is disturbed when proteins are missing. The function of the YrdC protein is not known, but it is able to bind to double-stranded RNA; therefore, we suggest that it is an assembly factor important for 30S subunit biogenesis. On the basis of our findings, we propose that lesser amounts of S9 or a lack of YrdC causes the maturation defect. We have shown that as a consequence of the maturation defect, fewer 70S ribosomes and polysomes are formed. This and other results suggest that it is the lowered concentration of functional ribosomes that suppresses the temperature sensitivity caused by the mutant RF1. PMID:15126466

  7. Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity.

    PubMed

    Van Ryk, D I; Dahlberg, A E

    1995-09-11

    The higher order structure of the functionally important 530 loop in Escherichia coli 16S rRNA was studied in mutants with single base changes at position 517, which significantly impair translational fidelity. The 530 loop has been proposed to interact with the EF-Tu-GTP-aatRNA ternary complex during decoding. The reactivity at G530, U531 and A532 to the chemical probes kethoxal, CMCT and DMS respectively was increased in the mutant 16S rRNA compared with the wild-type, suggesting a more open 530 loop structure in the mutant ribosomes. This was supported by oligonucleotide binding experiments in which probes complementary to positions 520-526 and 527-533, but not control probes, showed increased binding to the 517C mutant 70S ribosomes compared with the non-mutant control. Furthermore, enzymatic digestion of 70S ribosomes with RNase T1, specific for single-stranded RNA, substantially cleaved both wild-type and mutant rRNAs between G524 and C525, two of the nucleotides involved in the 530 loop pseudoknot. This site was also cleaved in the 517C mutant, but not wild-type rRNA, by RNase V1. Such a result is still consistent with a more open 530 loop structure in the mutant ribosomes, since RNase V1 can cut at appropriately stacked single-stranded regions of RNA. Together these data indicate that the 517C mutant rRNA has a rather extensively unfolded 530 loop structure. Less extensive structural changes were found in mutants 517A and 517U, which caused less misreading. A correlation between the structural changes in the 530 loop and impaired translational accuracy is proposed.

  8. 16S-ARDRA and MALDI-TOF mass spectrometry as tools for identification of Lactobacillus bacteria isolated from poultry.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2016-06-13

    The objective of our study is to evaluate the potential use of Amplified 16S Ribosomal DNA Restriction Analysis (16S-ARDRA) and MALDI-TOF mass spectrometry (MS) as methods for species identification of Lactobacillus strains in poultry. A total of 80 Lactobacillus strains isolated from the cloaca of chicken, geese and turkeys were identified to the species level by MALDI-TOF MS (on-plate extraction method) and 16S-ARDRA. The two techniques produced comparable classification results, some of which were additionally confirmed by sequencing of 16S rDNA. MALDI-TOF MS enabled rapid species identification but produced more than one reliable identification result for 16.25 % of examined strains (mainly of the species L. johnsonii). For 30 % of isolates intermediate log(scores) of 1.70-1.99 were obtained, indicating correct genus identification but only presumptive species identification. The 16S-ARDRA protocol was based on digestion of 16S rDNA with the restriction enzymes MseI, HinfI, MboI and AluI. This technique was able to distinguish 17 of the 19 Lactobacillus reference species tested and enabled identification of all 80 wild isolates. L. salivarius dominated among the 15 recognized species, followed by L. johnsonii and L. ingluviei. The MALDI-TOF MS and 16S-ARDRA assays are valuable tools for the identification of avian lactobacilli to the species level. MALDI-TOF MS is a fast, simple and cost-effective technique, and despite generating a high percentage of results with a log(score) <2.00, the on-plate extraction method is characterized by high-performance. For samples for which Biotyper produces more than one reliable result, MALDI-TOF MS must be used in combination with genotypic techniques to achieve unambiguous results. 16S-ARDRA is simple, repetitive method with high power of discrimination, whose sole limitation is its inability to discriminate between species with very high 16S rDNA sequence homology, such as L. casei and L. zeae. The assays can be used for

  9. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes.

    PubMed

    Felske, A; Wolterink, A; Van Lis, R; De Vos, W M; Akkermans, A D

    2000-09-01

    The composition of predominant soil bacteria during grassland succession was investigated in the Dutch Drentse A area. Five meadows, taken out of agricultural production at different time points, and one currently fertilized plot represented different stages of grassland succession. Since fertilization and agricultural production were stopped, the six plots showed a constant decline in the levels of nutrients and vegetation changes. The activity of the predominant bacteria was monitored by direct ribosome isolation from soil and temperature gradient gel electrophoresis of reverse transcription (RT)-PCR products generated from bacterial 16S rRNA. The amounts of 16S rRNA of 20 predominant ribosome types per gram of soil were monitored via multiple competitive RT-PCR in six plots at different succession stages. These ribosome types mainly represented Bacillus and members of the Acidobacterium cluster and the alpha subclass of the class Proteobacteria. The 20 16S rRNA molecules monitored represented approximately half of all bacterial soil rRNA which was estimated by dot blot hybridizations of soil rRNA with the Bacteria probe EUB338. The grasslands showed highly reproducible and specific shifts of bacterial ribosome type composition. The total bacterial ribosome level increased during the first years after agricultural production and fertilization stopped. This correlated with the collapse of the dominant Lolium perenne population and an increased rate of mineralization of organic matter. The results indicate that there is a true correlation between the total activity of the bacterial community in soil and the amount of bacterial ribosomes.

  10. Response of a Soil Bacterial Community to Grassland Succession as Monitored by 16S rRNA Levels of the Predominant Ribotypes

    PubMed Central

    Felske, Andreas; Wolterink, Arthur; Van Lis, Robert; De Vos, Willem M.; Akkermans, Antoon D. L.

    2000-01-01

    The composition of predominant soil bacteria during grassland succession was investigated in the Dutch Drentse A area. Five meadows, taken out of agricultural production at different time points, and one currently fertilized plot represented different stages of grassland succession. Since fertilization and agricultural production were stopped, the six plots showed a constant decline in the levels of nutrients and vegetation changes. The activity of the predominant bacteria was monitored by direct ribosome isolation from soil and temperature gradient gel electrophoresis of reverse transcription (RT)-PCR products generated from bacterial 16S rRNA. The amounts of 16S rRNA of 20 predominant ribosome types per gram of soil were monitored via multiple competitive RT-PCR in six plots at different succession stages. These ribosome types mainly represented Bacillus and members of the Acidobacterium cluster and the α subclass of the class Proteobacteria. The 20 16S rRNA molecules monitored represented approximately half of all bacterial soil rRNA which was estimated by dot blot hybridizations of soil rRNA with the Bacteria probe EUB338. The grasslands showed highly reproducible and specific shifts of bacterial ribosome type composition. The total bacterial ribosome level increased during the first years after agricultural production and fertilization stopped. This correlated with the collapse of the dominant Lolium perenne population and an increased rate of mineralization of organic matter. The results indicate that there is a true correlation between the total activity of the bacterial community in soil and the amount of bacterial ribosomes. PMID:10966420

  11. Driving ribosome assembly.

    PubMed

    Kressler, Dieter; Hurt, Ed; Bassler, Jochen

    2010-06-01

    Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.

  12. Isolation of Mitochondrial Ribosomes.

    PubMed

    Carroll, Adam J

    2017-01-01

    Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

  13. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences.

    PubMed

    Lee, Imchang; Chalita, Mauricio; Ha, Sung-Min; Na, Seong-In; Yoon, Seok-Hwan; Chun, Jongsik

    2017-06-01

    Thanks to the recent advancement of DNA sequencing technology, the cost and time of prokaryotic genome sequencing have been dramatically decreased. It has repeatedly been reported that genome sequencing using high-throughput next-generation sequencing is prone to contaminations due to its high depth of sequencing coverage. Although a few bioinformatics tools are available to detect potential contaminations, these have inherited limitations as they only use protein-coding genes. Here we introduce a new algorithm, called ContEst16S, to detect potential contaminations using 16S rRNA genes from genome assemblies. We screened 69 745 prokaryotic genomes from the NCBI Assembly Database using ContEst16S and found that 594 were contaminated by bacteria, human and plants. Of the predicted contaminated genomes, 8 % were not predicted by the existing protein-coding gene-based tool, implying that both methods can be complementary in the detection of contaminations. A web-based service of the algorithm is available at www.ezbiocloud.net/tools/contest16s.

  14. Tirandamycin, an Inhibitor of Bacterial Ribonucleic Acid Polymerase

    PubMed Central

    Reusser, Fritz

    1976-01-01

    The antibiotic tirandamycin (a 3-acyltetramic acid structurally related to streptolydigin) specifically inhibits transcription by interfering with the function of bacterial ribonucleic acid polymerase. Ribonucleic acid polymerases from rat liver nuclei are not subject to tirandamycin inhibition. Qualitatively, the mode of action of the antibiotic is identical to that of streptolydigin in inhibiting chain initiation as well as chain elongation during the transcriptional process. However, tirandamycin is approximately 40 times less potent than streptolydigin. The structures of the 3-acyl groups of the two acyltetramic acid antibiotics tirandamycin and streptolydigin differ only slightly in the degree of oxidation of the terminal dioxabicyclo (3.1)nonane system and possess the same stereochemistry (D. J. Duchamp, A. R. Branfman, A. C. Button, and K. L. Rinehart, 1973). More significantly, major differences occur at the 1 and 5 positions of the tetramic acids. Tirandamycin contains no substituents; streptolydigin contains a substituted acetamide function at position 5 and a sugar moiety at position 1. The lack of substituents at the 1 and 5 positions of the tetramic acid portion in tirandamycin is probably responsible for the reduced biopotency of tirandamycin as compared with streptolydigin. PMID:791108

  15. A recent intermezzo at the Ribosome Club

    PubMed Central

    Pavlov, Michael Y.; Liljas, Anders

    2017-01-01

    Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg2+ ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138071

  16. The Ribosome Filter Redux

    PubMed Central

    Mauro, Vincent P.; Edelman, Gerald M.

    2010-01-01

    The ribosome filter hypothesis postulates that ribosomes are not simply translation machines but also function as regulatory elements that differentially affect or filter the translation of particular mRNAs. On the basis of new information, we take the opportunity here to review the ribosome filter hypothesis, suggest specific mechanisms of action, and discuss recent examples from the literature that support it. PMID:17890902

  17. 16S rRNA Gene Pyrosequencing of Reference and Clinical Samples and Investigation of the Temperature Stability of MicroBiome Profiles

    DTIC Science & Technology

    2014-09-16

    Jarman1, Stephen J Thomas1 and Robert A Kuschner1 Abstract Background: Sample storage conditions, extraction methods , PCR primers, and parameters are...purification methods , were used to assess procedures for 16S ribosomal DNA amplification and pyrosequencing-based analysis. Primers were chosen for 16S rDNA...at respective temperatures of −80°C, −20°C, 4°C, and 37°C for 4 weeks, then extracted with the two methods , and subjected to pyrosequencing and

  18. microclass: an R-package for 16S taxonomy classification.

    PubMed

    Liland, Kristian Hovde; Vinje, Hilde; Snipen, Lars

    2017-03-16

    Taxonomic classification based on the 16S rRNA gene sequence is important for the profiling of microbial communities. In addition to giving the best possible accuracy, it is also important to quantify uncertainties in the classifications. We present an R package with tools for making such classifications, where the heavy computations are implemented in C++ but operated through the standard R interface. The user may train classifiers based on specialized data sets, but we also supply a ready-to-use function trained on a comprehensive training data set designed specifically for this purpose. This tool also includes some novel ways to quantify uncertainties in the classifications. Based on input sequences of varying length and quality, we demonstrate how the output from the classifications can be used to obtain high quality taxonomic assignments from 16S sequences within the R computing environment. The package is publicly available at the Comprehensive R Archive Network.

  19. Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes.

    PubMed

    Abeysirigunawardena, Sanjaya C; Kim, Hajin; Lai, Jonathan; Ragunathan, Kaushik; Rappé, Mollie C; Luthey-Schulten, Zaida; Ha, Taekjip; Woodson, Sarah A

    2017-09-08

    Assembly of 30S ribosomes involves the hierarchical addition of ribosomal proteins that progressively stabilize the folded 16S rRNA. Here, we use three-color single molecule FRET to show how combinations of ribosomal proteins uS4, uS17 and bS20 in the 16S 5' domain enable the recruitment of protein bS16, the next protein to join the complex. Analysis of real-time bS16 binding events shows that bS16 binds both native and non-native forms of the rRNA. The native rRNA conformation is increasingly favored after bS16 binds, explaining how bS16 drives later steps of 30S assembly. Chemical footprinting and molecular dynamics simulations show that each ribosomal protein switches the 16S conformation and dampens fluctuations at the interface between rRNA subdomains where bS16 binds. The results suggest that specific protein-induced changes in the rRNA dynamics underlie the hierarchy of 30S assembly and simplify the search for the native ribosome structure.Ribosomes assemble through the hierarchical addition of proteins to a ribosomal RNA scaffold. Here the authors use three-color single-molecule FRET to show how the dynamics of the rRNA dictate the order in which multiple proteins assemble on the 5' domain of the E. coli 16S rRNA.

  20. Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences.

    PubMed Central

    Nazaret, S; Cournoyer, B; Normand, P; Simonet, P

    1991-01-01

    Actinomycetes of the genus Frankia establish a nitrogen-fixing symbiosis with a large number of woody dicotyledonous plants. Hundreds of strains isolated from various actinorhizal plants growing in different geographical areas have recently been classified into at least nine genomic species by use of the DNA-DNA hybridization technique (M.P. Fernandez, H. Meugnier, P.A.D. Grimont, and R. Bardin, Int. J. Syst. Bacteriol. 39:424-429, 1989). A protocol based on the amplification and sequencing of 16S ribosomal DNA segments was used to classify and estimate the phylogenetic relationships among eight different genomic species. A good correlation was established between the grouping of strains according to their 16S ribosomal DNA sequence homology and that based on total DNA homology, since most genomic species could be characterized by a specific sequence. The phylogenetic tree showed that strains belonging to the Alnus infectivity group are closely related to strains belonging to the Casuarina infectivity group and that strains of these two infectivity groups are well separated from strains of the Elaeagnus infectivity group, which also includes atypical strains isolated from the Casuarina group. This phylogenetic analysis was also very efficient for classifying previously unclassified pure cultures or unisolatable strains by using total DNA extracted directly from nodules. PMID:2061287

  1. Bases in 16S rRNA Important for Subunit Association, tRNA binding, and Translocation

    PubMed Central

    Shi, Xinying; Chiu, Katie; Ghosh, Srikanta; Joseph, Simpson

    2009-01-01

    Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated in order to study their role in translation. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association and tRNA binding. In contrast, A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far away as 100 Å from the tRNA binding sites can be important for translation. PMID:19545171

  2. Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli.

    PubMed Central

    Zengel, J M; Young, R; Dennis, P P; Nomura, M

    1977-01-01

    Some of the spontaneous streptomycin-resistant mutants of Escherichia coli strain C600 exhibit pleiotropic effects in addition to the antibiotic resistance. These effects include decreased growth rates, reduced levels of certain enzymes, and poor support of bacteriophage growth. One of these mutants, strain SM3, was studied further. We have examined the question of whether the reduced growth rate of the mutant SM3 is related to the reduction in relative amounts of ribosomes or to the reduction in the efficiency of ribosomes in protein synthesis. Measurements of alpha, the differential synthesis rate of ribosomal protein, revealed that the protein synthesis effeciency of ribosomes from the mutant strain SM3 was reduced about twofold relative to that of the parent strain C600. Measurements of the induction lag for beta-galactosidase and of the synthesis time of several different molecular-weight classes of proteins indicated that the mutation resulted in a marked reduction in the peptide chain growth rate. This reduction in the chain growth rate probably accounted for most of the observed reduction in the growth rate of the mutant strain. These experimental results show that the strA gene product, the S12 protein of the 30S subunit, is involved in some aspect of protein chain elongation. Presumably this involvement occurs during the messenger ribonucleic acid-directed binding of transfer ribonucleic acid to the ribosome. PMID:321423

  3. Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli.

    PubMed

    Zengel, J M; Young, R; Dennis, P P; Nomura, M

    1977-03-01

    Some of the spontaneous streptomycin-resistant mutants of Escherichia coli strain C600 exhibit pleiotropic effects in addition to the antibiotic resistance. These effects include decreased growth rates, reduced levels of certain enzymes, and poor support of bacteriophage growth. One of these mutants, strain SM3, was studied further. We have examined the question of whether the reduced growth rate of the mutant SM3 is related to the reduction in relative amounts of ribosomes or to the reduction in the efficiency of ribosomes in protein synthesis. Measurements of alpha, the differential synthesis rate of ribosomal protein, revealed that the protein synthesis effeciency of ribosomes from the mutant strain SM3 was reduced about twofold relative to that of the parent strain C600. Measurements of the induction lag for beta-galactosidase and of the synthesis time of several different molecular-weight classes of proteins indicated that the mutation resulted in a marked reduction in the peptide chain growth rate. This reduction in the chain growth rate probably accounted for most of the observed reduction in the growth rate of the mutant strain. These experimental results show that the strA gene product, the S12 protein of the 30S subunit, is involved in some aspect of protein chain elongation. Presumably this involvement occurs during the messenger ribonucleic acid-directed binding of transfer ribonucleic acid to the ribosome.

  4. Structure of the Ribonucleic Acid Bacteriophage R17

    PubMed Central

    Vasquez, Cesar; Granboulan, Nicole; Franklin, Richard M.

    1966-01-01

    Vasquez, Cesar (Institut de Recherches sur le Cancer, Villejuif, Seine, France), Nicole Granboulan, and Richard M. Franklin. Structure of the ribonucleic acid bacteriophage R17. J. Bacteriol. 92:1779–1786. 1966.—The morphology of bacteriophage R17 was studied by electron microscopy of negatively stained virions. The hexagonal shape, the presence of a maximum of 10 units at the periphery, and especially the observation of central fivefold points of symmetry with neighboring five and six coordinated units indicated icosahedral symmetry with 32 morphological units. Although the exact shape of the polyhedron could not be specified, the number of morphological units agreed with the chemically estimated number of structural units. Images PMID:5958109

  5. Photochemical Inactivation of Deoxyribonucleic and Ribonucleic Acid Viruses by Chlorpromazine

    PubMed Central

    Hanson, Carl Veith

    1979-01-01

    Chlorpromazine, a widely used tranquilizing drug of the phenothiazine group, was found to be a very potent photochemical inactivator of both deoxyribonucleic acid and ribonucleic acid viruses in the presence of long-wave ultraviolet light (320 to 380 nm). Neither the light alone nor chlorpromazine alone caused any appreciable inactivation. The known chlorpromazine photoreactions with nucleic acids are somewhat similar to those of psoralen (furocoumarin) derivatives. As in the case of the psoralens, chlorpromazine is capable of photoinactivating viruses totally within a few minutes under near-physiological or other gentle conditions. The antiviral effects of the chlorpromazine photoreaction could make it valuable for the development of inactivated viral vaccines as well as for use in the photochemotherapy of viral dermatoses. PMID:464574

  6. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  7. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  8. How Ribosomes Translate Cancer.

    PubMed

    Sulima, Sergey O; Hofman, Isabel J F; De Keersmaecker, Kim; Dinman, Jonathan D

    2017-09-18

    A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1-19. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. CLUSTOM: A Novel Method for Clustering 16S rRNA Next Generation Sequences by Overlap Minimization

    PubMed Central

    Kim, Byung Kwon; Yu, Dong Su; Hou, Bo Kyeng; Caetano-Anollés, Gustavo; Hong, Soon Gyu; Kim, Kyung Mo

    2013-01-01

    The recent nucleic acid sequencing revolution driven by shotgun and high-throughput technologies has led to a rapid increase in the number of sequences for microbial communities. The availability of 16S ribosomal RNA (rRNA) gene sequences from a multitude of natural environments now offers a unique opportunity to study microbial diversity and community structure. The large volume of sequencing data however makes it time consuming to assign individual sequences to phylotypes by searching them against public databases. Since ribosomal sequences have diverged across prokaryotic species, they can be grouped into clusters that represent operational taxonomic units. However, available clustering programs suffer from overlap of sequence spaces in adjacent clusters. In natural environments, gene sequences are homogenous within species but divergent between species. This evolutionary constraint results in an uneven distribution of genetic distances of genes in sequence space. To cluster 16S rRNA sequences more accurately, it is therefore essential to select core sequences that are located at the centers of the distributions represented by the genetic distance of sequences in taxonomic units. Based on this idea, we here describe a novel sequence clustering algorithm named CLUSTOM that minimizes the overlaps between adjacent clusters. The performance of this algorithm was evaluated in a comparative exercise with existing programs, using the reference sequences of the SILVA database as well as published pyrosequencing datasets. The test revealed that our algorithm achieves higher accuracy than ESPRIT-Tree and mothur, few of the best clustering algorithms. Results indicate that the concept of an uneven distribution of sequence distances can effectively and successfully cluster 16S rRNA gene sequences. The algorithm of CLUSTOM has been implemented both as a web and as a standalone command line application, which are available at http://clustom.kribb.re.kr. PMID:23650520

  10. Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences.

    PubMed

    Garcia-Mazcorro, Jose F

    2013-09-01

    The 16S rRNA gene has been widely used as a marker of gut bacterial diversity and phylogeny, yet we do not know the model of evolution that best explains the differences in its nucleotide composition within and among taxa. Over 46 000 good-quality near-full-length 16S rRNA gene sequences from five bacterial phyla were obtained from the ribosomal database project (RDP) by study and, when possible, by within-study characteristics (e.g. anatomical region). Using alignments (RDPX and MUSCLE) of unique sequences, the FINDMODEL tool available at http://www.hiv.lanl.gov/ was utilized to find the model of character evolution (28 models were available) that best describes the input sequence data, based on the Akaike information criterion. The results showed variable levels of agreement (from 33% to 100%) in the chosen models between the RDP-based and the MUSCLE-based alignments among the taxa. Moreover, subgroups of sequences (using either alignment method) from the same study were often explained by different models. Nonetheless, the different representatives of the gut microbiota were explained by different proportions of the available models. This is the first report using evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Escherichia coli 16S rRNA 3'-end formation requires a distal transfer RNA sequence at a proper distance.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation. Images PMID:2684637

  12. The ribosomal database project.

    PubMed

    Larsen, N; Olsen, G J; Maidak, B L; McCaughey, M J; Overbeek, R; Macke, T J; Marsh, T L; Woese, C R

    1993-07-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying alignments and trees. The data are available via ftp and electronic mail. Certain analytic services are also provided by the electronic mail server.

  13. The ribosomal database project.

    PubMed Central

    Larsen, N; Olsen, G J; Maidak, B L; McCaughey, M J; Overbeek, R; Macke, T J; Marsh, T L; Woese, C R

    1993-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying alignments and trees. The data are available via ftp and electronic mail. Certain analytic services are also provided by the electronic mail server. PMID:8332524

  14. Ribonucleic acid interference (RNAi) Technology for control of Asian citrus psyllid - You Tube

    USDA-ARS?s Scientific Manuscript database

    RNAi, Ribonucleic acid interference, function and application are described to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry....

  15. [Analysis of bacterial diversity of kefir grains by denaturing gradient gel electrophoresis and 16S rDNA sequencing].

    PubMed

    Wang, Yin-Yu; Li, Hui-Rong; Jia, Shi-Fang; Wu, Zheng-Jun; Guo, Ben-Heng

    2006-04-01

    Kefir is an acidic, mildly alcoholic dairy beverage produced by the fermentation of milk with a grain-like starter culture. These grains usually contain a relatively stable and specific balance of microbes that exist in a complex symbiotic relationship. Kefir grains can be considered a probiotic source as it presents anti-bacterial, anti-mycotic, anti-neoplasic and immunomodulatory properties. The microorganisms in Kefir grains are currently identified by traditional methods such as growth on selective media, morphological and biochemical characteristics. However, the microorganisms that isolate by these methods can not revert to Kefir grains which indicate that there are some other bacteria that are not isolate from it. In this study, PCR-based Denaturing gradient gel electrophoresis(DGGE) and sequence analysis of 16S ribosomal RNA gene (16S rDNA) clone libraries was used for the rapid and accurate identification of microorganisms from Kefir grains. The PCR primers were designed from conserved nucleotide sequences on region V3 of 16S rDNA with GC rich clamp at the 5'-end. PCR was performed using the primers and genomic DNAs of Kefir grains bacteria. The generated region V3 of 16S rDNA fragments were separated by denaturing gel, and the dominant 16S rDNA bands were cloned, sequenced and subjected to an online similarity search. Research has shown that regions V3 of 16S rDNAs have eight evident bands on the DGGE gel. The sequence analysis of these eight bands has indicated that they belong to different four genera, among them three sequences are similar to Sphingobacterium sp. whose similarities with database sequences are over 98%, three sequences are similar to Lactobacillus sp. whose similarities with database sequences are over 96%, the other two sequence are similar to Enterobacter sp., and Acinetobacter sp. whose similarities with database sequences are over 99% respectively. Although the DGGE method may have a lower sensitivity than the ordinary PCR methods

  16. The Ribosomal Database Project.

    PubMed

    Maidak, B L; Larsen, N; McCaughey, M J; Overbeek, R; Olsen, G J; Fogel, K; Blandy, J; Woese, C R

    1994-09-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services, and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server/rdp.life.uiuc.edu) and gopher (rdpgopher.life.uiuc.edu). The electronic mail server also provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for chimeric nature of newly sequenced rRNAs, and automated alignment.

  17. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  18. Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly.

    PubMed

    Mangat, Chand S; Brown, Eric D

    2008-12-01

    Many trans-acting factors that aid in ribosome biogenesis have been identified in higher organisms but relatively few such factors are known in prokaryotes. In bacteria, the list of such factors includes ATP-energized helicases and chaperones as well as an emerging cadre of switch GTPases. The KsgA protein is a universally conserved methyltransferase that dimethylates both A1518 and A1519 of the 16S rRNA of the small ribosomal subunit. Methylation has long been thought to be solely for fine-tuning of protein translation. In this issue of Molecular Microbiology, Connolly et al. present data suggesting KsgA might function in the assembly of the small subunit of the ribosome. Indeed, the work indicates that KsgA might have a checkpoint role in ribosome biogenesis where methylation by this protein marks the completion of its assembly role. These findings open our thinking to new candidate assembly factors and provide a new direction for understanding ribosome assembly.

  19. Algae–bacteria association inferred by 16S rDNA similarity in established microalgae cultures

    PubMed Central

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-01-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga–Flavobacterium–Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  20. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  1. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences

    PubMed Central

    Sun, Yijun; Cai, Yunpeng; Liu, Li; Yu, Fahong; Farrell, Michael L.; McKendree, William; Farmerie, William

    2009-01-01

    Recent metagenomics studies of environmental samples suggested that microbial communities are much more diverse than previously reported, and deep sequencing will significantly increase the estimate of total species diversity. Massively parallel pyrosequencing technology enables ultra-deep sequencing of complex microbial populations rapidly and inexpensively. However, computational methods for analyzing large collections of 16S ribosomal sequences are limited. We proposed a new algorithm, referred to as ESPRIT, which addresses several computational issues with prior methods. We developed two versions of ESPRIT, one for personal computers (PCs) and one for computer clusters (CCs). The PC version is used for small- and medium-scale data sets and can process several tens of thousands of sequences within a few minutes, while the CC version is for large-scale problems and is able to analyze several hundreds of thousands of reads within one day. Large-scale experiments are presented that clearly demonstrate the effectiveness of the newly proposed algorithm. The source code and user guide are freely available at http://www.biotech.ufl.edu/people/sun/esprit.html. PMID:19417062

  2. Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly.

    PubMed

    Mayerle, Megan; Woodson, Sarah A

    2013-04-01

    Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5' domain of the 16S rRNA. In vitro, transformation of initial S4-rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4-rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein-RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4-RNA interactions guide rRNA folding and impact late steps of 30S assembly.

  3. Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli.

    PubMed

    Vercruysse, Maarten; Köhrer, Caroline; Shen, Yang; Proulx, Sandra; Ghosal, Anubrata; Davies, Bryan W; RajBhandary, Uttam L; Walker, Graham C

    2016-11-08

    YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY's involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3' end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY-and not amino acids known to be important for YbeY's RNase activity-functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. Ribosomes are ribonucleoprotein complexes responsible for a key cellular function, protein synthesis. Their assembly is a highly coordinated process of RNA cleavage, RNA posttranscriptional modification, RNA conformational changes, and protein-binding events. Many open questions remain after almost 5 decades of study, including which RNase is responsible for final processing of the 16S rRNA 3' end. The highly

  4. Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation.

    PubMed

    Moll, I; Huber, M; Grill, S; Sairafi, P; Mueller, F; Brimacombe, R; Londei, P; Bläsi, U

    2001-06-01

    Based on the complementarity of the initial coding region (downstream box [db]) of several bacterial and phage mRNAs to bases 1469 to 1483 in helix 44 of 16S rRNA (anti-downstream box [adb]), it has been proposed that db-adb base pairing enhances translation in a way that is similar to that of the Shine-Dalgarno (SD)/anti-Shine-Dalgarno (aSD) interaction. Computer modeling of helix 44 on the 30S subunit shows that the topography of the 30S ribosome does not allow a simultaneous db-adb interaction and placement of the initiation codon in the ribosomal P site. Thus, the db-adb interaction cannot substitute for the SD-aSD interaction in translation initiation. We have always argued that any contribution of the db-adb interaction should be most apparent on mRNAs devoid of an SD sequence. Here, we show that 30S ribosomes do not bind to leaderless mRNA in the absence of initiator tRNA, even when the initial coding region shows a 15-nucleotide complementarity (optimal fit) with the putative adb. In addition, an optimized db did not affect the translational efficiency of a leaderless lambda cI-lacZ reporter construct. Thus, the db-adb interaction can hardly serve as an initial recruitment signal for ribosomes. Moreover, we show that different leaderless mRNAs are translated in heterologous systems although the sequence of the putative adb's within helix 44 of the 30S subunits of the corresponding bacteria differ largely. Taken our data together with those of others (M. O'Connor, T. Asai, C. L. Squires, and A. E. Dahlberg, Proc. Natl. Acad. Sci. USA 96:8973-8978, 1999; A. La Teana, A. Brandi, M. O'Connor, S. Freddi, and C. L. Pon, RNA 6:1393-1402, 2000), we conclude that the db does not base pair with the adb.

  5. The Ribosomal Database Project

    PubMed Central

    Olsen, Gary J.; Overbeek, Ross; Larsen, Niels; Marsh, Terry L.; McCaughey, Michael J.; Maciukenas, Michael A.; Kuan, Wen-Min; Macke, Thomas J.; Xing, Yuqing; Woese, Carl R.

    1992-01-01

    The Ribosomal Database Project (RDP) compiles ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development. PMID:1598241

  6. The Ribosomal Database Project

    NASA Technical Reports Server (NTRS)

    Olsen, G. J.; Overbeek, R.; Larsen, N.; Marsh, T. L.; McCaughey, M. J.; Maciukenas, M. A.; Kuan, W. M.; Macke, T. J.; Xing, Y.; Woese, C. R.

    1992-01-01

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  7. The Ribosomal Database Project.

    PubMed

    Olsen, G J; Overbeek, R; Larsen, N; Marsh, T L; McCaughey, M J; Maciukenas, M A; Kuan, W M; Macke, T J; Xing, Y; Woese, C R

    1992-05-11

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  8. Transcription During the Development of Bacteriophage φ29: Production of Host-and φ29-Specific Ribonucleic Acid

    PubMed Central

    Schachtele, Charles F.; De Sain, Carol V.; Hawley, Louise A.; Anderson, Dwight L.

    1972-01-01

    The synthesis of ribonucleic acid (RNA) during development of the virulent Bacillus subtilis bacteriophage φ29 has been analyzed. Transcription of host deoxyribonucleic acid (DNA) continues at the preinfection rate throughout the latent period of viral growth. RNA-DNA hybridization was used to show that host messenger RNA synthesis continues late into the phage lytic cycle. Amino acid-labeling experiments show that this RNA is continuously used to produce protein. Ribosomal RNA production is not inhibited by phage infection. Small quantities of phage-specific RNA first appear between min 6 and 9 after infection. This RNA is made exclusively from one of the φ29 DNA strands. At 12 min postinfection, when phage DNA replication commences, large quantities of viral RNA start to be synthesized. This RNA appears to be transcribed from both strands of φ29 DNA. Studies with rifamycin and rifamycin-resistant host strains showed that the production of all phage φ29-specific RNA requires those components of the host RNA polymerase which are sensitive to this antibiotic. Thus, phage φ29 does not stop transcription of host DNA and may produce only one element for regulation of transcription of its own DNA. These findings may reflect the limited amount of genetic information carried by this phage. PMID:4630153

  9. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs.

    PubMed

    Skillman, Lucy C; Evans, Paul N; Naylor, Graham E; Morvan, Brieuc; Jarvis, Graeme N; Joblin, Keith N

    2004-10-01

    The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.

  10. Functional Specialization of Ribosomes?

    PubMed Central

    Gilbert, Wendy V.

    2011-01-01

    Ribosomes are highly conserved macromolecular machines responsible for protein synthesis in all living organisms. Work published in the past year shows that changes to the ribosome core can affect the mechanism of translation initiation that is favored in the cell, potentially leading to specific changes in the relative efficiencies with which different proteins are made. Here I examine recent data from expression and proteomic studies suggesting that cells make slightly different ribosomes under different growth conditions and discuss genetic evidence that such differences are functional. In particular, I will argue that eukaryotic cells likely produce ribosomes that lack one or more ‘core’ ribosomal proteins (RPs) under some conditions, and that ‘core’ RPs contribute differentially to translation of distinct subpopulations of mRNAs. PMID:21242088

  11. Assembly of bacterial ribosomes.

    PubMed

    Shajani, Zahra; Sykes, Michael T; Williamson, James R

    2011-01-01

    The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.

  12. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    ERIC Educational Resources Information Center

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  13. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    ERIC Educational Resources Information Center

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  14. Properties of Caulobacter Ribonucleic Acid Bacteriophage φCb5

    PubMed Central

    Bendis, Inakaren; Shapiro, Lucille

    1970-01-01

    The ribonucleic acid (RNA) bacteriophage φCb5, which specifically infects only one form of the dimorphic stalked bacterium Caulobacter crescentus, has been obtained in high yield. Since the phage is extremely salt-sensitive, a purification procedure was devised which avoided contact with solutions of high ionic strength. Phage φCb5 was studied with respect to the physical and chemical properties of both the phage and its RNA. In an electron microscope, the phage particles appear as small polyhedra, 23 nm in diameter. The phage is similar to the Escherichia coli RNA phages in that it (i) sediments at an S20, w of 70.6S, (ii) is composed of a single molecule of single-stranded RNA and a protein coat, (iii) contains two structural proteins, and (iv) apparently contains the genetic capacity to code for a coat protein subunit, a maturation-like protein, and an RNA polymerase. Phage φCb5 differs from the E. coli RNA phages in (i) host specificity, (ii) salt sensitivity, and (iii) the presence of histidine, but not methionine, in the coat protein. Images PMID:5495512

  15. INFECTIVITY OF RIBONUCLEIC ACID FROM POLIOVIRUS IN HUMAN CELL MONOLAYERS

    PubMed Central

    Alexander, Hattie E.; Koch, Gebhard; Mountain, Isabel Morgan; Van Damme, Olga

    1958-01-01

    Ribonucleic acid prepared by the method of Gierer and Schramm from concentrated and partially purified types I and II polioviruses has been demonstrated to be infectious for HeLa and human amnion cells in monolayers. In areas of cytopathogenic action resulting from invasion of cells by RNA, intact poliovirus, of the type from which the RNA had been prepared, is present. The infectivity of the RNA was completely inactivated by a 2 minute exposure to purified ribonuclease or to whole normal monkey serum shown to contain measurable concentrations of this enzyme. Whole virus infectivity was not influenced by RNAase or whole normal monkey serum. Normal and polio-immune globulin, desoxyribonuclease, lysozyme, proteolytic enzymes, and bovine albumin failed to inactivate the infectivity of RNA. The degree of infectivity of isolated RNA from poliovirus for cells in monolayer was greatly influenced by the ionic strength of the environment. The experimental evidence suggests that isolated poliovirus RNA is the carrier of the biological activity responsible for infection of cells and for transmission of genetic information which controls type specificity. PMID:13575680

  16. Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome.

    PubMed

    Polikanov, Yury S; Osterman, Ilya A; Szal, Teresa; Tashlitsky, Vadim N; Serebryakova, Marina V; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A; Efimenko, Tatyana A; Efremenkova, Olga V; Konevega, Andrey L; Shaw, Karen J; Bogdanov, Alexey A; Rodnina, Marina V; Dontsova, Olga A; Mankin, Alexander S; Steitz, Thomas A; Sergiev, Petr V

    2014-11-20

    We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Yang, Guanpin; Wang, Hualei; Chen, Jixiang; Shi, Xianming; Zou, Guiwei; Wei, Qiwei; Sun, Xiuqin

    2006-04-01

    The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

  18. Characteristic archaebacterial 16S rRNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    McGill, T. J.; Jurka, J.; Sobieski, J. M.; Pickett, M. H.; Woese, C. R.; Fox, G. E.

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  19. Characteristic archaebacterial 16S rRNA oligonucleotides.

    PubMed

    McGill, T J; Jurka, J; Sobieski, J M; Pickett, M H; Woese, C R; Fox, G E

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  20. Powering through ribosome assembly

    PubMed Central

    Strunk, Bethany S.; Karbstein, Katrin

    2009-01-01

    Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly. PMID:19850913

  1. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences.

    PubMed

    Munson, M A; Baumann, P; Moran, N A

    1992-03-01

    A portion of the gene coding for the 16S ribosomal RNA from the endosymbionts of three species of mealybugs [Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus maritimus (Ehrhorn), and Dysmicoccus neobrevipes (Beardsley)] was cloned, sequenced, and compared to a homologous fragment from bacteria representative of aphid endosymbionts as well as major subdivisions of the Proteobacteria. Parsimony analysis of the sequences indicated that the mealybug endosymbionts are related and belong to the beta-subdivision; in contrast, previous studies showed that aphid endosymbionts are part of the gamma-subdivision. These findings suggest that the endosymbiosis of mealybugs is a consequence of a single bacterial infection and indicate that this ancestor was different from the ancestor involved in aphid endosymbiosis.

  2. Stimulation of Ribonucleic Acid Synthesis by Chloramphenicol in a rel+ Aminoacyl-Transfer Ribonucleic Acid Synthetase Mutant of Escherichia coli

    PubMed Central

    Yegian, Charles D.; Vanderslice, Rebecca W.

    1971-01-01

    Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel+ strain, it cannot carry out net RNA synthesis at high temperature. A 100-μg amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 μg of CAP or 100 μg of CAP plus 50 μg of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNAval at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases. PMID:4942766

  3. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  4. Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA.

    PubMed

    Lavender, Christopher A; Lorenz, Ronny; Zhang, Ge; Tamayo, Rita; Hofacker, Ivo L; Weeks, Kevin M

    2015-05-01

    Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms--the eubacteria E. coli and C. difficile and the archeon H. volcanii--could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery.

  5. Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA

    PubMed Central

    Lavender, Christopher A.; Lorenz, Ronny; Zhang, Ge; Tamayo, Rita; Hofacker, Ivo L.; Weeks, Kevin M.

    2015-01-01

    Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms – the eubacteria E. coli and C. difficile and the archeon H. volcanii – could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery. PMID:25992778

  6. A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae.

    PubMed Central

    de la Cruz, V F; Lake, J A; Simpson, A M; Simpson, L

    1985-01-01

    The portion of the Leishmania tarentolae kinetoplast maxicircle DNA encoding the 9S RNA gene was sequenced, and the 5' and 3' ends of the transcript were determined. A secondary structure for the 9S RNA was determined based on the Escherichia coli 16S model. The 610-nucleotide 9S RNA exhibits a minimal secondary structure in which all four domains of the E. coli 16S structure are preserved. Within domains, however, some stems and loops have been greatly reduced or eliminated entirely. It is presumed that these reduced domains represent the minimal essential small ribosomal RNA secondary structures necessary for a functional ribosome. Alignment of the L. tarentolae 9S rRNA sequence with the published Trypanosoma brucei 9S rRNA sequence shows a nucleotide similarity of 84% and a transversion/transition ratio of 1.66. Images PMID:3856267

  7. Intraspecific 16S rRNA gene diversity among clinical isolates of Neisseria species.

    PubMed

    Mechergui, Arij; Achour, Wafa; Hassen, Assia Ben

    2014-05-01

    In the present work, nearly the entire 16S rRNA gene sequences of 46 clinical samples of Neisseria spp. were determined, and the aligned sequences were analyzed to investigate the diversity of 16S rRNA genes in each commensal Neisseria species. Two 16S rRNA types were identified in two Neisseria sicca strains, three 16S rRNA types in five Neisseria macacae strains, fourteen 16S rRNA types in twenty Neisseria flavescens isolates, and fourteen 16S rRNA types in nineteen Neisseria mucosa isolates. The number of nucleotides that were different between 16S rRNA sequences within specie ranged from 1 to 15. We found high intraspecific sequence variation in 16S rRNA genes of Neisseria spp. strains. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  8. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy.

    PubMed

    Coolen, Marco J L; Talbot, Helen M; Abbas, Ben A; Ward, Christopher; Schouten, Stefan; Volkman, John K; Damsté, Jaap S Sinninghe

    2008-07-01

    Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in (13)C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake approximately 3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake.

  9. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  10. Identification of Candidate Periodontal Pathogens and Beneficial Species by Quantitative 16S Clonal Analysis†

    PubMed Central

    Kumar, Purnima S.; Griffen, Ann L.; Moeschberger, Melvin L.; Leys, Eugene J.

    2005-01-01

    Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted DNA approaches, and so it is likely that pathogens remain undiscovered. The purpose of this study was to use culture-independent, quantitative analysis of biofilms associated with chronic periodontitis and periodontal health to identify pathogens and beneficial species. Samples from subjects with periodontitis and controls were analyzed using ribosomal 16S cloning and sequencing. Several genera, many of them uncultivated, were associated with periodontitis, the most numerous of which were gram positive, including Peptostreptococcus and Filifactor. The genera Megasphaera and Desulfobulbus were elevated in periodontitis, and the levels of several species or phylotypes of Campylobacter, Selenomonas, Deferribacteres, Dialister, Catonella, Tannerella, Streptococcus, Atopobium, Eubacterium, and Treponema were elevated in disease. Streptococcus and Veillonella spp. were found in high numbers in all samples and accounted for a significantly greater fraction of the microbial community in healthy subjects than in those with periodontitis. The microbial profile of periodontal health also included the less-abundant genera Campylobacter, Abiotrophia, Gemella, Capnocytophaga, and Neisseria. These newly identified candidates outnumbered Porphyromonas gingivalis and other species previously implicated as periodontopathogens, and it is not clear if newly identified and more numerous species may play a more important role in pathogenesis. Finally, more differences were found in the bacterial profile between subjects with periodontitis and healthy subjects than between deep and shallow sites within the same subject. This suggests that chronic periodontitis is the result of a global perturbation of the oral bacterial ecology rather than a disease-site specific microbial shift. PMID:16081935

  11. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. Copyright © 2012 Elsevier Inc

  12. Ribonucleic acid synthesis in yeast. The effect of cycloheximide on the synthesis of ribonucleic acid in Saccharomyces carlsbergensis

    PubMed Central

    de Kloet, S. R.

    1966-01-01

    1. Cycloheximide causes the release of the control amino acids have over RNA synthesis in Saccharomyces carlsbergensis N.C.T.C. 74. 2. The antibiotic causes a gradual deceleration of RNA formation. After incubation for 60min. at 30° RNA synthesis usually proceeds at a rate only a few per cent of that of the untreated control. 3. In the presence of cycloheximide two types of RNA accumulate in the cell: soluble RNA and a high-molecular-weight RNA. The latter has a base composition intermediate between those of yeast DNA and yeast ribosomal RNA, and sediments in a sucrose gradient at a rate faster than that of the 23s ribosomal RNA component. 4. Yeast ribosomal RNA contains methylated bases. Judged from the incorporation of [Me-14C]methionine, the extent of methylation of ribosomal RNA is about 20% of that of the `soluble' RNA fraction. The high-molecular-weight RNA formed in the presence of cycloheximide is less methylated than normal RNA. In this case the sucrose-density-gradient sedimentation patterns of newly methylated and newly synthesized RNA do not coincide. 5. In the presence of cycloheximide, polysomal material accumulates, indicating that messenger RNA is formed. 6. The effect of the antibiotic on protein and RNA synthesis can be abolished by washing of the cells. The RNA that has accumulated during incubation of the cells with the antibiotic is not stable on removal of cycloheximide. 7. The results presented in this study are discussed in relation to the regulation of RNA formation in yeast. PMID:5964958

  13. 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull.

    PubMed

    Inbakandan, D; Murthy, P Sriyutha; Venkatesan, R; Khan, S Ajmal

    2010-11-01

    Marine bacteria from the hull of a ship in the form of biofilms or microfouling were isolated, cultured, and identified by phylogenetic analysis using 16S rDNA sequences. With an average length of 946 bp, all the 16 sequences were classified using the Ribosomal database project (RDP) and were submitted to the National Center for Biotechnology Information. Phylogenetic analysis using 16S rDNA sequences indicated that the 16 strains belonged to the Firmicutes (IK-MB6 Exiguobacterium aurantiacum, IK-MB7 Exiguobacterium arabatum, IK-MB8 Exiguobacterium arabatum, IK-MB9 Jeotgalibacillus alimentarius, IK-MB10 Bacillus megaterium, IK-MB11 Bacillus pumilus, IK-MB12 Bacillus pumilus, IK-MB13 Bacillus pumilus, IK-MB14 Bacillus megaterium), High GC, Gram-positive bacteria (IK-MB2 Micrococcus luteus, IK-MB5 Micrococcus luteus, IK-MB16 Arthrobacter mysorens), G-Proteobacteria (IK-MB3 Halomonas aquamarina, IK-MB15 Halotalea alkalilenta), CFB group bacteria (IK-MB1 Myroides odoratimimus), and Enterobacteria (IK-MB4 Proteus mirabilis). Among the 16 strains, representatives of the Firmicutes were dominant (56.25%) compared to the high GC, Gram-positive bacteria (18.75%), G-Proteobacteria (12.5%), CFB group bacteria (6.25%), and Enterobacteria (6.25%). Analysis revealed that majority of marine species found in marine biofilm are of anthropogenic origin.

  14. Application of 16S rRNA metagenomics to analyze bacterial communities at a respiratory care centre in Taiwan.

    PubMed

    Tang, Chuan Yi; Yiu, Siu-Ming; Kuo, Han-Yueh; Tan, Te-Sheng; Liao, Ki-Hok; Liu, Chih-Chin; Hon, Wing-Kai; Liou, Ming-Li

    2015-03-01

    In this study, we applied a 16S ribosomal RNA (rRNA) metagenomics approach to survey inanimate hospital environments (IHEs) in a respiratory care center (RCC). A total of 16 samples, including 9 from medical devices and 7 from workstations, were analyzed. Besides, clinical isolates were retrospectively analyzed during the sampling period in the RCC. A high amount of microbial diversity was detected, with an average of 1,836 phylotypes per sample. In addition to Acinetobacter, more than 60 % of the bacterial communities present among the top 25 abundant genera were dominated by skin-associated bacteria. Differences in bacterial profiles were restricted to individual samples. Furthermore, compliance with hand hygiene guidelines may be unsatisfactory among hospital staff according to a principal coordinate analysis that indicated clustering of bacterial communities between devices and workstations for most of the sampling sites. Compared to the high incidence of clinical isolates in the RCC, only Staphylococcus and Acinetobacter were highly abundant in the IHEs. Despite Acinetobacter was the most abundant genus present in IHEs of the RCC, potential pathogens, e.g., Acinetobacter baumannii, might remain susceptible to carbapenem. This study is the first in Taiwan to demonstrate a high diversity of human-associated bacteria in the RCC via 16S rRNA metagenomics, which allows for new assessment of potential health risks in RCCs, aids in the evaluation of existing sanitation protocols, and furthers our understanding of the development of healthcare-associated infections.

  15. Structural and Functional Studies of the Thermus Thermophilus 16S rRNA Methyltransferase RsmG

    SciTech Connect

    Gregory, S.; Demirci, H; Belardinelli, R; Monshupanee, T; Gualerzi, C; Dahlberg, A; Jogl, G

    2009-01-01

    The RsmG methyltransferase is responsible for N7 methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 A resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.

  16. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences.

  17. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    PubMed

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification.

  18. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    USGS Publications Warehouse

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  19. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  20. 16S Classifier: A Tool for Fast and Accurate Taxonomic Classification of 16S rRNA Hypervariable Regions in Metagenomic Datasets

    PubMed Central

    Chaudhary, Nikhil; Sharma, Ashok K.; Agarwal, Piyush; Gupta, Ankit; Sharma, Vineet K.

    2015-01-01

    The diversity of microbial species in a metagenomic study is commonly assessed using 16S rRNA gene sequencing. With the rapid developments in genome sequencing technologies, the focus has shifted towards the sequencing of hypervariable regions of 16S rRNA gene instead of full length gene sequencing. Therefore, 16S Classifier is developed using a machine learning method, Random Forest, for faster and accurate taxonomic classification of short hypervariable regions of 16S rRNA sequence. It displayed precision values of up to 0.91 on training datasets and the precision values of up to 0.98 on the test dataset. On real metagenomic datasets, it showed up to 99.7% accuracy at the phylum level and up to 99.0% accuracy at the genus level. 16S Classifier is available freely at http://metagenomics.iiserb.ac.in/16Sclassifier and http://metabiosys.iiserb.ac.in/16Sclassifier. PMID:25646627

  1. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins

    PubMed Central

    Gamalinda, Michael; Woolford, John L

    2015-01-01

    The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders. PMID:26779413

  2. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae).

    PubMed

    Nava, S; Szabó, M P J; Mangold, A J; Guglielmone, A A

    2008-07-01

    The hosts, distribution, intraspecific genetic variation and phylogenetic position of Amblyomma parvum (Acari: Ixodidae) have recently been re-assessed. Data on this tick's hosts and distribution were obtained not only from existing literature but also from unpublished records. Sequences of the ticks' mitochondrial 16S ribosomal DNA (rDNA) were used to evaluate genetic variation among specimens of A. parvum from different localities in Argentina and Brazil, and to explore the phylogenetic relationships between this tick and other Amblyomma species. Although several species of domestic and wild mammal act as hosts for adult A. parvum, most collected adults of this species have come from cattle and goats. Caviid rodents of the subfamily Caviinae appear to be the hosts for the immature stages. So far, A. parvum has been detected in 12 Neotropical biogeographical provinces (Chaco, Cerrado, Eastern Central America, Venezuelan Coast, Pantanal, Parana Forest, Caatinga, Chiapas, Venezuelan Llanos, Monte, Western Panamanian Isthmus, and Roraima) but the Chaco province has provided significantly more specimens than any other (P<0.0001). The 16S rDNA sequences showed just 0.0%-1.1% divergence among the Argentinean A. parvum investigated and no more than 0.2% divergence among the Brazilian specimens. The observed divergence between the Argentinean and Brazilian specimens was, however, greater (3.0%-3.7%). Although there is now molecular and morphological evidence to indicate that A. parvum, A. pseudoparvum, A. auricularium and A. pseudoconcolor are members of a natural group, previous subgeneric classifications do not reflect this grouping. The subgeneric status of these tick species therefore needs to be re-evaluated. The 16S-rDNA-based evaluation of divergence indicates that the gene flow between Argentinean and Brazilian 'A. parvum' is very limited and that the Argentinean 'A. parvum' may be a different species to the Brazilian.

  3. Protein-guided RNA dynamics during early ribosome assembly.

    PubMed

    Kim, Hajin; Abeysirigunawarden, Sanjaya C; Chen, Ke; Mayerle, Megan; Ragunathan, Kaushik; Luthey-Schulten, Zaida; Ha, Taekjip; Woodson, Sarah A

    2014-02-20

    The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the ribosomal RNA structure so that later proteins may join the complex is poorly understood. Here we use single-molecule fluorescence resonance energy transfer (FRET) to observe real-time encounters between Escherichia coli ribosomal protein S4 and the 16S 5' domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free-energy path to protein-RNA recognition. Three-colour FRET and molecular dynamics simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. These protein-guided dynamics offer an alternative explanation for induced fit in RNA-protein complexes.

  4. Protein-guided RNA dynamics during early ribosome assembly

    NASA Astrophysics Data System (ADS)

    Kim, Hajin; Abeysirigunawarden, Sanjaya C.; Chen, Ke; Mayerle, Megan; Ragunathan, Kaushik; Luthey-Schulten, Zaida; Ha, Taekjip; Woodson, Sarah A.

    2014-02-01

    The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the ribosomal RNA structure so that later proteins may join the complex is poorly understood. Here we use single-molecule fluorescence resonance energy transfer (FRET) to observe real-time encounters between Escherichia coli ribosomal protein S4 and the 16S 5' domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free-energy path to protein-RNA recognition. Three-colour FRET and molecular dynamics simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. These protein-guided dynamics offer an alternative explanation for induced fit in RNA-protein complexes.

  5. Ribosome dynamics during decoding.

    PubMed

    Rodnina, Marina V; Fischer, Niels; Maracci, Cristina; Stark, Holger

    2017-03-19

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNA(Sec) and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'.

  6. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM.

    PubMed

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel; Desmolaize, Benoît; Douthwaite, Stephen; Mechulam, Yves; Courvalin, Patrice

    2011-02-01

    Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m⁵C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S rRNA nucleotide at C1404. EfmM uses the methyl group donor S-adenosyl-L-methionine to catalyze formation of m⁵C1404 on the 30S ribosomal subunit, whereas naked 16S rRNA and the 70S ribosome are not substrates. Addition of the 5-methyl to C1404 sterically hinders aminoglycoside binding. Crystallographic structure determination of EfmM at 2.28 Å resolution reveals an N-terminal domain connected to a central methyltransferase domain that is linked by a flexible lysine-rich region to two C-terminal subdomains. Mutagenesis of the methyltransferase domain established that two cysteines at specific tertiary locations are required for catalysis. The tertiary structure of EfmM is highly similar to that of RsmF, consistent with m⁵C formation at adjacent sites on the 30S subunit, while distinctive structural features account for the enzymes' respective specificities for nucleotides C1404 and C1407.

  7. Contraception for the under 16s: better safe than sorry.

    PubMed

    Cook, A

    1981-09-16

    acceptible if the couple was engaged, and 5.4% were totally against it, 9) 62% felt abortion was the right of every woman and 31.1% felt it was acceptible if the physical or mental well being of the mother was at risk, 10) 40.9% agreed with the British Medical Association policy on teenage contraception which advises doctors to encourage under 16's to tell their parents, but if they refuse, the doctor can still prescribe the pill, 11) 22.7% wanted contraception unconditionally available, 18.2% felt it should be dependent on parental knowledge, and 17% said it should not be available, 12) there was a trend for opinions to become less liberal as age increased, and 13) young girls appear to be less conscientious in using contraception than older women.

  8. Three-dimensional placement of the conserved 530 loop of 16 S rRNA and of its neighboring components in the 30 S subunit.

    PubMed

    Wang, R; Alexander, R W; VanLoock, M; Vladimirov, S; Bukhtiyarov, Y; Harvey, S C; Cooperman, B S

    1999-02-19

    Nucleotides 518-533 form a loop in ribosomal 30 S subunits that is almost universally conserved. Both biochemical and genetic evidence clearly implicate the 530 loop in ribosomal function, with respect both to the accuracy control mechanism and to tRNA binding. Here, building on earlier work, we identify proteins and nucleotides (or limited sequences) site-specifically photolabeled by radioactive photolabile oligoDNA probes targeted toward the 530 loop of 30 S subunits. The probes we employ are complementary to 16 S rRNA nucleotides 517-527, and have aryl azides attached to nucleotides complementary to nucleotides 518, 522, and 525-527, positioning the photogenerated nitrene a maximum of 19-26 A from the complemented rRNA base. The crosslinks obtained are used as constraints to revise an earlier model of 30 S structure, using the YAMMP molecular modeling package, and to place the 530 loop region within that structure. Copyright 1999 Academic Press.

  9. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region.

    PubMed

    Sciuto, Katia; Moro, Isabella

    2016-12-01

    Cyanobacteria are widespread prokaryotes that are able to live in extreme conditions such as thermal springs. Strains attributable to the genus Leptolyngbya are among the most common cyanobacteria sampled from thermal environments. Leptolyngbya is a character-poor taxon that was demonstrated to be polyphyletic based on molecular analyses. The recent joining of 16S rRNA gene phylogenies with 16S-23S ITS secondary structure analysis is a useful approach to detect new cryptic taxa and has led to the separation of new genera from Leptolyngbya and to the description of new species inside this genus and in other related groups. In this study, phylogenetic investigations based on both the 16S rRNA gene and the 16S-23S ITS region were performed alongside 16S rRNA and 16S-23S ITS secondary structure analyses on cyanobacteria of the family Leptolyngbyaceae. These analyses focused on filamentous strains sampled from thermal springs with a morphology ascribable to the genus Leptolyngbya. The phylogenetic reconstructions showed that the Leptolyngbya-like thermal strains grouped into a monophyletic lineage that was distinct from Leptolyngbya. The 16S-23S ITS secondary structure results supported the separation of this cluster. A new genus named Thermoleptolyngbya was erected to encompass these strains, and two species were described inside this new taxon: T. albertanoae and T. oregonensis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparative Analysis of the Methanogen Diversity in Horse and Pony by Using mcrA Gene and Archaeal 16S rRNA Gene Clone Libraries

    PubMed Central

    Lwin, Khin-Ohnmar

    2014-01-01

    Comparative analysis of methanogen compositions in the feces of horse and pony was carried out by constructing the α-subunit of methyl coenzyme-M reductase (mcrA) gene and 16S ribosomal RNA gene (16S rRNA) clone libraries. The mcrA clone library analysis indicated that Methanomicrobiales was predominant in both horse and pony. Furthermore, most of the clones of the 16S rRNA gene library showed that Methanomicrobiales was also predominant in horse and pony, but the LIBSHUFF analysis showed that the horse and pony libraries were significantly different (P < 0.05). Most of operational taxonomic units (OTUs) showed low similarity to the identified methanogens in both the mcrA and the 16S rRNA clone libraries. The results suggest that horse and pony harbor unidentified and novel methanogens in their hindgut. The methanogen population was higher in horse than in pony; however, the anaerobic fungal population was similar in horse and pony. The methanogen diversity was different between two breeds of Equus caballus. PMID:24678264

  11. Bacterial Diversity Studies Using the 16S rRNA Gene Provide a Powerful Research-Based Curriculum for Molecular Biology Laboratory

    PubMed Central

    BOOMER, SARAH M.; LODGE, DANIEL P.; DUTTON, BRYAN E.

    2002-01-01

    We have developed a ten-week curriculum for molecular biology that uses 16S ribosomal RNA genes to characterize and compare novel bacteria from hot spring communities in Yellowstone National Park. The 16S rRNA approach bypasses selective culture-based methods. Our molecular biology course offered the opportunity for students to learn broadly applicable methods while contributing to a long-term research project. Specifically, students isolated and characterized clones that contained novel 16S rRNA inserts using restriction enzyme, DNA sequencing, and computer-based phylogenetic methods. In both classes, students retrieved novel bacterial 16S rRNA genes, several of which were most similar to Green Nonsulfur bacterial isolates. During class, we evaluated student performance and mastery of skills and concepts using quizzes, formal lab notebooks, and a broad project assignment. For this report, we also assessed student performance alongside data quality and discussed the significance, our goal being to improve both research and teaching methods. PMID:23653546

  12. Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli

    PubMed Central

    Vercruysse, Maarten; Köhrer, Caroline; Shen, Yang; Proulx, Sandra; Ghosal, Anubrata; Davies, Bryan W.; RajBhandary, Uttam L.

    2016-01-01

    ABSTRACT YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3′ end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY’s involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3′ end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY—and not amino acids known to be important for YbeY’s RNase activity—functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. PMID:27834201

  13. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  14. Ribosome maturation in E. coli.

    PubMed

    Silengo, L; Altruda, F; Dotto, G P; Lacquaniti, F; Perlo, C; Turco, E; Mangiarotti, G

    1977-01-01

    In vivo and in vitro experiments have shown that processing of ribosomal RNA is a late event in ribosome biogenesis. The precursor form of RNA is probably necessary to speed up the assembly of ribomal proteins. Newly formed ribosomal particles which have already entered polyribosomes differ from mature ribosomes not only in their RNA content but also in their susceptibility to unfolding in low Mg concentration and to RNase attack. Final maturation of new ribosomes is probably dependent on their functioning in protein synthesis. Thus only those ribosomes which have proven to be functional may be converted into stable cellular structures.

  15. An evolutionarily conserved element in initiator tRNAs prompts ultimate steps in ribosome maturation.

    PubMed

    Shetty, Sunil; Varshney, Umesh

    2016-10-11

    Ribosome biogenesis, a complex multistep process, results in correct folding of rRNAs, incorporation of >50 ribosomal proteins, and their maturation. Deficiencies in ribosome biogenesis may result in varied faults in translation of mRNAs causing cellular toxicities and ribosomopathies in higher organisms. How cells ensure quality control in ribosome biogenesis for the fidelity of its complex function remains unclear. Using Escherichia coli, we show that initiator tRNA (i-tRNA), specifically the evolutionarily conserved three consecutive GC base pairs in its anticodon stem, play a crucial role in ribosome maturation. Deficiencies in cellular contents of i-tRNA confer cold sensitivity and result in accumulation of ribosomes with immature 3' and 5' ends of the 16S rRNA. Overexpression of i-tRNA in various strains rescues biogenesis defects. Participation of i-tRNA in the first round of initiation complex formation licenses the final steps of ribosome maturation by signaling RNases to trim the terminal extensions of immature 16S rRNA.

  16. Ribosome dynamics during decoding

    PubMed Central

    Maracci, Cristina; Stark, Holger

    2017-01-01

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138068

  17. A model for the study of ligand binding to the ribosomal RNA helix h44

    SciTech Connect

    Dibrov, Sergey M.; Parsons, Jerod; Hermann, Thomas

    2010-09-02

    Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand-RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structural model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.

  18. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified

    PubMed Central

    Siibak, Triinu; Remme, Jaanus

    2010-01-01

    Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly. PMID:20719918

  19. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified.

    PubMed

    Siibak, Triinu; Remme, Jaanus

    2010-10-01

    Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.

  20. Evidence against an Interaction between the mRNA Downstream Box and 16S rRNA in Translation Initiation

    PubMed Central

    Moll, Isabella; Huber, Michael; Grill, Sonja; Sairafi, Pooneh; Mueller, Florian; Brimacombe, Richard; Londei, Paola; Bläsi, Udo

    2001-01-01

    Based on the complementarity of the initial coding region (downstream box [db]) of several bacterial and phage mRNAs to bases 1469 to 1483 in helix 44 of 16S rRNA (anti-downstream box [adb]), it has been proposed that db-adb base pairing enhances translation in a way that is similar to that of the Shine-Dalgarno (SD)/anti-Shine-Dalgarno (aSD) interaction. Computer modeling of helix 44 on the 30S subunit shows that the topography of the 30S ribosome does not allow a simultaneous db-adb interaction and placement of the initiation codon in the ribosomal P site. Thus, the db-adb interaction cannot substitute for the SD-aSD interaction in translation initiation. We have always argued that any contribution of the db-adb interaction should be most apparent on mRNAs devoid of an SD sequence. Here, we show that 30S ribosomes do not bind to leaderless mRNA in the absence of initiator tRNA, even when the initial coding region shows a 15-nucleotide complementarity (optimal fit) with the putative adb. In addition, an optimized db did not affect the translational efficiency of a leaderless λ cI-lacZ reporter construct. Thus, the db-adb interaction can hardly serve as an initial recruitment signal for ribosomes. Moreover, we show that different leaderless mRNAs are translated in heterologous systems although the sequence of the putative adb's within helix 44 of the 30S subunits of the corresponding bacteria differ largely. Taken our data together with those of others (M. O'Connor, T. Asai, C. L. Squires, and A. E. Dahlberg, Proc. Natl. Acad. Sci. USA 96:8973–8978, 1999; A. La Teana, A. Brandi, M. O'Connor, S. Freddi, and C. L. Pon, RNA 6:1393–1402, 2000), we conclude that the db does not base pair with the adb. PMID:11344158

  1. Characterization of the Subunit Structure of the Ribonucleic Acid Genome of Influenza Virus

    PubMed Central

    Lewandowski, L. J.; Content, J.; Leppla, S. H.

    1971-01-01

    Ribonucleic acid extracted from influenza virus was labeled at the 3′ termini with 3H and analyzed by polyacrylamide gel electrophoresis. Influenza virus was found to contain a minimum of seven and possibly as many as 10 polynucleotide chains, most of which appear to terminate at the 3′ end in uridine. PMID:4332140

  2. Comparison of methods of extracting messenger Ribonucleic Acid from ejaculated Porcine (Sus Scrofa) Spermatozoa

    USDA-ARS?s Scientific Manuscript database

    H. D. Guthrie, G.R. Welch, and L. A. Blomberg. Comparison of Methods of Extracting Messenger Ribonucleic Acid from Ejaculated Porcine (Sus Scrofa) Spermatozoa. Biotechnology and Germplasm Laboratory, Agricultural Research Service U. S. Department of Agriculture, Beltsville, MD 20705 The purpos...

  3. Ribonucleic acid interference (RNAi) technology for control of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry. Two part Video presentation....

  4. Preparation of Highly Immunogenic Ribosomal Fractions of Mycobacterium tuberculosis by Use of Sodium Dodecyl Sulfate

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1966-01-01

    Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Preparation of highly immunogenic ribosomal fractions of Mycobacterium tuberculosis by use of sodium dodecyl sulfate. J. Bacteriol. 91:2139–2145. 1966.—Ribosomal fractions of Mycobacterium tuberculosis, strain H37Ra, were prepared by treatment of the intracellular particulate fraction with 0.25 or 0.5% sodium dodecylsulfate (SDS) followed by centrifugation at 144,700 × g for 3 hr. This procedure has greatly simplified the preparation of ribosomal fractions and has given fractions composed of approximately 50% ribonucleic acid (RNA) and 15 to 20% protein. When incorporated into Freund's incomplete adjuvant and injected intraperitoneally into CF-1 mice, the SDS ribosomal fractions were more immunogenic than the particulate fractions from which they were prepared. They were as much as 100 times more immunogenic than ribosomal fractions prepared by differential centrifugation, 1 μg (dry weight) per mouse being sufficient for the induction of some immunity. However, none of these ribosomal preparations, in comparable doses, was as immunogenic as the living cells from which they were prepared. It was also shown that the addition of 10−4m MgCl2 to the final diluent increased immunogenic activity, whereas larger concentrations (10−3m) reduced immunogenic activity. Preparation of the ribosomal fraction from ruptured cells in one continuous process during the course of 1 day increased the activity. Two-week-old H37Ra cells contained more RNA and were more immunogenic than the older cultures which have been used in the past. PMID:4957609

  5. EXPANDING THE RIBOSOMAL UNIVERSE

    PubMed Central

    Dinman, Jonathan D.; Kinzy, Terri Goss

    2009-01-01

    SUMMARY In this issue of Structure, Frank and colleagues (Taylor et al., 2009) present the most complete model of a eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery. PMID:20004156

  6. Ribosomal Antibiotics: Contemporary Challenges

    PubMed Central

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  7. Expanding the ribosomal universe.

    PubMed

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-09

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  8. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  9. Constructing ribosomes along the Danube

    PubMed Central

    Warner, Jonathan R.

    2010-01-01

    The EMBO Conference on Ribosome Synthesis held last summer explored the latest breakthroughs in ribosome assembly and how it affects disease. Both of these topics have recently seen important advances that enlighten how almost 200 proteins cooperate to produce a ribosome and how the cell responds to a malfunction in this process. PMID:20010797

  10. Quantification of Hyphomicrobium Populations in Activated Sludge from an Industrial Wastewater Treatment System as Determined by 16S rRNA Analysis

    PubMed Central

    Layton, A. C.; Karanth, P. N.; Lajoie, C. A.; Meyers, A. J.; Gregory, I. R.; Stapleton, R. D.; Taylor, D. E.; Sayler, G. S.

    2000-01-01

    The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I

  11. [Detection of bacterial signal of 16S rRNA gene in prostate tissues obtained by perineal approach from patient with chronic pelvic pain syndrome].

    PubMed

    Zhu, Qing-Feng; Xie, Hui; Weng, Zhi-Liang; Yang, Yi-Rong; Chen, Bi-Cheng

    2009-03-31

    To explore the role of bacteria in etiology of chronic pelvic pain syndrome (CPPS), i.e., chronic prostatitis and the correlation between presence of bacterial signal of 16S ribosomal RNA (16S rRNA) gene and the response to antibiotics. Samples of prostatic and subcutaneous tissues were obtained by biopsy via perineal approach from 112 CPPS patients, aged 20 - 48. Polymerase chain reaction was conducted to detect the 16S rRNA gene of bacteria. The patients were treated with gatifloxacin 0.4 g once a day for 4 weeks and then 4 weeks later the effects of treatment were assessed by the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI). PCR was completed in 94 of the 112 patients, and 18 were excluded because their subcutaneous biopsies were positive for 16S rRNA, showing the possible contamination of their prostatic tissues. The total positive rate of bacterial 16S rRNA gene was 63.8% (60/94). The positive rate of bacterial 16S rRNA gene in the patients with IIIa CPPS and IIIb CPPS were 68.3% and 60.3% respectively. The total gatifloxacin effective rate of positive bacterial signal group after the was 55.0%, significantly higher than that of the negative bacterial signal group (14.7%, P < 0.001). The gatifloxacin effective rate of the 16S rRNA positive IIIa CPPS patients was 75%, significantly higher than that of the 6S rRNA negative IIIa CPPS patients (23.1%, P < 0.001), and the gatifloxacin effective rate of the 16S rRNA positive IIIb CPPS patients was 37.5%, significantly higher than that of the 6S rRNA negative IIIb CPPS patients (9.5%, P < 0.05). Bacterial infection is related to CPPS in part of the patients. Bacterial signal detection helps predict the effect of antimicrobial therapy.

  12. Sequencing of 16S rRNA Gene: A Rapid Tool for Identification of Bacillus anthracis

    PubMed Central

    Whitney, Anne M.; Mayer, Leonard W.; Morey, Roger; Steigerwalt, Arnold; Boras, Ariana; Weyant, Robin S.; Popovic, Tanja

    2002-01-01

    In a bioterrorism event, a tool is needed to rapidly differentiate Bacillus anthracis from other closely related spore-forming Bacillus species. During the recent outbreak of bioterrorism-associated anthrax, we sequenced the 16S rRNA generom these species to evaluate the potential of 16S rRNA gene sequencing as a diagnostic tool. We found eight distinct 16S types among all 107 16S rRNA gene seqs fuences that differed from each other at 1 to 8 positions (0.06% to 0.5%). All 86 B. anthracis had an identical 16S gene sequence, designated type 6; 16S type 10 was seen in all B. thuringiensis strains; six other 16S types were found among the 10 B. cereus strains. This report describes the first demonstration of an exclusive association of a distinct 16S sequence with B. anthracis. Consequently, we were able to rapidly identify suspected isolates and to detect the B. anthracis 16S rRNA gene directly from culture-negative clinical specimens from seven patients with laboratory-confirmed anthrax. PMID:12396926

  13. Isolation of ribosomes and polysomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe a preparative differential centrifugation protocol for the isolation of ribosomes from a crude cell homogenate. The subcellular fraction obtained is enriched in ribosome monomers and polysomes. The protocol has been optimized for the homogenization and collection of the ribosomal fraction from prokaryotic cells, mammalian and plant tissues, reticulocytes, and chloroplasts. The quality of the ribosomal preparation is enhanced by the removal of the remaining cellular components and adsorbed proteins by pelleting through a sucrose cushion with a high concentration of monovalent salts, NH4Cl or KCl. The different components of the ribosomal fraction isolated using this protocol can be further purified by sucrose gradient centrifugation.

  14. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

    PubMed Central

    Vernon, Suzanne D; Shukla, Sanjay K; Conradt, Jennifer; Unger, Elizabeth R; Reeves, William C

    2002-01-01

    Background The association of an infectious agent with chronic fatigue syndrome (CFS) has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA) sequences. Results DNA was isolated from 81 (91%) of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng) and more CFS subjects (6/34, 18%) had no detectable plasma DNA than non-fatigued subjects (2/55, 4%), but these differences were not significant. Bacterial sequences were detected in 23 (26%) of 89. Only 4 (14%) CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32%) of the non-fatigued (P = 0.03). All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present. Conclusions CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects. PMID:12498618

  15. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  16. Defining the Bacteroides Ribosomal Binding Site

    PubMed Central

    Horn, Nikki; Carding, Simon R.

    2013-01-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3′ end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5′ untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order. PMID:23335775

  17. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.

    PubMed

    Grondek, Joel F; Culver, Gloria M

    2004-12-01

    Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.

  18. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.

  19. Protein-guided RNA dynamics during early ribosome assembly

    PubMed Central

    Kim, Hajin; Abeysirigunawardena, Sanjaya C.; Chen, Ke; Mayerle, Megan; Ragunathan, Kaushik; Luthey-Schulten, Zaida; Ha, Taekjip; Woodson, Sarah A.

    2014-01-01

    The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the rRNA structure so that later proteins may join the complex is poorly understood. Here we use single molecule fluorescence resonance energy transfer (smFRET) to observe real-time encounters between ribosomal protein S4 and the 16S 5′ domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free energy path to protein-RNA recognition. Three-color FRET and molecular dynamics (MD) simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. This protein-guided dynamics offers an alternative explanation for induced fit in RNA-protein complexes. PMID:24522531

  20. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  1. Structural insights into ribosome translocation

    PubMed Central

    Ling, Clarence

    2016-01-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  2. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    PubMed Central

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  3. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine

    SciTech Connect

    Demirci, H.; Gregory, S; Dahlberg, A; Jogl, G

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N{sup 2}-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.

  4. Mitochondrial ribosomes in cancer.

    PubMed

    Kim, Hyun-Jung; Maiti, Priyanka; Barrientos, Antoni

    2017-04-23

    Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF.

    PubMed

    Khusainov, Iskander; Vicens, Quentin; Ayupov, Rustam; Usachev, Konstantin; Myasnikov, Alexander; Simonetti, Angelita; Validov, Shamil; Kieffer, Bruno; Yusupova, Gulnara; Yusupov, Marat; Hashem, Yaser

    2017-07-14

    In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress-induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation-promoting factor (SaHPF) that we solved using cryo-electron microscopy. Our reconstructions reveal that the N-terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C-terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD-dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials. © 2017 The Authors.

  6. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon.

    PubMed

    Prokhorova, Irina V; Osterman, Ilya A; Burakovsky, Dmitry E; Serebryakova, Marina V; Galyamina, Maria A; Pobeguts, Olga V; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A

    2013-11-18

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  7. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon

    NASA Astrophysics Data System (ADS)

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A.

    2013-11-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show - using proteomic analysis and dual fluorescence reporter in vivo assays - that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  8. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  9. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    PubMed

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-08-19

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants.

  10. Structural analysis and genetic variation of the 16S-23S rDNA internal spacer region from Micrococcus luteus strains.

    PubMed

    Haga, S; Hirano, Y; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2003-01-01

    To clone and sequence the 16S-23S ribosomal DNA (rDNA) internal spacer region (ISR) from Micrococcus luteus. The primer pair for 16S-23S rDNA ISR amplified a fragment of about 850 bp in length for two strains, JCM3347 and JCM3348 and a fragment of about 790 bp for a strain, ATCC9341. After sequencing the ISRs were identified by the comparison of the ISRs and the flanking regions of ISR. Although the sequence difference of the ISR occurred at only one position between the two JCM strains, the highly variable length (440 and 370 bp) and sequence similarity (about 40%) were demonstrated between the ISRs of the two JCM strains and a ATCC strain. A CCTCCT sequence was first detected at the 3'-end of the 16S rDNA of the three strains. Moreover, highly similar sequence to the 21-bp region containing a putative rRNA processing site was observed in the ISR of the three strains. Interestingly, no intercistronic tRNAs were demonstrated in the ISRs from the three strains.

  11. An analysis of five serine transfer ribonucleic acids from Drosophila.

    PubMed

    White, B N; Dunn, R; Gillam, I; Tener, G M; Armstrong, D J; Skoog, F; Frihart, C R; Leonard, N J

    1975-01-25

    Crude tRNA from adult Drosophila melanogaster was fractionated on bensoylated-diethylaminoethyl cellulose columns. The eluate was assayed for both amino acid acceptance and cytokinin activity. Most of the cytokinin activity was associated with a peak of serine acceptance. The five major serine tRNAs were purified by chromatography on benzoylated-dietyhlaminoethyl cellulose and reversed phase chromatography-5 columns. The major species, tRNA7-Ser was isolated from this tRNA and was shown to be N-6-(delta-2-isopentenyl)adenosine (i-6A) on the basis of ultraviolet and mass spectral data. The nucleoside somposition of all five serine tRNAs was determined directly and by the 3-H derivative method. They all contain pseudouridine, ribothymidine, 1-methyladenosine, 5-methylcytosine, N-2-dimethylguanosine, 5, 6-hydrouridine, and 3-methylcytosine, while two contain an unidentified nucleoside, and one containes 1-methylguanosine. These techniques also confirmed the presence of i-6A in tRNA7-Ser as well as showing its presence in tRNA6-Ser and tRNA4-Ser. These three tRNA-Ser species exhibit marked changes in elution from reversed phase chromatography-5 columns as a function of temperature and this may be related to their minor base composition. The tRNAs-Ser were bound to ribosomes in response to the following triplets: tRNA2-Ser, AGU, AGC; tRNA4-Ser, UCG; tRNA5-Ser, AGU, AGC; tRNA7-Ser, UCG.

  12. Shift in the prevalent human rotavirus detected by ribonucleic acid segment differences.

    PubMed

    Espejo, R T; Muñóz, O; Serafin, F; Romero, P

    1980-02-01

    Rotavirus was purified from nine patients hospitalized with acute gastroenteritis from October to December, 1978, in Mexico City. Analysis of their ribonucleic acids by gel electrophoresis showed the presence of two distinct patterns (2s and 22) which had been observed in 1977, but which now were found in a very different proportion: the pattern called 2s, observed in only 11% (6 of 52) of the patients in 1977, was found in 90% (8 of 9) of the patients in 1978. Improvements in the electrophoretic method allowed us to observe differences in the migration of up to seven segments between the two patterns and to distinguish small differences in one or two segments within either of the two ribonucleic acid patterns.

  13. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    PubMed Central

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  14. Ribosome recycling induces optimal translation rate at low ribosomal availability.

    PubMed

    Marshall, E; Stansfield, I; Romano, M C

    2014-09-06

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired.

  15. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis

    PubMed Central

    Chen, Yan-Ling; Capeyrou, Régine; Humbert, Odile; Mouffok, Saïda; Kadri, Yasmine Al; Lebaron, Simon; Henras, Anthony K.; Henry, Yves

    2014-01-01

    We provide evidence that a central player in ribosome synthesis, the ribonucleic acid helicase Prp43p, can be activated by yeast Gno1p and its human ortholog, the telomerase inhibitor PINX1. Gno1p and PINX1 expressed in yeast interact with Prp43p and the integrity of their G-patch domain is required for this interaction. Moreover, PINX1 interacts with human PRP43 (DHX15) in HeLa cells. PINX1 directly binds to yeast Prp43p and stimulates its adenosine triphosphatase activity, while alterations of the G patch abolish formation of the PINX1/Prp43p complex and the stimulation of Prp43p. In yeast, lack of Gno1p leads to a decrease in the levels of pre-40S and intermediate pre-60S pre-ribosomal particles, defects that can be corrected by PINX1 expression. We show that Gno1p associates with 90S and early pre-60S pre-ribosomal particles and is released from intermediate pre-60S particles. G-patch alterations in Gno1p or PINX1 that inhibit their interactions with Prp43p completely abolish their function in yeast ribosome biogenesis. Altogether, our results suggest that activation of Prp43p by Gno1p/PINX1 within early pre-ribosomal particles is crucial for their subsequent maturation. PMID:24823796

  16. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  17. Tertiary interactions between helices h13 and h44 in 16S RNA contribute to the fidelity of translation.

    PubMed

    Tran, Diem K; Finley, Jason; Vila-Sanjurjo, Antón; Lale, Ajit; Sun, Qing; O'Connor, Michael

    2011-11-01

    The A-minor interaction, formed between single-stranded adenosines and the minor groove of a receptor helix, is among the most common motifs found in rRNA. Among the A-minors found in 16S rRNA are a set of interactions between adenosines at positions 1433, 1434 and 1468 in helix 44 (h44) and their receptors in the nucleotide 320-340 region of helix 13 (h13). These interactions have been implicated in the maintenance of translational accuracy, because base substitutions at the adjacent C1469 increase miscoding errors. We have tested their functional significance through mutagenesis of h13 and h44. Mutations at the h44 A residues, or the A-minor receptors in h13, increase a variety of translational errors and a subset of the mutants show decreased association between 30S and 50S ribosomal subunits. These results are consistent with the involvement of h13-h44 interactions in the alignment and packing of these helices in the 30S subunit and the importance of this helical alignment for tRNA selection and subunit-subunit interaction.

  18. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  19. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries.

    PubMed

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2015-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis.

  20. Bacterial Community Composition of South China Sea Sediments through Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Background Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Methodology/Principal Findings Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. Conclusions This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m. PMID:24205246

  1. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    PubMed

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  2. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

    PubMed

    Salipante, Stephen J; Sengupta, Dhruba J; Rosenthal, Christopher; Costa, Gina; Spangler, Jessica; Sims, Elizabeth H; Jacobs, Michael A; Miller, Samuel I; Hoogestraat, Daniel R; Cookson, Brad T; McCoy, Connor; Matsen, Frederick A; Shendure, Jay; Lee, Clarence C; Harkins, Timothy T; Hoffman, Noah G

    2013-01-01

    Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.

  3. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  4. Mitochondrial ribosomes in a trypanosome.

    PubMed

    Tittawella, Ivor; Yasmin, Lubna; Baranov, Vladimir

    2003-08-01

    The nature, and even the existence, of trypanosome mitochondrial ribosomes has been the subject of some debate. We investigated this further in the insect trypanosome, Crithidia fasciculata. In sucrose gradients of parasite lysates, mitochondrial ribosomal RNA co-sediments at approximately 35S with nascent peptides synthesized in the presence of the cytosolic translational inhibitor, cycloheximide. Co-sedimenting peptides in this peak are much reduced when the parasites are treated with the bacterial translational inhibitor, chloramphenicol. In CsCl gradients this peak resolves at a buoyant density of 1.42 g/cm(3), a value typical for mito-ribosomes. Electron microscopy of peak material shows particles smaller than cytosolic ribosomes, but with characteristic ribosomal shapes. We propose that these particles represent the parasite's mitochondrial ribosomes.

  5. Gene organization around the phenylalanyl-transfer ribonucleic acid synthetase locus in Escherichia coli.

    PubMed Central

    Comer, M M

    1981-01-01

    The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid strain and were characterized genetically. Seventeen different kinds of deletions extending into pheS of pheT were identified. These deletions unambiguously defined the gene order as aroD pps himA pheT pheS thrS pfkB. Mutants with deletions covering either pheS or pheT, but not both, were analyzed further by assay of phenylalanyl-transfer ribonucleic acid synthetase. The phenotype of the mutants with a deletion from pfkB through pheS was anomalous; although the pheT gene was apparently still present, its product, the beta subunit, was much reduced in activity. PMID:7012115

  6. The path of messenger RNA through the ribosome.

    PubMed

    Yusupova, G Z; Yusupov, M M; Cate, J H; Noller, H F

    2001-07-27

    Using X-ray crystallography, we have directly observed the path of mRNA in the 70S ribosome in Fourier difference maps at 7 A resolution. About 30 nucleotides of the mRNA are wrapped in a groove that encircles the neck of the 30S subunit. The Shine-Dalgarno helix is bound in a large cleft between the head and the back of the platform. At the interface, only about eight nucleotides (-1 to +7), centered on the junction between the A and P codons, are exposed, and bond almost exclusively to 16S rRNA. The mRNA enters the ribosome around position +13 to +15, the location of downstream pseudoknots that stimulate -1 translational frame shifting.

  7. Structural Basis for Translation Termination on the 70S Ribosome

    SciTech Connect

    Laurberg, M.; Asahara, H.; Korostelev, A.; Zhu, J.; Trakhanov, S.; Noller, H.F.

    2009-05-20

    At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 {angstrom} resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.

  8. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance.

    PubMed

    Kembel, Steven W; Wu, Martin; Eisen, Jonathan A; Green, Jessica L

    2012-01-01

    The abundance of different SSU rRNA ("16S") gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly - from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data.

  9. Two different 16S rRNA genes in a mycobacterial strain.

    PubMed Central

    Ninet, B; Monod, M; Emler, S; Pawlowski, J; Metral, C; Rohner, P; Auckenthaler, R; Hirschel, B

    1996-01-01

    Sequencing of the gene coding for 16S rRNA (16S rDNA) is a well-established method used to identify bacteria, particularly mycobacteria. Unique sequences allow identification of a particular genus and species. If more than one 16S rDNA is present on one mycobacterial genome, their sequences are assumed to be strictly or almost identical. We have isolated a slowly growing Mycobacterium strain, "X", identified by conventional biochemical tests as Mycobacterium terrae. Identification by amplification and direct sequencing of 16S rDNA yielded ambiguous results in two variable regions, suggesting the presence of different copies of the sequenced gene. Total DNA was digested by restriction enzymes and hybridized after Southern blotting to a probe representing about two-thirds of the 16S rDNA. Two copies of 16S rDNA were identified and cloned. By sequencing, the clones were of two different types, A and B, differing in 18 positions. Oligonucleotides specific to each copy of the 16S rDNA were used to distinguish the positions of the two genes observed in the Southern blot. We conclude that Mycobacterium strain "X" has two different copies of 16S rDNA. Variations in the sequence between two copies of 16S rDNA gene have been described in archaeobacteria, but not in mycobacteria. When placed in a phylogenetic tree together with other slowly growing mycobacteria gene A shows a common root with M. terrae, whereas gene B is placed separately. PMID:8880515

  10. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids.

    PubMed

    Sample, Paul J; Gaston, Kirk W; Alfonzo, Juan D; Limbach, Patrick A

    2015-05-26

    Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined 'variable sequencing', which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing.

  11. Label-free impedimetric sensor for a ribonucleic acid oligomer specific to hepatitis C virus at a self-assembled monolayer-covered electrode.

    PubMed

    Park, Jin-Young; Lee, Yoon-suk; Chang, Byoung-Yong; Kim, Byeang Hyean; Jeon, Sangmin; Park, Su-Moon

    2010-10-01

    A ribonucleic acid (RNA) sensor based on hybridization of its peptide nucleic acid (PNA) molecule with a target RNA oligomer of the internal ribosome entry site sequence specific to the hepatitis C virus (HCV) and the electrochemical impedance detection is described. This RNA is one of the most conservative molecules of the whole HCV RNA genome. The ammonium ion terminated PNA molecule was immobilized via its host-guest interactions with the diaza crown ring of 3-thiophene-acetamide-diaza-18-crown-6 synthesized by a simple two-step method, which forms a well-defined self-assembled monolayer (SAM) on gold. Hybridization events of the probe PNA with the target RNA were monitored by measuring charge-transfer resistances for the Fe(CN)(6)(3-/4-) redox probe using Fourier transform electrochemical impedance spectroscopy. The ratio of the resistances of the SAM-covered electrode measured before and after hybridization increased linearly with log[RNA] in the rat liver lysate with a detection limit of about 23 pM.

  12. Protein Synthesis During Fungal Spore Germination II. Aminoacyl-soluble Ribonucleic Acid Synthetase Activities During Germination of Botryodiplodia theobromae Spores1

    PubMed Central

    Etten, James L. Van; Brambl, Robert M.

    1968-01-01

    The specific activities of 13 aminoacyl-soluble ribonucleic acid (sRNA) synthetases were measured at various time intervals during the germination of Botryodiplodia theobromae conidiospores. The enzyme activities were low or absent in ungerminated spores, and they increased rapidly as germination proceeded. When extracts of the ungerminated spores were prepared with mortar and pestle, very little or no enzyme activity was detected. When the extracts were prepared with a mechanical homogenizer, however, they exhibited some enzyme activity, although less than did the extracts from germinated spores. Enzyme activities from germinated spores were approximately the same, regardless of the method of preparation. The enzyme fraction from ungerminated spores prepared with a mechanical homogenizer could also stimulate incorporation of phenylalanine into polyphenylalanine in the presence of ribosomes, polyuridylic acid, and sRNA, although the activity was approximately only 15 to 20% that of a similar enzyme fraction from germinated spores. It is concluded that ungerminated spores of B. theobromae contain active aminoacyl-sRNA synthetases and transfer enzymes, although the activities are low when compared to germinated spores. PMID:5685990

  13. BALANCED PRODUCTION OF RIBOSOMAL PROTEINS

    PubMed Central

    Perry, Robert P.

    2017-01-01

    Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding these proteins are usually at widely scattered loci and have distinctive promoters with certain common features. This minireview discusses the means by which cells manage to balance the production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. Regulation at all levels of gene expression, from transcription to protein turnover, is considered. PMID:17689889

  14. Crystal Structures of EF-G-Ribosome Complexes Trapped in Intermediate States of Translocation

    SciTech Connect

    Zhou, Jie; Lancaster, Laura; Donohue, John Paul; Noller, Harry F.

    2013-11-12

    Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA–EF-G complexes trapped with β,γ-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as “pawls” of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.

  15. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  16. An assembly landscape for the 30S ribosomal subunit.

    PubMed

    Talkington, Megan W T; Siuzdak, Gary; Williamson, James R

    2005-12-01

    Self-assembling macromolecular machines drive fundamental cellular processes, including transcription, messenger RNA processing, translation, DNA replication and cellular transport. The ribosome, which carries out protein synthesis, is one such machine, and the 30S subunit of the bacterial ribosome is the preeminent model system for biophysical analysis of large RNA-protein complexes. Our understanding of 30S assembly is incomplete, owing to the challenges of monitoring the association of many components simultaneously. Here we have developed a method involving pulse-chase monitored by quantitative mass spectrometry (PC/QMS) to follow the assembly of the 20 ribosomal proteins with 16S ribosomal RNA during formation of the functional particle. These data represent a detailed and quantitative kinetic characterization of the assembly of a large multicomponent macromolecular complex. By measuring the protein binding rates at a range of temperatures, we find that local transformations throughout the assembling subunit have similar but distinct activation energies. Thus, the prevailing view of 30S assembly as a pathway proceeding through a global rate-limiting conformational change must give way to one in which the assembly of the complex traverses a landscape dotted with various local conformational transitions.

  17. Isolation of ribosomes by chromatography.

    PubMed

    Maguire, Bruce A

    2015-04-01

    Mixed-mode chromatography on cysteine-SulfoLink resin efficiently separates ribosomes from cell lysates and is particularly effective at rapidly removing endogenous proteases and nucleases, resulting in ribosomes of improved purity, integrity, and activity. Binding occurs partly by anion exchange of the RNA of the ribosomes, so that cells must be lysed in a buffer of moderate ionic strength (conductivity no more than 20 mS for chromatography of bacterial ribosomes) without any highly charged additives (e.g., heparin, which is used to inhibit RNases in yeast). A robust protocol for Escherichia coli is given here as an example.

  18. Ribonuclease selection for ribosome profiling

    PubMed Central

    Gerashchenko, Maxim V.; Gladyshev, Vadim N.

    2017-01-01

    Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome–mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems. PMID:27638886

  19. Molecular inventory control in ribosome biosynthesis.

    PubMed

    Warner, J R; Johnson, S P

    1986-11-01

    The eukaryotic cell coordinates the accumulation of each ribosomal protein with every other ribosomal protein, with ribosomal RNA and with the needs of the cell. To do so it regulates the transcription, processing, translation and lifetime of the mRNA for ribosomal proteins. When all else fails, it rapidly degrades any excess ribosomal protein which is synthesized.

  20. Application of urea-agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria.

    PubMed

    Assunção, Ana; Costa, Maria Clara; Carlier, Jorge Dias

    2016-03-01

    The 16S ribosomal RNA (rRNA) gene has been the most commonly used sequence to characterize bacterial communities. The classical approach to obtain gene sequences to study bacterial diversity implies cloning amplicons, selecting clones, and Sanger sequencing cloned fragments. A more recent approach is direct sequencing of millions of genes using massive parallel technologies, allowing a large-scale biodiversity analysis of many samples simultaneously. However, currently, this technique is still expensive when applied to few samples; therefore, the classical approach is still used. Recently, we found a community able to remove 50 mg/L Pd(II). In this work, aiming to identify the bacteria potentially involved in Pd(II) removal, the separation of urea/heat-denatured DNA fragments by urea-agarose gel electrophoresis was applied for the first time to select 16S rRNA-cloned amplicons for taxonomic studies. The major raise in the percentage of bacteria belonging to genus Clostridium sensu stricto from undetected to 21 and 41 %, respectively, for cultures without, with 5 and 50 mg/L Pd(II) accompanying Pd(II) removal point to this taxa as a potential key agent for the bio-recovery of this metal. Despite sulfate-reducing bacteria were not detected, the hypothesis of Pd(II) removal by activity of these bacteria cannot be ruled out because a slight decrease of sulfate concentration of the medium was verified and the formation of PbS precipitates seems to occur. This work also contributes with knowledge about suitable partial 16S rRNA gene regions for taxonomic studies and shows that unidirectional sequencing is enough when Sanger sequencing cloned 16S rRNA genes for taxonomic studies to genus level.

  1. Evaluation of 16S rDNA-based community profiling for human microbiome research.

    PubMed

    2012-01-01

    The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730 and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for classification- and OTU-based analysis of community structure. The data production protocols used for this work are those used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can be informative for interpreting the large body of clinical 16S rDNA data produced for this project.

  2. Phylogenetic positions of Clostridium novyi and Clostridium haemolyticum based on 16S rDNA sequences.

    PubMed

    Sasaki, Y; Takikawa, N; Kojima, A; Norimatsu, M; Suzuki, S; Tamura, Y

    2001-05-01

    The partial sequences (1465 bp) of the 16S rDNA of Clostridium novyi types A, B and C and Clostridium haemolyticum were determined. C. novyi types A, B and C and C. haemolyticum clustered with Clostridium botulinum types C and D. Moreover, the 16S rDNA sequences of C. novyi type B strains and C. haemolyticum strains were completely identical; they differed by 1 bp (level of similarity > 99.9%) from that of C. novyi type C, they were 98.7% homologous to that of C. novyi type A (relative positions 28-1520 of the Escherichia coli 16S rDNA sequence) and they exhibited a higher similarity to the 16S rDNA sequence of C. botulinum types D and C than to that of C. novyi type A. These results suggest that C. novyi types B and C and C. haemolyticum may be one independent species generated from the same phylogenetic origin.

  3. Ribosomes in a Stacked Array

    PubMed Central

    Yamashita, Yui; Kadokura, Yoshitomo; Sotta, Naoyuki; Fujiwara, Toru; Takigawa, Ichigaku; Satake, Akiko; Onouchi, Hitoshi; Naito, Satoshi

    2014-01-01

    Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-l-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state. PMID:24652291

  4. Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance

    PubMed Central

    Kembel, Steven W.; Wu, Martin; Eisen, Jonathan A.; Green, Jessica L.

    2012-01-01

    The abundance of different SSU rRNA (“16S”) gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly – from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data. PMID:23133348

  5. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity.

    PubMed

    Sun, Dong-Lei; Jiang, Xuan; Wu, Qinglong L; Zhou, Ning-Yi

    2013-10-01

    Ever since Carl Woese introduced the use of 16S rRNA genes for determining the phylogenetic relationships of prokaryotes, this method has been regarded as the "gold standard" in both microbial phylogeny and ecology studies. However, intragenomic heterogeneity within 16S rRNA genes has been reported in many investigations and is believed to bias the estimation of prokaryotic diversity. In the current study, 2,013 completely sequenced genomes of bacteria and archaea were analyzed and intragenomic heterogeneity was found in 952 genomes (585 species), with 87.5% of the divergence detected being below the 1% level. In particular, some extremophiles (thermophiles and halophiles) were found to harbor highly divergent 16S rRNA genes. Overestimation caused by 16S rRNA gene intragenomic heterogeneity was evaluated at different levels using the full-length and partial 16S rRNA genes usually chosen as targets for pyrosequencing. The result indicates that, at the unique level, full-length 16S rRNA genes can produce an overestimation of as much as 123.7%, while at the 3% level, an overestimation of 12.9% for the V6 region may be introduced. Further analysis showed that intragenomic heterogeneity tends to concentrate in specific positions, with the V1 and V6 regions suffering the most intragenomic heterogeneity and the V4 and V5 regions suffering the least intragenomic heterogeneity in bacteria. This is the most up-to-date overview of the diversity of 16S rRNA genes within prokaryotic genomes. It not only provides general guidance on how much overestimation can be introduced when applying 16S rRNA gene-based methods, due to its intragenomic heterogeneity, but also recommends that, for bacteria, this overestimation be minimized using primers targeting the V4 and V5 regions.

  6. Linkage disequilibrium mapping places the gene causing familial Mediterranean fever close to D16S246

    SciTech Connect

    Levy, E. N.; Aksentijevich, I.; Pras, E.

    1996-03-01

    This report presents refined genetic mapping data for the gene causing familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation. We sampled 65 Jewish, Armenian, and Arab families and typed them for eight markers from chromosome 16p. Using a new algorithm that permits multipoint calculations for a dense map of markers in consanguineous families, we obtained a maximal LOD score of 49.2 at a location 1.6 cM centromeric to D16S246. A specific haplotype at D16S283-D16S94-D16S246 was found in 76% of Moroccan and 32% of non-Moroccan Jewish carrier chromosomes, but this haplotype was not overrepresented in Armenian or Arab FMF carriers. Moreover, the 2.5-kb allele at D16S246 was significantly associated with FMF in Moroccan and non-Moroccan Jews but not in Armenians or Arabs. Since the Moroccan Jewish community represents a relatively recently established and genetically isolated founder population, we analyzed the Moroccan linkage-disequilibrium data by using Luria-Delbruck formulas and simulations based on a Poisson branching process. These methods place the FMF susceptibility gene within 0.305 cM of D16S246 (2-LOD-unit range 0.02-0.64 cM). 41 refs., 3 figs., 5 tabs.

  7. Utility of 16S rRNA PCR performed on clinical specimens in patient management.

    PubMed

    Akram, A; Maley, M; Gosbell, I; Nguyen, T; Chavada, R

    2017-04-01

    Broad-range 16S rRNA PCR can be used for the detection and identification of bacteria from clinical specimens in patients for whom there is a high suspicion of infection and cultures are negative. The aims of this study were (1) to compare 16S rRNA PCR results with microbiological culture results, (2) to assess the utility of 16S rRNA PCR with regard to antimicrobial therapy, and (3) to compare the yield of 16S rRNA PCR for different types of clinical specimen and to perform a cost analysis of the test. A retrospective study was performed on different clinical specimens which had 16S performed over 3 years (2012-2015). Standard microbiological cultures were performed on appropriate media, as per the laboratory protocol. Patient clinical and microbiological data were obtained from the electronic medical records and laboratory information system, respectively. 16S rRNA PCR was performed in a reference laboratory using a validated method for amplification and sequencing. The outcomes assessed were the performance of 16S rRNA PCR, change of antimicrobials (rationalization, cessation, or addition), and duration of therapy. Concordance of 16S rRNA PCR with bacterial cultures was also determined for tissue specimens. Thirty-two patients were included in the study, for whom an equal number of specimens (n=32) were sent for 16S rRNA PCR. 16S rRNA PCR could identify an organism in 10 of 32 cases (31.2%), of which seven were culture-positive and three were culture-negative. The sensitivity was 58% (confidence interval (CI) 28.59-83.5%) and specificity was 85% (CI 61.13-96%), with a positive predictive value of 70% (CI 35.3-91.9%) and negative predictive value of 77.2% (CI 54.17-91.3%). Antimicrobial therapy was rationalized after 16S rRNA PCR results in five patients (15.6%) and was ceased in four based on negative results (12.5%). Overall the 16S rRNA PCR result had an impact on antimicrobial therapy in 28% of patients (9/32). The highest concordance of 16S rRNA PCR with

  8. Molecular signatures of ribosomal evolution.

    PubMed

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  9. Molecular signatures of ribosomal evolution

    PubMed Central

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R.; Luthey-Schulten, Zaida

    2008-01-01

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome. PMID:18768810

  10. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Control of Ribosome Synthesis in Escherichia coli: Analysis of an Energy Source Shift-Down

    PubMed Central

    Molin, Søren; Meyenburg, Kaspar Von; Maaløe, Ole; Hansen, Mogens T.; Pato, Martin L.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue α-methylglucoside. In the stringent strain, ribosome synthesis was almost instantaneously reduced after the shift, whereas the relaxed strain exhibited a more gradual response. The rate of messenger ribonucleic acid (mRNA) synthesis was affected similarly, though to a smaller extent. A comparison of the rates of synthesis and accumulation of ribosomal RNA (rRNA) and ribosomal proteins showed that far more ribosomal components were synthesized after the shift than were accumulated, indicating that a substantial part of the rRNA made after the shift was unstable. A new method was used to measure relative rates of rRNA synthesis and to estimate the transcription time for the rRNA operon under different conditions. In steady states of growth with growth rates ranging from 0.75 to 2.3 doublings/h, as well as during the transition after a shift-down, the transcription time of the rRNA operon was constant. The rate of synthesis of rRNA correlated during this transition – in contrast to the rate of accumulation (M. T. Hansen et al., J. Bacteriol. 122: 585-591, 1975) – with the ppGpp pool in the same way as has been observed during partial amino acid starvation. PMID:326772

  12. Characterization of Ribosomes from the Myxomycete Physarum rigidum Grown in Pure Culture

    PubMed Central

    Henney, Henry R.; Jungkind, Donald

    1969-01-01

    The plasmodial phase of the myxomycete Physarum rigidum, analyzed during the period of rapid growth, attained a ribonucleic acid (RNA) and protein content of 9.8 and 60.0%, respectively, on a dry weight basis. It possessed ribosomes of the 80S class which, especially in the absence of magnesium ions, partially dissociated to 60S and 40S subunit classes. Electron micrographs of ribosomes treated with uranyl acetate-lead citrate revealed a number of surface features. Nucleotide analyses of both ribosomal and total RNA disclosed that they were composed of 51.0 and 52.5% guanylic and cytidylic acids, respectively. Consistent with most reports on other organisms, guanylic acid was the most abundant nucleotide found in the various types of RNA and cytidylic acid was the least abundant. The S020,w values of the total RNA classes, in 0.01 sodium acetate (pH 4.6) containing 0.10 m NaCl, were 5.2, 18.1, and 27.3 in S units. Changing the ionic environment of the RNA (0.017 molal potassium phosphate, pH 7.0, containing 0.01 m disodium ethylenediaminetetraacetate) resulted in a reduction of the S020,w values to 4.2, 16.6, and 22.6 in S units, which is indicative of molecular conformational transitions. In general, the amino acid composition of the ribosomal proteins was similar to the data available on ribosomal proteins from other biological sources. Images PMID:5813808

  13. Murine Immunoprotective Activity of Klebsiella pneumoniae Cell Surface Preparations: Comparative Study with Ribosomal Preparations

    PubMed Central

    Fournier, Jean-Michel; Jolivet-Reynaud, Colette; Riottot, Marie-Madeleine; Jouin, Hélène

    1981-01-01

    Cell surface preparations and ribosomal preparations were extracted from Klebsiella pneumoniae. Agar gel diffusion with antisera to cell surface preparations or ribosomal preparations indicated common antigenic components among the preparations. Lipopolysaccharide and capsular polysaccharide were identified in the cell surface preparations. These results and the previous identification of lipopolysaccharide and capsular polysaccharide in ribosomal preparations suggest that these antigens are responsible for the immunochemical cross-reactivity observed among these two bacterial extracts. Active protection could be induced in mice by these two preparations. On a dry-weight basis, cell surface preparations provided better immunoprotective activity than did ribosomal preparations. However, the 50% protective dose of both preparations is practically the same on the basis of their capsular polysaccharide content. These results are consistent with the hypothesis that the immunoprotective moiety of ribosomal preparations is the contaminating cell surface antigens. Furthermore, the low level of nucleotidic components detected in purified cell surface preparations led us to infer that the immunoprotective activity of capsular polysaccharide may not be dependent on the adjuvant activity of ribonucleic acid. The involvement of capsular polysaccharide in the immunoprotective capacity of cell surface preparations is demonstrated either by using a degradation of this antigen by K. pneumoniae bacteriophage K2-associated glycanase or by using a preparation extracted from a noncapsulated mutant of K. pneumoniae. Nevertheless, the low protective ability of purified capsular polysaccharides is in contrast to its greater activity when induced in bacterial cell surface preparations. The protective activity of K. pneumoniae capsular polysaccharide may be dependent on its association with other surface antigenic components present in cell surface preparations or may be dependent on its

  14. Correlation Between the Rate of Ribonucleic Acid Synthesis and the Level of Valyl Transfer Ribonucleic Acid in Mutants of Escherichia coli

    PubMed Central

    Kaplan, Sam

    1969-01-01

    By use of a mutant of Escherichia coli with a partially thermolabile transfer ribonucleic acid (tRNA) synthase, it was possible to regulate the rate of RNA synthesis over a 10-fold range. The addition of chloramphenicol to cultures kept at the nonpermissive temperature stimulated RNA synthesis. The longer the culture was kept at the nonpermissive temperature prior to addition of chloramphenicol, the lower was the resulting rate of RNA synthesis. The decrease in the rate of incorporation of labeled uracil into RNA was correlated with the decrease in the level of valyl tRNA. Additional experiments provided evidence which may be interpreted as indicating that valyl tRNA does not, by itself, react with the RNA-forming system. PMID:4891259

  15. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  16. Transferable Resistance to Aminoglycosides by Methylation of G1405 in 16S rRNA and to Hydrophilic Fluoroquinolones by QepA-Mediated Efflux in Escherichia coli▿

    PubMed Central

    Périchon, Bruno; Courvalin, Patrice; Galimand, Marc

    2007-01-01

    Plasmid pIP1206 was detected in Escherichia coli strain 1540 during the screening of clinical isolates of Enterobacteriaceae for high-level resistance to aminoglycosides. The sequence of this IncFI conjugative plasmid of ca. 100 kb was partially determined. pIP1206 carried the rmtB gene for a ribosome methyltransferase that was shown to modify the N7 position of nucleotide G1405, located in the A site of 16S rRNA. It also contained the qepA (quinolone efflux pump) gene that encodes a 14-transmembrane-segment putative efflux pump belonging to the major facilitator superfamily of proton-dependent transporters. Disruption of membrane proton potential by the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone in a transconjugant harboring the qepA gene resulted in elevation of norfloxacin accumulation. The transporter conferred resistance to the hydrophilic quinolones norfloxacin and ciprofloxacin. PMID:17470656

  17. Molecular taxonomy and phylogenetic relationships among Australian Nasutitermes and Tumulitermes genera (Isoptera, Nasutitermitinae) inferred from mitochondrial COII and 16S sequences.

    PubMed

    Bergamaschi, Silvia; Dawes-Gromadzki, Tracy Z; Luchetti, Andrea; Marini, Mario; Mantovani, Barbara

    2007-12-01

    The subfamily Nasutitermitinae Hare (1937) is a tropical and subtropical group, generally considered as the most specialised subfamily of Termitidae. To highlight some taxonomic inconsistencies, the phylogenetic relationships among seven Australian species, morphologically ascribed to the genera Nasutitermes and Tumulitermes, were studied through the analyses of the mitochondrial markers cytochrome oxidase II and 16S ribosomal RNA genes. In our trees, N. longipennis samples clearly pertain to two different specific entities with an apparently parapatric distribution. Further, the phylogenetic analysis performed on separated and combined data sets shows the placement of Tumulitermes species within a clade grouping Nasutitermes ones, and vice versa. Tests for alternative topologies do not support the monophyly of the genera Nasutitermes and Tumulitermes. Our results confirm the hypothesis that the morphological features used to establish relationships among these species are not phylogenetically decisive.

  18. Ribosomal Peptide Natural Products: Bridging the Ribosomal and Nonribosomal Worlds

    PubMed Central

    McIntosh, John A.; Donia, Mohamed S.; Schmidt, Eric W.

    2010-01-01

    Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis. PMID:19642421

  19. Variation in 16S-23S rRNA intergenic spacer regions in Photobacterium damselae: a mosaic-like structure.

    PubMed

    Osorio, Carlos R; Collins, Matthew D; Romalde, Jesús L; Toranzo, Alicia E

    2005-02-01

    Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(Lys(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Ala(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC))-tRNA(Val(UAC))-tRNA(Ala(UGC)) and tRNA(Glu(UUC))-tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.

  20. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children.

    PubMed

    Rosey, Anne-Laure; Abachin, Eric; Quesnes, Gilles; Cadilhac, Céline; Pejin, Zagorka; Glorion, Christophe; Berche, Patrick; Ferroni, Agnès

    2007-01-01

    The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.

  1. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    PubMed

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  2. Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor

    PubMed Central

    Nord, Stefan; Bhatt, Monika J.; Tükenmez, Hasan; Farabaugh, Philip J.; Wikström, P. Mikael

    2015-01-01

    The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA. PMID:26089326

  3. Supernumerary proteins of mitochondrial ribosomes.

    PubMed

    Rackham, Oliver; Filipovska, Aleksandra

    2014-04-01

    Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. © 2013.

  4. Processing pathway of Escherichia coli 16S precursor rRNA.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA. Images PMID:2646597

  5. Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.

    2016-12-01

    INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.

  6. Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling.

    PubMed

    Aeschimann, Florian; Xiong, Jieyi; Arnold, Andreas; Dieterich, Christoph; Grosshans, Helge

    2015-09-01

    Gene expression profiling provides a tool to analyze the internal states of cells or organisms, and their responses to perturbations. While global measurements of mRNA levels have thus been widely used for many years, it is only through the recent development of the ribosome profiling technique that an analogous examination of global mRNA translation programs has become possible. Ribosome profiling reveals which RNAs are being translated to what extent and where the translated open reading frames are located. In addition, different modes of translation regulation can be distinguished and characterized. Here, we present an optimized, step-by-step protocol for ribosome profiling. Although established in Caenorhabditis elegans, our protocol and optimization approaches should be equally usable for other model organisms or cell culture with little adaptation. Next to providing a protocol, we compare two different methods for isolation of single ribosomes and two different library preparations, and describe strategies to optimize the RNase digest and to reduce ribosomal RNA contamination in the libraries. Moreover, we discuss bioinformatic strategies to evaluate the quality of the data and explain how the data can be analyzed for different applications. In sum, this article seeks to facilitate the understanding, execution, and optimization of ribosome profiling experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences.

    PubMed

    Navia, D; de Moraes, G J; Roderick, G; Navajas, M

    2005-12-01

    Over the past 30 years the coconut mite Aceria guerreronis Keifer has emerged as one of the most important pests of coconut and has recently spread to most coconut production areas worldwide. The mite has not been recorded in the Indo-Pacific region, the area of origin of coconut, suggesting that it has infested coconut only recently. To investigate the geographical origin, ancestral host associations, and colonization history of the mite, DNA sequence data from two mitochondrial and one nuclear region were obtained from samples of 29 populations from the Americas, Africa and the Indo-ocean region. Mitochondrial DNA 16S ribosomal sequences were most diverse in Brazil, which contained six of a total of seven haplotypes. A single haplotype was shared by non-American mites. Patterns of nuclear ribosomal internal transcribed spacer (ITS) variation were similar, again with the highest nucleotide diversity found in Brazil. These results suggest an American origin of the mite and lend evidence to a previous hypothesis that the original host of the mite is a non-coconut palm. In contrast to the diversity in the Americas, all samples from Africa and Asia were identical or very similar, consistent with the hypothesis that the mite invaded these regions recently from a common source. Although the invasion routes of this mite are still only partially reconstructed, the study rules out coconut as the ancestral host of A. guerreronis, thus prompting a reassessment of efforts using quarantine and biological control to check the spread of the pest.

  8. Structural Rearrangements in the Active Site of the Thermus thermophilus 16S rRNA Methyltransferase KsgA in a Binary Complex with 5'-Methylthioadenosine

    SciTech Connect

    Demirci, H.; Belardinelli, R; Seri, E; Gregory, S; Gualerzi, C; Dahlberg, A; Jogl, G

    2009-01-01

    Posttranscriptional modification of ribosomal RNA (rRNA) occurs in all kingdoms of life. The S-adenosyl-l-methionine-dependent methyltransferase KsgA introduces the most highly conserved rRNA modification, the dimethylation of A1518 and A1519 of 16S rRNA. Loss of this dimethylation confers resistance to the antibiotic kasugamycin. Here, we report biochemical studies and high-resolution crystal structures of KsgA from Thermus thermophilus. Methylation of 30S ribosomal subunits by T. thermophilus KsgA is more efficient at low concentrations of magnesium ions, suggesting that partially unfolded RNA is the preferred substrate. The overall structure is similar to that of other methyltransferases but contains an additional ?-helix in a novel N-terminal extension. Comparison of the apoenzyme with complex structures with 5?-methylthioadenosine or adenosine bound in the cofactor-binding site reveals novel features when compared with related enzymes. Several mobile loop regions that restrict access to the cofactor-binding site are observed. In addition, the orientation of residues in the substrate-binding site indicates that conformational changes are required for binding two adjacent residues of the substrate rRNA.

  9. A Comparison of Structural and Evolutionary Attributes of Escherichia coli and Thermus thermophilus Small Ribosomal Subunits: Signatures of Thermal Adaptation

    PubMed Central

    Mallik, Saurav; Kundu, Sudip

    2013-01-01

    Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins) have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli) are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder) at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend. PMID:23940533

  10. Qualification status of hybrid crystal oscillators style OTO 16S for space application

    NASA Astrophysics Data System (ADS)

    Gerard, E.; Deviller, J. L.

    1991-03-01

    The qualification status of a crystal clock oscillator, OTO 16S, is described. Specifically designed for the Telecom 2 and Intelsat 7 programs, the oscillator is available in frequencies between 3 and 25 MHz with Transistor Transistor Logic (TTL) compatible outputs. Qualification tests results are presented to demonstrate that all the OTO 16S performances are in compliance with space requirements. From a mechanical viewpoint, no degradation is seen from a vibration level of 50 g sinus 10 to 2000 Hz. From a life test viewpoint, no significant variations are observed after 2000 hours of testing.

  11. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  12. [Bacterial 16S rDNA sequence analysis of Siberian tiger faecal flora].

    PubMed

    Tu, Ya; Zhu, Wei-yun; Lu, Cheng-ping

    2005-10-01

    Bacterial 16S rDNA library of Siberian tiger was developed and 15 different clones were obtained using EcoR I and Hind III in restriction fragment length polymorphism analysis. DNA sequencing and similarity analysis showed that 10 clones matched corresponding Clostridium sequences, of which 6 sequences had over 99% similarity with Clostridium novyi type A, and 4 sequences had 97% similarity with Swine manure bacterium RT-18B, which identified as Peptostreptococcus spp. The other five 16S rDNA sequences had 94% - 95% similarity with Clostridium pascui, Clostridium tetani E88, Clostridium sp. 14505 Clostridium perfringens and Carnobacterium sp. R-7279 respectively.

  13. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.

    PubMed

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F; Martin, William F

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.

  14. Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes

    PubMed Central

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F.; Martin, William F.

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. PMID:24259312

  15. Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing.

    PubMed

    Pedersen, K; Arlinger, J; Hallbeck, L; Pettersson, C

    1996-06-01

    This paper describes how ground water was sampled, DNA extracted, amplified and cloned and how information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of subterranean bacteria in groundwater at the Bangombé site in the Oklo region. The results showed that this site was inhabited by a diversified population of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes; a result that probably reflects documented differences in the geochemical environment. Two of the sequences obtained were identified at genus level to represent Acinetobacter and Zoogloea, but most of the 44 sequences found were only distantly related to species in the DNA database. The deepest borehole, BAX01 (105 m), had the highest number of bacteria and also total organic carbon (TOC). This borehole harboured only Proteobacteria beta group sequences while sequences related to Proteobacteria beta, gamma and delta groups and Gram-positive bacteria were found in the other four boreholes. Two of the boreholes, BAX02 (34 m) and BAX04 (10 m) had many 16S rRNA gene sequences in common and also had similar counts of bacteria, content of TOC, pH and equal conductivity, suggesting a hydraulic connection between them.

  16. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  17. Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI.

    PubMed

    Vélez, Sebastián; Mesibov, Robert; Giribet, Gonzalo

    2012-01-01

    We used 16S ribosomal RNA (rRNA) and cytochrome c oxidase subunit I (COI) sequence data to investigate the population structure in the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha: Craterostigmidae) and to look for possible barriers to gene flow on the island of Tasmania, where C. tasmanianus is a widespread endemic. We first confirmed a molecular diagnostic character in 28S rRNA separating Tasmanian Craterostigmus from its sister species Craterostigmus crabilli (Edgecombe and Giribet 2008) in New Zealand and found no shared polymorphism in this marker for the 2 species. In Tasmania, analysis of molecular variance analysis showed little variation at the 16S rRNA and COI loci within populations (6% and 13%, respectively), but substantial variation (56% and 48%, respectively) among populations divided geographically into groups. We found no clear evidence of isolation by distance using a Mantel test. Bayesian clustering and gene network analysis both group the C. tasmanianus populations in patterns which are broadly concordant with previously known biogeographical divisions within Tasmania, but we did not find that genetic distance varied in a simple way across cluster boundaries. The coarse-scale geographical sampling on which this study was based should be followed in the future by sampling at a finer spatial scale and to investigate genetic structure within clusters and across cluster boundaries.

  18. 16S rRNA gene sequences analysis of Ficus elastica rubber latex degrading thermophilic Bacillus strain ASU7 isolated from Egypt.

    PubMed

    Hesham, Abd El-Latif; Mohamed, Nadia H; Ismail, Mady A; Shoreit, Ahmed A M

    2012-09-01

    A thermophilic Bacillus strain ASU7 was isolated from soil sample collected from Assiut governorate in Upper Egypt on latex rubber-containing medium at 45 °C. Genetically, the 16S bacterial ribosomal RNA gene of the strain ASU7 was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR product was compared with known 16S rRNA gene sequences in the GenBank database. Based on phylogenetic analyses, strain ASU7 was identified as Bacillus amyloliquefaciens. The strain was able to utilize Ficus elastica rubber latex as a sole source for carbon and energy. The ability for degradation was determined by measuring the increase in protein content of bacterium (mg/g dry wt), reduction in molecular weight (g/mol), and inherent viscosity (dl/g) of the latex. Moreover, the degradation was also confirmed by observing the growth of bacterium and formation of aldehyde or keto group using scanning electron microscopy (SEM) and shiff's reagent, respectively.

  19. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles.

    PubMed

    Hosoya, Tadatsugu; Araya, Kunio

    2005-12-01

    As a first step in reconstructing the phylogeny of world stag beetles (Coleoptera: Lucanidae), phylogenetic relationships among the major members of Japanese stag beetles were explored by analyzing a sequence of 1030 nucleotides from the mitochondrial 16S ribosomal RNA (16S rRNA) gene. A total of 20 species and three additional subspecies representing 13 genera were examined to provide basic information on the phylogeny of world Lucanidae. The resultant phylogenetic tree indicates that the family Lucanidae is monophyletic, and contains two major lineages: one consists of the genera Platycerus, Aesalus, Ceruchus, and Nicagus, and the other includes Dorcus, Rhaetulus, Prosopocoilus, Aegus, Neolucanus, Prismognathus, Lucanus, Figulus, and Nigidius. Generic members of the latter lineage are further divided into the following four sublineages: i) Figulus and Nigidius; ii) Prismognathus and Lucanus; iii) Aegus and Neolucanus; and iv) Dorcus, Rhaetulus, and Prosopocoilus. These molecular phylogenetic relationships are used as a basis for a preliminary exploration of the evolution of sexual dimorphism in the shape of the mandible. The results of this investigation suggest that strong sexual dimorphism with well-developed mandibles in males evolved independently at least twice, once in the genus Aegus and once in the ancestor of the Lucanus-Prismognathus and Dorcus-Rhaetulus-Prosopocoilus clades. Alternatively, it is possible that sexual dimorphism of mandibles has undergone secondary loss in the genera Figulus and Nigidius.

  20. Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants.

    PubMed

    Poitelon, Jean-Baptiste; Joyeux, Michel; Welté, Bénédicte; Duguet, Jean-Pierre; Prestel, Eric; DuBow, Michael S

    2010-02-01

    We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer's tap.

  1. Identification of metabolically active proteobacterial and archaeal communities in the rumen by DNA- and RNA-derived 16S rRNA gene.

    PubMed

    Kang, S H; Evans, P; Morrison, M; McSweeney, C

    2013-09-01

    To gain new insights into the metabolic contribution of bacterial group in the rumen. Both DNA- and RNA-derived bacterial 16S ribosomal materials from bovine rumen contents were used as the template for bacterial community and analyse microbiota by three methods namely custom phylogenetic microarray, quantitative real-time PCR and denaturing gradient gel electrophoresis techniques. Bacterial analysis showed that genera affiliating with the Proteobacteria apparently made a greater metabolic contribution to rumen function than their population sizes indicated. Analysis of another rumen microbial group, the methanogens, using clone libraries for the expressed methyl coenzyme reductase subunit A (mcrA) revealed that an uncultivated methanogen clade contributes one-third of RNA-derived mcrA sequences based on a limited number of clones analysed. These uncultivated methanogen species were not observed in the mcrA gene library based on the DNA-derived sequences. The comparison of results obtained from DNA- and RNA-derived materials suggests that some of the Proteobacteria and novel methanogen species appeared to be low in abundance in the rumen maintained on grain-based diets might play a greater role in rumen metabolism. These studies provide the first report to compare high-throughput analysis of bacterial 16S rRNA genes from DNA- and RNA-derived materials to indicate differences that species make to community structure and metabolic activity. © 2013 The Society for Applied Microbiology.

  2. Development of a Single-Step Subtraction Method for Eukaryotic 18S and 28S Ribonucleic Acids

    DTIC Science & Technology

    2011-01-01

    Article Development of a Single-Step SubtractionMethod for Eukaryotic 18S and 28S Ribonucleic Acids Marie J. Archer and Baochuan Lin Center for Bio...real-time RT-PCR revealed capture-efficiencies comparable with commercially available enrichment kits. The performance of the solid phase can be...Method For Eukaryotic 18S And 28S Ribonucleic Acids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  3. Eukaryotic ribosome assembly, transport and quality control.

    PubMed

    Peña, Cohue; Hurt, Ed; Panse, Vikram Govind

    2017-09-07

    Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.

  4. Functional Role of Methylation of G518 of the 16S rRNA 530 Loop by GidB in Mycobacterium tuberculosis

    PubMed Central

    Wong, Sharon Y.; Javid, Babak; Addepalli, Balasubrahmanyam; Piszczek, Grzegorz; Strader, Michael Brad; Limbach, Patrick A.

    2013-01-01

    Posttranscriptional modifications of bacterial rRNA serve a variety of purposes, from stabilizing ribosome structure to preserving its functional integrity. Here, we investigated the functional role of one rRNA modification in particular—the methylation of guanosine at position 518 (G518) of the 16S rRNA in Mycobacterium tuberculosis. Based on previously reported evidence that G518 is located 5 Å; from proline 44 of ribosomal protein S12, which interacts directly with the mRNA wobble position of the codon:anticodon helix at the A site during translation, we speculated that methylation of G518 affects protein translation. We transformed reporter constructs designed to probe the effect of functional lesions at one of the three codon positions on translational fidelity into the wild-type strain, H37Rv, and into a ΔgidB mutant, which lacks the methyltransferase (GidB) that methylates G518. We show that mistranslation occurs less in the ΔgidB mutant only in the construct bearing a lesion in the wobble position compared to H37Rv. Thus, the methylation of G518 allows mistranslation to occur at some level in order for translation to proceed smoothly and efficiently. We also explored the role of methylation at G518 in altering the susceptibility of M. tuberculosis to streptomycin (SM). Using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), we confirmed that G518 is not methylated in the ΔgidB mutant. Furthermore, isothermal titration calorimetry experiments performed on 70S ribosomes purified from wild-type and ΔgidB mutant strains showed that methylation significantly enhances SM binding. These results provide a mechanistic explanation for the low-level, SM-resistant phenotype observed in M. tuberculosis strains that contain a gidB mutation. PMID:24100503

  5. Functional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosis.

    PubMed

    Wong, Sharon Y; Javid, Babak; Addepalli, Balasubrahmanyam; Piszczek, Grzegorz; Strader, Michael Brad; Limbach, Patrick A; Barry, Clifton E

    2013-12-01

    Posttranscriptional modifications of bacterial rRNA serve a variety of purposes, from stabilizing ribosome structure to preserving its functional integrity. Here, we investigated the functional role of one rRNA modification in particular-the methylation of guanosine at position 518 (G518) of the 16S rRNA in Mycobacterium tuberculosis. Based on previously reported evidence that G518 is located 5 Å; from proline 44 of ribosomal protein S12, which interacts directly with the mRNA wobble position of the codon:anticodon helix at the A site during translation, we speculated that methylation of G518 affects protein translation. We transformed reporter constructs designed to probe the effect of functional lesions at one of the three codon positions on translational fidelity into the wild-type strain, H37Rv, and into a ΔgidB mutant, which lacks the methyltransferase (GidB) that methylates G518. We show that mistranslation occurs less in the ΔgidB mutant only in the construct bearing a lesion in the wobble position compared to H37Rv. Thus, the methylation of G518 allows mistranslation to occur at some level in order for translation to proceed smoothly and efficiently. We also explored the role of methylation at G518 in altering the susceptibility of M. tuberculosis to streptomycin (SM). Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), we confirmed that G518 is not methylated in the ΔgidB mutant. Furthermore, isothermal titration calorimetry experiments performed on 70S ribosomes purified from wild-type and ΔgidB mutant strains showed that methylation significantly enhances SM binding. These results provide a mechanistic explanation for the low-level, SM-resistant phenotype observed in M. tuberculosis strains that contain a gidB mutation.

  6. The RDP (Ribosomal Database Project).

    PubMed

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1997-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree.

  7. The Ribosomal Database Project (RDP).

    PubMed

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1996-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and World Wide Web (WWW)(http://rdpwww.life.uiuc.edu/). The electronic mail and WWW servers provide ribosomal probe checking, screening for possible chimeric rRNA sequences, automated alignment and approximate phylogenetic placement of user-submitted sequences on an existing phylogenetic tree.

  8. The RDP (Ribosomal Database Project).

    PubMed Central

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1997-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. PMID:9016515

  9. Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine.

    PubMed

    Kumar, Dileep; Rub, Malik Abdul; Akram, Mohd; Kabir-ud-Din

    2014-11-11

    The effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium(III) complex of glycylphenylalanine ([Cr(III)-Gly-Phe]2+) has been investigated using UV-visible spectrophotometer at different temperatures. The order of reaction with respect to [Cr(III)-Gly-Phe]2+ is unity while it is fractional with respect to ninhydrin. Whereas, the values of rate constant (kψ) increase and leveling-off regions, like conventional single chain cetyltrimethylammonium bromide (CTAB) surfactant, were observed with geminis, later produces a third region of increasing kψ at higher gemini surfactant concentrations. This unusual third-region effect of the gemini micelles is assigned to changes in their micellar morphologies. The results obtained in micellar media were treated in terms of pseudo-phase model. The values of thermodynamic parameters (Ea, ΔH# and ΔS#) and binding constants (KA and KNin) have been evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Large Variations in Bacterial Ribosomal RNA Genes

    PubMed Central

    Lim, Kyungtaek; Furuta, Yoshikazu; Kobayashi, Ichizo

    2012-01-01

    Ribosomal RNA (rRNA) genes, essential to all forms of life, have been viewed as highly conserved and evolutionarily stable, partly because very little is known about their natural variations. Here, we explored large-scale variations of rRNA genes through bioinformatic analyses of available complete bacterial genomic sequences with an emphasis on formation mechanisms and biological significance. Interestingly, we found bacterial genomes in which no 16S rRNA genes harbor the conserved core of the anti–Shine-Dalgarno sequence (5′-CCTCC-3′). This loss was accompanied by elimination of Shine-Dalgarno–like sequences upstream of their protein-coding genes. Those genomes belong to 1 or 2 of the following categories: primary symbionts, hemotropic Mycoplasma, and Flavobacteria. We also found many rearranged rRNA genes and reconstructed their history. Conjecturing the underlying mechanisms, such as inversion, partial duplication, transposon insertion, deletion, and substitution, we were able to infer their biological significance, such as co-orientation of rRNA transcription and chromosomal replication, lateral transfer of rRNA gene segments, and spread of rRNA genes with an apparent structural defect through gene conversion. These results open the way to understanding dynamic evolutionary changes of rRNA genes and the translational machinery. PMID:22446745

  11. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  12. The ribosomal gene spacer region in archaebacteria

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Woese, C. R.

    1988-01-01

    Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.

  13. A backward view from 16S rRNA to archaea to the universal tree of life to progenotes: reminiscences of Carl Woese.

    PubMed

    Garrett, Roger A

    2014-01-01

    I first became aware of Carl Woese in the mid-1970s when he and George Fox criticized a few of the 16S rRNA oligonucleotide sequences emerging from Strasbourg in the 10-12 y RNA sequencing project of the first 16S rRNA from Escherichia coli, some of which we were using for assembling RNA binding sites of ribosomal proteins. When I realized that they were attempting to sequence 16S rRNAs from a range of bacteria to classify them phylogenetically, I seriously questioned their sanity. Not because of the goal, which was admirable, but because of the sheer technical difficulty, and slowness, of sequencing large RNA molecules using the original Sanger RNA sequencing method, not to mention the health hazards of regularly preparing rRNA using 20-30 mCi [ (32)P]. My view changed radically, however, with their subsequent prediction of 5S rRNA secondary structures using a phylogenetic approach. Previously, the molecular biology community had been competing to generate the maximum numbers of base pairs in the model RNA molecule E. coli 5S RNA when Fox and Woese introduced the concept of compensatory base changes based on phylogeny for defining secondary structure and applied it to 5S RNA, they found evidence for only about 50% base pairing. This approach had previously been used for tRNA secondary structure predictions but its more general significance had never been acknowledged. Carl subsequently persuaded Harry Noller to apply the same method to predicting secondary structures of the large rRNAs.

  14. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women

    PubMed Central

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-01-01

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host–microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1–V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy. PMID:26846451

  15. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation.

    PubMed

    Montassier, Emmanuel; Batard, Eric; Massart, Sébastien; Gastinne, Thomas; Carton, Thomas; Caillon, Jocelyne; Le Fresne, Sophie; Caroff, Nathalie; Hardouin, Jean Benoit; Moreau, Philippe; Potel, Gilles; Le Vacon, Françoise; de La Cochetière, Marie France

    2014-04-01

    Gastrointestinal disturbances are a side-effect frequently associated with haematological malignancies due to the intensive cytotoxic treatment given in connection with bone marrow transplantation (BMT). However, intestinal microbiota changes during chemotherapy remain poorly described, probably due to the use of culture-based and low-resolution molecular methods in previous studies. The objective of our study was to apply a next generation DNA sequencing technology to analyse chemotherapy-induced changes in faecal microbiota. We included eight patients with non-Hodgkin's lymphoma undergoing one course of BMT conditioning chemotherapy. We collected a prechemotherapy faecal sample, the day before chemotherapy was initiated, and a postchemotherapy sample, collected 1 week after the initiation of chemotherapy. Total DNA was extracted from faecal samples, denaturing high-performance liquid chromatography based on amplification of the V6 to V8 region of the 16S ribosomal RNA (rRNA) gene, and 454-pyrosequencing of the 16 S rRNA gene, using PCR primers targeting the V5 and V6 hypervariable 16S rRNA gene regions were performed. Raw sequence data were screened, trimmed, and filtered using the QIIME pipeline. We observed a steep reduction in alpha diversity and significant differences in the composition of the intestinal microbiota in response to chemotherapy. Chemotherapy was associated with a drastic drop in Faecalibacterium and accompanied by an increase of Escherichia. The chemotherapy-induced shift in the intestinal microbiota could induce severe side effects in immunocompromised cancer patients. Our study is a first step in identifying patients at risk for gastrointestinal disturbances and to promote strategies to prevent this drastic shift in intestinal microbiota.

  16. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women.

    PubMed

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-02-05

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host-microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1-V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy.

  17. Sequence diversity in the 16S-23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection.

    PubMed

    Antón, A I; Martínez-Murcia, A J; Rodríguez-Valera, F

    1998-07-01

    The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S-23S intergenic spacer region (ISR) for tRNA(Glu-2) and three (rrnA, D, and H) contain genes for tRNA(Ile-1) and tRNA(Ala-1B). To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions.

  18. An assembly landscape for the 30S ribosomal subunit

    PubMed Central

    Talkington, Megan W. T.; Siuzdak, Gary

    2005-01-01

    Self-assembling macromolecular machines drive fundamental cellular processes, including transcription, mRNA processing, translation, DNA replication, and cellular transport. The ribosome, which carries out protein synthesis, is one such machine, and the 30S subunit of the bacterial ribosome is the preeminent model system for biophysical analysis of large RNA-protein complexes. Our understanding of 30S assembly is incomplete, due to the challenges of monitoring the association of many components simultaneously. We have developed a new method involving pulse-chase monitored by quantitative mass spectrometry (PC/QMS) to follow the assembly of the 20 ribosomal proteins with 16S rRNA during formation of the functional particle. These data represent the first detailed and quantitative kinetic characterization of the assembly of a large multicomponent macromolecular complex. By measuring the protein binding rates at a range of temperatures, we have found that local transformations throughout the assembling subunit have similar but distinct activation energies. This observation shows that the prevailing view of 30S assembly as a pathway proceeding through a global rate-limiting conformational change must give way to a view in which the assembly of the complex traverses a landscape dotted with a variety of local conformational transitions. PMID:16319883

  19. RNA folding and ribosome assembly.

    PubMed

    Woodson, Sarah A

    2008-12-01

    Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.

  20. Targeting ricin to the ribosome.

    PubMed

    May, Kerrie L; Yan, Qing; Tumer, Nilgun E

    2013-07-01

    The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention.

  1. The aminoglycoside resistance methyltransferases from the ArmA/Rmt family operate late in the 30S ribosomal biogenesis pathway.

    PubMed

    Zarubica, Tamara; Baker, Matthew R; Wright, H Tonie; Rife, Jason P

    2011-02-01

    Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+² dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+² (translationally inactive) and high Mg+² (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.

  2. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems

    PubMed Central

    Failmezger, Jurek; Nitschel, Robert; Sánchez-Kopper, Andrés; Kraml, Michael; Siemann-Herzberg, Martin

    2016-01-01

    Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems. PMID:27992588

  3. Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly.

    PubMed

    Baker, Kris Ann; Lamichhane, Rajan; Lamichhane, Tek; Rueda, David; Cunningham, Philip R

    2016-09-11

    Interactions between ribosomal proteins (rproteins) and ribosomal RNA (rRNA) facilitate the formation of functional ribosomes. S15 is a central domain primary binding protein that has been shown to trigger a cascade of conformational changes in 16S rRNA, forming the functional structure of the central domain. Previous biochemical and structural studies in vitro have revealed that S15 binds a three-way junction of helices 20, 21, and 22, including nucleotides 652-654 and 752-754. All junction nucleotides except 653 are highly conserved among the Bacteria. To identify functionally important motifs within the junction, we subjected nucleotides 652-654 and 752-754 to saturation